Supporting Information

Near Infrared Absorbing Nonaromatic Core modified meta-Benzicalixhexaphyrin(1.1.1.1.1)s

Pooja Varak and Mangalampalli Ravikanth*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, E-mail: <u>ravikanth@chem.iitb.ac.in</u>

Sr. no.	Details	Page no.
1	General experimental section	S2-S3
2	Figures S1-S37. Characterization (HR-MS and NMR) data for all new	S4-S40
	compounds.	
3	Figures S38-S39. Absorption spectra for compounds 2-5 with and	S41-S42
	without TFA and systematic titration of compounds 2-5 with	
	increasing amounts of TFA.	
4	Figure S40. Visual representation and absorption spectra of 4, 4.2H ⁺	S43
	and response of $4.2H^+$ to various anions (excess) as their	
	tetrabutylammonium salts in CHCl ₃ .	
5	Figures S41. Electrochemical data for the compounds 2-5.	S 44
6	Figure S42. NICS(0) values for compounds 2-5.	S45
7	Figure S43. Probable mechanism for the formation of compounds 2-	S46
	5.	
8	Figures S44-S47 and Table S1, S2, S3, S4. TD-DFT plots for	S47-S55
	compounds 2-5 and selected TD-DFT and calculated oscillator	
	strengths for electronic transitions of 2-5.	
9	Tables S5-S9. Cartesian coordinates of the optimized (S_0) geometries	S56-S66
	of the compounds 2-5 and 4.2H ⁺ .	
10	Figures S48. Energy level diagram (selected FMOs) of 4 and 4.2H ⁺	S64
11	Table S10. Comparison of the relative energies of macrocycles 2-5 and	S66
	expected compounds 6a-6d.	
12	References	S67

General Experimental Section:

Materials, methods and instruments

BF₃·OEt₂, trifluoroacetic acid (TFA), 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) and other chemicals used were obtained from Aldrich. All the other chemicals used for the synthesis were reagent grade unless mentioned otherwise. Silica gel and basic alumina column chromatographic method were performed for purification. The compounds $10a-10b^1$ and $8a-8d^2$ were synthesized by the reported method. The ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Bruker 400 and 500 MHz FT-NMR spectrometers using tetramethylsilane $[Si(CH_3)_4]$ as the internal reference. The frequencies for ¹³C nucleus being 100.06 and 125.77 MHz for 400 MHz and 500 MHz instruments respectively. Absorption spectra were obtained with Shimadzu UV-Vis-NIR Spectrophotometer. The stock solutions of the macrocycles $(2 \times 10^{-5} \text{ M})$ were prepared using HPLC-grade chloroform. Cyclic voltammetry (CV) studies were carried out with BASi C3 Cell Stand electrochemical system utilizing the three-electrode configuration consisting of a glassy carbon (working electrode), platinum wire (auxiliary electrode) and saturated calomel as reference electrode (the electrode is composed of Hg/Hg₂Cl₂/Saturated KCl solution). The concentrations of the samples were maintained as 0.01 M containing 0.1 M tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte in dichloromethane at 25 °C under an argon atmosphere at a scan rate of 50 mV/s. The half-wave potentials measured using differential pulse voltammetry were calculated manually by taking the average of the cathodic and anodic peak potentials. All the potentials were calibrated using ferrocene as an external standard, taking $E^{1/2}$ (Fc/Fc⁺) = 0.42 V versus SCE. The HR mass spectra were recorded with a Bruker maXis Impact and Q-TOF micro mass spectrometer using positive mode ESI methods in acetonitrile or methanol.

Computational Details:

All computations were performed using the Gaussian 09 program package.³ The density functional theory (DFT) method, with hybrid functional B3LYP in conjunction with 6-31G**+LANL2DZ basis sets were implemented to optimize the geometries of macrocycles **2-5** in ground (S₀) state.⁴ In order to improve the accuracy of electronic structure calculations and geometry optimization in S₀ state, dispersive interactions in the electron density of the macrocycles were studied using Grimme's dispersion correction method (GD2) over the B3LYP/6-31G**+LANL2DZ level of theory.⁵ Oscillator strengths were obtained using identical basis and functional hybrid set, whereas the vertical excitation energies were obtained by the help of TD-DFT techniques for first fifty S₀→S_n transitions.⁶ All computations were performed in toluene medium using the Polarizable Continuum Model (PCM) and Self-Consistent Reaction Field (SCRF).⁷ The electronic absorption spectra, and the oscillator strengths were thoroughly examined using time-dependent DFT with the PCM model based on the optimized structures in the S₀ state.

Compound 7a

Figure S2. ¹H-NMR spectrum of the compound **7a** recorded in $CDCl_3$ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S3. ¹³C{¹H} NMR spectrum of the compound **7a** recorded in CDCl₃ on 101 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Compound 7a

Figure S5. ¹H-NMR spectrum of the compound **7b** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S6. ¹³C{¹H} NMR spectrum of the compound **7b** recorded in CDCl₃ on 101 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

1

Figure S7. HR mass spectrum of the compound 2.

Figure S8. ¹H-NMR spectrum of the compound **2** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S9. ¹H–¹H COSY of compound **2** recorded in CDCl₃ at 25 °C.

Figure S10. ¹H–¹H NOESY of compound **2** recorded in CDCl₃ at 25 °C.

Figure S11. Expanded ¹H–¹H NOESY of compound **2** recorded in CDCl₃ at 25 °C.

Figure S12. ¹³C{¹H} NMR spectrum of the compound 2 recorded in CDCl₃ on 101 MHz NMF instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Compound 3a

Figure S14. ¹H-NMR spectrum of the compound **3a** recorded in CDCl₃ at 25 °C on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S15. ¹³C{¹H} NMR spectrum of the compound **3a** recorded in CDCl₃ on 101 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Figure S16. HR mass spectrum of the compound 3b.

Figure S17. ¹H-NMR spectrum of the compound **3b** recorded in CDCl₃ at 25 °C on 500 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S18. ¹³C{¹H} NMR spectrum of the compound **3b** recorded in CDCl₃ on 101 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Compound 4

Figure S19. HR mass spectrum of the compound 4.

Figure S20. ¹H-NMR spectrum of the compound **4** recorded in CDCl₃ at 25 °C on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S21. ¹H-NMR spectrum of the compound **4** recorded in CDCl₃ after addition of D₂O at 25 °C on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S22. Comparison of ¹H-NMR spectrum of the compound **4** recorded in CDCl₃ at 298K (a) with D_2O and without D_2O (b) on 400 MHz NMR instrument.

Figure S23. ¹H-NMR spectrum of the compound **4.2H**⁺ recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S24. ¹H-NMR spectrum of the compound **4.2H**⁺ recorded upon addition of D_2O in CDCl₃ at 25 °C on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S25. ¹³C{¹H} NMR spectrum of the compound **3** recorded in CDCl₃ on 101 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S26. ¹H–¹H COSY of compound 4 recorded in CDCl₃ at 25 °C.

Figure S27. ¹H–¹H NOESY of compound 4 recorded in CDCl₃ at 25 °C.

Figure S28. Expanded ¹H–¹H NOESY of compound 4 recorded in CDCl₃ at 25 °C.

Figure S29. Partial ¹H NMR, partial ¹³C NMR and partial ¹H-¹³C HMBC spectra of compound **4** recorded in CDCl₃ at room temperature at 400 MHz NMR instrument.

Compound 5

Figure S30. HR mass spectrum of the compound 5.

Figure S31. ¹H-NMR spectrum of the compound **5** recorded in CDCl₃ at 25 °C on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S32. ¹³C{¹H} NMR spectrum of the compound **5** recorded in CDCl₃ at 25 °C on 126 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S33. ¹H–¹H COSY of compound 5 recorded in CDCl₃ at 25 °C.

Figure S34. ¹H–¹H NOESY of compound 5 recorded in CDCl₃ at 25 °C.

Figure S35. Expanded ¹H–¹H NOESY of compound **5** recorded in CDCl₃ at 25 °C.

Figure S36. Comparison of partial ¹H-NMR spectra of the compounds **2-5** recorded in CDCl₃ at 25 °C on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S37. Cis- and trans-isomers of compounds 2-5.

The ¹H-NMR spectra for compounds **2-5** are symmetrical, clearly indicating that the two hydroxy groups are in a *cis*-orientation. Moreover, the appearance of one set of β -pyrrole protons (*type* f), corresponding to two protons, reveals that they are in the same chemical environment. If the orientation of the two hydroxy groups were trans, the ¹H-NMR spectra for macrocycles **2-5** would be expected to be unsymmetrical. Additionally, in the ¹H-¹H NOESY spectrum of each of the compounds **2-5**, we would anticipate spatial correlations between the β -pyrrole proton and the *meso*-aryl proton (*type* c), while such correlations should be absent for the β -pyrrole proton that is distant from the *meso*-aryl proton (*type* c). However, we observed solely symmetrical ¹H-NMR spectra, conclusively indicating that the two hydroxy groups are in a *cis*-orientation in all the macrocycles **2-5**.

Figure S38. Comparison of absorption spectra of the compounds 2-5 $(2 \times 10^{-5} \text{ M})$ free base (black line) and in presence of TFA (excess) (red line) recorded in chloroform at room temperature.

Figure S39. (a-d) Systematic titrations of CHCl₃ solutions of compounds **2-4** (2×10^{-5} M) with increasing addition of TFA (0-2 equiv.) recorded at room temperature; (e) Systematic titration of CHCl₃ solution of compound **5** (2×10^{-5} M) with increasing addition of HClO₄ (0-2.5 equiv.) recorded at room temperature.

Figure S40. (a) Visual representation of solutions of 4 (2×10^{-5} M), **4.2H**⁺ and **4.2H**⁺ upon addition of various anions (excess) as their tetrabutylammonium salts in CHCl₃. (b) Absorption spectra of **4** (2×10^{-5} M), **4.2H**⁺ and response of **4.2H**⁺ to various anions (excess) as their tetrabutylammonium salts in CHCl₃.

Figure S41. Comparison of cyclic voltammograms (black solid lines) along with differential pulse voltammograms (red dotted lines) of the compounds **2-5** recorded in CH_2Cl_2 containing 0.1 M TBAP as the supporting electrolyte and a saturated calomel electrode (SCE) as the reference electrode at scan rates of 50 mV s⁻¹.

Figure S42. NICS(0) values of macrocycles 2-5.

Figure S43. Probable mechanism for the formation of *m*-benziheterocalixhexaphyrin(1.1.1.1.1)s2-5. Note: All the different aryl groups are denoted as Ar in the molecular structures for simplicity.

Figure S44. Calculated excitations (black vertical lines) and experimental absorption spectra (red line) for macrocycle **2**.

Table S1. Selected TD-DFT calculated oscillator strengths and compositions of the major

Wavelength	Oscillator	Major contributions
(nm)	Strength	
727.265	0.4725	HOMO->LUMO (99%)
607.022	0.066	HOMO->L+1 (91%)
486.232	0.2799	H-1->LUMO (89%)
473.873	0.0497	H-2->LUMO (46%), HOMO->L+2 (48%)
437.504	0.2185	H-2->LUMO (29%), H-1->L+1 (52%), HOMO->L+2 (15%)
409.297	0.3217	H-2->LUMO (16%), H-1->L+1 (38%), HOMO->L+2 (31%)
401.010	0.0894	H-3->LUMO (57%), H-2->L+1 (29%)
392.628	0.1895	H-3->LUMO (30%), H-2->L+1 (55%)
377.805	0.0794	H-4->LUMO (69%)
374.846	0.0417	H-6->LUMO (72%), H-4->LUMO (10%)
367.002	0.0374	H-5->LUMO (97%)
360.388	0.0367	H-3->L+1 (68%), H-1->L+2 (10%)
355.918	0.1412	H-9->LUMO (30%), H-7->LUMO (42%)
355.368	0.2112	H-9->LUMO (10%), H-7->LUMO (43%), H-1->L+2 (22%)
353.402	0.1683	H-9->LUMO (25%), H-1->L+2 (51%)
346.605	0.0246	H-10->LUMO (23%), H-8->LUMO (49%)
343.932	0.098	H-10->LUMO (33%), H-8->LUMO (20%), H-4->L+1 (15%)
341.253	0.1058	H-11->LUMO (14%), H-10->LUMO (35%), H-4->L+1 (32%)
336.237	0.0152	H-11->LUMO (63%), H-4->L+1 (28%)

electronic transitions of 2.

334.785	0.0055	HOMO->L+3 (97%)
332.888	0.0224	H-6->L+1 (24%), H-2->L+2 (58%)
331.101	0.0112	H-13->LUMO (19%), H-12->LUMO (36%), H-5->L+1 (13%)
329.684	0.0077	H-13->LUMO (36%), H-12->LUMO (17%), H-5->L+1 (17%)
327.299	0.006	H-6->L+1 (28%), H-5->L+1 (11%), H-2->L+2 (23%)
327.135	0.0064	H-22->LUMO (30%), H-21->LUMO (27%), H-5->L+1 (10%)
326.532	0.0015	H-12->LUMO (18%), H-6->L+1 (21%), H-5->L+1 (39%)
323.381	0.0086	HOMO->L+4 (88%)
322.079	0.0127	H-21->LUMO (10%), H-14->LUMO (39%), H-13->LUMO
		(10%)
320.804	0.083	H-7->L+1 (60%)
320.116	0.0116	HOMO->L+5 (73%)
319.144	0.0082	H-15->LUMO (23%), H-14->LUMO (12%), HOMO->L+5
		(10%)
317.257	0.0178	H-18->LUMO (10%), H-15->LUMO (19%), HOMO->L+6
		(15%)
316.214	0.0546	H-15->LUMO (12%), HOMO->L+6 (37%)
315.473	0.0165	HOMO->L+7 (51%), HOMO->L+9 (10%)
314.976	0.0344	H-10->L+1 (14%), H-8->L+1 (21%), HOMO->L+6 (20%)
313.995	0.0054	H-8->L+1 (13%), HOMO->L+8 (40%)
312.925	0.0171	H-19->LUMO (10%), H-17->LUMO (12%), H-8->L+1 (12%),
		HOMO->L+8 (29%)
312.091	0.0331	H-19->LUMO (10%), H-10->L+1 (30%), HOMO->L+7 (11%)
311.510	0.0064	H-19->LUMO (25%), H-18->LUMO (12%), H-10->L+1
		(15%), HOMO->L+8 (17%)
310.411	0.0564	HOMO->L+9 (50%), HOMO->L+10 (17%), HOMO->L+11
		(10%)
309.581	0.0482	H-9->L+1 (63%)
308.066	0.0002	H-17->LUMO (35%), H-16->LUMO (45%)
307.676	0.0179	HOMO->L+7 (12%), HOMO->L+9 (25%), HOMO->L+10
		(42%)
306.793	0.0036	H-20->LUMO (61%), H-20->L+1 (14%)
305.696	0.0074	H-11->L+1 (58%), H-10->L+1 (16%)
304.607	0.0293	H-19->LUMO (11%), H-16->LUMO (10%), HOMO->L+10
		(13%), HOMO->L+11 (28%)
304.256	0.0149	H-19->LUMO (15%), H-18->LUMO (19%), H-16->LUMO
		(13%), HOMO->L+11 (10%)
300.699	0.0025	H-3->L+2 (13%), HOMO->L+12 (30%), HOMO->L+13 (23%)
298.613	0.0081	H-12->L+1 (79%)

Figure S45. Calculated excitations (black vertical lines) and experimental absorption spectra

(red line) for macrocycle **3b**.

 Table S2. Selected TD-DFT calculated oscillator strengths and compositions of the major
 electronic transitions of 3b.

Wavelength	Oscillator	Major contributions
(nm)	Strength	
747.929	0.6364	HOMO->LUMO (99%)
627.196	0.1042	HOMO->L+1 (92%)
481.286	0.376	H-1->LUMO (88%)
460.377	0.0445	H-2->LUMO (65%), HOMO->L+2 (29%)
436.288	0.14	H-2->LUMO (13%), H-1->L+1 (74%)
406.186	0.0843	H-3->LUMO (20%), H-2->L+1 (36%), HOMO->L+2 (19%)
397.717	0.397	H-3->LUMO (30%), H-1->L+1 (10%), HOMO->L+2 (30%)
387.172	0.3036	H-3->LUMO (42%), H-2->L+1 (48%)
382.219	0.0225	H-5->LUMO (15%), H-4->LUMO (64%)
370.489	0.0513	H-8->LUMO (16%), H-7->LUMO (21%), H-6->LUMO (18%),
		H-4->LUMO (11%)
368.288	0.0449	H-5->LUMO (62%), H-4->LUMO (14%)
363.803	0.2457	H-8->LUMO (10%), H-7->LUMO (17%), H-6->LUMO (47%)
359.281	0.0685	H-9->LUMO (35%), H-7->LUMO (10%), H-6->LUMO (16%)
358.553	0.1194	H-9->LUMO (12%), H-8->LUMO (38%), H-7->LUMO (29%)
353.574	0.0714	H-11->LUMO (29%), H-9->LUMO (11%), H-3->L+1 (41%)

350.327	0.0207	H-12->LUMO (13%), H-11->LUMO (22%), H-10->LUMO (27%), H-2 >L+1 (15%)
348 086	0.0417	$(27\%), \Pi - 3 - 2L + 1 (13\%)$ H 11 \LUMO (21%) H 10 \LUMO (21%) H 2 \L 1 (14%)
240.900	0.0417	$H_{1} = 10000000000000000000000000000000000$
341.000	0.0103	H-4->L+1 (45%), $HOMO->L+3$ (11%)
341.000	0.0224	$H_{12} > L_{10} = (79\%)$
337.804	0.0001	H-12 - 2UMO(05%), H-10 - 2UMO(10%)
335.828	0.0081	H-16 > LUMO (14%), H-1 > L+2 (22%)
333.569	0.0553	H-15 > LUMO(31%)
332.951	0.0361	H-16->LUMO (11%), H-13->LUMO (19%), H-1->L+2 (24%), HOMO->L+4 (11%)
332.290	0.0033	H-13->LUMO (19%). HOMO->L+4 (54%)
331.713	0.0295	H-5->L+1 (37%), $H-4->L+1$ (13%), $HOMO->L+4$ (14%)
331.013	0.0855	H-13->LUMO (19%), H-5->L+1 (18%), H-1->L+2 (22%).
0011010	0.00000	HOMO->L+4 (12%)
328.748	0.0137	H-16->LUMO (17%), H-14->LUMO (49%)
327.040	0.0046	H-7->L+1 (14%), H-6->L+1 (61%)
325.213	0.0324	H-15->LUMO (16%), H-7->L+1 (25%)
323.803	0.0454	H-9->L+1 (19%), H-7->L+1 (27%), H-6->L+1 (13%)
323.094	0.007	H-22->LUMO (27%), H-9->L+1 (22%)
320.588	0.0161	H-23->LUMO (23%), H-19->LUMO (15%), H-18->LUMO
		(11%), H-16->LUMO (12%)
319.341	0.022	H-11->L+1 (11%), H-9->L+1 (12%), H-8->L+1 (32%)
318.742	0.0192	H-18->LUMO (20%), HOMO->L+7 (11%), HOMO->L+11
		(13%)
317.851	0.0388	HOMO->L+7 (15%), HOMO->L+11 (11%)
317.436	0.0025	H-20->LUMO (26%), HOMO->L+6 (33%)
316.642	0.0006	H-19->LUMO (12%), HOMO->L+8 (35%)
316.335	0.086	HOMO->L+5 (16%), HOMO->L+7 (11%), HOMO->L+11
		(22%), HOMO->L+12 (10%)
315.940	0.009	H-10->L+1 (19%), HOMO->L+5 (48%)
315.465	0.0279	H-10->L+1 (31%), HOMO->L+5 (11%)
313.717	0.0059	H-18->LUMO (11%), H-17->LUMO (22%), HOMO->L+7
		(21%), HOMO->L+8 (16%)
313.384	0.0097	H-20->LUMO (11%), H-19->LUMO (13%), H-17->LUMO
		(10%), H-11->L+1 (12%), HOMO->L+6 (19%), HOMO->L+7
		(12%)
312.807	0.0035	H-20->LUMO (17%), H-17->LUMO (28%), HOMO->L+6
		(18%)
312.366	0.0068	H-11->L+1 (38%), H-8->L+1 (11%), H-2->L+2 (12%)
310.302	0.0547	H-2->L+2 (17%), HOMO->L+8 (23%), HOMO->L+13 (16%)

308.495	0.0192	H-2->L+2 (35%), HOMO->L+10 (26%), HOMO->L+11 (12%)
307.104	0.0258	H-12->L+1 (59%)
306.315	0.0486	H-12->L+1 (13%), H-2->L+2 (20%), HOMO->L+9 (27%),
		HOMO->L+10 (14%)
304.607	0.0022	H-21->LUMO (81%)

Figure S46. Calculated excitations (black vertical lines) and experimental absorption spectra

(red line) for macrocycle 4.

Table S3. Selected TD-DFT calculated oscillator strengths and compositions of the major

Wavelength	Oscillator	Major contributions
(nm)	Strength	
1026.359	0.3500	HOMO->LUMO (95%)
743.578	0.2568	HOMO->L+1 (89%)
568.396	0.0738	H-2->LUMO (20%), HOMO->L+2 (77%)
526.293	0.1916	H-1->LUMO (85%)
486.441	0.3231	H-2->LUMO (74%), HOMO->L+2 (16%)
426.943	0.2151	H-1->L+1 (90%)
404.516	0.1515	H-2->L+1 (86%)
395.446	0.0821	H-3->LUMO (87%)
393.002	0.0456	H-7->LUMO (10%), H-6->LUMO (23%), H-5->LUMO
		(45%), H-4->LUMO (11%)
386.015	0.0156	H-6->LUMO (15%), HOMO->L+3 (72%)

electronic transitions of 4.

384.602	0.02	H-6->LUMO (39%), H-4->LUMO (17%), HOMO->L+3 (25%)
378.797	0.0223	H-5->LUMO (30%), H-4->LUMO (57%)
372.113	0.0027	HOMO->L+4 (90%)
369.661	0.0759	H-7->LUMO (51%), H-1->L+2 (19%)
368.990	0.0018	HOMO->L+5 (81%), HOMO->L+6 (12%)
368.474	0.0872	H-8->LUMO (13%), H-7->LUMO (26%), H-1->L+2 (41%)
366.156	0.0582	H-8->LUMO (44%), H-1->L+2 (28%)
364.188	0.0538	H-8->LUMO (18%), HOMO->L+6 (32%), HOMO->L+10
		(18%)
361.807	0.0601	HOMO->L+6 (21%), HOMO->L+10 (40%)
358.315	0.0061	H-10->LUMO (43%), H-9->LUMO (33%)
356.000	0.0198	HOMO->L+7 (83%), HOMO->L+8 (11%)
355.276	0.1217	H-10->LUMO (22%), H-9->LUMO (38%), HOMO->L+6
		(10%)
352.930	0.004	H-12->LUMO (19%), H-2->L+2 (11%), HOMO->L+7 (10%),
		HOMO->L+8 (42%)
352.158	0.0038	HOMO->L+9 (70%)
352.058	0.0288	H-11->LUMO (14%), H-2->L+2 (29%), HOMO->L+9 (24%)
351.280	0.0407	H-12->LUMO (14%), H-11->LUMO (20%), H-2->L+2 (22%),
		HOMO->L+8 (19%)
350.287	0.0504	H-12->LUMO (28%), H-11->LUMO (13%), H-10->LUMO
		(11%)
344.362	0.047	HOMO->L+11 (25%), HOMO->L+12 (11%), HOMO->L+13
		(22%), HOMO->L+14 (16%)
343.000	0.0245	H-13->LUMO (12%), H-11->LUMO (25%), HOMO->L+14
		(26%)
341.799	0.0657	H-5->L+1 (14%), H-3->L+1 (11%), HOMO->L+10 (11%),
		HOMO->L+11 (29%), HOMO->L+14 (14%)
340.953	0.0092	H-13->LUMO (10%), HOMO->L+12 (36%)
339.394	0.0112	H-13->LUMO (33%), HOMO->L+11 (10%), HOMO->L+14
		(10%)
337.280	0.0109	H-14->LUMO (70%)
334.803	0.065	H-19->LUMO (40%), HOMO->L+16 (12%)
334.207	0.0402	H-5->L+1 (12%), H-3->L+1 (48%)
332.192	0.0021	HOMO->L+12 (20%), HOMO->L+13 (53%)
330.572	0.0147	H-15->LUMO (66%)
329.587	0.0017	H-6->L+1 (23%), HOMO->L+16 (34%)
328.470	0.007	HOMO->L+14 (16%), HOMO->L+15 (63%)
325.743	0.0565	H-22->LUMO (26%), H-16->LUMO (25%)

324.770	0.1184	H-16->LUMO (14%), H-4->L+1 (35%), HOMO->L+16 (12%)
322.850	0.0709	H-23->LUMO (12%), H-22->LUMO (15%), H-16->LUMO
		(28%), H-6->L+1 (18%)
321.069	0.0766	H-6->L+1 (14%), H-5->L+1 (26%), H-4->L+1 (28%)
320.621	0.0026	H-18->LUMO (59%), H-17->LUMO (22%)
317.063	0.0081	H-18->LUMO (22%), H-17->LUMO (45%), H-15->LUMO
		(11%)
316.302	0.0654	H-7->L+1 (42%)
314.633	0.0364	H-21->LUMO (66%), H-7->L+1 (12%)
313.250	0.0056	H-20->LUMO (45%), H-8->L+1 (19%), H-7->L+1 (11%)
312.649	0.0051	H-20->LUMO (31%), H-8->L+1 (24%)
310.147	0.0198	H-23->LUMO (29%), H-8->L+1 (26%)

Figure S47. Calculated excitations (black vertical lines) and experimental absorption spectra (red line) for macrocycle **5**.

Table S4. Selected TD-DFT calculated oscillator strengths and compositions of the major

electronic transitions of 5.

Wavelength	Oscillator	Major contributions
(nm)	Strength	
719.75	0.481	HOMO->LUMO (95%)
645.886	0.1236	HOMO->L+1 (92%)
480.057	0.0811	H-1->LUMO (44%), H-1->L+1 (10%), HOMO->L+2 (40%)

469.779	0.2396	H-2->LUMO (27%), H-1->LUMO (40%), HOMO->L+2 (31%)
442.785	0.3238	H-3->LUMO (12%), H-2->LUMO (54%), H-1->LUMO (11%)
434.864	0.1387	$H^{-1}>L+1$ (77%)
411.443	0.1918	H-3->LUMO (16%). H-2->L+1 (74%)
408.38	0.2311	H-3->LUMO(53%), H-2->L+1(15%)
388,775	0.1192	H-4->LUMO(16%), H-3->L+1(67%)
377.874	0.0779	H-6->LUMO(27%) $H-4->LUMO(42%)$ $H-3->L+1(14%)$
372.896	0.0039	H-6->LUMO (41%), H-4->LUMO (23%), HOMO->L+3 (17%)
366.037	0.2118	HOMO->L+3 (65%)
361.607	0.0097	H-7->LUMO (44%), H-7->L+1 (11%), H-4->L+1 (18%), H- 1->L+2 (10%)
356.358	0.0153	H-5->LUMO (90%)
352.608	0.1569	H-7->LUMO (19%), H-1->L+2 (58%)
351.121	0.0757	H-4->L+1 (51%), H-1->L+2 (19%)
349.497	0.1079	H-10->LUMO (54%), H-9->LUMO (17%), H-8->LUMO (10%)
348.701	0.3072	H-8->LUMO (50%), H-8->L+1 (20%), H-4->L+1 (12%)
340.186	0.0182	H-12->LUMO (12%), H-10->LUMO (12%), H-9->LUMO (54%)
339.19	0.0234	H-11->LUMO (35%), H-7->LUMO (13%), H-7->L+1 (19%)
337.216	0.0738	H-11->LUMO (21%), H-2->L+2 (45%)
335.246	0.0608	H-11->LUMO (28%), H-7->L+1 (22%), H-2->L+2 (22%)
333.425	0.0002	H-5->L+1 (77%)
331.269	0.0041	HOMO->L+4 (57%)
330.563	0.0087	H-23->LUMO (14%), H-16->LUMO (11%), H-7->L+1 (10%), HOMO->L+4 (26%)
329.246	0.0131	H-6->L+1 (49%)
329.071	0.0072	H-12->LUMO (26%), H-6->L+1 (18%)
326.687	0.0015	H-22->LUMO (12%), H-22->L+1 (10%), H-12->LUMO (20%)
324.422	0.0068	HOMO->L+6 (40%), HOMO->L+9 (20%)
323.55	0.0036	H-22->LUMO (10%), H-22->L+1 (14%), H-13->LUMO (11%), H-12->LUMO (17%), H-8->L+1 (14%)
321.753	0.0489	H-18->LUMO (10%), H-13->LUMO (28%), H-8->LUMO (10%), H-8->L+1 (19%)
321.552	0.0015	HOMO->L+5 (80%)
321.219	0.0099	H-14->LUMO (47%), H-9->L+1 (11%)
319.654	0.0079	H-14->LUMO (19%), H-11->L+1 (20%), H-9->L+1 (19%)
318.128	0.0133	H-11->L+1 (45%)
317.257	0.0094	H-15->LUMO (22%), H-11->L+1 (14%), H-9->L+1 (14%)

316.682	0.0014	H-18->LUMO (18%), H-16->LUMO (31%)
314.489	0.0555	HOMO->L+7 (64%), HOMO->L+8 (14%)
313.701	0.003	H-18->LUMO (18%), HOMO->L+7 (12%)
312.823	0.0597	H-3->L+2 (24%), HOMO->L+6 (17%), HOMO->L+8 (13%)
312.673	0.0112	H-21->LUMO (11%), HOMO->L+9 (18%), HOMO->L+10
		(35%)
311.8	0.123	H-16->LUMO (11%), H-3->L+2 (30%), HOMO->L+8 (12%)
311.041	0.0239	H-20->LUMO (18%), H-20->L+1 (12%), HOMO->L+6
		(12%), HOMO->L+9 (12%)
310.675	0.0182	H-21->LUMO (12%), H-18->LUMO (10%), H-12->L+1
		(16%), HOMO->L+10 (18%)
310.131	0.0187	H-12->L+1 (10%), H-10->L+1 (56%), H-9->L+1 (14%)
309.226	0.0029	H-20->LUMO (10%), HOMO->L+8 (39%), HOMO->L+9
		(12%)
308.288	0.0065	H-21->LUMO (36%), H-12->L+1 (28%)
307.439	0.001	H-17->LUMO (65%), H-15->LUMO (12%)
305.523	0.0036	HOMO->L+9 (10%), HOMO->L+11 (56%), HOMO->L+15
		(18%)
304.338	0.0045	HOMO->L+12 (79%)

Table S5. S₀ optimized geometry of the compound 2 at B3LYP/6-31G (d,p) level of theory and

Empirical Dispersion GD2.

Charge = 0

Sum of imaginary frequencies= 0

Total Energy (hartree) = -3300.746290

Atom	X	Y	Z	Atom	X	Y	Z
С	1.65374	1.44485	-2.02306	С	2.45239	6.58242	0.96435
С	1.28173	1.99566	-0.79770	С	2.08491	5.71967	2.00075
С	-0.05669	2.35356	-0.57404	С	2.04144	4.33522	1.80948
С	-1.01892	2.15512	-1.56149	С	-4.18254	4.10804	-2.47312
С	-0.63783	1.59671	-2.79006	С	-4.53107	5.27968	-3.14565
С	0.68853	1.24637	-3.01761	С	-3.55259	6.18923	-3.56428
С	2.29397	2.27141	0.32684	С	-2.21379	5.89396	-3.27483
С	-2.47774	2.58532	-1.35041	С	-1.86073	4.72477	-2.60315
0	-2.59614	2.93049	0.04102	С	2.51490	8.07618	1.17241
С	-3.37542	1.39415	-1.62905	С	-3.92564	7.43837	-4.32486
0	1.76777	1.57489	1.47157	Н	2.68673	1.16944	-2.20633
С	3.65668	1.68721	0.02298	Н	-0.34289	2.79003	0.37389

С	2.36638	3.78136	0.57079	Η	-1.38853	1.43721	-3.55783
С	-2.84066	3.80807	-2.20110	Η	0.97860	0.81320	-3.97036
С	4.83709	2.21021	-0.51390	Н	-3.49566	3.25682	0.18004
С	5.72328	1.13329	-0.70030	Η	2.42938	1.61960	2.17654
С	5.07709	-0.03675	-0.25533	Н	5.01439	3.25004	-0.74364
Ν	3.82749	0.35294	0.17824	Н	6.71975	1.17599	-1.11433
Ν	-3.51069	0.45624	-0.66916	Н	3.16171	-0.35381	0.51583
С	-4.26041	-0.60842	-1.12319	Н	-3.17782	0.47358	0.30348
С	-4.61495	-0.30676	-2.45235	Н	-5.22038	-0.93185	-3.09255
С	-4.05682	0.94527	-2.76799	Н	-4.13296	1.48170	-3.70264
С	1.04123	-2.37483	2.29273	Н	2.82696	-1.22563	2.96829
С	1.75281	-1.32483	2.97638	Н	1.00830	0.37464	4.15619
С	0.83280	-0.51641	3.57128	Н	5.69691	-4.39083	-0.30800
С	-0.47249	-1.02339	3.24695	Н	3.40581	-5.49704	0.54784
0	-0.29297	-2.22589	2.58426	Н	-2.68928	-3.32469	3.62335
С	-1.73023	-0.49041	3.29665	Н	-4.32245	-4.01100	1.59533
С	1.44338	-3.38670	1.45559	Н	-3.84563	0.55703	4.59916
С	2.79148	-3.34455	0.90943	Н	-4.31435	2.94398	5.05719
С	0.45568	-4.37389	0.93725	Н	-0.68532	4.03922	3.03908
С	-2.80022	-1.27978	2.67339	Н	-0.22671	1.67131	2.56991
С	-1.96870	0.92945	3.60999	Н	1.54844	-6.14004	1.52238
Ν	3.38862	-2.17595	0.68938	Н	-0.10304	-7.72531	0.60494
С	4.63370	-2.44320	0.14032	Н	-2.56883	-4.44110	-0.64468
С	4.81272	-3.88243	0.04985	Н	-0.91381	-2.85585	0.25457
С	3.64689	-4.44523	0.48951	Н	-2.67635	-7.98303	0.04160
С	-3.10315	-2.68578	2.85551	Η	-3.41327	-6.65805	-0.88921
С	-3.93467	-3.03069	1.83026	Н	-2.10755	-7.62806	-1.59133
С	-4.10924	-1.83018	1.02735	Н	-3.87373	5.31587	4.45825
Ν	-3.44798	-0.76792	1.63717	Η	-2.35866	5.42589	5.36140
С	-3.14009	1.31946	4.28218	Η	-2.36821	5.76616	3.62646
С	-3.40348	2.66335	4.53357	Η	7.87119	-0.36558	0.40066
С	-2.51762	3.66670	4.11332	Η	10.09190	-0.88705	-0.55656
С	-1.36391	3.27879	3.41937	Η	8.27034	-3.67626	-3.26208
С	-1.09072	1.93636	3.16741	Η	6.04863	-3.14989	-2.30766
С	0.66161	-5.76033	1.02446	Н	-6.53098	-3.32435	0.62064
С	-0.27912	-6.65577	0.51415	Н	-7.37000	-5.44081	-0.35698
С	-1.45514	-6.20120	-0.09967	Н	-4.61817	-5.01794	-3.62403
С	-1.66074	-4.81918	-0.18321	Н	-3.78535	-2.90249	-2.64809
С	-0.72415	-3.92062	0.32172	Н	11.37782	-1.80636	-2.49339
С	-2.47058	-7.16799	-0.66244	Н	11.17389	-3.47934	-1.96123
С	-2.79724	5.12151	4.40117	Н	10.63012	-3.00305	-3.57462

С	5.47380	-1.41924	-0.29451	Н	-7.51151	-6.96746	-2.25789
С	-4.52036	-1.75890	-0.30367	Н	-6.53606	-6.68426	-3.71732
С	-5.09517	-2.96451	-0.93983	Н	-5.83233	-7.52078	-2.32958
С	6.80057	-1.73329	-0.87280	Н	2.93117	4.22419	-1.45851
С	7.95867	-1.09110	-0.40142	Н	3.03691	6.67063	-1.10918
С	9.20771	-1.38927	-0.94105	Н	1.82160	6.13478	2.97049
С	9.34596	-2.32920	-1.97184	Н	1.72628	3.69009	2.62223
С	8.18913	-2.95821	-2.44999	Н	-4.95920	3.41623	-2.16264
С	6.93667	-2.66937	-1.91137	Н	-5.57808	5.49123	-3.34859
С	-6.11258	-3.69846	-0.30798	Н	-1.43777	6.59244	-3.57838
С	-6.57958	-4.88948	-0.85966	Н	-0.81776	4.52420	-2.38319
С	-6.04598	-5.39178	-2.05458	Н	2.02992	8.61112	0.34777
С	-5.04489	-4.64803	-2.69524	Н	2.02381	8.36617	2.10671
С	-4.57857	-3.45253	-2.15382	Н	3.55475	8.42531	1.21798
С	10.70423	-2.66888	-2.53452	Н	-4.93192	7.77886	-4.05888
С	-6.51218	-6.70955	-2.62253	Н	-3.21910	8.25053	-4.12312
С	2.71816	4.64165	-0.47917	Н	-3.91562	7.25670	-5.40788
С	2.76605	6.01858	-0.28225				

Table S6. S₀ optimized geometry of the compound 3b at B3LYP/6-31G (d,p) level of theory and

Empirical Dispersion GD2.

Charge = 0

Sum of imaginary frequencies= 0

Total Energy (hartree) = -3623.724133

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-1.10371	-1.03076	-1.51122	С	-1.28419	-5.75369	2.27556
С	-0.84073	-1.91404	-0.46119	С	-1.49730	-4.38713	2.06475
С	0.47056	-2.36964	-0.26595	С	4.37880	-4.45893	-1.67960
С	1.51128	-1.95991	-1.10028	С	4.59387	-5.67570	-2.32134
С	1.23401	-1.08178	-2.15403	С	3.55846	-6.31388	-3.01933
С	-0.06543	-0.61839	-2.35174	С	2.30483	-5.69432	-3.04358
С	-1.92903	-2.40107	0.51567	С	2.08496	-4.47441	-2.39962
С	2.91633	-2.54512	-0.90835	С	-1.07957	-8.13702	1.43731
Ο	3.01745	-2.83853	0.50122	С	3.80100	-7.61732	-3.74077
С	3.96988	-1.50838	-1.24787	Н	-2.10897	-0.66224	-1.67958
Ο	-1.71815	-1.62033	1.70864	Н	0.68605	-3.06067	0.53776
С	-3.34085	-2.13013	0.03745	Н	2.03684	-0.76317	-2.81201

С	-1.73785	-3.89836	0.78149	Η	-0.27558	0.06830	-3.16629
С	3.12029	-3.83716	-1.70990	Н	3.87485	-3.26113	0.64720
С	-4.32957	-2.95496	-0.50550	Н	-2.44252	-1.82127	2.31938
С	-5.44988	-2.14980	-0.77119	Н	-4.23323	-4.01658	-0.67383
С	-5.13947	-0.83680	-0.37247	Н	-6.38746	-2.46097	-1.20697
Ν	-3.84950	-0.87170	0.11918	Н	-3.38729	-0.00308	0.40605
Ν	4.03650	-0.39470	-0.49006	Н	3.52564	-0.16248	0.37323
С	5.01787	0.45882	-0.94940	Н	6.41865	0.21824	-2.65188
С	5.60255	-0.17626	-2.06509	Н	5.12207	-2.13473	-3.02541
С	4.93706	-1.39984	-2.25607	Н	-2.89782	1.31319	2.37935
С	-1.66669	2.92273	1.53000	Н	-0.81361	0.33747	3.53824
С	-1.90302	1.72775	2.30101	Н	-7.03636	3.10428	-0.55952
С	-0.80436	1.21964	2.91322	Н	-5.16084	4.92481	0.09178
С	0.43044	1.89862	2.60185	Н	2.76854	4.28041	2.63311
С	1.69842	1.41091	2.78570	Н	4.83235	4.40008	0.90056
С	-2.58847	3.65683	0.81950	Н	3.54239	0.70837	4.62439
С	-3.87077	3.09742	0.43587	Н	4.00511	-1.54418	5.53686
С	-2.26189	5.02717	0.32690	Н	0.93601	-3.18601	3.01980
С	2.86177	2.06373	2.18126	Н	0.47157	-0.95056	2.12347
С	1.93748	0.05493	3.34192	Н	-3.59670	6.02212	1.69268
Ν	-4.07063	1.78533	0.29413	Н	-3.06675	8.29737	0.87272
С	-5.37284	1.62481	-0.15501	Н	-0.29615	6.63378	-1.95103
С	-6.01234	2.92575	-0.26384	Н	-0.84223	4.35574	-1.14467
С	-5.06489	3.84827	0.07171	Н	-1.33976	9.74934	-0.30382
С	3.23946	3.46215	2.10427	Н	-0.37041	9.04982	-1.61845
С	4.29840	3.52169	1.23564	Н	-2.10026	9.34341	-1.84569
С	4.52420	2.16330	0.77547	Н	3.83681	-4.05935	5.08429
Ν	3.65459	1.30885	1.43083	Н	2.27269	-4.03825	5.90258
С	2.95573	-0.14299	4.29151	Н	2.39191	-4.68484	4.25904
С	3.21695	-1.41191	4.79913	Н	-7.87084	-1.25992	0.40007
С	2.48594	-2.52964	4.36565	Н	-10.18524	-1.44484	-0.45331
С	1.49229	-2.33365	3.40119	Н	-9.33657	1.55580	-3.40204
С	1.22273	-1.06441	2.89245	Н	-7.02054	1.73828	-2.54816
С	-2.88300	6.15501	0.88485	Н	7.13100	3.22541	0.87114
С	-2.58067	7.43488	0.42293	Н	8.73637	4.80243	-0.16477
С	-1.64854	7.63048	-0.60589	Н	7.10134	3.91796	-4.03341
С	-1.02566	6.50374	-1.15548	Н	5.49408	2.34989	-2.99716
С	-1.32966	5.21908	-0.70230	Н	-11.73202	-1.06915	-2.41863
С	-1.34416	9.01735	-1.11899	Н	-12.02378	0.58948	-1.88489
С	2.76329	-3.90230	4.92906	Н	-11.43137	0.28990	-3.52435
С	-5.89955	0.37679	-0.48175	Н	9.90767	5.55402	-2.21423
С	5.24569	1.74292	-0.34735	Н	9.25938	5.15583	-3.82140
С	6.19954	2.67119	-0.98740	Н	8.53765	6.45880	-2.86981

С	-7.28254	0.26549	-1.00141	Н	-1.89466	-4.42701	-1.29934
С	-8.19285	-0.64219	-0.43178	Н	-1.54046	-6.84443	-0.92230
С	-9.49533	-0.74219	-0.91399	Н	-1.08882	-6.11623	3.28164
С	-9.93469	0.05089	-1.98360	Н	-1.44171	-3.69935	2.90110
С	-9.02297	0.94476	-2.55945	Н	5.20058	-3.97726	-1.15633
С	-7.71922	1.05411	-2.07867	Н	5.57695	-6.13845	-2.28246
С	7.12018	3.38721	-0.20166	Н	1.48509	-6.17457	-3.57221
С	8.02285	4.27036	-0.78872	Н	1.09990	-4.02328	-2.42905
С	8.03383	4.47810	-2.17472	Н	-0.31360	-8.52702	0.75672
С	7.11343	3.76643	-2.95705	Н	-0.75940	-8.33681	2.46474
С	6.21193	2.87695	-2.37854	Н	-1.99788	-8.70939	1.25335
С	-11.3550	-0.04281	-2.48413	Н	4.46948	-8.26929	-3.16772
С	8.99025	5.46032	-2.80451	Н	2.86250	-8.15260	-3.91769
С	-1.74522	-4.80191	-0.29140	Н	4.27311	-7.44419	-4.71693
С	-1.53773	-6.16050	-0.07708	S	0.05075	3.37975	1.66621
С	-1.30462	-6.66140	1.21375				

Table S7. S₀ optimized geometry of the compound 4 at B3LYP/6-31G (d,p) level of theory and

Empirical Dispersion GD2.

Charge = 0

Sum of imaginary frequencies = 0

#	Total	Enoray	(hartraa)	- 5624 017655
#	Total	Energy	(narnee)	

Atom	X	Y	Z	Atom	X	Y	Z
С	1.11587	1.01574	-1.41750	С	1.36668	5.79528	2.34068
С	0.87392	1.96474	-0.41987	С	1.56729	4.42850	2.11929
С	-0.42299	2.47353	-0.26739	С	-4.21652	4.66833	-1.75223
С	-1.46867	2.05580	-1.09292	С	-4.37313	5.87583	-2.42724
С	-1.21052	1.11494	-2.09524	С	-3.31167	6.43826	-3.15101
С	0.07418	0.59557	-2.24868	С	-2.09314	5.75229	-3.16731
С	1.96816	2.44897	0.55354	С	-1.93211	4.54119	-2.48998
С	-2.85380	2.69796	-0.94257	С	1.16758	8.18471	1.51869
0	-2.96911	3.02122	0.46012	С	-3.49171	7.73220	-3.90699
С	-3.94352	1.69947	-1.28324	Н	2.10762	0.60088	-1.55336
0	1.76314	1.66086	1.74288	Н	-0.62662	3.21100	0.49692
С	3.37824	2.17978	0.06788	Н	-2.01521	0.79006	-2.74767
С	1.78672	3.94523	0.83027	Н	0.26977	-0.14125	-3.02195
С	-2.99267	3.98040	-1.77300	Н	-3.81226	3.47846	0.58288

С	4.36986	3.01068	-0.46075	Н	2.49352	1.85401	2.34904
С	5.49005	2.20793	-0.73362	Н	4.27534	4.07470	-0.61424
С	5.17627	0.88998	-0.35472	Н	6.42935	2.52327	-1.16273
Ν	3.88610	0.92024	0.13623	Н	3.41894	0.04786	0.40215
Ν	-4.05184	0.58944	-0.52529	Н	-3.54718	0.33523	0.33579
С	-5.06876	-0.22409	-0.98011	Н	-6.46589	0.07302	-2.67701
С	-5.63247	0.43436	-2.09322	Η	-5.07681	2.37118	-3.05651
С	-4.91892	1.63000	-2.28723	Н	2.83367	-1.31812	2.25808
С	1.63866	-2.92088	1.36942	Н	0.79845	-0.33826	3.41283
С	1.84083	-1.73631	2.16380	Н	7.05578	-3.05249	-0.62309
С	0.75019	-1.21785	2.78449	Н	5.16213	-4.88113	-0.05987
С	-0.52005	-1.83769	2.49827	Н	-2.93794	-4.12608	2.58671
С	-1.75838	-1.30146	2.72282	Н	-5.02073	-4.17070	0.86850
С	2.57876	-3.62307	0.65607	Н	-3.54451	-0.56262	4.60308
С	3.87366	-3.05882	0.31867	Н	-3.91645	1.69258	5.55018
С	2.25337	-4.97370	0.11073	Н	-0.84077	3.26339	2.99609
С	-2.95419	-1.90851	2.13137	Η	-0.46417	1.02387	2.06799
С	-1.94167	0.05376	3.29959	Н	3.61485	-6.02966	1.40254
Ν	4.08226	-1.74434	0.22065	Н	3.06964	-8.26417	0.48947
С	5.39297	-1.57753	-0.20258	Η	0.24053	-6.47740	-2.19751
С	6.02790	-2.87732	-0.33914	Н	0.79766	-4.23769	-1.29228
С	5.07054	-3.80435	-0.04699	Η	1.34806	-9.66806	-0.72499
С	-3.38420	-3.29241	2.05965	Η	0.31420	-8.91281	-1.95722
С	-4.45160	-3.31278	1.19867	Η	2.03465	-9.17294	-2.27568
С	-4.63067	-1.94726	0.74044	Н	-3.67608	4.21686	5.09745
Ν	-3.72456	-1.12579	1.38939	Н	-2.11977	4.11516	5.92424
С	-2.93646	0.27331	4.26927	Н	-2.20067	4.79248	4.29033
С	-3.14658	1.54363	4.79647	Н	7.89713	1.28449	0.45143
С	-2.38731	2.64200	4.36182	Н	10.22013	1.48440	-0.37625
С	-1.41811	2.42537	3.37730	Н	9.39124	-1.44034	-3.40568
С	-1.19891	1.15403	2.84984	Н	7.06735	-1.63873	-2.57688
С	2.88622	-6.12498	0.60292	Н	-7.27220	-2.90732	0.85899
С	2.57471	-7.38265	0.08902	Н	-8.94770	-4.42018	-0.16121
С	1.62225	-7.53279	-0.92873	Н	-7.31871	-3.59690	-4.04589
С	0.98668	-6.38317	-1.41243	Н	-5.64124	-2.09341	-3.02541
С	1.29976	-5.12042	-0.90770	Η	11.79156	1.14756	-2.31334
С	1.30885	-8.89464	-1.49986	Η	12.06254	-0.53787	-1.85741
С	-2.60925	4.01620	4.94575	Η	11.48553	-0.15442	-3.48454
С	5.93077	-0.32417	-0.48792	Н	-10.16272	-5.13417	-2.19247
С	-5.34345	-1.49865	-0.37705	Н	-9.53025	-4.74347	-3.80778
С	-6.33858	-2.38831	-1.00874	Н	-8.83553	-6.07811	-2.88052
С	7.31900	-0.20561	-0.99145	Н	1.92139	4.48498	-1.24916
С	8.22581	0.68595	-0.39176	Н	1.58777	6.90234	-0.85420

С	9.53286	0.79459	-0.85968	Η	1.18774	6.15335	3.35141
С	9.97997	0.02707	-1.94447	Η	1.51841	3.73675	2.95269
С	9.07151	-0.85017	-2.55058	Η	-5.05865	4.24593	-1.21031
С	7.76348	-0.96851	-2.08412	Η	-5.33010	6.39086	-2.39446
С	-7.27830	-3.06860	-0.21391	Η	-1.25432	6.17277	-3.71654
С	-8.22045	-3.91565	-0.79212	Η	-0.97341	4.03636	-2.51592
С	-8.25350	-4.12177	-2.17795	Η	0.39643	8.58433	0.84964
С	-7.31412	-3.44579	-2.96941	Η	0.86135	8.38071	2.55108
С	-6.37294	-2.59241	-2.39979	Η	2.08781	8.75144	1.32702
С	11.40487	0.12953	-2.43021	Η	-4.11380	8.43681	-3.34402
С	-9.25339	-5.06582	-2.79847	Η	-2.52754	8.20842	-4.11235
С	1.78711	4.85502	-0.23735	Η	-3.98786	7.55838	-4.87101
С	1.59172	6.21374	-0.01282	Se	-0.20351	-3.44055	1.47733
С	1.37911	6.70885	1.28379				

Table S8. S₀ optimized geometry of the compound $4.2H^+$ at B3LYP/6-31G (d,p) level of theory

and Empirical Dispersion GD2.

Charge = 2

Sum of imaginary frequencies = 1

Total Energy (hartree) = -5625.785978

Atom	X	Y	Z	Atom	X	Y	Z
С	-0.79826	-1.00648	-1.15859	С	-1.22403	-4.39471	2.43434
С	-0.54891	-2.01215	-0.21852	С	4.35949	-4.78258	-1.42143
С	0.75682	-2.49309	-0.07468	С	4.61032	-5.82032	-2.31735
С	1.80531	-2.01383	-0.86307	С	3.93731	-5.89419	-3.54410
С	1.53346	-1.02009	-1.81366	С	2.99716	-4.89809	-3.83784
С	0.23960	-0.51250	-1.94960	С	2.73869	-3.85772	-2.94561
С	-1.66065	-2.55384	0.70684	С	-0.54651	-8.14463	2.12105
С	3.19945	-2.64925	-0.71474	С	4.23238	-6.99908	-4.52717
0	3.37029	-3.13314	0.63042	Н	-1.80265	-0.62252	-1.29512
С	4.31878	-1.62754	-0.85124	Н	0.95965	-3.25347	0.66603
0	-1.65913	-1.66830	1.84255	Н	2.32726	-0.65250	-2.45674
С	-3.03224	-2.43734	0.05435	Н	0.03770	0.25791	-2.68695

С	-1.37992	-4.00796	1.10188	Н	3.03428	-4.04093	0.65764
С	3.41827	-3.78673	-1.72433	Н	-2.24848	-2.04200	2.51550
С	-3.75626	-3.27284	-0.80047	Н	-3.43547	-4.23799	-1.15816
С	-4.96146	-2.62908	-1.09325	Н	-5.74284	-2.97729	-1.75216
С	-4.98074	-1.38983	-0.42053	Н	-3.50318	-0.63606	0.96496
Ν	-3.76455	-1.30851	0.25719	Н	3.25257	0.06389	-0.27354
Ν	4.15687	-0.34447	-0.46029	Н	7.35176	-0.35788	-1.20215
С	5.35494	0.36291	-0.57734	Н	6.09808	-2.72833	-1.55024
С	6.30484	-0.57332	-1.04798	Н	-3.13688	1.42458	2.21152
С	5.66296	-1.79939	-1.21563	Н	-0.94016	0.75199	3.26530
С	-2.16665	3.01943	1.04858	Н	-7.66108	1.98409	0.03764
С	-2.19577	1.89440	1.95129	Н	-6.20658	4.20425	0.47353
С	-1.02061	1.54830	2.53738	Н	2.24619	4.67607	1.36365
С	0.15152	2.27023	2.11239	Н	4.51766	4.51515	-0.07002
С	1.44429	1.88386	2.37262	Н	3.15596	1.50746	4.45590
С	-3.24643	3.59746	0.41754	Н	3.77388	-0.63468	5.52658
С	-4.47107	2.84017	0.27328	Н	1.07048	-2.72162	2.92181
С	-3.18611	4.95357	-0.18901	Н	0.45877	-0.59424	1.85186
С	2.58222	2.50747	1.72828	Н	-4.71707	5.78872	1.08368
С	1.74476	0.61239	3.08630	Н	-4.61831	8.03393	0.06610
Ν	-4.41907	1.49518	0.02774	Н	-1.51713	6.70970	-2.58745
С	-5.69659	0.97786	-0.16091	Н	-1.63268	4.44590	-1.59907
С	-6.58452	2.06806	0.03660	Н	-3.26864	9.68271	-1.24249
С	-5.83430	3.21113	0.27535	Н	-2.03211	9.11652	-2.38814
С	2.85372	3.79568	1.21100	Н	-3.74854	8.97745	-2.78966
С	4.04601	3.72439	0.49460	Н	3.74516	-3.57081	4.35665
С	4.50816	2.38704	0.54068	Н	3.20786	-3.02408	5.95000
Ν	3.60940	1.69950	1.33375	Н	2.08298	-3.88287	4.87172
С	2.69818	0.58130	4.12037	Н	-7.39431	-2.56315	0.19028
С	3.04593	-0.62682	4.72014	Н	-9.66051	-3.17433	-0.57671
С	2.47269	-1.83723	4.29904	Н	-9.81653	0.38288	-2.97781

С	1 52737	-1 70006	3 26605	н	-7 54886	0 00873	-2 22360
C C	1.32737	0.50626	2.66202	и П	6 78020	2 74562	1 00420
C C	1.1/38/	-0.39030	2.00202	п	0.78039	5.74305	0.14501
C	-4.03261	5.97768	0.26278	H	8.6/144	5.08110	0.14591
C	-3.96727	7.24748	-0.30543	Н	8.64034	2.80025	-3.49453
С	-3.06517	7.53455	-1.34051	Н	6.72979	1.48054	-2.66000
С	-2.22224	6.50868	-1.78557	Η	-11.4240	-2.87909	-2.33814
С	-2.28159	5.23296	-1.22518	Η	-12.0364	-1.43376	-1.52764
С	-3.02126	8.90380	-1.97070	Η	-11.5464	-1.33901	-3.22438
С	2.89493	-3.14930	4.90887	Н	10.55331	5.24972	-1.45754
С	-5.96638	-0.36606	-0.48396	Н	10.54743	4.29591	-2.96213
С	5.49351	1.73595	-0.24808	Η	9.53634	5.73858	-2.81806
С	6.61594	2.51070	-0.76188	Н	-1.26889	-4.68680	-0.94314
С	-7.30990	-0.72808	-0.94691	Н	-0.82148	-7.03540	-0.36133
С	-7.92030	-1.92304	-0.50927	Н	-0.83132	-6.00649	3.80347
С	-9.19794	-2.25978	-0.93619	Н	-1.28067	-3.66631	3.23627
С	-9.90839	-1.43298	-1.82183	Н	4.89521	-4.74137	-0.47860
С	-9.29302	-0.25388	-2.27091	Н	5.33789	-6.58545	-2.06055
С	-8.02077	0.10113	-1.83975	Н	2.45394	-4.94114	-4.77802
С	7.17124	3.55546	0.01081	Н	1.99699	-3.11098	-3.20400
С	8.24089	4.29739	-0.47023	Н	0.19786	-8.58325	1.44779
С	8.78949	4.03964	-1.73770	Н	-0.18647	-8.24064	3.14965
С	8.23415	3.00396	-2.50809	Н	-1.46082	-8.74436	2.02907
С	7.16897	2.25028	-2.03562	Н	4.55843	-7.90952	-4.01469
С	-11.3022	-1.79421	-2.26009	Н	3.35316	-7.23505	-5.13500
С	9.92540	4.87058	-2.26936	Н	5.03626	-6.70205	-5.21321
С	-1.21839	-4.97823	0.10088	Se	-0.38738	3.69814	0.94824
С	-0.94725	-6.30190	0.43031	Н	3.73597	0.76023	1.68685
С	-0.81732	-6.70356	1.769625	Н	-3.57296	1.052712	-0.29912
С	-0.95004	-5.72690	2.760412				

Figure S48. Energy-level diagram (selected FMOs) of compound 4 and its protonated derivative

4.2H⁺.

Table S9. S₀ optimized geometry of the compound **5** at B3LYP/6-31G (d,p) + LANL2DZ level

of theory and Empirical Dispersion GD2.

Charge = 0

Sum of imaginary frequencies= 0

# Total Energy (hartree)	= -3233.447628
--------------------------	----------------

Atom	X	Y	Ζ	Atom	X	Y	Z
С	1.036886	1.773424	-2.08677	С	1.61407	5.929444	2.301107
С	0.744744	2.374165	-0.86198	С	1.68705	4.581407	1.941639
С	-0.58983	2.67374	-0.54856	С	-4.81788	4.560779	-1.54445
С	-1.62827	2.376223	-1.43283	С	-5.22733	5.79308	-2.04686

С	-1.32129	1.766005	-2.65705	С	-4.34468	6.610424	-2.76684
С	0.001665	1.471207	-2.97806	С	-3.0384	6.147255	-2.95322
С	1.819569	2.716299	0.187757	С	-2.62296	4.914181	-2.44643
С	-3.07376	2.770383	-1.07669	С	1.445591	8.393239	1.720062
0	-3.07253	2.935608	0.354705	С	-4.79971	7.931513	-3.34037
С	-4.0456	1.64779	-1.41366	Η	2.06251	1.537187	-2.35038
0	1.527676	1.843118	1.296157	Η	-0.8267	3.146743	0.395147
С	3.248262	2.435704	-0.25182	Η	-2.11761	1.521222	-3.35397
С	1.701016	4.198267	0.598877	Η	0.232542	0.997438	-3.92786
С	-3.5059	4.09568	-1.73558	Η	-3.93958	3.275282	0.612268
С	4.245008	3.285758	-0.74041	Η	2.273271	1.887338	1.911638
С	5.405922	2.519511	-0.92032	Η	4.133545	4.343901	-0.91994
С	5.118095	1.201484	-0.52315	Η	6.359072	2.866256	-1.29011
Ν	3.791027	1.188985	-0.13059	Η	3.340793	0.30967	0.137787
Ν	-4.07022	0.53929	-0.63868	Η	-3.53764	0.328564	0.216091
С	-5.02922	-0.35069	-1.08185	Η	-6.44081	-0.17755	-2.78648
С	-5.63281	0.245626	-2.20853	Η	-5.2348	2.202485	-3.19601
С	-5.01054	1.486472	-2.41931	Η	2.921591	-1.45072	2.398668
С	1.83036	-2.98626	1.301131	Η	0.889223	-0.53842	3.50571
С	1.938189	-1.86568	2.204237	Η	7.337286	-2.55876	-0.35519
С	0.825017	-1.36537	2.806015	Н	5.582098	-4.52718	0.174838
С	-0.47668	-1.89796	2.469904	Н	-3.0374	-4.09004	2.795133
С	-1.69527	-1.34941	2.750686	Н	-5.05053	-4.1949	1.013783
С	2.839655	-3.53405	0.547968	Н	-3.44834	-0.8906	4.736072
С	4.09346	-2.82553	0.29167	Н	-3.82202	1.186477	6.007336
С	2.681861	-4.84983	-0.13097	Н	-0.81754	3.157902	3.655009
С	-2.90683	-1.92571	2.130497	Н	-0.43847	1.093575	2.389329
С	-1.8821	-0.07582	3.496252	Η	2.006971	-5.903	1.625171
Ν	4.179434	-1.50361	0.13714	Н	1.729931	-8.071	0.487967
С	5.507844	-1.2341	-0.1858	Н	3.082067	-6.3152	-3.18953
С	6.274667	-2.46971	-0.18015	Н	3.346832	-4.14291	-2.05581
С	5.387016	-3.46682	0.090458	Н	1.474344	-9.31082	-1.66366
С	-3.40491	-3.29065	2.165086	Н	2.010543	-8.58119	-3.18598
С	-4.44527	-3.33772	1.27332	Н	3.191057	-9.26674	-2.06862
С	-4.54858	-2.01043	0.696478	Н	-3.60224	3.729824	5.997106
Ν	-3.60759	-1.17705	1.294221	Н	-1.98483	3.576809	6.681188
С	-2.85622	-0.00836	4.509276	Η	-2.21899	4.475593	5.179793
С	-3.0677	1.166273	5.223767	Η	7.814286	1.663281	0.639661
С	-2.32924	2.326337	4.946088	Η	10.17275	1.976036	-0.00743
С	-1.38039	2.265318	3.918953	Η	9.65873	-0.81103	-3.23239
С	-1.15522	1.089139	3.203002	Н	7.299539	-1.12774	-2.58128

S66	
------------	--

С	2.227455	-5.98375	0.565215	Η	-7.36062	-2.78738	0.811976
С	2.079645	-7.21118	-0.07874	Η	-9.03744	-4.32258	-0.15027
С	2.384889	-7.35941	-1.43789	Η	-7.10868	-4.0282	-3.97489
С	2.845081	-6.23138	-2.13138	Η	-5.43171	-2.49935	-3.01323
С	2.997347	-5.0031	-1.49311	Η	11.9054	1.782433	-1.82104
С	2.254185	-8.69775	-2.12547	Η	12.18902	0.074396	-1.4839
С	-2.54698	3.593814	5.738387	Η	11.71317	0.578664	-3.10643
С	5.960445	0.038965	-0.51699	Η	-10.1076	-5.31658	-2.1031
С	-5.26586	-1.61037	-0.43313	Η	-9.50899	-4.9508	-3.72953
С	-6.27062	-2.52867	-1.02709	Н	-8.79181	-6.26588	-2.79971
С	7.38279	0.234229	-0.91559	Η	1.614525	4.931381	-1.42669
С	8.215312	1.119156	-0.20984	Η	1.507783	7.306437	-0.79047
С	9.547904	1.292124	-0.57694	Н	1.60258	6.198591	3.354664
С	10.09818	0.599861	-1.66452	Η	1.715386	3.827609	2.721354
С	9.263253	-0.27193	-2.37486	Η	-5.53738	3.947131	-1.0081
С	7.93113	-0.45661	-2.00796	Н	-6.24965	6.124317	-1.87976
С	-7.29752	-3.06758	-0.23477	Н	-2.32783	6.76119	-3.50165
С	-8.24514	-3.9303	-0.7831	Н	-1.59981	4.593512	-2.60386
С	-8.19952	-4.29475	-2.13439	Н	0.419591	8.762228	1.598451
С	-7.17198	-3.75782	-2.92348	Н	1.729429	8.551708	2.764409
С	-6.22652	-2.88905	-2.38553	Н	2.089517	9.021699	1.095856
С	11.55047	0.771053	-2.04179	Η	-5.50102	8.438978	-2.67035
С	-9.2077	-5.25351	-2.72149	Η	-3.95452	8.602919	-3.51786
С	1.6284	5.204281	-0.37553	Н	-5.31343	7.791906	-4.29992
С	1.562024	6.547199	-0.01356	Te	-0.20568	-3.61846	1.224247
С	1.551993	6.936879	1.333763				

Table S10. Comparison of the relative energies of *m*-benzicalixhexaphyrin(1.1.1.1.1)s 2-5 and

m-benziheterohexaphyrin(1.1.1.1.1)s **6a-6d**.

Compound	Compound Relative Energy		Relative Energy	
	(hartree)		(hartree)	
2	-3300.8	6a	-3147.8	
3b	-3623.7	6b	-3470.8	
4	-5624.9	6с	-5472.0	
5	-3233.4	6d	-3080.5	

References:

- 1. S. Kumar, K. G. Thorat, W.-Z. Lee, M. Ravikanth, Inorg. Chem. 2018, 57, 8956–8963.
- 2. (a) A. Ulman, J. Manassen, J. Am. Chem. Soc. 1975, 97, 6540-6544; (b) P-Y. Heo, K. Shin, C-
- H. Lee, Bull. Korean Chem. Soc. 1996, 17, 515-520; (c) S. J. Narayanan, B. Sridevi, T. K.
- Chandrashekar, A. Vij, R. Roy, J. Am. Chem. Soc. 1999, 121, 9053-9068; (d) H. A. Stansbury, W.
- R. Proops, J. Org. Chem. 1962, 27, 320; (e) A. Ulman, J. Manassen, F. Frolow, D. Rabinovich, *Tetrahedron Lett.* 1978, 19, 1885–1886.
- 3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson et al. Gaussian 09, Revision C.01. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
- 4. A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.
- 5. (a) S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799; (b) A. Austin, G. A. Petersson, M. J.
- Frisch, F. J. Dobek, G. Scalmani, K. Throssell, J. Chem. Theory Comput. 2012, 8, 4989–5007.
- 6. W. J. Hehre, Acc. Chem. Res. 1976, 9, 399-406.
- 7. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3093.