## Supporting Information

# Substrate-directed divergent annulations of sulfur ylides: synthesis of functionalized bispirocyclopentane and bispirocyclopropane derivatives 

Siyi Chen, ${ }^{\ddagger a}$ Peiyao Liang, ${ }^{\ddagger a}$ Yilin Cai, ${ }^{\text {b }}$ Liejin Zhou, ${ }^{* b}$ and Shoulei Wang ${ }^{*}$a. Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory ofFlexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics(SLoFE), Fuzhou 350117, Chinab. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Departmentof Chemistry, Zhejiang Normal University, Jinhua 321004, China.$\ddagger$ These authors contributed equally to this work.
ljzhou@zjnu.cn; ifeshlwang@fjnu.edu.cn
Table of Contents

1. General information ..... S1
2. Screening of reaction conditions for the $[2+3]$ annulation ..... S2
3. Screening of reaction conditions for the $[2+1]$ annulation ..... S3
4. General procedure for the synthesis of $\mathbf{3}$ ..... S4
5. General procedure for the synthesis of $\mathbf{5}$ ..... S4
6. General procedure for the multi-component reaction ..... S5
7. Scale-up synthesis and deprotection of $\mathbf{5 f}$ ..... S5
8. Stereochemistry determination and X-ray structures ..... S6
9. Compound characterization ..... S7
10. References ..... S23
11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ..... S24

## 1. General information

Commercially available materials purchased from Alfa Aesar or Sigma-Aldrich were used as received. Proton nuclear magnetic resonance ( ${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a JEOL ( 600 MHz ) spectrometer. Chemical shifts were recorded in parts per million (ppm, $\delta$ ) relative to tetramethylsilane ( $\delta 0.00$ ) or chloroform ( $\delta=7.26$, singlet). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets); m (multiplet), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as m (multiplet) or br (broad). Carbon nuclear magnetic resonance ( ${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a JEOL ( 151 MHz ) spectrometer. High resolution mass spectral analysis (HRMS) was performed on Finnigan MAT 95 XP mass spectrometer (Thermo Electron Corporation). X-ray crystallography analysis was performed on Bruker X8 APEX X-ray diffractionmeter. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate ( 0.2 mm thickness). Visualization was performed using a UV lamp.

## 2. Screening of conditions for the $[2+3]$ annulation ${ }^{[a]}$



| Entry | Base | Solvent | Temp( ${ }^{\circ} \mathrm{C}$ ) | Yield (\%) ${ }^{[b]}$ | dr ${ }^{[c]}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | rt | 81 | >20:1 |
| 2 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | THF | rt | 42 | >20:1 |
| 3 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | Toluene | rt | 12 | - |
| 4 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | rt | 43 | >20:1 |
| 5 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | MeOH | rt | 39 | >20:1 |
| 6 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | MeCN | rt | 92 | >20:1 |
| 7 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | MeCN | rt | 47 | >20:1 |
| 8 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | MeCN | rt | 68 | >20:1 |
| 9 | DBU | MeCN | rt | 35 | - |
| 10 | DABCO | MeCN | rt | 34 | - |
| 11 | $\mathrm{Et}_{3} \mathrm{~N}$ | MeCN | rt | 70 | >20:1 |
| 12 | DMAP | MeCN | rt | 40 | >20:1 |
| 13 | NaOH | MeCN | rt | 15 | - |
| 14 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | MeCN | 0 | 40 | >20:1 |
| 15 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | MeCN | 50 | 91 | >20:1 |
| $15^{[d]}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | MeCN | rt | 85 | >20:1 |

[a] General conditions (unless otherwise specified): 1a ( 0.1 mmol ), 2a ( 0.15 mmol ), Base ( 1.5 equiv), solvent ( 1.0 mL ), rt, 2 h . [b] Isolated yield. [c] The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [d] 1.0 eq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used

## 3. Screening of conditions for the [2+1] annulation ${ }^{[a]}$



| Entry | Base | Solvent | Temp ( ${ }^{\circ} \mathrm{C}$ ) | Yield (\%) ${ }^{[\mathrm{b}]}$ | $\mathrm{E}: \mathrm{Z}^{[\mathrm{c}]}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | rt | 62 | >20:1 |
| 2 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | THF | rt | 88 | >20:1 |
| 3 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | Toluene | rt | $<15$ | - |
| 4 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | rt | 80 | >20:1 |
| 5 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | MeOH | rt | $<10$ | >20:1 |
| 6 | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | MeCN | rt | 71 | >20:1 |
| 7 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | THF | rt | 51 | >20:1 |
| 8 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | THF | rt | 93 | >20:1 |
| 9 | DBU | THF | rt | 90 | >20:1 |
| 10 | DABCO | THF | rt | 42 | - |
| 11 | $\mathrm{Et}_{3} \mathrm{~N}$ | THF | rt | 38 | - |
| 12 | NaOH | THF | rt | 45 | - |
| 13 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | THF | 0 | 45 | >20:1 |
| 14 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | THF | 50 | 90 | >20:1 |

[a] General conditions (unless otherwise specified): 4a ( 0.1 mmol ), 2a ( 0.15 mmol ), Base ( 1.5 equiv), solvent ( 1.0 mL ), rt, 4 h . [b] Isolated yield. [c] The E:Z ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

## 4. General procedure for the synthesis of 3



To a solution of oxindole-derived pyrazolones $\mathbf{1}^{[1]}$ ( $0.10 \mathrm{mmol}, 1.0$ equiv.) in MeCN $(1.0 \mathrm{~mL})$ were added the sulfonium salts $2\left(0.15 \mathrm{mmol}, 1.5\right.$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.15$ mmol, 1.5 equiv.). The reaction mixture was stirred at room temperature 2 h and monitored by TLC. After that solvent removal in vacuo gave the crude product 3, which was directly purified by flash chromatography (FC). The yield of cycloaddition products $\mathbf{3}$ and diastereomeric ratio were determined at this stage.

## 5. General procedure for the synthesis of 5



To a solution of isoindigos $\boldsymbol{4}^{[2]}$ ( 0.10 mmol , 1.0 equiv.) in THF ( 1.0 mL ) were added the sulfonium salts 2 ( $0.15 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.15 \mathrm{mmol}, 1.5$ equiv.). The reaction mixture was stirred at room temperature 4 h and monitored by TLC. After that solvent removal in vacuo gave the crude product 5, which was directly purified by flash chromatography (FC). The yield of [2+1] annulation adducts $\mathbf{5}$ were determined at this stage and the structure were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectrum.

## 6. General procedure for the multi-component reaction



To a solution of $\mathbf{1 e}(0.10 \mathrm{mmol}, 35.1 \mathrm{mg}, 1.0$ equiv. $)$ in $\mathrm{MeCN}(1.0 \mathrm{~mL})$ were added the thioether $\mathbf{S}(0.6 \mathrm{mmol}, 6.0$ equiv.), methyl-4-bromobut-2-enoate $(0.2 \mathrm{mmol}, 35.8$ $\mathrm{mg}, 2.0$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $0.20 \mathrm{mmol}, 27.6 \mathrm{mg}, 2.0$ equiv.). The reaction mixture was stirred at room temperature 72 h and monitored by TLC. After the given reaction time, solvent removal in vacuo gave the crude product 3e, which was directly purified by flash chromatography (FC).


To a solution of or $\mathbf{4 a}(0.10 \mathrm{mmol}, 29.0 \mathrm{mg}, 1.0$ equiv.) in THF ( 1.0 mL ) were added the thioether $\mathbf{S}$ ( $0.6 \mathrm{mmol}, 6.0$ equiv.), methyl-4-bromobut-2-enoate ( $0.2 \mathrm{mmol}, 35.8$ $\mathrm{mg}, 2.0$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.20 \mathrm{mmol}, 65.1 \mathrm{mg}, 2.0$ equiv.). The reaction mixture was stirred at room temperature 72 h and monitored by TLC. After the given reaction time, solvent removal in vacuo gave the crude product or 5a, which was directly purified by flash chromatography (FC).

## 7. Scale-up synthesis and deprotection of $5 f$



To a solution of Isoindigos $\mathbf{4 f}$ ( $1.0 \mathrm{mmol}, 462.5 \mathrm{mg}, 1.0$ equiv.) in THF ( 10.0 mL ) were added the sulfonium salts $\mathbf{2 a}$ ( $1.5 \mathrm{mmol}, 361.5 \mathrm{mg}, 1.5$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 1.5 $\mathrm{mmol}, 488.7 \mathrm{mg}, 1.5$ equiv.). The reaction mixture was stirred at room temperature 4 h and monitored by TLC. After that solvent removal in vacuo gave the crude product 5, which was directly purified by flash chromatography (FC). The [2+1] annulation adducts $\mathbf{5 f}$ were isolated in $62 \%$ yield ( 347.2 mg ).

To a solution of cycloaddition products $\mathbf{5 f}\left(0.5 \mathrm{mmol}, 280.0 \mathrm{mg}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5.0 mL ) was added $\mathrm{CF}_{3} \mathrm{COOH}\left(2.5 \mathrm{mmol}, 185.7 \mu \mathrm{~L}, 5.0\right.$ equiv.) at $0{ }^{\circ} \mathrm{C}$, maintaining the temperature and stirring for 30 minutes. After that, the reaction was allowed to stir at room temperature for another 2 h . The solvent was then removed in vacuo and the residue was purified by flash column chromatography to give the desired deprotection product $\mathbf{6}(91 \%$ yield, 163.8 mg$)$ as a white solid.

## 8. Stereochemistry determination and X-ray structures

Configurations of the products $\mathbf{3}$ were assigned based on the crystal X-ray structure of 3a (CCDC number 2305021) which was obtained as colorless solid via evaporation of a hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Configurations of the products $\mathbf{5}$ were assigned based on the crystal X-ray structure of $5 \mathbf{5 a}$ (CCDC number 2305023) which was obtained as colorless needles via evaporation of a hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.



5a


5a, CCDC 2305023

## 9. Compound characterization

Methyl 1,3'-dimethyl-2,5'-dioxo-1'-phenyl-1',5'-dihydrodispiro[indoline-3,2' -cyclopentane-1',4' '-pyrazol]-3'-ene-3'-carboxylate


Cycloaddition product 3a was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $92 \%$ yield ( $38.1 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $160-161{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.23$ ( s , $3 \mathrm{H}), 3.08$ (dd, $J=1.8,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=16.3,26.6,37.8$, $51.8,65.0,65.0,108.2,118.9$ (2C), 122.6, 125.0, 125.2, 125.7, 128.6 (2C), 129.6, 136.6, 137.4, 143.6, 145.1, 159.5, 162.5, 171.7, 174.0; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 416.1605$, found: 416.1605 .

## Methyl 5-chloro-1,3' '-dimethyl-2,5'-dioxo-1'-phenyl-1',5'-dihydrodispiro [indo

 line-3,2'-cyclopentane-1',4' '-pyrazol]-3'-ene-3'-carboxylate

Cycloaddition product 3b was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $80 \%$ yield ( $35.9 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $197-198{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.21$ ( s , $3 \mathrm{H}), 3.02(\mathrm{dd}, J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$,
$3.62(\mathrm{~s}, 3 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=1.8,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=16.3,26.8,37.8,52.0,64.8,65.0,109.1,119.0$ (2C), 125.3, 126.2, 127.0, 128.1, 128.8 (2C), 129.5, 136.2, 137.2, 142.2, 145.5, 159.2, 162.4, 171.5, 173.7; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 450.1215$, found: 450.1218 .

## Methyl 5-bromo-1,3' 'dimethyl-2,5' 'dioxo-1'-phenyl-1',5'-dihydrodispiro [indo

## line-3,2'-cyclopentane-1',4' '-pyrazol]-3'-ene-3'-carboxylate



Cycloaddition product $\mathbf{3 c}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $92 \%$ yield ( $45.4 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $196-197{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.21$ (s, $3 \mathrm{H}), 3.01(\mathrm{dd}, J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.37(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=16.3,26.7,37.7,52.0,64.8,64.9,109.6,115.4,119.1$ (2C), 125.3, 127.3, 128.8 (2C), 128.9, 132.4, 136.1, 137.1, 142.7, 145.6, 159.2, 162.4, 171.5, 173.6; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 494.0710$, found: 494.0712.

Methyl 1,3',5-trimethyl-2,5'-dioxo-1'"-phenyl-1',5' '-dihydrodispiro[indoline-3, 2'-cyclopentane-1',4' ${ }^{\prime}$-pyrazol]-3'-ene-3'-carboxylate


Cycloaddition product 3d was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $79 \%$ yield ( $33.9 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: 194-195 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.18$ ( s , $3 \mathrm{H}), 2.20$ (s, 3H), 2.96 (dd, $J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=3.0,18.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.19(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=16.1,21.0,26.6,37.4,51.8,65.1,65.2,107.8,118.8$ (2C), $125.0,125.0,126.4,128.6$ (2C), 129.8, 132.0, 136.3, 137.3, 141.3, 145.4, 159.2, 162.6, 172.1, 173.9; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 430.1761$, found: 430.1763 .

## Methyl 6-chloro-1,3''-dimethyl-2,5' '-dioxo-1'-phenyl-1',5'-dihydrodispiro [indo

 line-3,2'-cyclopentane-1',4' '-pyrazol]-3'-ene-3'-carboxylate

Cycloaddition product $\mathbf{3 e}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $90 \%$ yield ( $40.4 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $169-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.21$ ( s , $3 \mathrm{H}), 3.01(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=16.3,26.8,37.9,51.9,64.6,64.9,109.1,118.8$ (2C), 122.5, 123.7, 125.2, 126.7, 128.8 (2C), 135.4, 136.4, 137.3, 144.8, 145.2, 159.4, 162.4, 171.5, 174.1; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 450.1215$, found: 450.1214 .

## Methyl 1,3',7-trimethyl-2,5'-dioxo-1'-phenyl-1',5' '-dihydrodispiro [indoline -3,

 2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate

Cycloaddition product $\mathbf{3 f}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $83 \%$ yield ( $35.6 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $195-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.24$ (s, $3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 6.86(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=16.4,19.1,30.0,37.8,51.8,64.7,65.1,118.9$ (2C), $119.5,122.2,123.6,125.0,125.7,128.6$ (2C), 133.5, 136.9, 137.4, 141.2, 144.7, 159.8,
162.5, 171.5, 174.7; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 430.1761, found: 430.1762.

## Methyl 1,3',5,7-tetramethyl-2,5'-dioxo-1'-phenyl-1',5'-dihydrodispiro [indolin

 e-3,2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate Cycloaddition product $\mathbf{3 g}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $68 \%$ yield ( $30.1 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: 203-204 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.14(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J$ $=2.4,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 151 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=16.2,18.9,20.7,30.0,37.4,51.8,64.9,65.3,118.9$ (2C), 119.1, 124.2, 125.0, 125.6, 128.6 (2C), 131.6, 134.0, 136.7, 137.4, 138.9, 145.1, 159.5, 162.6, 171.9, 174.7; HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 444.1918$, found: 444.1921.

Methyl 1-ethyl-3'-methyl-2,5' ${ }^{\prime}$-dioxo- $\mathbf{1}^{\prime \prime}$-phenyl-1',5'-dihydrodispiro [indoline-3, 2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate
 Cycloaddition product 3 h was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from $10: 1$ to $2: 1$ ) in $84 \%$ yield ( $36.0 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $191-192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=$ $2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}$, $3 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=12.1,16.4,35.0,37.7,51.7,65.0,65.1,108.3,118.9$ (2C), 122.3, 125.0, 125.6, 125.9, 128.6 (2C), 129.5, 136.9, 137.4, 142.6, 144.9, 159.9, 162.4, 171.6, 173.7;

HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 430.1761$, found: 430.1763 .

Methyl 3''-methyl-2,5'-dioxo-1'-phenyl-1-propyl-1' ${ }^{\prime \prime}$,5'-dihydrodispiro [indoline -3, '-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate


Cycloaddition product $\mathbf{3 i}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $80 \%$ yield ( $35.4 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $162-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.88(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=2.4,5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.57(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.68(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=11.2,16.5,20.5,37.7,41.9,51.8,65.1$, $65.2,108.5,118.9$ (2C), 122.2, 125.0, 125.5, 125.8, 128.6 (2C), 129.5, 137.0, 137.4, 143.0, 144.8, 160.2, 162.4, 171.4, 173.9; HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 444.1918, found: 444.1918.

Methyl 1-benzyl-3'-methyl-2,5'-dioxo-1'"-phenyl-1',5' ${ }^{\prime \prime}$-dihydrodispiro [indoline -3,2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate


Cycloaddition product $\mathbf{3 j}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $76 \%$ yield ( $37.3 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $57-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.27(\mathrm{~s}, 3 \mathrm{H})$, $3.03(\mathrm{dd}, J=3.0,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.78(\mathrm{~d}$, $J=15.6,1 \mathrm{H}), 5.01(\mathrm{~d}, J=15.6,1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2 H ); ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=16.7,37.7,43.9,51.9,65.0,65.6,109.3,118.9$ (2C), 122.4, 125.0, 125.3, 125.8, 126.8 (2C), 127.4, 128.7 (2C), 128.7 (2C), 129.6, 135.1, 137.1, 137.5, 142.4, 144.7, 160.7, 162.4, 171.0, 174.1; HRMS calcd. for
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 492.1918$, found: 492.1917.

## Methyl 1-allyl-3''-methyl-2,5'-dioxo-1'-phenyl-1',5' '-dihydrodispiro [indoline-3, 2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate



Cycloaddition product $\mathbf{3 k}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $78 \%$ yield ( $34.4 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $154-155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.24$ ( s , $3 \mathrm{H}), 3.04(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, $4.26(\mathrm{dd}, J=4.8,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=4.8,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.80(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ $16.4,37.7,42.5,51.8,65.1,65.2,109.1,117.5,118.9$ (2C), 122.5, 125.0, 125.3, 125.8, 128.6 (2C), 129.5, 130.5, 136.7, 137.4, 142.7, 145.1, 159.8, 162.4, 171.6, 173.8; HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 442.1761$, found: 442.1762 .

## 1-(Tert-butyl) 3'-methyl 3'-methyl-2,5''-dioxo-1'-phenyl-1',5''-dihydrodispiro

 [indoline-3,2'-cyclopentane-1',4'-pyrazol]-3'-ene-1,3'-dicarboxylate

Cycloaddition product 31 was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to 2:1) in $52 \%$ yield ( $26.1 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $54-55{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.61(\mathrm{~s}, 9 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}$, $3 \mathrm{H}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=16.0,28.0$ (3C), 37.4, 51.9, 65.7, 66.0, 84.8, $114.8,119.1$ (2C), 124.0, 124.3, 125.3, 125.5, 128.7 (2C), 129.8, 135.8, 137.1, 139.7,
146.2, 148.6, 158.4, 162.4, 171.6, 172.8; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 524.1792, found: 524.1793.

## Methyl 1'-(tert-butyl)-1,3'-dimethyl-2,5'-dioxo-1',5'-dihydrodispiro[indoline-3,

 2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate

Cycloaddition product $\mathbf{3 m}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from $10: 1$ to $2: 1$ ) in $71 \%$ yield ( $28.0 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $114-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.26(\mathrm{~s}, 9 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{dd}, J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=1.8,17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.29 (m, 2H), $7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=15.9$, $26.4,27.8$ (3C), 37.1, 51.6, 57.0, 64.6, 64.9, 107.9, 122.4, 125.6, 126.1, 129.2, 135.9, 143.8, 146.0, 156.0, 162.7, 173.8, 174.4; HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 396.1918, found: 396.1918.

Methyl 1'-(2-chlorophenyl)-1,3' -dimethyl-2,5'-dioxo-1',5' ${ }^{\prime \prime}$-dihydrodispiro[indo line-3,2'-cyclopentane-1',4' '-pyrazol]-3'-ene-3'-carboxylate


Cycloaddition product $3 n$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from $8: 1$ to $1: 1$ ) in $72 \%$ yield ( $32.3 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $182-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.25(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=3.0,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10-7.12 (m, 1H), 7.23-7.24 (m, 2H), 7.28-7.32 (m, 3H), 7.36-7.38 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=16.5,26.6,37.5,51.9,63.6,65.3,108.1,122.4,125.4$, 126.1, 127.3, 128.4, 129.6, 129.7, 130.2, 131.6, 134.1, 137.0, 143.5, 144.6, 160.6, 162.4, 171.8, 173.9; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 450.1215, found:

Ethyl 1,3'-dimethyl-2,5' -dioxo-1'-phenyl-1',5'-dihydrodispiro[indoline-3,2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate


Cycloaddition product $\mathbf{3 o}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $86 \%$ yield ( $36.9 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $143-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.03(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.01(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.8,16.3,26.6,37.8,60.6,65.0,65.1,108.1,118.9$ (2C), 122.6, 125.0, $125.5,125.8,128.6$ (2C), 129.5, 137.0, 137.4, 143.6, 144.9, 159.6, 162.0, 171.8, 174.2; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 430.1761$, found: 430.1761.

Ethyl 5-bromo-1,3' '-dimethyl-2,5'-dioxo-1'-phenyl-1',5' -dihydrodispiro [indoli ne-3,2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate


Cycloaddition product $\mathbf{3 p}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $84 \%$ yield ( $42.7 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $182-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.08(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.21$ (s, 3H), $3.00(\mathrm{dd}, J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=2.4,18.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.05(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31-7.36 (m, 4H), $7.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,16.2,26.6,37.6,60.8,64.9$ (2C), 109.5, 115.3, 119.0 (2C), $125.2,127.5,128.7$ (2C), 128.9, 132.3, 136.4, 137.1, 142.7, 145.5, 159.2, 161.8, 171.5, 173.6; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 508.0866$, found: 508.0871.

## Ethyl 6-chloro-1,3''-dimethyl-2,5' 'dioxo-1'-phenyl-1',5''-dihydrodispiro [indol

 ine-3,2'-cyclopentane-1',4'-pyrazol]-3'-ene-3'-carboxylate

Cycloaddition product $\mathbf{3 q}$ was prepared as described in section 4 and isolated by FC on silica (eluting with PE/EA from 10:1 to $2: 1$ ) in $95 \%$ yield ( $44.0 \mathrm{mg},>20: 1 \mathrm{dr}$ ). White solid, melting point: $176-177^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.08(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.22$ (s, 3H), 3.00 (dd, $J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.13 (dd, $J=2.4,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.04(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=13.8,16.3,26.7,37.8,60.8,64.5,64.9$, 109.0, 118.8 (2C), 122.5, 123.9, 125.2, 126.7, 128.7 (2C), 135.3, 136.7, 137.3, 144.8, 145.0, 159.4, 161.9, 171.5, 174.1; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 464.1372, found: 464.1372 .

Methyl (E)-3-(1,1'-dimethyl-2,2'-dioxodispiro[indoline-3,1'-cyclopropane-2',3'indolin] -3'-yl) acrylate


Cycloaddition product 5a was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $5: 1$ to $1: 4$ ) in $93 \%$ yield ( 36.1 mg ). White solid, melting point: 231-232 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=3.17(\mathrm{~s}, 3 \mathrm{H})$, 3.19 (s, 3H), 3.73 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 6.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 2 \mathrm{H})$, 8.07-8.11 (m, 2H), $8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=26.4$, $26.8,40.0,46.0,47.5,51.7,107.6,107.9,121.9,122.1,122.1,124.1,125.7,125.8$, 127.8, 128.4, 128.5, 137.9, 143.7, 144.1, 165.8, 170.4, 171.3; HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 389.1496$, found: 389.1496 .

Methyl ( $E$ )-3-(1,1'-diethyl-2,2' '-dioxodispiro[indoline-3,1'-cyclopropane-2',3'-indolin]-3'-yl)acrylate


Cycloaddition product $\mathbf{5 b}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 2:1 to $1: 4$ ) in $91 \%$ yield ( 37.9 mg ). White solid, melting point: 232-233 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.21-1.24(\mathrm{~m}$, $6 \mathrm{H}), 3.70-3.79(\mathrm{~m}, 8 \mathrm{H}), 6.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $=12.5,12.6,35.0,35.4,40.2,46.0,47.4$, 51.7, 107.7, 108.0, 121.7, 121.9, 122.4, 124.3, 125.7, 126.1, 128.0, 128.3, 128.3, 138.1, 142.8, 143.1, 165.8, 170.0, 171.0; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 417.1809, found: 417.1809.

Methyl (E)-3-(1,1'-diisopropyl-2,2'-dioxodispiro[indoline-3,1'-cyclopropane-2', 3'-indolin]-3'-yl)acrylate


Cycloaddition product $\mathbf{5 c}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $4: 1$ to $1: 2$ ) in $90 \%$ yield ( 40.0 mg ). White solid, melting point: 221-222 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.42-1.45(\mathrm{~m}$, $12 \mathrm{H}), 3.66$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (s, 3H), 4.56-4.64 (m, 2H), 6.15 (d, $J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.29$ (m, 2H), 8.07-8.12 (m, 2H), 8.24 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $=19.1,19.2,19.4,19.4,40.5,44.0,44.5,46.0,47.5,51.6,109.1,109.3,121.2,121.4$, $122.6,124.6,125.6,126.1,127.9,128.0,128.0,138.3,142.4,142.7,165.8,169.9$, 170.9; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 445.2122, found: 445.2122.

Methyl (E)-3-(2,2'-dioxo-1,1'-dipropyldispiro[indoline-3,1'-cyclopropane-2',3' -indolin]-3'-yl)acrylate


Cycloaddition product 5d was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $4: 1$ to $1: 2$ ) in $90 \%$ yield ( 40.0 mg ). White solid, melting point: $171-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.87(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 6 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 4 \mathrm{H}), 3.59-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=11.3$ (2C), 20.6, 20.7, 40.0, 41.9, 42.2, 46.0, 47.5, 51.6, 107.8, 108.1, 121.6, 121.8, 122.2, 124.2, 125.7, 125.9, 127.9, 128.2, 128.3, 138.1, 143.1, 143.4, 165.8, 170.2, 171.2; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 445.2122$, found: 445.2122.

## Methyl (E)-3-(1,1'-dibenzyl-2,2'-dioxodispiro[indoline-3,1'-cyclopropane-2',3'

 -indolin]-3'-yl)acrylate

Cycloaddition product $\mathbf{5 e}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 2:1 to $1: 4$ ) in $89 \%$ yield ( 48.1 mg ). White solid, melting point: $65-66^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=3.76(\mathrm{~s}, 3 \mathrm{H}), 3.88$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.94(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 8 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=10.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=39.9,43.9,44.3,46.4,47.8,51.7,108.6,108.8,121.9$ (2C), 122.1, 123.7, 125.8, 126.0, 127.1 (2C), 127.1 (2C), 127.5, 127.5, 127.7, 128.3, 128.4, 128.7 (2C), 128.7 (2C), 135.4, 135.5, 137.8, 142.8, 143.1, 165.8, 170.3, 171.2; HRMS calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 541.2122$, found: 541.2125.

## Di-tert-butyl (E)-3'-(3-methoxy-3-oxoprop-1-en-1-yl)-2,2'-dioxodispiro[indoline

 -3,1'-cyclopropane-2',3'-indoline]-1,1' -dicarboxylate

Cycloaddition product $\mathbf{5 f}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $4: 1$ to $1: 3$ ) in $65 \%$ yield ( 36.4 mg ). White solid, melting point: $101-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.58(\mathrm{~s}, 18 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.37 (m, 2H), $7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.98-8.03 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=28.0$ (3C), 28.0 (3C), $39.4,47.3,49.1,51.7,84.7,84.8,114.1,114.2,120.2,121.9,123.8,124.0,125.4$, $126.9,127.4,128.8,128.9,136.1,139.8,140.1,148.4,148.5,165.5,167.7,168.6 ;$ HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$: 583.2051, found: 583.2051.

Methyl (E)-3-(1,1'-diallyl-2,2'-dioxodispiro[indoline-3,1'-cyclopropane-2',3'-indolin]-3'-yl)acrylate


Cycloaddition product $\mathbf{5 g}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $2: 1$ to $1: 4$ ) in $85 \%$ yield ( 37.4 mg ). White solid, melting point: $176-177^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=3.74(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.36(\mathrm{~m}, 4 \mathrm{H}), 5.16-5.19(\mathrm{~m}, 4 \mathrm{H})$, 5.74-5.81 (m, 2H), $6.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.11(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1H); ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=40.2,42.7,43.0,46.0,47.5,51.7,108.5,108.7$, $117.9,117.9,121.8,122.0,122.1,124.0,125.9,125.9,127.9,128.3,128.3,131.2$, 131.4, 137.8, 142.9, 143.2, 165.7, 170.0, 171.0; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+$ $\mathrm{H}]^{+}: 441.1809$, found: 441.1810.

Methyl (E)-3-(6,6'-dichloro-2,2'-dioxo-1,1'-dipropyldispiro[indoline-3,1'-cyclo propane-2', 3' '-indolin]-3'-yl)acrylate


Cycloaddition product $5 \mathbf{h}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 6:1 to $1: 1$ ) in $95 \%$ yield ( 48.7 mg ). White solid, melting point: $154-155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.88(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.60-1.67(\mathrm{~m}, 4 \mathrm{H}), 3.56-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 6.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.95-7.99 (m, 2H), 8.08 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=11.3$ (2C), 20.6, 20.6, 39.9, 42.1, 42.4, 45.7, 47.2, 51.7, 108.5, 108.8, 120.2, 121.5, 121.8, $122.1,126.3,126.9,128.7,134.4,134.6,137.0,144.3,144.6,165.6,170.1,171.1 ;$ HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 513.1342, found: 513.1343.

## Methyl ( $\boldsymbol{E}$ )-3-(5,5'-dibromo-2,2'-dioxo-1,1''-dipropyldispiro[indoline-3,1'-cycl

 opropane-2',3' '-indolin]-3'-yl)acrylate

Cycloaddition product $5 \mathbf{i}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 6:1 to $1: 1$ ) in $76 \%$ yield ( 45.8 mg ). White solid, melting point: $201-202{ }^{\circ} \mathrm{C} . \delta=0.88(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 6 H ), 1.58-1.69 (m, 4H), 3.60-3.67 (m, 4H), 3.69 (d, $J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 6.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (dd, $J=9.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=11.2$ (2C), 20.5, 20.6, 40.4, 42.0, 42.3, 45.7, 47.1, 51.8, $109.2,109.4,114.5,114.7,123.8,125.8,126.6,129.1,130.8,131.2,131.4,136.7$, 142.2, 142.6, 165.5, 169.4, 170.5; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 601.0332, found: 601.0327.

Methyl (E)-3-(5,5'-dichloro-2,2'-dioxo-1,1'-dipropyldispiro[indoline-3,1'-cyclo

## propane-2',3'-indolin]-3'-yl)acrylate

Cycloaddition product $\mathbf{5 j}$ was prepared as described in
 section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 6:1 to $1: 1$ ) in $75 \%$ yield ( 38.5 mg ). White solid, melting point: $187-188{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 4 \mathrm{H})$, 3.61-3.68 (m, 4H), 3.69 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 6.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.74 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=10.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=11.2$ (2C), 20.5, 20.6, 40.4, 42.0, 42.3, 45.7, 47.2, 51.7, 108.7, 108.9, 123.4, 125.5, 126.4, 126.6, 127.2, 127.3, 128.1, 128.2, 128.4, 136.8, 141.7, 142.1, 165.5, 169.6, 170.6; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 513.1342$, found: 513.1342.

Ethyl (E)-3-(1,1"-dimethyl-2,2'-dioxodispiro[indoline-3,1'-cyclopropane-2',3' -indolin]-3'-yl)acrylate


Cycloaddition product $\mathbf{5 k}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 2:1 to $1: 6$ ) in $88 \%$ yield ( 35.4 mg ). White solid, melting point: $219-220{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.27-1.29(\mathrm{~m}$, $3 \mathrm{H}), 3.17$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.19 (s, 3H), 3.73 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.17-4.22 (m, 2H), $6.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}), 8.06-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=14.2,26.4,26.8,40.0,46.0,47.5,60.5,107.6$, $107.9,121.9,122.1,122.1,124.1,125.8,126.2,127.8,128.4,128.4,137.6,143.7$, 144.1, 165.3, 170.4, 171.4; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 403.1652$, found: 403.1653.

Ethyl (E)-3-(1,1'-diethyl-2,2'-dioxodispiro[indoline-3,1'-cyclopropane-2',3' ${ }^{\prime \prime}$ -indolin]-3'-yl)acrylate


Cycloaddition product 51 was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $4: 1$ to $1: 4$ ) in $94 \%$ yield ( 40.4 mg ). White solid, melting point: $227-228{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.20-1.23(\mathrm{~m}$, 6 H ), $1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.69-3.81(\mathrm{~m}, 5 \mathrm{H}), 4.16-4.23(\mathrm{~m}$, $2 \mathrm{H}), 6.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06-7.12 (m, 2H), 7.26-7.32 (m, 2H), 8.07-8.12 (m, 2H), $8.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=12.5,12.6,14.2,35.0,35.3,40.2,46.0,47.4,60.4$, 107.7, 107.9, 121.6, 121.8, 122.4, 124.3, 126.0, 126.1, 128.0, 128.2, 128.3, 137.7, 142.8, 143.1, 165.3, 169.9, 171.0; HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 431.1965$, found: 431.1967.

## Ethyl (E)-3-(2,2'-dioxo-1,1'-dipropyldispiro[indoline-3,1'-cyclopropane-2',3"-

 indolin]-3'-yl)acrylate

Cycloaddition product $5 \mathbf{m}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $6: 1$ to $1: 2$ ) in $90 \%$ yield ( 41.2 mg ). White solid, melting point: $155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.87(\mathrm{q}, J$ $=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 4 \mathrm{H}), 3.58-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.22(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.12(\mathrm{~m}$, $2 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=11.2,11.3,14.2,20.6$, $20.7,40.0,41.8,42.2,46.0,47.5,60.4,107.8,108.0,121.5,121.8,122.2,124.1,125.9$, 126.1, 127.9, 128.2, 128.2, 137.7, 143.1, 143.4, 165.3, 170.2, 171.2; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 459.2278$, found: 459.2278 .

## Ethyl ( $E$ )-3-(6,6"'-dichloro-2,2' '-dioxo-1,1'-dipropyldispiro[indoline-3,1'-cyclo propane-2',3'-indolin]-3'-yl)acrylate



Cycloaddition product $\mathbf{5 n}$ was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 6:1 to $1: 2$ ) in $91 \%$ yield ( 48.0 mg ). White solid, melting point: $72-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.88(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 6 H ), 1.28 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 4 \mathrm{H}), 3.55-3.66(\mathrm{~m}$, $4 \mathrm{H}), 3.69$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.23(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=1.8,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.98(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=11.2,11.2,14.2,20.6,20.6,39.9,42.0,42.4,45.7$, $47.2,60.6,108.5,108.8,120.2,121.5,121.8,122.1,126.8,126.9,128.8,134.4,134.6$, 136.6, 144.3, 144.6, 165.2, 170.1, 171.1; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 527.1499 , found: 527.1498.

Ethyl ( $E$ )-3-(5,5' ${ }^{\prime \prime}$-dichloro-2,2'-dioxo-1,1'-dipropyldispiro[indoline-3,1'-cyclo propane-2', $\mathbf{3}^{\prime \prime}$-indolin]-3'-yl)acrylate


Cycloaddition product 50 was prepared as described in section 5 and isolated by FC on silica (eluting with $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $6: 1$ to $1: 2$ ) in $86 \%$ yield ( 45.3 mg ). White solid, melting point: $78-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.68(\mathrm{~m}$, 4H), 3.70 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.26(\mathrm{~m}, 2 \mathrm{H}), 6.17$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{dd}, J=9.6,15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=11.2,11.2,14.2,20.5,20.6,40.3,42.0,42.3,45.7,47.2,60.5,108.6$, 108.8, 123.4, 125.4, 126.4, 126.9, 127.1, 127.3, 128.2, 128.2, 128.4, 136.4, 141.7, 142.1, 165.1, 169.5, 170.6; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 527.1499$,
found: 527.1497.

Methyl (E)-3-(2,2'-dioxodispiro[indoline-3,1'-cyclopropane-2',3'-indolin]-3'-yl) acrylate


White solid, melting point: $119-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 600 MHz , DMSO- $d_{6}$ ): $\delta=3.66(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=10.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.76(\mathrm{~s}, 1 \mathrm{H}), 10.79(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO- $d_{6}$ ): $\delta=38.5,45.9,47.3,51.5,109.3,109.7,120.6$, $120.8,122.3,124.2,125.3,125.9,127.1,128.3,128.4,138.3,142.1,142.5,165.5$, 171.7, 171.8; HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 361.1183$, found: 361.1185 .

## 10. References

[1] S. Wang, J. Izquierdo, C. Rodríguez-Escrich, and M. A. Pericàs, Asymmetric [4 + 2] Annulation Reactions Catalyzed by a Robust, Immobilized Isothiourea, ACS Catal., 2017, 7, 2780.
[2] B. M. Trost and M. Osipov, Palladium-Catalyzed Asymmetric Construction of Vicinal All-Carbon Quaternary Stereocenters and its Application to the Synthesis of Cyclotryptamine Alkaloids, Angew. Chem. Int. Ed., 2013, 52, 9176.

## 11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra






























(


















(

SY104
single_pulse






