Supporting Information

Metal-Free Synthesis of Propargylamines via Light-Mediated Persulfate Activation and Phase-Transfer Catalysis

Cesar A. D. Zaragoza, Gabriel S. G. Peagno, Ana J. A. Minguine and Airton G. Salles, $\mathrm{Jr}{ }^{\text {*a }}$
${ }^{a}$ Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil

Table of contents

1. General Information	S2
2.1 General Procedure A (one amine and one alkyne, homocoupling between amines)	S2
2.2 General Procedure B (two amines and one alkyne, heterocoupling between amines)	S2
3. Scheme 3, gram-scale preparation of 3a	S4
5. Scheme 4, b in the main text	S4
6. Scheme 4, c in the main text	S5
7. Scheme 4, d in the main text	S5
8. Scheme 4, e in the main text	S6
9. Scheme 4, in the main text	S7
10. Scheme 4, g in the main text	S7
11. Scheme 4, h in the main text	S7
12. Characterization of the products	S8
13. Spectral Data	S18

1. General Information

All reagents were purchased from commercial suppliers (Sigma-Aldrich, Oakwood and Combi-Blocks) and used without further purification, all solvents were analytical grade. Thin layer chromatography (TLC) was performed using silica gel GF254, 0.25 mm thickness, visualization was accomplished with short wave UV light or KMnO_{4} staining solution followed by heating. Hydrogen nuclear magnetic resonance spectra (${ }^{1} \mathrm{H} \mathrm{NMR}$) were obtained at 500 MHz in CDCl_{3} solutions, at ambient temperature. Carbon-13 nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) were obtained at 125 MHz in CDCl_{3} solutions, at ambient temperature. Chemicals shifts (δ) are given in ppm and the residual solvent signals were used as references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.27 \mathrm{ppm}, \delta \mathrm{C}=77.00 \mathrm{ppm}\right.$. High resolution mass spectra were recorded on Q Exactive Orbitrap spectrometers working with an electrospray ionization (ESI). The Gas Chromatography coupled to Mass Spectrometry (CG-MS) analyses were performed using a Network GC system 6890N (Agilent Technologies Inc., Palo Alto, CA, USA), equipped with a HP-5MS 5\% Phenyl Methyl Silox ($25.0 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25$ μ nominal) capillary column. The GC analyses were carried out in split mode (ratio $150: 1)$ using helium as carrier gas at a flow rate of $504 \mathrm{~mL} / \mathrm{min}(7.65 \mathrm{psi})$. The injection port temperature was $250^{\circ} \mathrm{C}$; the oven was maintained at an initial temperature of $50^{\circ} \mathrm{C}$ for 3 minutes, then programmed at $40^{\circ} \mathrm{C} / \mathrm{min}$ to a temperature of $280^{\circ} \mathrm{C}$, where it was held, post-run, for 2 minutes. The MS detector was at $250{ }^{\circ} \mathrm{C}$, using H_{2} flow at 40.00 $\mathrm{mL} / \mathrm{min}$, air at $400 \mathrm{~mL} / \mathrm{min}$ and He makeup flow at $45.0 \mathrm{~mL} / \mathrm{min}$.

2.1 General Procedure A (one amine and one alkyne, homocoupling between amines)

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (0.25 mmol , 1 equiv), tetrabutylammonium tetrafluoroborate ($20 \mathrm{~mol} \%$) and $\mathrm{NaOH}(0.25 \mathrm{mmol}, 1$ equiv.), aromatic amine ($0.50 \mathrm{mmol}, 2$ equiv.) and alkyne (0.25 mmol , 1 equiv.) were added. The reaction mixture was capped with a rubber septum and irradiated using blue LED $(15 \mathrm{~W})$ at room temperature under stirring (kept at around $35{ }^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic layers were concentrated. The crude mixture was filtered through a plug of silica (40 mm internal diameter, 7.5 g of SiO_{2}) using 55 mL of a mixture of ethyl acetate / n -hexane ($10 / 90$) and followed by TLC to afford the desired pure product.

2.2 General Procedure B (two amines and one alkyne, heterocoupling between amines)

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (0.25 mmol , 1 equiv), tetrabutylammonium tetrafluoroborate ($20 \mathrm{~mol} \%$) and NaOH ($0.25 \mathrm{mmol}, 1$ equiv.), aromatic amine ($0.75 \mathrm{mmol}, 3$ equiv.), aliphatic amine or second aromatic amine (0.25 mmol, 1 equiv.) and alkyne ($0.25 \mathrm{mmol}, 1$ equiv.) were added. The reaction mixture
was capped with a rubber septum and irradiated using blue LED (15 W) at room temperature under stirring (kept at around $35{ }^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic layers were concentrated. The crude mixture was filtered through a plug of silica $(40 \mathrm{~mm}$ internal diameter, 7.5 g of SiO_{2}) using 55 mL of a mixture of ethyl acetate / n -hexane (10/90) and followed by TLC to afford the desired pure product. For product 3o, we used 3 equiv. of heptylamine, 1 equiv. of benzylamine and 1 equiv. of phenylacetylene.

A description of the apparatus for the photoreaction is shown below:

The emission spectrum of the blue LED is shown below:

3. Scheme 3, gram-scale preparation of 3a

To a solution of 30 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (10 mmol , 1 equiv), tetrabutylammonium tetrafluoroborate ($20 \mathrm{~mol} \%$) and NaOH ($10 \mathrm{mmol}, 1$ equiv.), aromatic amine ($20 \mathrm{mmol}, 2$ equiv.) and alkyne ($10 \mathrm{mmol}, 1$ equiv.) were added. The round bottom flask was capped with a rubber septum and irradiated using blue LED (15 W) at room temperature under stirring (kept at around $35^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were concentrated. The crude mixture was filtered through a plug of silica (40 mm internal diameter, 15 g of SiO 2) using 150 mL of a mixture of ethyl acetate / n hexane (10/90) and followed by TLC to afford product 3a in 72% yield.

4. Scheme 4, b in the main text

To a solution of 1 mL of water containing tetrabutylammonium tetrafluoroborate (20 $\mathrm{mol} \%$) and $\mathrm{NaOH}(0.25 \mathrm{mmol}, 1$ equiv.), commercial imine A ($\mathrm{N}-$ Benzylidenebenzylamine, 0.25 mmol) and phenylacetylene (0.25 mmol) were added. The reaction mixture was capped with a rubber septum and stirred for 24 h at room temperature. Then, the suspension was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic layers were concentrated. After the extraction, the crude mixture was diluted with ethyl acetate, filtered and analysed by GC-MS (Figure S1).

Figure S1. GC-MS of the reaction displayed in Scheme 4, b in the main text.

5. Scheme $4, \mathrm{c}$ in the main text

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (0.25 mmol , 1 equiv), benzylamine ($0.50 \mathrm{mmol}, 2$ equiv.) was added. The reaction mixture was capped with a rubber septum and irradiated using blue LED (15 W) at room temperature under stirring (kept at around $35{ }^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate ($3 \times 2 \mathrm{~mL}$) and the combined organic layers were concentrated. After the extraction, the crude mixture was diluted with ethyl acetate, filtered and analysed by GC-MS (Figure S2).

Figure S2. GC-MS of the reaction displayed in Scheme 4, c in the main text.

6. Scheme 4 , d in the main text

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.25 \mathrm{mmol}, 1$ equiv), benzylamine ($0.50 \mathrm{mmol}, 2$ equiv.) and TEMPO (0.50 mmol , 2 equiv.) were added. The reaction mixture was capped with a rubber septum and irradiated using blue LED (15 W) at room temperature under stirring (kept at around $35^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic
layers were concentrated. After the extraction, the crude mixture was diluted with ethyl acetate, filtered and analysed by GC-MS (Figure S3).

Figure S3. GC-MS of the reaction displayed in Scheme 4, d in the main text.

7. Scheme 4, e in the main text

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (0.25 mmol , 1 equiv), benzylamine ($0.50 \mathrm{mmol}, 2$ equiv.) and 2-propanol ($0.50 \mathrm{mmol}, 2$ equiv.) were added. The reaction mixture was capped with a rubber septum and irradiated using blue LED (15 W) at room temperature under stirring (kept at around $35^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate ($3 \times 2 \mathrm{~mL}$) and the combined organic layers were concentrated. After the extraction, the crude mixture was diluted with ethyl acetate, filtered and analysed by GC-MS (Figure S4).

Figure S4. GC-MS of the reaction displayed in Scheme 4, e in the main text.

8. Scheme 4 , f in the main text

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (0.25 mmol , 1 equiv), benzylamine ($0.50 \mathrm{mmol}, 2$ equiv.) and tert-butanol (0.50 mmol , 2 equiv.) were added. The reaction mixture was capped with a rubber septum and irradiated using blue LED $(15 \mathrm{~W})$ at room temperature under stirring (kept at around $35{ }^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic layers were concentrated. After the extraction, the crude mixture was diluted with ethyl acetate, filtered and analysed by GC-MS (Figure S5).

Figure S5. GC-MS of the reaction displayed in Scheme 4, f in the main text.

9. Scheme $4, g$ in the main text

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (0.25 mmol , 1 equiv), benzylamine ($0.50 \mathrm{mmol}, 2$ equiv.) and $\mathrm{CuCl}_{2}(0.25 \mathrm{mmol}, 1$ equiv.) were added. The reaction mixture was capped with a rubber septum and irradiated using blue LED (15 W) at room temperature under stirring (kept at around $35^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic layers were concentrated. The crude mixture was filtered through a plug of silica (40 mm internal diameter, 7.5 g of SiO_{2}) using 55 mL of a mixture of ethyl acetate / n hexane (10/90) and followed by TLC to afford the desired product in 26% yield.

10. Scheme 4 , h in the main text

To a solution of 1 mL of water containing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (0.25 mmol , 1 equiv), benzylamine ($0.50 \mathrm{mmol}, 2$ equiv.) and BHT ($0.25 \mathrm{mmol}, 1$ equiv.) were added. The reaction mixture was capped with a rubber septum and irradiated using blue LED (15 W) at room temperature under stirring (kept at around $35^{\circ} \mathrm{C}$ using a fan) for 24 h . Then, the suspension was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic layers were concentrated. The crude mixture was filtered through a plug of silica (40
mm internal diameter, 7.5 g of SiO_{2}) using 55 mL of a mixture of ethyl acetate / n hexane (10/90) and followed by TLC to afford the desired product in 39% yield.

11. Scheme $4, i$ in the main text

To a solution of 1 mL of water containing NaOH (0.25 mmol , 1 equiv.), commercial imine \mathbf{A} (N-Benzylidenebenzylamine, 0.25 mmol) and phenylacetylene (0.25 mmol) were added. The reaction mixture was capped with a rubber septum and stirred for 24 h at room temperature. Then, the suspension was extracted with ethyl acetate ($3 \times 2 \mathrm{~mL}$) and the combined organic layers were concentrated. After the extraction, the crude mixture was diluted with ethyl acetate, filtered and analysed by GC-MS (Figure S6).

Figure S6. GC-MS of the reaction displayed in Scheme 4, i in the main text.

12. Characterization of the products

3a
Prepared from benzylamine and phenylacetylene following the general procedure A to give the product as colourless oil (82% yield). All data was consistent with that previously reported. ${ }^{1}$

[^0]${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=7.34 \mathrm{~Hz}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.34(\mathrm{~m}, 11 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.09(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz})$, 2.00 (bs, 1H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.24,139.72,131.66,128.41,128.34,128.21$, 128.09, 127.67, 127.57, 126.99, 123.07, 89.17, 85.67, 53.56, 51.05.

3b
Prepared from 4-chlorobenzylamine (3 equiv.), benzylamine (1 equiv.) and phenylacetylene following the general procedure B to give the product as colourless oil (72% yield). All data was consistent with that previously reported. ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63(\mathrm{~d}, 2 \mathrm{H}, J=10.76 \mathrm{~Hz}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}$, $2 \mathrm{H}, J=6.85 \mathrm{~Hz}), 7.43-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.33(\mathrm{t}, 1 \mathrm{H}, J=6,36 \mathrm{~Hz}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~d}$, $1 \mathrm{H}, J=13.20 \mathrm{~Hz}), 4.02(\mathrm{~d}, 1 \mathrm{H}, J=13.20 \mathrm{~Hz}), 1.92(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.54,138.79,133.43,131.68,128.51,128.40$, 128.34, 128.28, 127.11, 122.84, 88.60, 86.03, 52.91, 50.98.

Prepared from benzylamine (3 equiv.), 4-chlorobenzylamine (1 equiv.) and phenylacetylene following the general procedure B to give the product as colourless oil (69\% yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, 2 \mathrm{H}, J=7.83 \mathrm{~Hz}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.47-7.36 (m, 10H), $4.86(\mathrm{~s}, 1 \mathrm{H}), 4,03(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{bs}, 1 \mathrm{H})$.

[^1]${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.06,138.25,132.65,131.65,129.67,128.44$, $128.42,128.24,128.17,127.75,122.95,88.92,85.84,53.51,50.29$.
HRMS m/z (ESI): calcd. for C22H19ClN [M+H] 332.12005, found 332.12054.

Prepared from benzylamine (3 equiv.), 4-methylbenzylamine (1 equiv.) and phenylacetylene following the general procedure B to give the product as colourless oil (68% yield). All data was consistent with that previously reported. ${ }^{3}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, 2 \mathrm{H}, J=7.53 \mathrm{~Hz}), 7.57-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.43$ (t, 2H, $J=7.53 \mathrm{~Hz}$), 7.39-7.36 (m, 6H), 7.22-7.21 (d, 2H, $J=8.28 \mathrm{~Hz}), 4.87$ (s, 1H), 4.05-4.03 (d, 1H, $J=12.81 \mathrm{~Hz}), 4.03-4.01(\mathrm{~d}, 1 \mathrm{H}, J=12.81 \mathrm{~Hz}), 2.41(\mathrm{~s}, 1 \mathrm{H})$, 1.88 (bs, 1H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.34,136.67,136.58,131.69,129.05,128.43$, $128.35,128.22,128.09,127.67,127.61,123.14,89.26,85.63,53.50,50.81,21.06$.

3e

Prepared from 4-methylbenzylamine (3 equiv.), benzylamine (1 equiv.) and phenylacetylene following the general procedure B to give the product as pale yellow oil (65% yield). All data was consistent with that previously reported. ${ }^{3}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}$, $6 \mathrm{H}), 7.25-7.24(\mathrm{~d}, 2 \mathrm{H}, J=6.60 \mathrm{~Hz}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{bs}$, $1 \mathrm{H})$.

[^2]${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.82,137.38,131.69,129.14,128.45,128.38$, $128.23,128.07,127.72,127.61,127.50,127.00,123.18,89.41,85.46,53.59,53.34$, 51.05, 21.09.

3f

Prepared from benzylamine and 4-methylphenylacetylene following the general procedure A to give the product as colourless oil (83% yield). All data was consistent with that previously reported. ${ }^{1}$
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.25-7.18$ (m, 3H), 7.08-7.06 (d, 2H, $J=7.86 \mathrm{~Hz}$), 4.74 (s, 1H), 3.96-3.93 (d, 1H, $J=12.89 \mathrm{~Hz}), 3.93-3.90(\mathrm{~d}, 1 \mathrm{H}, J=13.20 \mathrm{~Hz}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.39,139.78,138.23,131.61,129.02,128.43$, 128.39, 127.65, 127.04, 88.38, 85.83, 53.63, 51.09, 21.44.

$3 g$
Prepared from benzylamine and 4-chlorophenylacetylene following the general procedure A to give the product as colourless oil (80% yield). All data was consistent with that previously reported. ${ }^{1}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.53-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.18(\mathrm{~m}$, $5 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.92(\mathrm{~d}, 1 \mathrm{H}, J=13.20 \mathrm{~Hz}), 3.91-3.88(\mathrm{~d}, 1 \mathrm{H}, J=13.20 \mathrm{~Hz})$, 1.75 (bs, 1H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.04,139.61,134.17,132.95,128.59,128.43$, 128.38, 127.59, 127.12, 121.57, 90.21, 84.55, 53.61, 51.12.

3h
Prepared from benzylamine (3 equiv.), hexylamine (1 equiv.) and phenylacetylene following the general procedure B to give the product as pale yellow oil (75% yield). All data was consistent with that previously reported. ${ }^{4}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 1 \mathrm{H})$, $1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.85 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.69,128.49,128.22,128.08,127.69,127.60,54.69$, 47.36, 31.73, 29.89, 27.03, 22.60, 14.04.

$3 i$
Prepared from 4-methylbenzylamine (3 equiv.), hexylamine (1 equiv.) and phenylacetylene following the general procedure B to give the product as pale yellow oil (77\% yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.19(\mathrm{~d}$, $2 \mathrm{H}, J=7.86 \mathrm{~Hz}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.91-0.88(\mathrm{t}, 3 \mathrm{H}, J=6.92 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.43,131.69,129.17,128.19,128.05,127.53$, 123.18, 54.37, 47.23, 31.72, 29.77, 27.02, 22.59, 21.10, 14.03.

HRMS m/z (ESI): calcd. for C22H28N $[\mathrm{M}+\mathrm{H}]^{+} 306.22163$, found 306.22145.

[^3]

3j

Prepared from 4-methylbenzylamine (3 equiv.), hexylamine (1 equiv.) and 4chlorophenylacetylene following the general procedure B to give the product as colourless oil (73\% yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.47-7.45(\mathrm{~d}, 2 \mathrm{H}, J=7.86 \mathrm{~Hz}), 7.41-7.38(\mathrm{dt}, 2 \mathrm{H}, J=$ $8.80 ; 2.20$), $7.30-7.27$ (dt, 2H, $J=8.49 ; 1.89 \mathrm{~Hz}$), $7.20-7.19$ (d, $2 \mathrm{H}, J=7.86 \mathrm{~Hz}$), 4.77 (s, 1H), 2.85-2.80 (m, 1H), 2.73-2.68 (m, 1H), 2.37 (s, 3H), 1.65 (bs, 1H), $1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.91-0.88(\mathrm{t}, 3 \mathrm{H}, J=6.60 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.48,137.36,134.02,132.90,129.21,128.52$, 127.41, 121.71, 90.77, 83.90, 54.43, 47.37, 31.72, 29.89, 27.02, 22.59, 21.10, 14.03.

HRMS m/z (ESI): calcd. For C22H27ClN $[\mathrm{M}+\mathrm{H}]^{+} 340.18265$, found 340.18288 .

3k
Prepared from benzylamine (3 equiv.), morpholine (1 equiv.) and phenylacetylene following the general procedure B to give the product as pale yellow oil (68% yield). All data was consistent with that previously reported. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}$, 4 H), $4.83(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.68,131.74,128.53,128.17,127.72,122.89,88.46$, 84.94, 67.06, 61.97, 49.80.

[^4]

31

Prepared from benzylamine (3 equiv.), pyrrolidine (1 equiv.) and phenylacetylene following the general procedure B to give the product as pale yellow oil (78% yield). All data was consistent with that previously reported. ${ }^{6}$
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}$, 6 H), 4.93 ($\mathrm{s}, 1 \mathrm{H}$), 2.76-3.71 (m, 4H), 1.85-1.81 (m, 4H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.14,131.77,128.31,128.25,128.12,127.65$, 123.11, 87.07, 86.37, 59.11, 50.27, 23.48.

3m

Prepared from benzylamine (3 equiv.), pyrrolidine (1 equiv.) and 4methylphenylacetylene following the general procedure B to give the product as colourless oil (77% yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32(\mathrm{tt}$, $1 \mathrm{H}, J=7.23 \mathrm{~Hz} ; 2.20 \mathrm{~Hz}), 7.18-7.16(\mathrm{~d}, 2 \mathrm{H}, J=7.86 \mathrm{~Hz}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 2.77-2.74(\mathrm{~m}$, 4H), 2.39 (s, 3H), 1.87-1.84 (m, 4H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.55,138.01,131.57,128.91,128.19,128.13$, 127.42, 120.08, 86.92, 85.82, 59.05, 50.16, 23.41, 21.35.

HRMS m/z (ESI): calcd. For C20H22N [M+H] ${ }^{+}$276.17468, found 276.17452.

[^5]

Prepared from 4-methylbenzylamine (3 equiv.), pyrrolidine (1 equiv.) and phenylacetylene following the general procedure B to give the product as pale yellow oil (76% yield). All data was consistent with that previously reported. ${ }^{7}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.18(\mathrm{~d}$, $2 \mathrm{H}, J=7.86 \mathrm{~Hz}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 2.75-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.82(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.32,131.74,128.93,128.22,128.05,123.16,86.78$, 86.65, 58.82, 50.24, 23.44, 21.09.

Prepared from heptylamine (3 equiv.), benzylamine (1 equiv.) and phenylacetylene following the general procedure B to give the product as pale yellow oil (59% yield). All data was consistent with that previously reported.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.42(\mathrm{~d}, 2 \mathrm{H}, J=7.53 \mathrm{~Hz})$, $7.37-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.28(\mathrm{~d}, 1 \mathrm{H}, J=6.78 \mathrm{~Hz}), 4.14-4.11(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz})$, $3.94-3.92(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 3.63-3.61(\mathrm{dd}, 1 \mathrm{H}, J=7.53 \mathrm{~Hz} ; 6.02 \mathrm{~Hz}), 1.91$ (bs, $1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.90(\mathrm{t}, 3 \mathrm{H}, J=$ 6.78 Hz).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.82,131.66,128.45,128.38,128.22,127.90$, 127.02, 123.39, 90.85, 84.08, 51.43, 50.02, 36.02, 31.73, 29.06, 26.08, 22.58, 14.05.

HRMS m/z (ESI): calcd. For C22H28N [M+H] 306.22163, found 306.22150.

[^6]

3p
Prepared from benzylamine and 1-octyne following the general procedure A to give the product as colourless oil (80% yield). All data was consistent with that previously reported. ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.58(\mathrm{~d}, 2 \mathrm{H}, J=7.55 \mathrm{~Hz}), 7.43-7.29(\mathrm{~m}, 8 \mathrm{H})$, $4.61(\mathrm{~s}, 1 \mathrm{H}), 3.98-3.96(\mathrm{~d}, 1 \mathrm{H}, J=12.89 \mathrm{~Hz}), 3.95-3.92(\mathrm{~d}, 1 \mathrm{H}, J=12.89 \mathrm{~Hz})$, $2.35-2.32$ (td, $2 \mathrm{H}, J=7.23 \mathrm{~Hz} ; 1.89 \mathrm{~Hz}$), 1.87 (bs, 1H), 1.64-1.58 (quint, $2 \mathrm{H}, J=7.23$ Hz), 1.52-1.46 (quint, 2H, $J=7.23$), 1.40-1.33 (m, 4H), 0.96-0.94 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.94,139.91,128.31,127.54,127.47,126.93,86.08$, 79.73, 53.21, 50.97, 31.31, 28.84, 28.56, 22.55, 18.82, 14.02.

$3 q$
Prepared from 4-methylbenzylamine (3 equiv.), pyrrolidine (1 equiv.) and 1-octyne following the general procedure B to give the product as pale yellow oil (75% yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.17 \mathrm{~Hz}), 7.15-7.13(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.86 \mathrm{~Hz}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.27$ (td, $2 \mathrm{H}, J=7.23 \mathrm{~Hz}$; 1.89 Hz), 1.79-1.77 (quint, $4 \mathrm{H}, J=2.83 \mathrm{~Hz}$), $1.58-1.53$ (quint, $2 \mathrm{H}, J=7.23 \mathrm{~Hz}$), $1.47-1.41$ (m, 2H), 1.34-1.30 (m, 4H), 0.92-0.89 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.04,136.58,128.76,128.19,87.06,76.82,58.39$, 50.04, 31.27, 28.86, 28.51, 23.35, 22.52, 21.03, 18.73, 13.98 .

HRMS m/z (ESI): calcd. For C20H30N [M+H] ${ }^{+}$284.23728, found 284.23715.

[^7]

Prepared from benzylamine (3 equiv.), pyrrolidine (1 equiv.) and 1-octyne following the general procedure B to give the product as colourless oil (72% yield).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.49(\mathrm{~d}, 2 \mathrm{H}, J=7.23 \mathrm{~Hz}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 2.58-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.23(\mathrm{td}, 2 \mathrm{H}, J=7.23 \mathrm{~Hz}$; $2.20 \mathrm{~Hz}), 1.74-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}$, $4 \mathrm{H}), 0.88-0.85$ (m, 3H).
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.09,128.18,128.03,127.25,87.03,76.90,58.75$, 50.11, 31.27, 28.90, 28.51, 23.37, 22.53, 18.73, 13.98.

HRMS m / z (ESI): calcd. For C19H28N $[\mathrm{M}+\mathrm{H}]^{+} 270.22163$, found 270.22145 .
11. Spectral Data

$\begin{array}{llllllllllll}7.9 & 7.8 & 7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2 & 7.1 & 7.0\end{array}$
Chemical Shift (ppm)

3b

3c

[^8]

3e

CHLOROFORM-d

CHLOROFORM-d

$3 f$

CHLOROFORM-d

3 g
Chemical Shift (ppm)

31

$3 m$

30

$1.001 .02 \quad 0.99$
$\begin{array}{lllll}0.79 & 2.28 & 2.16 & 6.35 & 3.41\end{array}$
1.922 .045 .150 .93

[^0]: ${ }^{1}$ H. Li, H. Feng, J. Zhang, E. V. Van Der Eycken and L. Huang, J. Org. Chem., 2019, 84, 10501-10508.

[^1]: ${ }^{2}$ P. K. Mishra, S. Verma, M. Kumar and A. K. Verma, Org. Lett., 2018, 20, 7182-7185.

[^2]: ${ }^{3}$ A. Casnati, A. Perrone, P. P. Mazzeo, A. Bacchi, R. Mancuso, B. Gabriele, R. Maggi, G. Maestri, E. Motti, A. Stirling and N. Della Ca, J. Org. Chem., 2019, 84, 3477-3490.

[^3]: ${ }^{4}$ H. Feng, D. S. Ermolat'Ev, G. Song and E. V. Van Der Eycken, J. Org. Chem., 2011, 76, 7608-7613.

[^4]: ${ }^{5}$ L. Shi, Y. Q. Tu, M. Wang, F. M. Zhang and C. A. Fan, Org. Lett., 2004, 6, 1001-1003.

[^5]: ${ }^{6}$ C. Wei, Z. Li and C.-J. Li, Org. Lett., 2003, 5, 4473-4475.

[^6]: ${ }^{7}$ S. Samai, G. C. Nandi and M. S. Singh, Tetrahedron Lett., 2010, 51, 5555-5558.

[^7]: ${ }^{8}$ R. Unnava, M. J. Deka and A. K. Saikia, Asian J. Org. Chem., 2016, 5, 528-536.

[^8]:

