Coumarin-azasugar-benzyl conjugates as non-neurotoxic dual inhibitors of butyrylcholinesterase and cancer cell growth

I. Caroline Vaaland Holmgard,^a Aday González-Bakker,^b Eleonora Poeta,^c Adrián Puerta,^b Miguel X. Fernandes,^d Barbara Monti,^c José G. Fernández-Bolaños,^e José M. Padrón,*^b Óscar López,*^e and Emil Lindbäck*^a

^aDepartment of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway

^bBioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, La Laguna, E-38206, Spain

^cDepartment of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy

^dDepartment of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden

^eDepartamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain.

Table of content

¹ H and ¹³ C NMR	2-31
Table S1 Antiproliferative activity studies	32

¹H-NMR spectra of compound **10** (CDCl₃, 400.13 MHz)

 $^{13}\text{C-NMR}$ spectra of compound 10 (CDCl_3, 100.61 MHz)

3

¹H-NMR spectra of compound **11** (CD₃OD, 400.13 MHz)

¹H-NMR spectra of compound **12** (CDCl₃, 400.13 MHz)

¹³C-NMR spectra of compound **12** (CDCl₃, 100.61 MHz)

¹H-NMR spectra of compound **17a** (CDCl₃, 400.13 MHz)

¹³C-NMR spectra of compound **17a** (CDCl₃, 100.61 MHz)

 $^1\text{H-NMR}$ spectra of compound 17b (CDCl₃, 400.13 MHz)

 $^1\text{H-NMR}$ spectra of compound 17c (CDCl₃, 400.13 MHz)

¹³C-NMR spectra of compound **17c** (CDCl₃, 100.61 MHz)

 $^1\text{H-NMR}$ spectra of compound 17d (CDCl₃, 400.13 MHz)

 $^1\text{H-NMR}$ spectra of compound 17e (CDCl₃, 400.13 MHz)

¹³C-NMR spectra of compound **17e** (CDCl₃, 100.61 MHz)

17

¹H-NMR spectra of compound **20** (CDCl₃, 400.13 MHz)

¹H-NMR spectra of compound **8a** (CD₃OD, 400.13 MHz)

¹³C-NMR spectra of compound 8a (CD₃OD, 100.61 MHz)

¹H-NMR spectra of compound **8b** (CD₃OD, 400.13 MHz)

¹H-NMR spectra of compound **8c** (DMSO, 400.13 MHz)

¹H-NMR spectra of compound **8c** (DMSO, 400.13 MHz)

¹H-NMR spectra of compound **8d** (CD₃OD, 400.13 MHz)

¹H-NMR spectra of compound **8e** (CD₃OD, 400.13 MHz)

 \cap

¹³C-NMR spectra of compound **8e** (CD₃OD, 100.61 MHz)

¹H-NMR spectra of compound **21** (CD₃OD, 400.13 MHz)

	Cell line (origin)					
Comp.	A549	HBL-100	HeLa	SW1573	T-47D	WiDr
	(lung)	(breast)	(cervix)	(lung)	(breast)	(colon)
11	>100	>100	>100	>100	>100	>100
10	>100	>100	>100	>100	>100	>100
8a	>100	>100	44±2.9	89±17	>100	67±12
17a	93±9.8	47±4.8	25±6.5	46±13	>100	40±11
8b	>100	97±6.6	83±20	94±12	>100	>100
17b	97±4.0	52±7.3	48±22	96±8.4	>100	95±2.1
8c	95±12	89±28	88±30	85±36	>100	88±30
17c	89±27	66±32	45±22	77±36	>100	39±9.7
8d	70±2.2	56±18	53±22	98±3.0	78±16	47±7.4
17d	90±20	82±35	>100	95±9.9	n.t. ^b	5.6±1.1
8e	>100	>100	98±3.9	97±5.5	>100	>100
17e	88±8.0	40±3.2	34±11	60±11	66±4.9	44±15
21	>100	84±39	85±37	85±37	>100	84±39
20	73±21	89±28	58±21	84±28	>100	54±19
Cisplatin	4.9±0.2	1.9±0.2	1.8±0.5	2.7±0.4	17±3.3	23±4.3

Table S1. Antiproliferative activity $(GI_{50}, \mu M)^a$ against human solid tumor cell lines.

^aValues ± standard deviation from two to six representative experiments. ^bn.t. = not tested.