Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Copper-Catalyzed Asymmetric Friedel-Crafts Hydroxyalkylation of Pyrazole-4,5-diones with 5-Aminoisoxazoles

Siyu Gao, Xiang Sun, Sijie Peng, Zhenggen Zha, Qi Sun*and Zhiyong Wang* Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China. Fax: (+86)551-63603185

E-mail: zwang3@ustc.edu.cn

Table of Contents

Part I Experimental Section	S1
1.1 General information	S1
1.2 General procedure for the synthesis of substrate	S1
1.3 Optimization of reaction conditions	S6
1.4 General working procedure	S8
1.5 Experimental data of products	S9
1.6 A plausible structure of the transition state and DFT	
calculations	S23
Part II NMR spectra	.835
Part III HPLC Spectra	. 893
Part IV Crystal Preparation and the data	S118

Part I Experimental Section

1.1 General information

¹H NMR and ¹³C NMR were recorded on Bruker-500 MHz Spectrometer (¹H NMR: 500MHz, ¹³C NMR: 125MHz, ¹⁹F NMR: 470MHz) using TMS as internal reference. The chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz respectively. Uv-Vis Spectrophotometry was carried out on Shimadzu UV-3000. HPLC analysis was carried out on an Agilent 1260 series HPLC with a multiple wavelength detector. Chiralpak AD-H, IC were purchased form Daicel Chemical Industries, LTD. Optical rotations were measured on a PerKinElmerTM Polarimeter (Model 343). HRMS (ESI) were recorded on a WatersTM Q-TOF Premier. Single crystal data was collected at room temperature on a Rigaku Oxford Diffraction SuperNova with an AtlasS2 CCD using Cu K α radiation. Commercially available compounds were used without further purification. All solvents were purified according to the standard procedures unless otherwise noted. Ligands L₁-L₄^[S1], L₁^{*[S2]}, pyrazole-4,5-diones 1 ^[S3], 5-aminoisoxazoles 2 ^[S4] were prepared according to the literature procedures.

1.2 General procedure for the synthesis of substrate

1.2.1 General procedure for the synthesis of pyrazole-4,5-diones 1a-v^[S5]

To a solution of 7 (20 mmol, 1.0 equiv.) in glacial acetic acid (30 mL) was added 6 (20 mmol, 1.0 equiv.) and Triethylamine (20 mmol, 1.0 equiv.). The reaction mixture was stirred at 110 °C until TLC (petroleum ether/ ethyl acetate = 2:1) showed complete consumption of the startingmaterial. After cooling to room temperature, the mixture was quenched with a solution of saturated NaHCO₃ and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford 8.

Add PhNO (1.0 equiv.) to a solution of pyrazolon derivative **8** (1.0 equiv.) in MeOH (0.6 M) and the K_2CO_3 (0.2 equiv.) was added at once, the mixture was

refluxed for 3 hours. The solvent was removed under reduced pressure and the crude product was directly purified by flash column chromatography (petroleum ether/ ethyl acetate = 30:1) to afford the desired product **9**.

To a solution of pyrazolon-derived phenyl-ketimine **9** in THF (0.13 M), 2 M HCl was added and stirring at room temperature. After stirring for 10 minutes - 5.5 hours, water was added. The reaction mixture was extracted with DCM (3×20 mL) and the combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was directly purified by flash column chromatography (petroleum ether/ ethyl acetate = 20:1) to afford the desired product **1**.

1.2.2 General procedure for the synthesis of 5-aminoisoxazoles 2a-n^[S4]

a) NH₂OH \cdot HCl (1.3 g, 18.8 mmol) and NaOAc (1.55 g, 18.8 mmol) were stirred in MeOH (20 mL) at room temperature for 1 hour and then the compound **10** (6.3 mmol) was added to the mixture. The reaction mixture was stirred at room temperature overnight. Then the reaction mixture was quenched with water and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford **11**.

b) Compound **11** (500 mg, 3 mmol) was stirred in acetic anhydride (6 mL) at 100°C for 2h. The reaction mixture was quenched with a solution of saturated NaHCO₃ and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford **12**.

c)The compound **12** (500 mg, 2 mmol) wasdried in vacuum and then dissolved in dry THF (10 mL) at 0 °C. Lithium aluminium hydride (240 mg, 6 mmol) was added during 20 minutes. The reaction was then stirred at room temperature overnight. Next, the reaction mixture was quenched by slow addition of 1M NaOH solution at 0 °C. The mixture was stirred for 30 minutes and then filtered through a pad of Celite. The filtrate was extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford **2a,2e-n**.

d) To a solution of compound **11** (1 g, 4 mmol), Boc₂O (2.3 g, 10 mmol) and DMAP (50 mg, 0.4 mmol) in 30 mL of DCM add triethylamine (1.27 g, 12 mmol) dropwise and stirred overnight at room temperature. The reaction was diluted with DCM. The organic layer was washed with water, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel. (PE/EA = 10/1) to give compound **13** as a white solid.

e) To a stirred solution of **13** (1 mmol) in dry THF (5 mL) at 0°C, NaH(80 mg, 2 mmol) was added and stirred for 30 min. R_2X (2 mmol) was added dropwise to the reaction mixture. The reaction mixture was then stirred at 70 °C overnight. The reaction mixture was quenched with EtOAc, washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford **14**.

f) To a stirred solution of **14** (1 mmol) in DCM at room temperature, TFA(5 mmol) was added and stirred for 8h.The reaction mixture was quenched with a solution of saturated NaHCO₃ and extracted with DCM, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford **2b-d**.

3-isopropyl-1-(p-tolyl)-1H-pyrazole-4,5-dione(1d)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 2.94 (hept, J = 6.9 Hz, 1H), 2.37 (s, 3H), 1.33 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.8, 151.1, 149.0, 136.1, 134.6, 129.7, 117.8, 26.9, 21.1, 19.0.

3-isopropyl-1-(4-methoxyphenyl)-1H-pyrazole-4,5-dione(1e)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.82-7.75 (m, 2H), 7.00-6.94 (m, 2H), 3.84 (s, 3H), 2.94 (hept, J = 6.9 Hz, 1H), 1.33 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 185.0, 157.8, 151.1, 148.8, 130.3, 119.6, 114.3, 55.5, 26.9, 19.0.

1-(4-chlorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1f)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.90-7.84 (m, 2H), 7.44-7.38 (m, 2H), 2.96 (hept, J = 7.0 Hz, 1H), 1.34 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.2, 151.6, 149.1, 135.5, 131.4,

129.3, 118.8, 26.9, 19.0.

1-(4-fluorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1g)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.91-7.84 (m, 2H), 7.18-7.10 (m, 2H), 2.96 (hept, J = 6.9 Hz, 1H), 1.33 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.4, 160.5 (d, J = 246.3 Hz), 151.4, 149.0, 133.1 (d, J = 3.0 Hz), 119.6 (d, J = 8.4 Hz), 116.0 (d, J = 23.0 Hz),

26.9, 19.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -115.29.

1-(4-bromophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1h)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 9.0 Hz, 2H), 7.57 (d, J = 9.0 Hz, 2H), 2.96 (hept, J = 7.0 Hz, 1H), 1.34 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.2, 151.6, 149.1, 136.0, 132.2, 119.2, 119.1, 26.9, 19.0.

3-isopropyl-1-(4-(trifluoromethyl)phenyl)-1H-pyrazole-4,5-dione(1i)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 2.99 (hept, J = 6.9 Hz, 1H), 1.35 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 183.8, 152.0, 149.4, 139.6, 127.8 (q, J = 32.7 Hz), 126.5 (q, J = 4.0 Hz), 123.9 (q, J = 272.0 Hz), 117.3, 27.0,

19.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.31.

3-isopropyl-1-(m-tolyl)-1H-pyrazole-4,5-dione(1k)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.51-7.44 (m, 2H), 7.12 (t, J = 7.8 Hz, 1H), 6.90-6.84 (m, 1H), 2.74 (hept, J = 6.9 Hz, 1H), 2.21 (s, 3H), 1.13 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ

184.7, 151.2, 149.2, 139.2, 136.9, 129.0, 127.1, 118.3, 115.0, 26.9, 21.7, 19.1.

3-isopropyl-1-(3-methoxyphenyl)-1H-pyrazole-4,5-dione(11)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.67 (m, 2H), 7.55 (t, J = 8.2 Hz, 1H), 7.01 (ddd, J = 8.3, 2.4, 0.9 Hz, 1H), 4.06 (s, 3H), 3.16 (hept, J = 6.9 Hz, 1H), 1.54 (d, J = 7.0 Hz, 6H). ¹³C NMR (125

MHz, CDCl₃) δ 183.4, 159.1, 150.2, 148.1, 137.0, 129.0, 110.7, 108.9, 102.5, 54.4, 25.8, 18.0.

1-(3-fluorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1m)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (ddd, J = 8.3, 2.1, 0.9 Hz, 1H), 7.67 (dt, J = 10.5, 2.3 Hz, 1H), 7.41 (td, J = 8.3, 6.3 Hz, 1H), 6.97 (tdd, J = 8.3, 2.5, 0.9 Hz, 1H), 2.97 (hept, J = 6.9 Hz, 1H), 1.34 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.0,

162.9 (d, J = 245.5 Hz), 151.6, 149.2, 138.2 (d, J = 10.5 Hz), 130.5 (d, J = 9.1 Hz), 112.9 (d, J = 3.7 Hz), 112.9 (d, J = 21.1 Hz), 105.1 (d, J = 27.5 Hz), 26.9, 19.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -110.38.

1-(3-chlorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1n)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.92-7.90 (m, 1H), 7.86 (ddd, J = 8.3, 2.1, 0.9 Hz, 1H), 7.41-7.34 (m, 1H), 7.24 (ddd, J = 8.0, 2.0, 0.9 Hz, 1H), 2.97 (hept, J = 6.9 Hz, 1H), 1.34 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.0, 151.7, 149.2, 137.9, 135.0, 130.3, 5, 115.5, 26.9, 19.0

126.2, 117.5, 115.5, 26.9, 19.0.

1-(3-bromophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1o)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (t, J = 2.0 Hz, 1H), 7.91 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 7.39 (ddd, J = 8.1, 1.9, 1.1 Hz, 1H), 7.32 (t, J = 8.1 Hz, 1H), 2.97 (hept, J = 6.9 Hz, 1H), 1.34 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.0, 151.7, 149.2, 138.0,

130.5, 129.1, 122.9, 120.3, 116.0, 27.0, 19.0.

3-isopropyl-1-(3-nitrophenyl)-1H-pyrazole-4,5-dione(1q)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 8.74 (t, J = 2.2 Hz, 1H), 8.38 (ddd, J = 8.2, 2.1, 0.9 Hz, 1H), 8.13 (ddd, J = 8.1, 2.2, 1.0 Hz, 1H), 7.65 (t, J = 8.2 Hz, 1H), 3.02 (hept, J = 6.9 Hz, 1H), 1.37 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 183.5, 152.2, 149.4, 148.7,

137.8, 130.3, 122.9, 120.6, 112.3, 27.0, 19.0.

1-(3,5-dimethylphenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1s)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (s, 2H), 6.91 (s, 1H), 2.94 (hept, J = 6.9 Hz, 1H), 2.37 (s, 6H), 1.33 (d, J = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 183.7, 150.1, 148.1, 137.9,

135.8, 127.0, 114.5, 25.8, 20.5, 18.0.

1-(3,4-dichlorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1t)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 2.5 Hz, 1H), 7.83 (dd, J = 8.9, 2.7 Hz, 1H), 7.50 (d, J = 9.0 Hz, 1H), 2.97 (hept, J = 6.9 Hz, 1H), 1.35 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) & 182.6, 150.9, 148.1, 135.1, 132.2, 129.8, 128.6, 118.0, 115.6,

25.9, 17.9.

3-isopropyl-1-(naphthalen-2-yl)-1H-pyrazole-4,5-dione(1u)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red solid. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 8.04 (dd, J = 8.9, 2.2 Hz, 1H), 7.92-7.80 (m, 3H), 7.54-7.43 (m, 2H), 2.96 (hept, J = 6.9 Hz, 1H), 1.36 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 184.6, 151.4, 149.3, 134.5, 133.3, 131.5, 129.2, 128.2, 127.8, 126.9, 126.0,

125.6, 116.8, 115.1, 27.0, 19.1.

3-isopropyl-1-methyl-1H-pyrazole-4,5-dione(1v)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a red liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.39 (s, 3H), 2.81 (hept, J = 7.0 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) & 185.1, 150.4, 149.1, 31.8, 25.9, 18.4.

1.3 Optimization of reaction conditions.

Table S1. Effects of copper salts ^a

Entry	Copper salt	Yield (%) ^b	ee (%) ^c
1	CuSO ₄ ·5H ₂ O	93	50
2	Cu(NO ₃) ₂ ·3H ₂ O	90	50
3	CuCl ₂ ·2H ₂ O	92	45
4	CuBr ₂	85	48
5	Cu(OAc) ₂ ·H ₂ O	78	18
6	Cu(OTf) ₂	86	68

^{*a*} Unless otherwise noted, the reaction of **1a** (0.1 mmol) and **2a** (0.12 mmol) was performed in the presence of ligand (L_1 , 5 mol%), DIPEA (10 mol%) and copper salt (5 mol%) in solvent (1.0 mL) for 18 h. ^{*b*} Yield of the isolated product based on **1a**. ^{*c*} Enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.

Table S2. Effects of aprotic polar solvent^{*a*}

Entry	Solvent	T(°C)	Yield (%) ^b	ee (%) ^c
1	Tol	-30	93	99
2	DMF	-30	83	43
3 ^{<i>d</i>}	DMSO	20	80	49
4	Tol	20	93	70

^{*a*} Unless otherwise noted, the reaction of **1a** (0.1 mmol) and **2a** (0.12 mmol) was performed in the presence of ligand (L_4 , 5 mol%), DIPEA (10 mol%) and copper salt (5 mol%) in solvent (1.0 mL) at -30 °C for 18 h. ^{*b*} Yield of the isolated product based on **1a**. ^{*c*} Enantiomeric excess was determined by HPLC analysis on a chiral stationary phase. ^{*d*} Due to the high freezing point of DMSO, the reaction was carried out at 20 °C.

1.4 General working procedure

1.4.1 Procedure for the Friedel-Crafts hydroxyalkylation product 3

A mixture of Cu(OTf)₂ (1.8 mg, 0.005 mmol) and the ligand (L₄, 2.8 mg, 0.005mmol) in toluene (1 mL) with DIPEA (1.74 μ L, 0.01 mmol) were stirred at room temperature for 2 h. pyrazole-4,5-diones 1 (0.1mmol) was then added and the resulting mixture was cooled to -30°C. After stirring the mixture for 0.5 h, 5-aminoisoxazole 2 (0.12 mmol) was added in one portion. After the reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate = 10:1) afforded the desired product 3 as a white solid.

1.4.2 Procedure for the Friedel-Crafts hydroxyalkylation on a gram scale

A mixture of Cu(OTf)₂ (36 mg, 0.01 mmol) and the ligand (L₄, 56 mg, 0.01mmol) in toluene (40 mL) with DIPEA (34.8 μ L, 0.2 mmol) were stirred at room temperature for 2 h. pyrazole-4,5-diones **1a** (4mmol) was then added and the resulting mixture was cooled to -30°C. After stirring the mixture for 0.5 h, 5-aminoisoxazole **2a** (4.8 mmol) was added in one portion. After the reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate = 10:1) afforded the desired product **3aa** as a white solid.

1.4.3 Further transformation of the product 3aa

A mixture of **3aa** (40.4 mg, 0.1 mmol), *t*-BuOK (11.2mg, 0.1 mmol) and CH₃I (6.2 μ L, 0.1 mmol) in THF (1 mL) were stirred at room temperature. After the reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate = 20:1) afforded the desired product **4aa** as a white solid.

A mixture of **3aa** (40.4 mg, 0.1 mmol), *t*-BuOK (22.4 mg, 0.2 mmol) and CH₃I (12.4 μ L, 0.2 mmol) in THF (1 mL) were stirred at room temperature. After the

reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate = 20:1) afforded the desired product **5aa** as a white solid.

1.5 Experimental data of products

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4 -dihydro-3H-pyrazol-3-one (3aa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 34.0 mg, 87% yield; 37.5 mg, 93% yield; mp = 157-159 °C; $[\alpha]_D^{20} 218.2$ (c = 1.0, CHCl₃, 99% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 70:30, flow rate = 0.8 mL/min, T = 23°C, UV = 254 nm, t_R = 7.7 min

(major), $t_R = 9.6 \text{ min}$ (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.58-7.53 (m, 2H), 7.37-7.29 (m, 2H), 7.18-7.06 (m, 6H), 6.59 (t, J = 6.0 Hz, 1H), 6.27 (s, 1H), 3.55-3.43 (m, 2H), 2.80 (hept, J = 6.9 Hz, 1H), 1.34-1.26 (m, 6H), 1.12-1.07 (m, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.4, 169.1, 167.2, 161.6, 138.0, 129.4, 128.9, 128.5, 128.4, 127.9, 124.5, 118.1, 84.7, 77.3, 37.4, 28.3, 20.4, 19.7, 15.3. HRMS (ESI) m/z calcd for C₂₃H₂₄N₄O₃ [M+H]⁺ 405.1921, found 405.1927.

(R)-5-ethyl-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-2-phenyl-2,4-dih ydro-3H-pyrazol-3-one (3ba)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 36.3 mg, 93% yield; mp = 165-168 °C; $[\alpha]_D^{20}$ 156.7 (c = 1.0, CHCl₃, 95% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 70:30, flow rate = 0.8 mL/min, T = 18° C, UV = 254 nm, t_R = 8.1 min (major), t_R = 10.0 min

(minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.59 (d, J = 8.1 Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.23-7.17 (m, 1H), 7.17-7.10 (m, 5H), 6.55 (t, J = 6.1 Hz, 1H), 6.21 (s, 1H), 3.49 (p, J = 6.9 Hz, 2H), 2.53 (dq, J = 17.8, 7.3 Hz, 1H), 2.35 (dq, J = 17.8, 7.4 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.6, 169.2, 164.5, 161.6, 138.1, 129.4, 129.0, 128.5, 128.4, 127.9, 124.5, 118.1, 84.5, 76.7, 37.4, 20.5, 15.2, 8.5. HRMS (ESI) m/z calcd for C₂₂H₂₂N₄O₃ [M+H]⁺ 391.1765, found 391.1771.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-methyl-2-phenyl-2,4-di hydro-3H-pyrazol-3-one (3ca)

The title compound was prepared according to the general working

procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 34.6 mg, 92% yield; mp = 170-172 °C; $[\alpha]_D^{20}$ 192.9 (c = 1.0, CHCl₃, 94% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 70:30, flow rate = 0.8 mL/min, T = 23°C, UV = 254 nm, t_R = 9.4 min (major), t_R = 12.6 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.58-7.52 (m, 2H), 7.37-7.29 (m, 2H), 7.22-7.09 (m, 6H), 6.57 (s, 1H), 6.24 (s, 1H), 3.54-3.45 (m, 2H), 2.02 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.3, 169.3, 161.6, 160.8, 137.9, 129.4, 129.0, 128.5, 128.4, 127.9, 124.5, 118.1, 84.2, 76.5, 37.4, 15.2, 12.3. HRMS (ESI) m/z calcd for C₂₁H₂₀N₄O₃ [M+H]⁺ 377.1608, found 377.1612.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(p-tolyl)-2, 4-dihydro-3H-pyrazol-3-one (3da)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 38.8 mg, 93% yield; mp = 158-159 °C; $[\alpha]_D^{20}$ 233.4 (c = 1.0, CHCl₃, 96% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 70:30, flow rate = 1.0 mL/min, T = 8° C, UV = 254 nm, t_R = 7.0 min (major), t_R = 9.7 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.46-7.39 (m, 2H),

7.21-7.07 (m, 7H), 6.59 (t, J = 6.3 Hz, 1H), 6.22 (s, 1H), 3.55-3.43 (m, 2H), 2.78 (hept, J = 6.9 Hz, 1H), 2.31 (s, 3H), 1.34-1.25 (m, 6H), 1.08 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.1, 169.1, 167.0, 161.5, 135.6, 133.9, 129.4, 128.9, 128.8, 128.5, 127.9, 118.3, 84.7, 77.2, 37.4, 28.3, 20.4, 20.1, 19.6, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₃ [M+Na]⁺441.1897, found 441.1898.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(4-methox yphenyl)-2,4-dihydro-3H-pyrazol-3-one (3ea)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 40.3 mg, 93% yield; mp = 158-160 °C; $[\alpha]_D^{20} 210.6$ (c = 1.0, CHCl₃, 96% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, T = 13° C, UV = 254 nm, t_R = 16.6 min (major), t_R = 22.8 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.46-7.40 (m, 2H),

7.24-7.10 (m, 5H), 6.92-6.86 (m, 2H), 6.58 (t, J = 6.2 Hz,1H), 6.30-6.10 (m, 1H), 3.79 (s, 3H), 3.55-3.43 (m, 2H), 2.79 (hept, J = 6.9 Hz, 1H), 1.34-1.25 (m, 6H), 1.08 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 170.8, 169.1, 167.0, 161.6, 156.8, 131.3, 129.5, 128.9, 128.5, 127.9, 119.9, 113.4, 84.7, 77.1, 54.8, 37.4, 28.2, 20.4, 19.7, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₄ [M+H]⁺ 435.2027, found 435.2033.

(R)-2-(4-chlorophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3fa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 40.3 mg, 92% yield; mp = 176-179 °C; $[\alpha]_D^{20}$ 153.0 (c = 0.5, CHCl₃, 95% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 8°C, UV = 254 nm, t_R = 17.3 min (major), t_R = 23.2 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.60-7.53 (m, 2H),

7.38-7.32 (m, 2H), 7.19-7.07 (m, 5H), 6.60 (t, J = 6.2 Hz, 1H), 6.31 (s, 1H), 3.56-3.44 (m, 2H), 2.83 (hept, J = 7.0 Hz, 1H), 1.34-1.26 (m, 6H), 1.12 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.3, 169.0, 167.7, 161.5, 136.7, 129.3, 129.0, 129.0, 128.5, 128.4, 127.9, 119.4, 84.5, 77.3, 37.4, 28.2, 20.3, 19.7, 15.3. HRMS (ESI) m/z calcd for C₂₃H₂₃ClN₄O₃ [M+H]⁺ 439.1531, found 439.1534.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-2-(4-fluorophenyl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ga)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 38.8 mg, 92% yield; mp = 163-164 °C; $[\alpha]_D^{20}239.7$ (c = 1.0, CHCl₃, 95% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, T = 14° C, UV = 254 nm, t_R = 11.2 min (major), t_R = 14.1 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.59-7.51 (m, 2H),

7.20-7.06 (m, 7H), 6.60 (t, J = 6.3 Hz, 1H), 6.26 (s, 1H), 3.56-3.44 (m, 2H), 2.86-2.78 (m, 1H), 1.31 (m, 6H), 1.12 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.1, 169.0, 167.5, 161.5, 159.4 (d, J = 241.7 Hz), 134.3 (d, J = 2.8 Hz), 129.3, 128.9, 128.5, 127.9, 119.9 (d, J = 8.3 Hz), 114.9 (d, J = 22.7 Hz), 84.6, 77.2, 37.4, 28.2, 20.3, 19.7, 15.2. ¹⁹F NMR (471 MHz, Acetone-d6) δ -119.35. HRMS (ESI) m/z calcd for C₂₃H₂₃FN₄O₃ [M+H]⁺ 423.1827, found 423.1830

(R)-2-(4-bromophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ha)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 43.8 mg, 91% yield; mp = 176-178 °C; $[\alpha]_D^{20}$ 172.3 (c = 1.0, CHCl₃, 90% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 8° C, UV = 254 nm, t_R = 14.9 min (major), t_R = 18.3 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.55-7.46 (m, 4H),

7.19-7.06 (m, 5H), 6.60 (t, J = 6.3 Hz, 1H), 6.34 (s, 1H), 3.56-3.44 (m, 2H), 2.86-2.80 (m, 1H), 1.34-1.26 (m, 6H), 1.12 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.4, 169.0, 167.8, 161.5, 137.2, 131.4, 129.3, 129.0, 128.5, 127.9,

119.8, 116.7, 84.5, 77.3, 37.4, 28.2, 20.3, 19.7, 15.2. HRMS (ESI) m/z calcd for $C_{23}H_{23}BrN_4O_3$ [M+H]⁺ 483.1026, found 483.1031.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(4-(trifluor omethyl)phenyl)-2,4-dihydro-3H-pyrazol-3-one (3ia)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 43.4 mg, 92% yield; mp = 152-154 °C; $[\alpha]_D^{20}$ 214.8 (c = 1.0, CHCl₃, 93% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 14° C, UV = 254 nm, t_R = 11.8 min (major), t_R = 14.4 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.78 (d, J = 8.6 Hz,

2H), 7.68 (d, J = 8.7 Hz, 2H), 7.14-7.04 (m, 5H), 6.62 (t, J = 6.1 Hz, 1H), 6.34 (s, 1H), 3.56-3.44 (m, 2H), 2.86 (hept, J = 6.9 Hz, 1H), 1.31 (m, 6H), 1.15 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.8, 169.0, 168.2, 161.5, 140.9, 129.2, 128.9, 128.5, 127.9, 125.7 (q, J = 3.8 Hz), 125.4 (q, J = 32.2 Hz), 124.5 (q, J = 271.2 Hz), 117.8, 84.5, 77.4, 37.4, 28.3, 20.3, 19.7, 15.2. ¹⁹F NMR (471 MHz, Acetone-d6) δ -62.44. HRMS (ESI) m/z calcd for C₂₄H₂₃F₃N₄O₃ [M+H]⁺ 473.1795, found 473.1801.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(4-nitroph enyl)-2,4-dihydro-3H-pyrazol-3-one (3ja)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 40.4 mg, 90% yield; mp = 175-176 °C; $[\alpha]_D^{20}$ 228.9 (c = 1.0, CHCl₃, 88% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 70:30, flow rate = 1.0 mL/min, T = 23°C, UV = 254 nm, t_R = 4.4 min (major), t_R = 6.3 min (minor); ¹H NMR (500 MHz, MeOD) δ 8.24-8.17 (m, 2H), 7.85-7.78

(m, 2H), 7.11-7.03 (m, 5H), 3.47 (q, J = 7.1 Hz, 2H), 2.85 (hept, J = 6.9 Hz, 1H), 1.34-1.29 (m, 6H), 1.19 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, MeOD) δ 172.9, 169.3, 169.0, 161.8, 143.8, 142.6, 129.1, 128.3, 128.2, 127.8, 124.0, 117.5, 84.5, 77.3, 37.1, 28.3, 19.8, 19.4, 14.7. HRMS (ESI) m/z calcd for C₂₃H₂₃N₅O₅ [M+H]⁺ 450.1772, found 450.1779.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(m-tolyl)-2, 4-dihydro-3H-pyrazol-3-one (3ka)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 38.9 mg, 93% yield; mp = 155-156 °C; $[\alpha]_D^{20}$ 144.7 (c = 1.0, CHCl₃, 95% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 14° C, UV = 254 nm, t_R = 11.4 min (major), t_R = 15.5

min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.37-7.30 (m, 2H), 7.23-7.07 (m, 6H), 6.96 (d, J = 7.5 Hz, 1H), 6.58 (t, J = 6.3 Hz, 1H), 6.21 (s, 1H), 3.55-3.43 (m, 2H), 2.80 (hept, J = 6.9 Hz, 1H), 2.31 (s, 3H), 1.34-1.26 (m, 6H), 1.09 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.3, 169.1, 167.1, 161.6, 138.0, 137.9, 129.4, 128.9, 128.5, 128.2, 127.9, 125.3, 118.9, 115.6, 84.7, 77.2, 37.4, 28.3, 20.7, 20.4, 19.7, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₃ [M+H]⁺ 419.2078, found 419.2085.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(3-methox yphenyl)-2,4-dihydro-3H-pyrazol-3-one (3la)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 40.4 mg, 93% yield; mp = 162-165 °C; $[\alpha]_D^{20}$ 126.4 (c = 1.0, CHCl₃, 96% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, T = 13° C, UV = 254 nm, t_R = 13.2 min (major), t_R = 17.0 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.27-7.21 (m, 1H),

7.21-7.15 (m, 3H), 7.15-7.08 (m, 4H), 6.75-6.70 (m, 1H), 6.59 (t, J = 6.3 Hz, 1H), 6.24 (s, 1H), 3.77 (s, 3H), 3.56-3.44 (m, 2H), 2.85-2.76 (m, 1H), 1.34-1.26 (m, 6H), 1.09 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.4, 169.1, 167.1, 161.5, 159.8, 139.1, 129.4, 129.2, 128.9, 128.5, 127.9, 110.4, 109.9, 104.1, 84.7, 77.3, 54.7, 37.4, 28.3, 20.4, 19.6, 15.2. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₄ [M+H]⁺ 435.2027, found 435.2033.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-2-(3-fluorophenyl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ma)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 38.0 mg, 90% yield; mp = 164-165 °C; $[\alpha]_D^{20}$ 248.1 (c = 1.0, CHCl₃, 92% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, T = 16° C, UV = 254 nm, t_R = 8.6 min (major), t_R = 11.0 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.43 (ddd, J = 8.3, 2.1,

1.0 Hz, 1H), 7.40-7.30 (m, 2H), 7.18-7.06 (m, 5H), 6.91 (tdd, J = 8.4, 2.6, 1.0 Hz, 1H), 6.60 (t, J = 6.2 Hz, 1H), 6.30 (s, 1H), 3.56-3.44 (m, 2H), 2.84 (hept, J = 6.9 Hz, 1H), 1.34-1.27 (m, 6H), 1.13 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.5, 169.0, 167.8, 162.5 (d, J = 242.0 Hz), 161.5, 139.4 (d, J = 11.1 Hz), 130.1 (d, J = 9.2 Hz), 129.3, 128.9, 128.5, 127.9, 113.5 (d, J = 3.5 Hz), 110.8 (d, J = 21.3 Hz), 104.8 (d, J = 27.5 Hz), 84.5, 77.4, 37.4, 28.2, 20.3, 19.7, 15.2. ¹⁹F NMR (471 MHz, Acetone-d6) δ -113.43. HRMS (ESI) m/z calcd for C₂₃H₂₃FN₄O₃ [M+H]⁺ 423.1827, found 423.1835.

(R)-2-(3-chlorophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3na)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 40.3 mg, 92% yield; mp = 154-156 °C; $[\alpha]_D^{20}$ 224.4 (c = 1.0, CHCl₃, 94% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 26° C, UV = 254 nm, t_R = 11.7 min (major), t_R = 16.0 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.58-7.50 (m, 2H),

7.34 (t, J = 8.1 Hz, 1H), 7.21-7.04 (m, 6H), 6.60 (t, J = 6.1 Hz, 1H), 6.32 (s, 1H), 3.55-3.43 (m, 2H), 2.84 (hept, J = 6.9 Hz, 1H), 1.33-1.27 (m, 6H), 1.14 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, Acetone-d6) δ 171.5, 169.0, 167.9, 161.5, 139.0, 133.6, 130.0, 129.3, 128.9, 128.6, 127.9, 124.2, 117.6, 116.2, 84.5, 77.4, 37.4, 28.2, 20.3, 19.8, 15.3. HRMS (ESI) m/z calcd for C₂₃H₂₃ClN₄O₃ [M+H]⁺ 439.1531, found 439.1538.

(R)-2-(3-bromophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (30a)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 44.8 mg, 93% yield; mp = 167-170 °C; $[\alpha]_D^{20}$ 161.0 (c = 1.0, CHCl₃, 93% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 16° C, UV = 254 nm, t_R = 13.7 min (major), t_R = 20.3 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.68 (t, J = 1.9 Hz,

1H), 7.57 (dt, J = 7.9, 1.7 Hz, 1H), 7.35-7.25 (m, 2H), 7.19-7.08 (m, 5H), 6.60 (t, J = 6.3 Hz, 1H), 6.29 (s, 1H), 3.56-3.44 (m, 2H), 2.87-2.81 (m, 1H), 1.31 (m, 6H), 1.15 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.5, 169.0, 168.0, 161.5, 139.1, 130.3, 129.3, 128.9, 128.6, 127.9, 127.2, 121.5, 120.6, 116.6, 84.5, 77.3, 37.4, 28.2, 20.3, 19.8, 15.2. HRMS (ESI) m/z calcd for C₂₃H₂₃BrN₄O₃ [M+H]⁺ 483.1026, found 483.1031.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(3-(trifluor omethyl)phenyl)-2,4-dihydro-3H-pyrazol-3-one (3pa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 42.4 mg, 90% yield; mp = $161-164 \,^{\circ}C$; $[\alpha]_D^{20} 283.4$ (c = 1.0, CHCl₃, 88% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = $1.0 \,$ mL/min, T = $23^{\circ}C$, UV = $254 \,$ nm, t_R = $5.3 \,$ min (major), t_R = $6.8 \,$

min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.86-7.79 (m, 2H), 7.57 (t, J = 8.0 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.15-7.03 (m, 5H), 6.62 (t, J = 6.2 Hz, 1H), 6.33 (s,

1H), 3.56-3.44 (m, 2H), 2.88 (hept, J = 6.9 Hz, 1H), 1.31 (dt, J = 7.1, 3.7 Hz, 6H), 1.17 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.6, 168.9, 168.2, 161.5, 138.4, 130.1 (q, J = 32.2 Hz), 129.6, 129.2, 128.9, 128.6, 127.8, 124.2 (q, J = 271.2 Hz), 121.3, 120.8 (q, J = 4.1 Hz), 114.3 (q, J = 4.4 Hz), 84.5, 77.4, 37.4, 28.2, 20.3, 19.8, 15.2. ¹⁹F NMR (471 MHz, Acetone-d6) δ -63.21. HRMS (ESI) m/z calcd for C₂₄H₂₃F₃N₄O₃ [M+Na]⁺495.1614, found 495.1620.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(3-nitroph enyl)-2,4-dihydro-3H-pyrazol-3-one (3qa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 40.9 mg, 91% yield; mp = 157-159 °C; $[\alpha]_D^{20} 257.2$ (c = 1.0, CHCl₃, 85% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 18° C, UV = 254 nm, t_R = 12.1 min (major), t_R = 14.0 min (minor); ¹H NMR (500 MHz, MeOD) δ 8.35 (t, J = 2.2 Hz, 1H),

8.00 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H), 7.94 (ddd, J = 8.3, 2.2, 1.0 Hz, 1H), 7.55 (t, J = 8.2 Hz, 1H), 7.17-6.92 (m, 5H), 3.47 (q, J = 7.1 Hz, 2H), 2.86 (hept, J = 6.9 Hz, 1H), 1.35-1.29 (m, 6H), 1.21 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, MeOD) δ 172.5, 169.2, 169.0, 161.8, 148.2, 138.4, 129.4, 129.0, 128.4, 128.3, 127.8, 123.4, 118.8, 112.4, 84.5, 77.4, 37.1, 28.2, 19.8, 19.5, 14.7. HRMS (ESI) m/z calcd for C₂₃H₂₃N₅O₅ [M+H]⁺ 450.1772, found 450.1780.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-2-(2-fluorophenyl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ra)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 38.6 mg, 80% yield; mp = 157-158 °C; $[\alpha]_D^{20}$ 115.3 (c = 1.0, CHCl₃, 75% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 70:30, flow rate = 0.8 mL/min, T = 23°C, UV = 254 nm, t_R = 4.8 min (major), t_R = 10.7

min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.42-7.30 (m, 4H), 7.28-7.15 (m, 4H), 6.98 (td, J = 7.7, 1.8 Hz, 1H), 6.60 (t, J = 6.2 Hz, 1H), 6.43 (s, 1H), 3.55-3.43 (m, 2H), 2.74 (hept, J = 6.9 Hz, 1H), 1.33-1.24 (m, 6H), 1.00 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.5, 169.3, 167.2, 161.5, 155.9 (d, J = 251.9 Hz), 129.8, 129.3, 128.8, 128.7, 128.3, 126.4, 124.8 (d, J = 12.0 Hz), 124.0 (d, J = 3.7 Hz), 116.3 (d, J = 19.4 Hz), 84.3, 75.8, 37.4, 28.4, 20.4, 19.3, 15.2. ¹⁹F NMR (471 MHz, Acetone-d6) δ -119.04. HRMS (ESI) m/z calcd for C₂₃H₂₃FN₄O₃ [M+H]⁺ 423.1827, found 423.1832.

(R)-2-(3,5-dimethylphenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5 -isopropyl-2,4-dihydro-3H-pyrazol-3-one (3sa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 39.8 mg, 92% yield; mp = 162-164 °C; $[\alpha]_D^{20}$ 114.6 (c = 1.0, CHCl₃, 94% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 0.8 mL/min, T = 13° C, UV = 254 nm, t_R = 10.2 min (major), t_R = 13.8

min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.25-7.16 (m, 1H), 7.16-7.09 (m, 6H), 6.81-6.77 (m, 1H), 6.57 (t, J = 6.2 Hz, 1H), 6.19 (s, 1H), 3.55-3.43 (m, 2H), 2.79 (hept, J = 6.9 Hz, 1H), 2.26 (s, 6H), 1.33-1.25 (m, 6H), 1.09 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.2, 169.1, 167.0, 161.6, 137.8, 137.8, 129.5, 128.9, 128.6, 127.9, 126.2, 116.3, 84.8, 77.2, 37.4, 28.2, 20.6, 20.4, 19.8, 15.3. HRMS (ESI) m/z calcd for C₂₅H₂₈N₄O₃ [M+H]⁺ 433.2243, found 433.2241.

(R)-2-(3,4-dichlorophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5 -isopropyl-2,4-dihydro-3H-pyrazol-3-one (3ta)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 43.4 mg, 92% yield; mp = 173-176 °C; $[\alpha]_D^{20}$ 198.7 (c = 1.0, CHCl₃, 87% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 23°C, UV = 254 nm, t_R = 6.6 min (major), t_R = 7.7 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.69 (d, J = 2.3 Hz,

1H), 7.58-7.49 (m, 2H), 7.19-7.07 (m, 5H), 6.61 (t, J = 6.2 Hz, 1H), 6.32 (s, 1H), 3.56-3.44 (m, 2H), 2.89-2.82 (m, 1H), 1.34-1.28 (m, 6H), 1.16 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.5, 168.9, 168.4, 161.4, 137.5, 131.6, 130.4, 129.2, 128.9, 128.6, 127.9, 126.8, 119.2, 117.6, 84.4, 77.4, 37.4, 28.2, 20.3, 19.8, 15.2. HRMS (ESI) m/z calcd for C₂₃H₂₂Cl₂N₄O₃ [M+H]⁺ 473.1142, found 473.1148.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(naphthale n-2-yl)-2,4-dihydro-3H-pyrazol-3-one (3ua)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 42.2 mg, 93% yield; mp = 168-170 °C; $[\alpha]_D^{20}$ 193.1 (c = 1.0, CHCl₃, 95% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 23°C, UV = 254 nm, t_R = 8.4 min (major), t_R = 12.2 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 8.00 (d, J = 2.1 Hz, 1H),

7.91-7.82 (m, 3H), 7.76 (dd, J = 9.0, 2.1 Hz, 1H), 7.55-7.43 (m, 2H), 7.20-7.12 (m, 2H), 7.11-7.02 (m, 3H), 6.63 (t, J = 6.2 Hz, 1H), 6.29 (s, 1H), 3.58-3.46 (m, 2H), 2.88-2.82 (m, 1H), 1.36-1.25 (m, 6H), 1.16 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.5, 169.1, 167.5, 161.6, 135.6, 133.4, 130.9, 129.4, 128.9, 128.6, 128.2, 127.9, 127.7, 127.6, 126.5, 125.2, 118.1, 115.2, 84.7, 77.3, 37.4, 28.3, 20.4,

19.8, 15.3. HRMS (ESI) m/z calcd for $C_{27}H_{26}N_4O_3\ [M+H]^+$ 455.2078, found 455.2084.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-methyl-2,4 -dihydro-3H-pyrazol-3-one(3va)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 30.8 mg, 90% yield; mp = 103-104 °C; $[\alpha]_D^{20}$ 287.9 (c = 1.0, CHCl₃, 89% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 1.0

mL/min, T = 23°C, UV = 254 nm, t_R = 7.5 min (major), t_R = 11.3 min (minor); ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.29 (m, 3H), 7.18-7.02 (m, 2H), 5.93 (s, 1H), 5.80 (s, 1H), 3.51-3.36 (m, 2H), 2.67 (hept, J = 6.8 Hz, 1H), 2.64 (s, 3H), 1.27 (t, J = 7.0 Hz, 3H), 1.19 (d, J = 6.9 Hz, 3H), 1.08 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 168.1, 167.4, 160.6, 128.4, 127.7, 127.5, 126.9, 83.3, 59.5, 36.7, 29.6, 27.1, 19.8, 19.3, 14.5. HRMS (ESI) m/z calcd for C₁₈H₂₂N₄O₃ [M+H]⁺ 343.1765, found 343.1769.

(R)-4-hydroxy-5-isopropyl-4-(5-(methylamino)-3-phenylisoxazol-4-yl)-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (3ab)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 36.3 mg, 93% yield; mp = 177-179 °C; $[\alpha]_D^{20} 217.2$ (c = 1.0, CHCl₃, 96% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 23°C, UV = 254 nm, t_R = 9.3 min (major), t_R = 13.1 min

(minor); ¹H NMR (500 MHz, DMSO-d6) δ 7.47 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.29 (s, 1H), 7.16 (q, J = 7.1 Hz, 2H), 7.09 (t, J = 7.5 Hz, 2H), 7.02 (m, 2H), 6.86 (q, J = 5.0 Hz, 1H), 2.96 (d, J = 5.0 Hz, 3H), 2.69 (hept, J = 7.1 Hz, 1H), 1.21 (d, J = 7.0 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, DMSO-d6) δ 172.2, 169.4, 168.0, 161.8, 137.8, 129.5, 129.2, 129.0, 128.6, 128.4, 125.1, 118.5, 84.5, 77.1, 29.3, 28.2, 21.1, 20.6. HRMS (ESI) m/z calcd for C₂₂H₂₂N₄O₃ [M+H]⁺ 391.1765, found 391.1771.

(R)-4-(5-(allylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4dihydro-3H-pyrazol-3-one (3ac)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 37.5 mg, 90% yield; mp = 151-152 °C; $[\alpha]_D^{20} 217.3$ (c = 1.0, CHCl₃, 93% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 23°C, UV = 254 nm, t_R = 8.6 min (major), t_R = 12.7

min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.60-7.53 (m, 2H), 7.36-7.28 (m, 2H), 7.21-7.06 (m, 6H), 6.76 (t, J = 6.5 Hz, 1H), 6.30 (s, 1H), 6.05 (ddt, J = 17.2, 10.4, 5.2 Hz, 1H), 5.38 (dq, J = 17.2, 1.7 Hz, 1H), 5.18 (dq, J = 10.3, 1.6 Hz, 1H), 4.09 (ddt, J = 5.0, 5.0, 1.7 Hz, 2H), 2.80 (hept, J = 6.9 Hz, 1H), 1.29 (d, J = 6.9 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, Acetone-d6) δ 171.3, 168.9, 167.1, 161.6, 138.0, 135.6, 129.3, 129.0, 128.5, 128.4, 127.9, 124.5, 118.2, 115.2, 85.0, 77.3, 44.7, 28.3, 20.4, 19.6. HRMS (ESI) m/z calcd for C₂₄H₂₄N₄O₃ [M+H]⁺ 417.1921, found 417.1925.

(R)-4-(5-(benzylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (3ad)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 43.3 mg, 93% yield; mp = 171-172 °C; $[\alpha]_D^{20}$ 192.3 (c = 1.0, CHCl₃, 96% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 23°C, UV = 254 nm, t_R = 12.2 min (major), t_R = 17.8

min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.59-7.53 (m, 2H), 7.53-7.48 (m, 2H), 7.42-7.26 (m, 5H), 7.21-7.05 (m, 7H), 6.40 (s, 1H), 4.73-4.61 (m, 2H), 2.78 (hept, J = 6.9 Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H), 1.06 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.3, 168.9, 167.2, 161.6, 139.7, 138.0, 129.2, 129.0, 128.5, 128.5, 128.4, 127.9, 127.4, 127.2, 124.6, 118.2, 85.2, 77.3, 46.1, 28.2, 20.4, 19.7. HRMS (ESI) m/z calcd for C₂₈H₂₆N₄O₃ [M+H]⁺ 467.2078, found 467.2085.

(R)-4-(5-(ethylamino)-3-(p-tolyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (3ae)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 38.9 mg, 93% yield; mp = 164-167 °C; $[\alpha]_D^{20}$ 226.8 (c = 1.0, CHCl₃, 93% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 20°C, UV = 254 nm, t_R = 11.3 min

(major), $t_R = 15.1$ min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.55-7.49 (m, 2H), 7.36-7.29 (m, 2H), 7.17-7.10 (m, 1H), 7.00-6.95 (m, 2H), 6.86 (d, J = 7.9 Hz, 2H), 6.54 (t, J = 6.2 Hz, 1H), 6.21 (s, 1H), 3.54-3.42 (m, 2H), 2.88-2.76 (m, 1H), 2.07 (s, 3H), 1.32-1.27 (m, 6H), 1.13 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.3, 168.9, 167.2, 161.6, 138.8, 138.0, 128.5, 128.4, 128.3, 126.3, 124.4, 118.1, 84.9, 77.3, 37.4, 28.2, 20.4, 20.3, 19.9, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₃ [M+Na]⁺441.1897, found 441.1905.

(R)-4-(5-(ethylamino)-3-(4-methoxyphenyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3af)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 39.1mg, 90% yield; mp = 166-169 °C; $[\alpha]_D^{20}$ 262.4 (c = 1.0, CHCl₃, 93% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 70:30, flow rate = 1.0 mL/min, T = 20°C, UV = 254 nm, t_R = 4.1 min

(major), $t_R = 10.8 \text{ min}$ (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.62-7.55 (m, 2H), 7.39-7.27 (m, 2H), 7.18-7.11 (m, 1H), 7.05-6.98 (m, 2H), 6.63-6.57 (m, 2H), 6.54 (t, J = 6.3 Hz, 1H), 6.19 (s, 1H), 3.53-3.44 (m, 2H), 2.86-2.79 (m, 1H), 1.32-1.29 (m, 6H), 1.15 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.3, 168.9, 167.3, 161.4, 160.2, 138.1, 129.8, 128.3, 124.4, 121.3, 118.0, 113.3, 85.0, 77.3, 54.5, 37.4, 28.2, 20.4, 19.9, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₄ [M+H]⁺ 435.2027, found 435.2033.

(R)-4-(5-(ethylamino)-3-(4-fluorophenyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-p henyl-2,4-dihydro-3H-pyrazol-3-one (3ag)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 38.4 mg, 91% yield; mp = 163-166 °C; $[\alpha]_D^{20} 203.7$ (c = 1.0, CHCl₃, 97% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 70:30, flow rate = 0.8 mL/min, T = 23°C, UV = 254 nm, t_R = 9.7 min (major), t_R =

18.5 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.61-7.55 (m, 2H), 7.38-7.29 (m, 2H), 7.18-7.11 (m, 3H), 6.88-6.80 (m, 2H), 6.60 (t, J = 6.2 Hz, 1H), 6.30 (s, 1H), 3.55-3.43 (m, 2H), 2.83 (hept, J = 6.9 Hz, 1H), 1.34-1.28 (m, 6H), 1.15 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.3, 169.0, 167.5, 163.0 (d, J = 246.6 Hz), 160.7, 137.9, 130.8 (d, J = 9.0 Hz), 128.5, 125.5 (d, J = 3.6 Hz), 124.6, 117.9, 114.8 (d, J = 22.0 Hz), 84.9, 77.3, 37.4, 28.2, 20.4, 19.8, 15.2. ¹⁹F NMR (471 MHz, Acetone-d6) δ -113.52. HRMS (ESI) m/z calcd for C₂₃H₂₃FN₄O₃ [M+H]⁺ 423.1827, found 423.1829.

(R)-4-(3-(4-chlorophenyl)-5-(ethylamino)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3ah)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 43.5 mg, 90% yield; mp = 166-168 °C; $[\alpha]_D^{20} 208.6$ (c = 1.0, CHCl₃, 98% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 19°C, UV = 254 nm, t_R = 10.3 min

(major), $t_R = 16.5 \text{ min}$ (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.58-7.52 (m, 2H), 7.39-7.31 (m, 2H), 7.19-7.12 (m, 1H), 7.10 (s, 4H), 6.62 (t, J = 6.2 Hz, 1H), 6.26 (s, 1H), 3.55-3.43 (m, 2H), 2.85 (hept, J = 6.9 Hz, 1H), 1.33-1.25 (m, 6H), 1.15 (d, J = 1.15 (d, J =

6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.2, 169.1, 167.5, 160.6, 137.8, 134.8, 130.2, 128.5, 128.1, 128.0, 124.6, 117.9, 84.8, 77.2, 37.4, 28.2, 20.4, 19.9, 15.2. HRMS (ESI) m/z calcd for C₂₃H₂₃ClN₄O₃ [M+H]⁺ 439.1531, found 439.1535.

(R)-4-(3-(4-bromophenyl)-5-(ethylamino)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3ai)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 43.8 mg, 91% yield; mp = 156-158 °C; $[\alpha]_D^{20} 237.8$ (c = 1.0, CHCl₃, 96% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 24°C, UV = 254 nm, t_R = 20.2 min

(major), $t_R = 30.3 \text{ min} (\text{minor})$; ¹H NMR (500 MHz, Acetone-d6) δ 7.58-7.52 (m, 2H), 7.39-7.29 (m, 2H), 7.16-7.08 (m, 5H), 6.59 (t, J = 6.2 Hz, 1H), 6.24 (s, 1H), 3.55-3.43 (m, 2H), 2.80 (hept, J = 6.9 Hz, 1H), 1.34-1.26 (m, 6H), 1.10 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, Acetone-d6) δ 171.4, 169.1, 167.2, 161.5, 138.0, 129.4, 128.9, 128.5, 128.4, 127.9, 124.5, 118.1, 84.7, 77.3, 37.4, 28.3, 20.4, 19.7, 15.3. HRMS (ESI) m/z calcd for C₂₃H₂₃BrN₄O₃ [M+H]⁺ 483.1026, found 483.1033.

(R)-4-(5-(ethylamino)-3-(3-methoxyphenyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3aj)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 40.4 mg, 93% yield; mp = 163-165 °C; $[\alpha]_D^{20}$ 220.3 (c = 1.0, CHCl₃, 96% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 20°C, UV = 254 nm, t_R = 17.5 min (major), t_R = 21.9

min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.55 (dq, J = 7.1, 1.3 Hz, 2H), 7.37-7.28 (m, 2H), 7.17-7.10 (m, 1H), 7.02 (t, J = 7.9 Hz, 1H), 6.73-6.67 (m, 2H), 6.64 (dd, J = 2.6, 1.5 Hz, 1H), 6.59 (t, J = 6.2 Hz, 1H), 6.23 (s, 1H), 3.53 (s, 3H), 3.52-3.45 (m, 2H), 2.83 (hept, J = 6.9 Hz, 1H), 1.33-1.28 (m, 6H), 1.14 (d, J = 6.9 Hz, 3H).¹³C NMR (125 MHz, Acetone-d6) δ 171.2, 169.0, 167.2, 161.5, 159.2, 137.9, 130.5, 129.0, 128.3, 124.5, 120.8, 118.2, 114.8, 113.8, 84.6, 77.2, 54.4, 37.4, 28.3, 20.4, 19.8, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₄ [M+Na]⁺ 457.1846, found 457.1853.

(R)-4-(3-(3-chlorophenyl)-5-(ethylamino)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3ak)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 37.4 mg, 85% yield; mp = 158-160 °C; $[\alpha]_D^{20}$ 196.5 (c = 1.0, CHCl₃, 94% ee); HPLC: S20

Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 18°C, UV = 254 nm, t_R = 12.3 min (major), t_R = 16.8 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.59 (d, J = 8.1 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.18-7.02 (m, 5H), 6.65 (t, J = 6.2 Hz, 1H), 6.28 (s, 1H), 3.56-3.44 (m, 2H), 2.84 (hept, J = 6.9 Hz, 1H), 1.31 (dt, J = 7.2, 3.7 Hz, 6H), 1.15 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.2, 169.1, 167.4, 160.3, 137.9, 133.5, 131.2, 129.6, 129.1, 128.5, 128.4, 127.1, 124.6, 118.0, 84.6, 77.2, 37.4, 28.3, 20.4, 19.8, 15.2. HRMS (ESI) m/z calcd for C₂₃H₂₃ClN₄O₃ [M+Na]⁺461.1351, found 461.1357.

(R)-4-(5-(ethylamino)-3-(3-(trifluoromethyl)phenyl)isoxazol-4-yl)-4-hydroxy-5-is opropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3al)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 39.2 mg, 83% yield; mp = 150-152 °C; $[\alpha]_D^{20}$ 188.6 (c = 1.0, CHCl₃, 81% ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 23° C, UV = 254 nm, t_R = 5.9 min (major), t_R = 24.1 min

(minor); ¹H NMR (500 MHz, Acetone-d6) δ 7.55-7.50 (m, 2H), 7.46 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 7.8 Hz, 1H), 7.34-7.24 (m, 3H), 7.15-7.10 (m, 1H), 6.67 (t, J = 6.3 Hz, 1H), 6.27 (s, 1H), 3.56-3.46 (m, 2H), 2.88 (hept, J = 6.9 Hz, 1H), 1.32 (dt, J = 7.2, 3.7 Hz, 6H), 1.17 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.1, 169.2, 167.5, 160.4, 137.7, 132.5, 130.3, 129.9 (q, J = 32.6 Hz), 129.0, 128.4, 125.8 (q, J = 3.7 Hz), 125.3 (q, J = 4.1 Hz), 124.5, 123.9 (q, J = 272.1 Hz), 117.7, 84.7, 77.2, 37.4, 28.2, 20.4, 19.7, 15.2. ¹⁹F NMR (471 MHz, Acetone-d6) δ -63.24. HRMS (ESI) m/z calcd for C₂₄H₂₃F₃N₄O₃ [M+Na]⁺495.1614, found 495.1621.

(R)-4-(5-(ethylamino)-3-(thiophen-2-yl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-ph enyl-2,4-dihydro-3H-pyrazol-3-one (3am)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 35.7 mg, 87% yield; mp = 152-154 °C; $[\alpha]_D^{20}$ 199.3 (c = 1.0, CHCl₃, 95% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 80:20, flow rate = 1.0 mL/min, T = 16° C, UV = 254 nm, t_R = 14.3 min (major), t_R = 21.3 min (minor);

¹H NMR (500 MHz, Acetone-d6) δ 7.67 (dd, J = 8.8, 1.3 Hz, 2H), 7.41-7.34 (m, 3H), 7.17 (tt, J = 7.3, 1.2 Hz, 1H), 6.82 (dd, J = 3.7, 1.2 Hz, 1H), 6.72 (dd, J = 5.1, 3.6 Hz, 1H), 6.68 (t, J = 6.5 Hz, 1H), 6.33 (s, 1H), 3.55-3.43 (m, 2H), 2.82 (hept, J = 6.9 Hz, 1H), 1.33-1.27 (m, 6H), 1.14 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.2, 169.5, 167.4, 155.6, 138.1, 128.6, 128.5, 128.1, 127.4, 127.0, 124.7, 118.3, 84.8, 77.1, 37.3, 28.4, 20.3, 19.8, 15.2. HRMS (ESI) m/z calcd for C₂₁H₂₂N₄O₃S [M+H]⁺ 411.1485, found 411.1490.

(R)-4-(5-(ethylamino)-3-(furan-2-yl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phen yl-2,4-dihydro-3H-pyrazol-3-one (3an)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. 33.5 mg, 85% yield; mp = 159-162 °C; $[\alpha]_D^{20}$ 162.9 (c = 1.0, CHCl₃, 91% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 70:30, flow rate = 1.0 mL/min, T = 16° C, UV = 254 nm, t_R = 14.5 min (major), t_R = 32.5 min (minor);

¹H NMR (500 MHz, Acetone-d6) δ 7.89-7.83 (m, 2H), 7.46-7.38 (m, 2H), 7.19 (tt, J = 7.3, 1.2 Hz, 1H), 7.08-7.03 (m, 1H), 6.73 (t, J = 6.2 Hz, 1H), 6.63 (d, J = 3.4 Hz, 1H), 6.41 (s, 1H), 6.36 (dd, J = 3.4, 1.8 Hz, 1H), 3.54-3.42 (m, 2H), 2.77 (hept, J = 6.9 Hz, 1H), 1.32-1.26 (m, 6H), 1.09 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 171.6, 169.6, 167.0, 152.6, 143.9, 143.5, 138.7, 128.7, 124.4, 118.0, 111.3, 109.8, 83.5, 77.0, 37.4, 28.4, 20.3, 19.7, 15.2. HRMS (ESI) m/z calcd for C₂₁H₂₂N₄O₄ [M+H]⁺ 395.1714, found 395.1718.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-5-isopropyl-4-methoxy-2-phenyl-2,4 -dihydro-3H-pyrazol-3-one (4aa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1) to give the product as a white solid. 28.0 mg, 67% yield; mp = 174-176 °C; HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 16°C, UV = 254 nm, t_R = 5.4 min (major), t_R = 8.3 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ

7.61-7.55 (m, 2H), 7.39-7.31 (m, 2H), 7.21-7.17 (m, 1H), 7.17-7.13 (m, 1H), 7.13-7.06 (m, 4H), 6.67 (t, J = 6.2 Hz, 1H), 3.47 (dtd, J = 13.3, 7.0, 2.0 Hz, 2H), 3.24 (s, 3H), 2.78 (hept, J = 7.0 Hz, 1H), 1.32-1.27 (m, 6H), 1.12 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, Acetone-d6) δ 169.0, 168.7, 165.1, 161.5, 137.6, 129.3, 129.0, 128.6, 128.4, 127.9, 124.9, 118.3, 83.6, 83.1, 52.5, 37.4, 28.4, 19.7, 19.3, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₆N₄O₃ [M+H]⁺ 419.2078, found 419.2083.

(R)-4-(5-(ethyl(methyl)amino)-3-phenylisoxazol-4-yl)-5-isopropyl-4-methoxy-2-p henyl-2,4-dihydro-3H-pyrazol-3-one (5aa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 20/1) to give the product as a white solid. 31.5 mg, 73% yield; mp = 159-160 °C; HPLC: Daicel Chiralpak IC, hexane: 2-propanol = 90:10, flow rate = 1.0 mL/min, T = 16°C, UV = 254 nm, t_R = 8.9 min (major), t_R = 12.3 min (minor); ¹H NMR (500 MHz, Acetone-d6) δ

7.81 (d, J = 8.1 Hz, 2H), 7.40 (t, J = 8.0 Hz, 2H), 7.38 – 7.27 (m, 3H), 7.25 – 7.17 (m, 3H), 3.61 – 3.37 (m, 2H), 3.17 (s, 3H), 3.07 (s, 3H), 2.48 (hept, J = 6.8 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.15 (d, J = 6.9 Hz, 3H), 0.86 (s, 3H). ¹³C NMR (125 MHz, $\frac{122}{12}$

Acetone-d6) δ 171.0, 169.9, 164.6, 163.4, 137.5, 129.7, 129.4, 128.9, 128.8, 128.0, 125.3, 118.6, 83.6, 77.3, 52.4, 49.4, 38.4, 29.0, 20.2, 19.0, 12.6. HRMS (ESI) m/z calcd for C₂₅H₂₈N₄O₃ [M+H]⁺ 433.2234, found 433.2240.

1.6 A plausible structure of the transition state and DFT calculations.

All the calculations were performed using Gaussian 16 software packages.^[S5] The geometry of all reactants and transition states were optimized using the $(U)B3LYP^{[S6]}-D3(Becke-Johnson damping function)^{[S7]}$ in toluene (using SMD solvation model^[S8]). In these geometry optimizations, a mixed basis set of SDD^[S9] for Cu, while $6-31G(d)^{[S10]}$ for all the other atoms was used. Vibrational frequency analysis was calculated at the same level of theory to validate each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298 K. For each transition state, the intrinsic reaction coordinate (IRC) analysis was conducted to ensure that it connects the right reactant and product. ^[S11] To obtain more accurate energies, solution-phase single point energy calculations were performed at the (U)B3LYP-D3(BJ)/6-311+G(d,p)-SDD level.

Table S3. Thermal correction of Gibbs free energy (TCG, hartree) and single point energies (SP, hartree) in toluene for all species involved in this study

Compounds	TCG	SP	Compounds	TCG	SP
Int-I	0.362192	-2342.895995	TS	0.716866	-3600.298262
1c	0.126058	-646.027257	Int-III	0.71518	-3600.298463
2a	0.172227	-611.30592	(<i>R</i>)-3ca	0.325724	-1257.364543
Int-II	0.711477	-3600.307755			

Scheme 1. (a) Gibbs energy profiles for the Cu-catalyzed Friedel-Crafts Hydroxyalkylation of 1c with 2a. Free energies in solution (in kcal/mol) at the (U)B3LYP-D3(BJ)/6-311+G(d,p)-SDD/SMD(Toluene)//(U)B3LYP-D3(BJ)/6-31G(d)-SDD/SMD(Toluene) level are displayed. (b) The NCI analysis was obtained by VMD software. ^[S12]

Cartesian coordinates:

Int-I

С	1.48885100	0.96319700	1.49749100
С	-0.19269600	-0.72949300	1.29604100
С	-0.48775000	0.00672900	2.61579900
С	0.48973800	1.20702900	2.65038800
Н	2.53482600	1.08047000	1.78034600
Н	1.28534100	1.62753500	0.65918900
Н	-0.28268800	-1.81263700	1.39822700
Н	-1.52703700	0.32288700	2.69458300
Н	-0.29381700	-0.67149000	3.45266800
Н	-0.03508100	2.15220800	2.49525200
Н	1.00236600	1.26581600	3.61412700
Ν	1.26290700	-0.44407900	1.05125300
С	2.16461800	-1.41397200	1.75319300
Н	1.98524300	-1.36447100	2.83410800
Н	1.86309600	-2.41114100	1.41194300
С	3.62185300	-1.15633700	1.47170800
С	4.09709000	-1.08470800	0.13368500
		S24	

С	4.51739500	-0.99983800	2.53141400
С	5.48040800	-0.85702000	-0.06932000
С	5.87972900	-0.79215300	2.31683900
Н	4.13426400	-1.04880800	3.54825100
С	6.35375400	-0.72049300	1.00902100
Н	6.55921700	-0.67986600	3.15515100
Н	7.40695700	-0.54810100	0.81750100
0	3.31082800	-1.22606000	-0.92242700
С	5.98455600	-0.74731500	-1.47726300
F	5.39992700	0.27221300	-2.15529900
F	5.76737800	-1.86937300	-2.20128200
F	7.32069300	-0.51567200	-1.51804500
С	-1.02544000	-0.35439000	0.01133000
С	-1.35929800	1.15307700	-0.06993100
С	-0.64437900	1.98000200	-0.94274300
С	-2.38763200	1.72496000	0.69387000
С	-0.90052900	3.34823100	-1.01035000
Н	0.11243200	1.54161400	-1.58220500
С	-2.65156300	3.08999800	0.63425300
Н	-3.00750200	1.09913000	1.32629400
С	-1.89663400	3.90853800	-0.21005000
Н	-0.32765500	3.97614000	-1.68435700
Н	-3.44478900	3.51759200	1.23870800
С	-2.35304500	-1.13197100	-0.01030400
С	-3.04009700	-1.18657300	-1.23251700
С	-2.91779300	-1.75999400	1.10323000
С	-4.25229500	-1.85455100	-1.34132100
Н	-2.60671700	-0.70201100	-2.09994300
С	-4.13743500	-2.43341300	1.00233700
Н	-2.42426100	-1.73724100	2.06786000
С	-4.80611600	-2.48036400	-0.21826100
Н	-4.77390900	-1.88675200	-2.29237700
Н	-4.56440100	-2.91458900	1.87549900
0	-0.29508400	-0.74891700	-1.12121400
Cu	1.50747500	-0.87383400	-0.88339900
С	-2.21648900	5.37121300	-0.30585400
С	-6.08948100	-3.24500400	-0.35436800
F	-2.59078100	5.88394800	0.88997200
F	-1.16269800	6.09702800	-0.74213700
F	-3.23766100	5.61165100	-1.16374600
F	-6.72247900	-3.40055500	0.83066300
F	-6.95527900	-2.63314700	-1.19534900
		S25	

F	-5.88519800	-4.48932000	-0.85275600	
1c				
С	2.25170100	-0.89868400	0.00116600	
С	1.04083500	1.15728400	-0.00140100	
С	2.47464100	0.57249900	-0.00088100	
Ο	3.50500900	1.20259000	-0.00189700	
Ο	0.73428200	2.33416900	-0.00301800	
Ν	0.23841400	0.03812300	0.00049600	
Ν	0.98753600	-1.15663100	0.00179800	
С	-1.77717000	-1.32629700	-0.00335800	
С	-3.16642100	-1.42605800	-0.00350000	
С	-3.96383100	-0.28101800	-0.00009000	
С	-3.35471900	0.97390100	0.00354600	
С	-1.96650900	1.09717300	0.00389500	
С	-1.17646900	-0.06081500	0.00034800	
Н	-1.15855800	-2.21416600	-0.00586900	
Н	-3.62470800	-2.41092000	-0.00635000	
Н	-5.04636500	-0.36583300	-0.00028100	
Н	-3.96119100	1.87507100	0.00624600	
Н	-1.49974600	2.07203900	0.00665000	
С	3.30929600	-1.94298500	0.00260300	
Н	3.95290900	-1.83618900	-0.87870200	
Н	3.95184900	-1.83484000	0.88452000	
Н	2.86170500	-2.93967500	0.00308100	
2a				
С	-1.79753800	0.20211700	0.03283800	
С	-0.60163400	0.88037000	-0.00104100	
С	0.37514900	-0.15308100	0.02415400	
Н	-0.45545200	1.94816800	-0.03500000	
Ο	-1.57202200	-1.12547600	0.06675600	
Ν	-0.17117500	-1.35734000	0.06513500	
С	1.84233000	-0.01540000	0.00717000	
С	2.66306900	-1.15496600	-0.00713000	
С	2.44170100	1.25164100	0.00525600	
С	4.04838600	-1.02542800	-0.02266800	
Н	2.20181200	-2.13676500	-0.00599600	
С	3.82989300	1.37858100	-0.01098500	
Н	1.82308300	2.14344100	0.01860300	
С	4.63805400	0.24147700	-0.02502000	
Н	4.67085400	-1.91582700 s26	-0.03357500	

Н	4.27912300	2.36777600	-0.01187100
Н	5.71983900	0.34048900	-0.03757100
Ν	-3.09455500	0.61294100	0.08459900
Н	-3.23267200	1.57504700	-0.20050800
С	-4.19801800	-0.29778900	-0.22916900
Н	-4.16400700	-0.61352600	-1.28277700
Н	-4.07246200	-1.19640800	0.38081100
С	-5.52851000	0.37250500	0.08399000
Н	-6.35595000	-0.30974900	-0.13581400
Н	-5.58328200	0.65650700	1.14028200
Н	-5.67189900	1.27528300	-0.52314300
Int-II			
С	0.43745400	2.87533800	1.88897100
С	2.18415200	2.40307800	0.34437900
С	2.87055900	3.07813800	1.54389300
С	1.76231100	3.19966500	2.61956200
Н	-0.35609700	3.59965300	2.06989700
Н	0.06147600	1.89394800	2.16793500
Н	2.56065100	2.76452300	-0.61399000
Н	3.73698100	2.51962700	1.89954000
Н	3.22964200	4.06799200	1.24514000
Н	1.92300400	2.49351200	3.43730200
Н	1.74430600	4.20443300	3.05041100
Ν	0.76070600	2.86424200	0.43018500
С	0.58721900	4.23517500	-0.16315400
Н	1.23601300	4.95105800	0.35594300
Н	0.92534900	4.16386800	-1.20287700
С	-0.84273600	4.69226000	-0.08547700
С	-1.84434900	3.89653400	-0.70448300
С	-1.20169000	5.85424400	0.59554200
С	-3.19524500	4.30779500	-0.57770800
С	-2.53416800	6.26587200	0.68394400
Н	-0.42084900	6.44853900	1.06627900
С	-3.52722400	5.48105100	0.10007700
Н	-2.79505000	7.17687000	1.21271500
Н	-4.56917900	5.77242000	0.17741600
0	-1.55536000	2.81219600	-1.38761400
С	-4.25465600	3.43369400	-1.17414500
F	-4.24443000	2.17413400	-0.65776100
F	-4.13528500	3.29321400	-2.51569800
F	-5.50098500	3.92180400 527	-0.94954000

С	2.24565500	0.83267900	0.26813600
С	2.14684700	0.14929600	1.65037100
С	3.26228600	0.01614700	2.48211100
С	0.92761300	-0.38334900	2.08500700
С	3.14987700	-0.59648200	3.73236100
Н	4.23219800	0.37382200	2.15600000
С	0.81501000	-0.99640800	3.33299200
Н	0.05912300	-0.29518100	1.44563800
С	1.92522300	-1.10494900	4.16871900
Н	-0.14558000	-1.38774700	3.65613700
Н	1.84518900	-1.57848900	5.14090300
С	3.55751500	0.36665700	-0.39334600
С	3.68391100	-1.01040300	-0.64550800
С	4.60175300	1.20843200	-0.78345300
С	4.79436100	-1.52433400	-1.29974800
Н	2.89656600	-1.68241600	-0.32331900
С	5.72719400	0.69978400	-1.43827900
Н	4.56733100	2.27294900	-0.58403800
С	5.82193100	-0.66334000	-1.70400500
Н	4.87128700	-2.59015800	-1.48869700
Н	6.52792000	1.36834400	-1.73479300
0	1.19600700	0.40020800	-0.55602300
Cu	-0.24818500	1.59068100	-0.79563600
С	0.05386500	-2.40252700	-2.04116900
С	-0.66246100	-2.48699500	-0.84265600
С	-1.49745100	-3.63032700	-1.02496000
Н	-0.43841900	-1.94889600	0.06150400
0	-0.36337000	-3.36892100	-2.88367100
Ν	-1.36520900	-4.16012100	-2.22463800
С	-2.47237700	-4.17011900	-0.06725400
С	-3.53691900	-4.97157300	-0.50919200
С	-2.35756000	-3.87176000	1.29780800
С	-4.45957900	-5.47258500	0.40406800
Н	-3.63399100	-5.18436600	-1.56835800
С	-3.28551300	-4.37222400	2.20810500
Н	-1.53882000	-3.25157900	1.64890300
С	-4.33748800	-5.17381600	1.76395100
Н	-5.28351000	-6.08755000	0.05372100
Н	-3.19468300	-4.12484900	3.26107500
Н	-5.06722300	-5.55384600	2.47270600
Ν	0.95324400	-1.51930700	-2.43976800
Н	1.19236800	-0.77765600 528	-1.75137300

С	1.54962000	-1.48123200	-3.77226400	
Н	2.33898900	-2.24140200	-3.84244500	
Н	0.78343200	-1.73777300	-4.51092000	
С	-3.07352500	-1.24079300	-2.38957600	
С	-2.47659300	-0.31563300	-0.30117300	
С	-2.03649100	-0.40464100	-1.75171200	
0	-1.13640700	0.27700800	-2.24967100	
0	-1.90538500	0.33218500	0.57743100	
Ν	-3.62589700	-1.04729200	-0.25407700	
Ν	-3.96845900	-1.57792100	-1.51707500	
С	-5.64920000	-2.05322400	0.63554900	
С	-6.48395000	-2.33131400	1.71505100	
С	-6.17121400	-1.87286800	2.99543000	
С	-5.00872200	-1.12517200	3.18826700	
С	-4.15927600	-0.83655100	2.12195000	
С	-4.48454300	-1.30660500	0.84231500	
Н	-5.88138200	-2.41750400	-0.35574300	
Н	-7.38437400	-2.91546200	1.54853800	
Н	-6.82688500	-2.09329000	3.83258700	
Н	-4.75441300	-0.75709600	4.17823600	
Н	-3.26031100	-0.25592600	2.27452300	
С	2.12114400	-0.09502900	-4.04460200	
Н	2.58229700	-0.07265000	-5.03717000	
Н	1.33213900	0.66344300	-4.00987600	
Н	2.88621900	0.16669600	-3.30700800	
С	-3.13428800	-1.64415800	-3.81779000	
Н	-3.06624600	-0.76223100	-4.46520800	
Н	-2.29658600	-2.30538600	-4.06342600	
Н	-4.06997700	-2.17104000	-4.01867100	
С	4.38316400	-0.75687100	4.57290300	
C	6.99029700	-1.21346200	-2.46718400	
F	7.36952800	-2.42715600	-2.00544400	
F	6.69695500	-1.37763900	-3.78149900	
F	8.07053000	-0.40365100	-2.40760800	
F	5.19407000	0.32502900	4.48845300	
F	5.12459100	-1.82241100	4.18395100	
Ŀ	4.09318500	-0.93889300	5.88031900	
Int-III				
C ~	0.34178700	3.22797400	1.13000800	
C	2.09943200	2.42796800	-0.25719200	
С	2.75329900	3.46303900 529	0.67402700	

С	1.64848200	3.83513200	1.69405900
Н	-0.49370000	3.92683000	1.10818400
Н	0.03106900	2.35654900	1.70163600
Н	2.43700400	2.52152400	-1.29039800
Н	3.65401600	3.08074200	1.15577500
Н	3.05131600	4.33999200	0.09117800
Н	1.86220900	3.41944900	2.68153000
Н	1.56815300	4.92008300	1.80424000
Ν	0.64884500	2.79644000	-0.26665300
С	0.39154200	3.91289500	-1.24027200
Н	1.04257700	4.76620300	-1.01307900
Н	0.67731400	3.52690100	-2.22602100
С	-1.04397700	4.35299000	-1.22353100
С	-2.06013600	3.38574900	-1.46517600
С	-1.38742400	5.67844800	-0.96277500
С	-3.41099900	3.82562800	-1.41161300
С	-2.71945700	6.09881400	-0.93923600
Н	-0.59195800	6.39753400	-0.77516500
С	-3.72642900	5.16026700	-1.15970200
Н	-2.96774700	7.13648500	-0.74092700
Н	-4.76833000	5.46068100	-1.12859800
0	-1.79701200	2.13501800	-1.74387400
С	-4.48905600	2.80722000	-1.61442700
F	-4.44251200	1.80951100	-0.69370900
F	-4.43542100	2.21038000	-2.82847200
F	-5.72956600	3.35488200	-1.51388300
С	2.27740700	0.91379600	0.11706300
С	2.20694700	0.65144900	1.63654200
С	3.31961300	0.83931700	2.46163600
С	1.01982500	0.18830800	2.21645100
С	3.23619600	0.60414100	3.83593000
Н	4.26687100	1.15398800	2.03806900
С	0.93690100	-0.04664200	3.58934300
Н	0.14845600	0.03579300	1.59148900
С	2.04359600	0.16163400	4.41066000
Н	0.00099300	-0.39007600	4.02074100
Н	1.98552000	-0.01768900	5.47846500
С	3.61808600	0.36237800	-0.40661400
С	3.86697400	-1.00295700	-0.18241700
С	4.54978100	1.08864800	-1.15299600
С	4.96986700	-1.63567100	-0.73713900
Н	3.17215700	-1.57349100 s30	0.42418900

С	5.66271400	0.46022000	-1.71876400
Н	4.42677800	2.15213600	-1.31943100
С	5.86330400	-0.90396800	-1.52849400
Н	5.14079200	-2.69293200	-0.56151400
Н	6.36486100	1.03529700	-2.31236600
0	1.27085200	0.19581900	-0.54455700
Cu	-0.30687900	1.16258800	-1.05607400
С	0.42491300	-2.82079200	-1.35528900
С	-0.61004600	-2.38887100	-0.40901800
С	-1.22172100	-3.70688600	-0.07914100
Н	-0.23215700	-1.78306300	0.41288700
0	0.27060500	-4.10768800	-1.66739000
Ν	-0.77963700	-4.67341000	-0.82280000
С	-2.29356700	-3.93399100	0.89481800
С	-3.21228100	-4.98038300	0.70853500
С	-2.42230800	-3.08707800	2.00623300
С	-4.24381500	-5.16909300	1.62206000
Н	-3.12038300	-5.61978200	-0.16293500
С	-3.45935000	-3.28046100	2.91533300
Н	-1.72459100	-2.27058200	2.15553000
С	-4.37203700	-4.31812800	2.72387600
Н	-4.96023100	-5.97003600	1.46634000
Н	-3.56517000	-2.60777900	3.76003700
Н	-5.19143500	-4.45419900	3.42304300
Ν	1.34504400	-2.08780100	-1.88933600
Н	1.41225200	-1.10831800	-1.48951500
С	2.29355400	-2.54256700	-2.91465600
Н	3.13153300	-3.04053000	-2.41529800
Н	1.79032700	-3.27998300	-3.54572000
С	-2.73927200	-2.09474700	-1.93798300
С	-2.47376300	-0.70360600	-0.05771700
С	-1.65426000	-1.31216000	-1.21847300
0	-0.96706300	-0.45931900	-1.95949800
0	-2.02274400	0.04717100	0.80441200
Ν	-3.73558000	-1.19857800	-0.19464500
Ν	-3.87558700	-2.01534400	-1.34455200
С	-5.93921100	-1.92494000	0.51171700
С	-7.01181700	-1.84246600	1.39619300
С	-7.00333100	-0.91674700	2.44113800
С	-5.91007500	-0.06140700	2.58712300
С	-4.82858300	-0.12571600	1.71019100
С	-4.84380300	-1.06825200 531	0.67315100

Н	-5.93456500	-2.64792200	-0.29301000
Н	-7.85757500	-2.51186900	1.26609700
Н	-7.84200500	-0.85752900	3.12874500
Н	-5.89540900	0.67290000	3.38774200
Н	-3.98538200	0.54071900	1.81980900
С	2.78583500	-1.35482700	-3.72984300
Н	3.53757200	-1.69215400	-4.44995300
Н	1.95968500	-0.88626200	-4.27462700
Н	3.24914200	-0.60284500	-3.08547500
С	-2.55580400	-2.80974400	-3.22779400
Н	-2.10954000	-2.12652600	-3.95950200
Н	-1.87832700	-3.66451300	-3.11732100
Н	-3.51661900	-3.16936300	-3.60410200
С	4.46971700	0.77248400	4.67420300
С	6.97163200	-1.62051200	-2.23856000
F	7.51024200	-2.60355400	-1.48222500
F	6.52021000	-2.21431400	-3.37484600
F	7.97467800	-0.79364100	-2.60323600
F	5.19622200	1.84974900	4.29123600
F	5.29529300	-0.29878600	4.57735100
F	4.18330300	0.92756400	5.98553000
(<i>R</i>)-3ca			
С	3.08759100	0.43792300	0.05061100
С	1.70967700	0.30292100	-0.02440000
С	1.23152600	1.60941400	0.30034700
Н	1.69014500	-1.24973600	-2.20660200
Ο	3.41102700	1.70014200	0.36405800
Ν	2.21102700	2.46138900	0.53451200
С	-0.16503100	2.08606800	0.38628600
С	-1.09874800	1.41785700	1.18944800
С	-0.56491400	3.21374000	-0.34270300
С	-2.42119600	1.85499900	1.24074100
Н	-0.79011200	0.55904900	1.77644700
С	-1.88644500	3.65171700	-0.28440800
Н	0.16222000	3.72921900	-0.96162400
С	-2.81800300	2.96960100	0.50077600
Н	-3.14099700	1.31935200	1.85191600
Н	-2.19101100	4.52121700	-0.86000900
Н	-3.85110300	3.30361300	0.53424400
Ν	4.08407900	-0.46477600	-0.10910100
Н	3.78050900	-1.29230000	-0.61270300
		S32	

С	5.48231200	-0.06302200	-0.27020600
Н	5.62842700	0.47784600	-1.21688400
Н	5.72911200	0.62973500	0.53909100
С	0.62662900	-1.84105400	0.75334600
С	-0.39239900	-0.70613200	-1.03582800
С	0.99934500	-0.95845000	-0.42116800
0	1.77365300	-1.72312500	-1.35632200
0	-0.59117100	-0.13868600	-2.09659100
Ν	-1.28722500	-1.31602900	-0.18956600
Ν	-0.64475300	-1.98338000	0.87631900
С	-3.41872700	-1.99007600	0.75970600
С	-4.81060100	-1.92969200	0.76520300
С	-5.49514100	-1.17649000	-0.18939100
С	-4.76923400	-0.47932100	-1.15594300
С	-3.37719400	-0.52510600	-1.17894200
С	-2.70002400	-1.28598900	-0.21526500
Н	-2.88488700	-2.56715100	1.50335900
Н	-5.36001700	-2.47782700	1.52552100
Н	-6.58024900	-1.13296100	-0.17957900
Н	-5.28700200	0.11492400	-1.90358500
Н	-2.81745400	0.02503300	-1.92177800
С	6.38045400	-1.29107400	-0.21260100
Н	7.42906700	-0.99756500	-0.32428300
Н	6.26556000	-1.81379500	0.74291600
Н	6.14233900	-1.99427600	-1.02025500
С	1.60159500	-2.45085000	1.69579400
Н	2.24234500	-3.16644600	1.16587100
Н	2.25650500	-1.68418600	2.12474800
Н	1.07780600	-2.97273500	2.50046700

REFERENCES:

- [S1] (a) F. Guo, G. Lai, S. Xiong, S. Wang, Z. Wang, *Chem. Eur. J.*, 2010, 16, 6438;
 (b) S. Zhang, K. Xu, F. Guo, Y. Hu, Z. Zha, Z. Wang, *Chem. Eur. J.*, 2014, 20, 979.
- [S2] P. Chauhan, S. Mahajan, U. Kaya, A. Peuronen, K. Rissanen and D. Enders. J. Org. Chem., 2017, 82, 7050-7058.
- [S3] R. Wang, Y. Li, H. He, Y. Xiao, F. Chen. Chem. Eur. J., 2021, 27, 4302-4306.
- [S4] M. Li, Y. Chen, Y. Yan, M. Liu, M. Huang, W. Li, L. Cao and X. Zhang. Org. Biomol. Chem., 2021,19, 3820-3824.
- [S5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci,

H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,
F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

- [S6] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. (b) C. T. Lee, W. T. Yang, W. T. Parr, Phys. Rev. B., 1988, 37, 785.
- [S7] (a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; (b) S. Grimme, S. Ehrlich, L. J. Goerigk, Comput. Chem., 2011, 32, 1456.
- [S8] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B., 2009, 113, 6378.
- [S9] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, *Theor. Chim. Acta.*, 1990, 77, 123.
- [S10] W. J. Hehre, L. Radom, P. V. R. Schleyer, J. A Pople. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
- [S11] (a) K. Fukui, Acc. Chem. Res., 1981, 14, 363. (b) K. J. Fukui, Phys. Chem., 1970, 74, 4161.
- [S12] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics., 1996, 14, 33. [S1]
 Guo, F.; Lai, G.; Xiong, S.; Wang, S.; Wang, Z. Monodentate
 N-Ligand-Directed Bifunctional Transition-Metal Catalysis: Highly
 Enantioselective Friedel–Crafts Alkylation of Indoles with Nitroalkenes Chem.
 Eur. J. 2010, 16, 6438.
Part II NMR spectra

 1 H NMR and 13 C NMR of **1**f

 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of 1g

¹H NMR and ¹³C NMR of **1**k

¹H NMR and ¹³C NMR of **1**

 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of 1m

1v

0040-000	10 5
//wwwwww	NN
NNNNNNN	
	\vee

S52

¹H NMR and ¹³C NMR of **3ha**

¹H NMR, ¹³C NMR and ¹⁹F NMR of **3ia**

6.0 5.5 5.0 4.5 f1 (ppm) 4.0

.0 9.5 9.0 8.5 8.0 7.5 3.0 2.5 2.0 1.5 0.5 0.0 -0.5 -1

¹H NMR, ¹³C NMR and ¹⁹F NMR of **3ma**

¹H NMR and ¹³C NMR of **3na**

¹H NMR and ¹³C NMR of **30a**

¹H NMR, ¹³C NMR and ¹⁹F NMR of **3pa**

¹H NMR and ¹³C NMR of **3qa**

3.33.483.4481.221.2

¹H NMR, ¹³C NMR and ¹⁹F NMR of **3ra**

¹H NMR and ¹³C NMR of **3sa**

¹H NMR and ¹³C NMR of **3ta**

¹H NMR and ¹³C NMR of **3ua**

¹H NMR and ¹³C NMR of **3va**

¹H NMR and ¹³C NMR of

3ab

¹H NMR and ¹³C NMR of **3ac**

¹H NMR and ¹³C NMR of **3ad**

¹H NMR and ¹³C NMR of **3ae**

¹H NMR and ¹³C NMR of **3af**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of $\mathbf{3ag}$

¹H NMR and ¹³C NMR of **3ai**

¹H NMR and ¹³C NMR of **3aj**

 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of $\boldsymbol{3al}$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹H NMR and ¹³C NMR of **3an**

¹H NMR and ¹³C NMR of 4aa

Part III HPLC Spectra

3aa racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	7.70		1.44		4241.65		247.41	50.26
	9.51		1.45		4197.59	1	196.27	49.74

Signal:	DAD1B, S	5ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	7.74		1.43	8	3510. 05	487.34	99.54
	9.65		0.43		39.69	2.78	0.46

3ba racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	8.13		0.96		1286.19		68.54	51.44
	9.99		1.19		1214.00		50.64	48.56

3ba

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	8.13		1.35	9068.29	465.37	97.47
	10.00		0.65	235.61	11.68	2.53

3ca racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	9.54		1.84		880.42		26,65	51.79
	13.0		2.44		819.59		17.97	48.21

3ca

Signal:	DAD1B, S	5ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	9.44		2.14	7774.57	257.05	97.22
	12.6		1.93	222.72	5, 58	2.78

3da racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Areas
	6.97		1.32		3491.75	153.25	51.64
	9.70		1.54		3269.36	97.91	48.36

Signal:	DAD1B, S	5ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	6.97		1.34	7958.30	349.25	98.49
	9.71		0.93	121.61	4.26	1.51

3ea racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	16.6		2,63		7309.58	150.27	49.44
	22.8		3.16		7476.24	115.02	50.56

3ea

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
16.6	2.98	12521.45	254.86	98.30
22.8	1.80	216.09	3, 94	1.70

3fa racemic mixture:

Signal:	DAD1B, S	Sig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	17.3		2.97		1345.23		24.88	50.23
	23.2		3.69		1332.76		18.71	49.77

3fa

Signal: DAD1B, Sig=254, 4 Ref=o

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
17.3	3. 38	12639.41	231.01	97.55
23.2	2.47	317.20	4.80	2.45

Signal:	DAD1B, S	ig=254, 4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	11.2		1.38		1785.62		60.88	49.97
	14.0		1.65		1787.73		48.19	50.03

S97

Signal:	DAD1B, S	ig=254, 4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	11.2		1.60		2936.35		99.03	97.81
	14.1		1.30		65.87		1.98	2.19

3ha racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	15.1		2.08		3367.34		87.16	49.66
	18.7		2.45		3414.11		74.21	50.34

3ha

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
14.9	2.21	13055.25	356.25	95.92
18.3	1.22	555. 57	14.57	4.08

3ia racemic mixture:

Signal:	DAD1B, S	5ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	E.	Area%
	11.8		1.75		6154.34	178.72	1	50.20
	14.4		1.93		6104.53	152.01	ġ.	49.80

3ia

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	11.8		1.73	9110.24	274.40	97.08
	14.4		1.29	273.62	7.47	2.92

3ja racemic mixture:

Signal:	DAD1B, S	ig=254, 4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	4.38		0.76	2222.76	218.93	51.08
	6.29		0.80	2128.86	122.78	48.92

Signal:	DAD1B, S	Sig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area
	4.36		0.94	4452.73	435, 58	89.81
	6.29		0.84	505.14	30.06	10.19

3ka racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area
	11.4		1.86		2529.70		78.29	49.70
	15.5		2.25		2560.18		59.60	50, 30

3ka

Signal:	DAD1B, S	Sig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU	D D	Area%
	11.4		2.13		7757.06	244.3	0	97.66
	15.5		1.51		185.50	4.6	68	2.34

3la racemic mixture:

S100

Signal:	DAD1B, S	Sig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	13.2		1.82		2415.88		61.38	50.30
	16.9		2.03		2387.02		49.84	49.70

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	13.2		2.24		9154.73	230. 50	97.82
	17.0		1.91		203.69	4, 29	2.18

3ma racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	8.65		1.11	4276.33	199.29	49.82
	11.0		1.33	4307.03	154.11	50.18

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	8.64		1.39	12722.70	568.76	97.08
	11.0		0.71	382.95	17.28	2.92

3na racemic mixture:

Signal:	DAD1B, S	ig=254, 4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Areas
	11.6		1.68		2750.18		98.06	50.08
	15.8		1.75		2741.09		75.77	49.92

 ${\rm Jna} \\ \\ {\rm Jna} \\ {$

Signal:	DAD1B, S	5ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	11.7		2.06		8435, 20	291.65	97.16
	16.0		1.22		246.89	7.31	2.84

3oa racemic mixture:

Signal:	DAD1B, S	5ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer [mAU*s]	Height	[mAU]	Area
	13.7		3.00	941.58		22.57	50.07
	20.2		3.51	938.81		16.63	49.93

30a

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
13.7	2.27	7098.35	176.77	96.82
20.3	1.78	232.81	4.58	3.18

3pa

Signal:	DAD1B, S	5ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	5.34		0.92		7393.46	554. 57	94.65
	6.80		0.65		418.30	28.29	5.35

Signal: DAD1B, Sig=254, 4 Ref=off	Signal:	DAD1B, Sig=254, 4	Ref=off
-----------------------------------	---------	-------------------	---------

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
12.1	1.64	5689.30	177.31	49.75
14.0	1.99	5746.86	152, 93	50.25

3qa

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	12.1		1.79	8180.31	254.83	93.29
	14.0		1.15	588.75	17.40	6.71

3ra racemic mixture:

Signal:	DAD1B, S	5ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]]	Area%
	4.83		0.97		1256.17	127. 3	2	50, 60
	10.7		1.49		1226.44	39.6	7	49.40

ff
f

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
4.83	0.61	4765.74	483.49	92.06
10.7	1.00	410.79	14.59	7.94

	<u>3s</u>	a	ra	cen	ic	m	ixt	tu	re:	
--	-----------	---	----	-----	----	---	-----	----	-----	--

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	10.2		1.65	10155.99	334. 31	97.67
	13.8		1.15	242.29	7.21	2.33

3ta racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	6.59		0.81	5416.84	346.29	49.52
	7.70		1.17	5521.42	293.29	50.48

 $\frac{1}{1}$

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	6.59		1.06	12099.60	756.51	93.80
	7.71		1.14	800.36	41.50	6.20

3ua racemic mixture:

S106

Signal:	DAD1B, S	ig=254, 4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	8.45		1.38		8580.44	368.03	50.45
	12.2		1.49		8427.87	257.00	49.55

3ua

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	8.43		1.93	22340.54	954.86	97.84
	12.2		1.10	492.13	16.45	2.16

3va racemic mixture:

3va

3ab racemic mixture:

Signal:	DAD1B, S	ig=254, 4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	9.13		1.48		279.94		12.71	50.93
	12.6		1.85		269.77		8.59	49.07

3ab

Signal:	DAD1B, Sig=254, 4	Ref=off
---------	-------------------	---------

RetTime	[min]	width [min]	Arer	[mAU*s]	Height	[mAU]	Areas
	9.35	1.39		1752.19	10.1040-0400	74.91	97.91
	13.1	1.10		37.45		1.22	2.09

3ac racemic mixture:

Signal:	DAD1B, S	5ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area
	8.64		1.33		2130.84		99.28	50.08
	12.7		1.53		2123.98		68.41	49.92

3ac

Signal:	DAD1B, Sig=254, 4	Ref=off
---------	-------------------	---------

RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	8.63		1.51		8094.62	3	81.98	98.81
	12.7		1.39		97.47		3.17	1.19

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	12.2		1.53		1630. 54		52.57	49.71
	17.8		2.24		1649.28		36.63	50.29

S109

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	12.2		2.00	4240.58	136.18	97.57
	17.8		1,85	105.56	2.37	2.43

3ae racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	11.3		1.58		8037.74	262.58	50.34
	15.1		1.69		7928.36	206.51	49,66

3ae

Signal:	DAD1B, Sig=254, 4	Ref=off
---------	-------------------	---------

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
11.3	1.55	10401.98	341.86	96.68
15.1	1.60	357.19	9, 45	3, 32

3af racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area
	4.10		0.83	12682.65	1406.65	50.39
	10.7		1.68	12487.55	347.77	49.61

3af

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
4.09	0.85	13567.88	1438.70	96.87
10.8	1.18	438.27	13.22	3.13

`		•	•	4	
Sag	race	mic	mix	tur	e:

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer [mAU*s]	Height	[mAU]	Area%
	9.70		2.43	613.29		18.73	50, 40
	18.6		2.80	603.67		13.65	49.60

Signal:	DAD1B, S	5ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	9.68		2.02		8387.63	299.49	98, 26
	18.5		1.80		148.56	3.42	1.74

3ah racemic mixture:

Signal:	DAD1B, S	ig=254, 4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	10.4		1.46		1835.10		61.27	50.78
	16.5		1.96		1778.53		42.49	49.22

3ah

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	10.3		1.92	10047.43	340.29	98.92
	16.5		1.56	109.37	2,66	1.08

3ai racemic mixture:

RetTime [min] width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
20.	2	2.20		3522.17		67.11	49.85
30.	3	3.08		3543.22		46.84	50.15

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer [mAU*s]	Height	[mAU]	Area%
	20.2		2,40	4985.51		95.16	98.27
	30.3		2.60	87.84		1.33	1.73

3aj racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	17.5		2.45		3023.17		61.69	49.98
	21.9		2.42		3025.90		55.01	50.02

Signal:	DAD1B, S	5ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	17.5		2.72	6708.98	137.02	98.10
	21.9		1.76	129.69	2.54	1.90

3ak racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	12.4		1.37		1371.00		42.50	50.69
	16.8		1.58		1333. 70		32.94	49.31

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	12.3		1.65	10557.91	319.87	98, 21
	16.8		1.34	191.96	5.08	1.79

3al racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height	[mAU]	Area%
	5.94		1.26		1490.19		63.21	49.96
	23.9		3.91		1492.37		19.03	50.04

3al

Signal:	DAD1B, S	ig=254,4	Ref=off
RetTime	[min]	width	[min]

RetTime	[min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
	5.95	1.28	6740.55	413.54	91.65
	24.1	2.99	614.24	8.03	8.35

3am racemic mixture:

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	14.3		1.86	22191.77	566.55	49.96
	21.3		2.41	22230. 57	382.69	50.04

3am

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	14.3		2.37		8190.48	213.45	97.62
	21.3		1.91		199.89	3.67	2.38

3an racemic mixture:

Signal:	DAD1B, Sig=254, 4	Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Area%
14.5	2.52	13481.13	306.91	49.94
32.4	5.07	13514.97	126.01	50.06

3an

Signal:	DAD1B, S	ig=254,4	Ref=off			
RetTime	[min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
	14.5		2.40	12274.57	279.87	96.52
	32.5		3.11	442.53	4.73	3.48

4aa racemic mixture:

1912/01/27/02/2

10000

Signal:	DAD1B, S	ig=254,4	Ref=off				
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	Area%
	5.45		0.99	:	3293.22	266.90	50.30
	8.25		1.18	:	3253.44	169.28	49.70

4aa

Signal:	DAD1B, Sig=254, 4	Ref=off
---------	-------------------	---------

RetTime [min]	width	[min]	Arer [mAU*s]	Height [mAU]	Area%
5.4	5	0.80	13438.68	1068.52	99.22
8, 29	9	0.85	105.44	5, 63	0.78

5aa racemic mixture:

Signal:	DAD1B, S	ig=254, 4	Ref=off					
RetTime	[min]	width	[min]	Arer	[mAU*s]	Height [mAU]	1	Area
	8.78		0.97		1039.07	118.5	2	49.67
	12.5		2.01		1053.01	27.03	2	50.33

Part IV Crystal data

(*R*)-3aa (25mg): single crystals are formed in THF (0.7ml) at room temperature about 5 days.

CCDC:2335999

Identification code	SCD-GSY2023-0706_auto	
Empirical formula	$C_{23}H_{24}N_4O_3$	
Formula weight	404.46	
Temperature/K	293(2)	
Crystal system	orthorhombic	
Space group	P212121	
a/Å	8.99824(7)	
b/Å	13.13119(9)	
c/Å	17.79770(13)	
$\alpha/^{\circ}$	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volume/Å ³	2102.93(3)	
Z	4	
$\rho_{calc}g/cm^3$	1.277	
μ/mm^{-1}	0.701	
F(000)	856.0	
Crystal size/mm ³	$0.22\times0.19\times0.18$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
2Θ range for data collection/° 8.368 to 145.812		
Index ranges	$-9 \le h \le 11, -16 \le k \le 16, -21 \le l \le 22$	
Reflections collected	15262	
Independent reflections	4132 [$R_{int} = 0.0284, R_{sigma} = 0.0172$]	
Data/restraints/parameters	4132/0/276	

 $\begin{array}{ll} Goodness-of-fit \ on \ F^2 & 1.079 \\ Final \ R \ indexes \ [I>=2\sigma \ (I)] & R_1 = 0.0434, \ wR_2 = 0.1143 \\ Final \ R \ indexes \ [all \ data] & R_1 = 0.0439, \ wR_2 = 0.1151 \\ Largest \ diff. \ peak/hole \ / \ e \ Å^{-3} \ 0.32/-0.23 \\ Flack \ parameter & 0.04(6) \\ \end{array}$