Supporting Information

Copper-Catalyzed Asymmetric Friedel-Crafts Hydroxyalkylation of Pyrazole-4,5-diones with 5-Aminoisoxazoles

Siyu Gao, Xiang Sun, Sijie Peng, Zhenggen Zha, Qi Sun*and Zhiyong Wang*

Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry,
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Fax: (+86)551-63603185
E-mail: zwang3@ustc.edu.cn

Table of Contents

Part I Experimental Section S1
1.1 General information S1
1.2 General procedure for the synthesis of substrate S1
1.3 Optimization of reaction conditions. S6
1.4 General working procedure S8
1.5 Experimental data of products S9
1.6 A plausible structure of the transition state and DFT calculations. S23
Part II NMR spectra S35
Part III HPLC Spectra S93
Part IV Crystal Preparation and the data S118

Part I Experimental Section

1.1 General information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on Bruker-500 MHz Spectrometer (${ }^{1} \mathrm{H}$ NMR: $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR: $125 \mathrm{MHz},{ }^{19} \mathrm{~F}$ NMR: 470 MHz) using TMS as internal reference. The chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz respectively. Uv-Vis Spectrophotometry was carried out on Shimadzu UV-3000. HPLC analysis was carried out on an Agilent 1260 series HPLC with a multiple wavelength detector. Chiralpak AD-H, IC were purchased form Daicel Chemical Industries, LTD. Optical rotations were measured on a PerKinElmer ${ }^{\mathrm{TM}}$ Polarimeter (Model 343). HRMS (ESI) were recorded on a Waters ${ }^{\mathrm{TM}}$ Q-TOF Premier. Single crystal data was collected at room temperature on a Rigaku Oxford Diffraction SuperNova with an AtlasS2 CCD using $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Commercially available compounds were used without further purification.Commercially available compounds were used without further purification. All solvents were purified according to the standard procedures unless otherwise noted. Ligands $\mathbf{L}_{1}-\mathbf{L}_{4}{ }^{[51]}, \mathbf{L}_{1}{ }^{\text {, }}{ }^{[S 2]}$, pyrazole-4,5-diones $1{ }^{[53]}$, 5-aminoisoxazoles $2{ }^{[54]}$ were prepared according to the literature procedures.

1.2 General procedure for the synthesis of substrate

1.2.1 General procedure for the synthesis of pyrazole-4,5-diones $1 \mathrm{a}-{ }^{[55]}$

To a solution of 7 ($20 \mathrm{mmol}, 1.0$ equiv.) in glacial acetic acid (30 mL) was added 6 ($20 \mathrm{mmol}, 1.0$ equiv.) and Triethylamine ($20 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ until TLC (petroleum ether/ ethyl acetate $=2: 1$) showed complete consumption of the startingmaterial. After cooling to room temperature, the mixture was quenched with a solution of saturated NaHCO_{3} and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford $\mathbf{8}$.

Add PhNO (1.0 equiv.) to a solution of pyrazolon derivative $\mathbf{8}$ (1.0 equiv.) in $\mathrm{MeOH}(0.6 \mathrm{M})$ and the $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.2 equiv.) was added at once, the mixture was
refluxed for 3 hours. The solvent was removed under reduced pressure and the crude product was directly purified by flash column chromatography (petroleum ether/ ethyl acetate $=30: 1$) to afford the desired product 9 .

To a solution of pyrazolon-derived phenyl-ketimine 9 in THF (0.13 M), 2 M HCl was added and stirring at room temperature. After stirring for 10 minutes -5.5 hours, water was added. The reaction mixture was extracted with DCM $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was directly purified by flash column chromatography (petroleum ether/ ethyl acetate $=20: 1$) to afford the desired product 1.

1.2.2 General procedure for the synthesis of 5-aminoisoxazoles 2a-n ${ }^{[44]}$

a) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1.3 \mathrm{~g}, 18.8 \mathrm{mmol})$ and $\mathrm{NaOAc}(1.55 \mathrm{~g}, 18.8 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(20 \mathrm{~mL})$ at room temperature for 1 hour and then the compound $\mathbf{1 0}(6.3 \mathrm{mmol})$ was added to the mixture. The reaction mixture was stirred at room temperature overnight. Then the reaction mixture was quenched with water and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford $\mathbf{1 1}$.
b) Compound $11(500 \mathrm{mg}, 3 \mathrm{mmol})$ was stirred in acetic anhydride (6 mL) at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with a solution of saturated NaHCO_{3} and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford 12 .
c) The compound 12 ($500 \mathrm{mg}, 2 \mathrm{mmol}$) wasdried in vacuum and then dissolved in dry THF (10 mL) at $0{ }^{\circ} \mathrm{C}$. Lithium aluminium hydride ($240 \mathrm{mg}, 6 \mathrm{mmol}$) was added during 20 minutes. The reaction was then stirred at room temperature overnight. Next, the reaction mixture was quenched by slow addition of 1 M NaOH solution at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes and then filtered through a pad of Celite. The filtrate was extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford $\mathbf{2 a}, \mathbf{2 e}-\mathbf{n}$.
d) To a solution of compound $\mathbf{1 1}(1 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{Boc}_{2} \mathrm{O}(2.3 \mathrm{~g}, 10 \mathrm{mmol})$ and DMAP ($50 \mathrm{mg}, 0.4 \mathrm{mmol}$) in 30 mL of DCM add triethylamine ($1.27 \mathrm{~g}, 12 \mathrm{mmol}$) dropwise and stirred overnight at room temperature. The reaction was diluted with DCM. The organic layer was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel. $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give compound $\mathbf{1 3}$ as a white solid.
e) To a stirred solution of $\mathbf{1 3}(1 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, \mathrm{NaH}(80 \mathrm{mg}, 2$ mmol) was added and stirred for 30 min . $\mathrm{R}_{2} \mathrm{X}(2 \mathrm{mmol})$ was added dropwise to the reaction mixture. The reaction mixture was then stirred at $70{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was quenched with EtOAc, washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford $\mathbf{1 4}$.
f) To a stirred solution of $\mathbf{1 4}(1 \mathrm{mmol})$ in DCM at room temperature, TFA $(5 \mathrm{mmol})$ was added and stirred for 8 h . The reaction mixture was quenched with a solution of saturated NaHCO_{3} and extracted with DCM , the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford $\mathbf{2 b} \mathbf{- d}$.

3-isopropyl-1-(p-tolyl)-1H-pyrazole-4,5-dione(1d)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.94$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, 1.33 (d, J = $6.9 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 184.8, 151.1, 149.0, 136.1, 134.6, 129.7, 117.8, 26.9, 21.1, 19.0.

3-isopropyl-1-(4-methoxyphenyl)-1H-pyrazole-4,5-dione(1e)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.75$ $(\mathrm{m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.94$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33$ $(\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.0,157.8,151.1$, 148.8, 130.3, 119.6, 114.3, 55.5, 26.9, 19.0.

1-(4-chlorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1f)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.84$ (m, 2H), 7.44-7.38 (m, 2H), 2.96 (hept, J = 7.0 Hz, 1H), 1.34 (d, J = 6.9 $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.2,151.6,149.1,135.5,131.4$,

1-(4-fluorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1g)

 The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.84$ (m, 2 H), 7.18-7.10 (m, 2H), 2.96 (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.4,160.5(\mathrm{~d}, \mathrm{~J}=246.3 \mathrm{~Hz}), 151.4$, $149.0,133.1(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 119.6(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 116.0(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz})$, 26.9, 19.0. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.29$.

1-(4-bromophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1h)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96$ (hept, $\mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.2,151.6,149.1,136.0$, 132.2, 119.2, 119.1, 26.9, 19.0.

3-isopropyl-1-(4-(trifluoromethyl)phenyl)-1H-pyrazole-4,5-dione(1i)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10 / 1$) to give the product as a red solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.8,152.0,149.4,139.6,127.8$ (q, $\mathrm{J}=32.7 \mathrm{~Hz}), 126.5(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}), 123.9(\mathrm{q}, \mathrm{J}=272.0 \mathrm{~Hz}), 117.3$, 27.0, 19.0. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.31$.

3-isopropyl-1-(m-tolyl)-1H-pyrazole-4,5-dione(1k)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
184.7, 151.2, 149.2, 139.2, 136.9, 129.0, 127.1, 118.3, 115.0, 26.9, 21.7, 19.1.

3-isopropyl-1-(3-methoxyphenyl)-1H-pyrazole-4,5-dione(11)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.74-7.67 (m, 2 H), 7.55 (t, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.01 (ddd, $\mathrm{J}=8.3,2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (s, 3 H), 3.16 (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.54(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.4,159.1,150.2,148.1,137.0,129.0,110.7,108.9,102.5,54.4$, 25.8, 18.0.

1-(3-fluorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1m)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75$ (ddd, $\mathrm{J}=8.3,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dt}, \mathrm{J}=10.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, \mathrm{J}=$ $8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.97 (tdd, $\mathrm{J}=8.3,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (hept, $\mathrm{J}=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.0$, 162.9 (d, J = 245.5 Hz), 151.6, 149.2, 138.2 (d, J = 10.5 Hz), 130.5 (d, J = 9.1 Hz), $112.9(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 112.9(\mathrm{~d}, \mathrm{~J}=21.1 \mathrm{~Hz}), 105.1(\mathrm{~d}, \mathrm{~J}=27.5 \mathrm{~Hz}), 26.9$, 19.0. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.38$.

1-(3-chlorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1n)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.86$ (ddd, J = 8.3, 2.1, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41-7.34 (m, 1H), 7.24 (ddd, J = $8.0,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.0,151.7,149.2,137.9,135.0,130.3$, 126.2, 117.5, 115.5, 26.9, 19.0.

1-(3-bromophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(10)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{t}, \mathrm{J}=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{ddd}, \mathrm{J}=8.2,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, \mathrm{J}=8.1,1.9$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97($ hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.0,151.7,149.2,138.0$, 130.5, 129.1, 122.9, 120.3, 116.0, 27.0, 19.0.

3-isopropyl-1-(3-nitropheny)-1H-pyrazole-4,5-dione(1q)

高The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{t}, \mathrm{J}=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.38$ (ddd, $\mathrm{J}=8.2,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (ddd, $\mathrm{J}=8.1,2.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=$ 6.9 Hz, 6H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.5,152.2,149.4,148.7$, 137.8, 130.3, 122.9, 120.6, 112.3, 27.0, 19.0.

1-(3,5-dimethylphenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1s)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10 / 1$) to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49$ (s, $2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 183.7, 150.1, 148.1, 137.9 , 135.8, 127.0, 114.5, 25.8, 20.5, 18.0.

1-(3,4-dichlorophenyl)-3-isopropyl-1H-pyrazole-4,5-dione(1t)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, \mathrm{~J}=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, \mathrm{J}=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (hept, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 182.6,150.9,148.1,135.1,132.2,129.8,128.6,118.0,115.6$,
25.9, 17.9.

3-isopropyl-1-(naphthalen-2-yl)-1H-pyrazole-4,5-dione(1u)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.04$ (dd, J = 8.9, 2.2 Hz, 1H), 7.92-7.80 (m, 3H), 7.54-7.43 (m, 2H), 2.96 (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 184.6, 151.4, 149.3, 134.5, 133.3, 131.5, 129.2, 128.2, 127.8, 126.9, 126.0, 125.6, 116.8, 115.1, 27.0, 19.1.

3-isopropyl-1-methyl-1H-pyrazole-4,5-dione(1v)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1)$ to give the product as a red liquid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.39(\mathrm{~s}, 3 \mathrm{H})$, 2.81 (hept, J = 7.0 Hz, 1H), $1.24(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 185.1,150.4,149.1,31.8,25.9,18.4$.

1.3 Optimization of reaction conditions.

Table S1. Effects of copper salts a

 1a	 $\mathrm{L}_{1} /$ Copper \qquad 1:1	A	
Entry	Copper salt	Yield (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	93	50
2	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	90	50
3	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	92	45
4	CuBr_{2}	85	48
5	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	78	18
6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	86	68

${ }^{a}$ Unless otherwise noted, the reaction of $\mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{2 a}(0.12 \mathrm{mmol})$ was performed in the presence of ligand ($\mathbf{L}_{1}, 5 \mathrm{~mol} \%$), DIPEA ($10 \mathrm{~mol} \%$) and copper salt ($5 \mathrm{~mol} \%$) in solvent $(1.0 \mathrm{~mL})$ for 18 h . ${ }^{b}$ Yield of the isolated product based on 1a. ${ }^{c}$ Enantiomeric excess was determined by HPLC analysis on a chiral stationary phase.

Table S2. Effects of aprotic polar solvent ${ }^{a}$

Entry	Solvent	$\mathbf{T}\left({ }^{\mathbf{}} \mathbf{C}\right)$	Yield (\%) $^{\boldsymbol{b}}$	ee (\%) $^{\boldsymbol{c}}$
1	Tol	-30	93	99
2	DMF	-30	83	43
3^{d}	DMSO	20	80	49
4	Tol	20	93	70

${ }^{a}$ Unless otherwise noted, the reaction of $\mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{2 a}(0.12 \mathrm{mmol})$ was performed in the presence of ligand $\left(\mathbf{L}_{4}, 5 \mathrm{~mol} \%\right)$, DIPEA ($10 \mathrm{~mol} \%$) and copper salt ($5 \mathrm{~mol} \%$) in solvent $(1.0 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ for $18 \mathrm{~h} .{ }^{b}$ Yield of the isolated product based on 1a. ${ }^{c}$ Enantiomeric excess was determined by HPLC analysis on a chiral stationary phase. ${ }^{d}$ Due to the high freezing point of DMSO, the reaction was carried out at $20^{\circ} \mathrm{C}$.

1.4 General working procedure

1.4.1 Procedure for the Friedel-Crafts hydroxyalkylation product 3

A mixture of $\mathrm{Cu}(\mathrm{OTf})_{2}(1.8 \mathrm{mg}, 0.005 \mathrm{mmol})$ and the ligand $\left(\mathbf{L}_{4}, 2.8 \mathrm{mg}\right.$, $0.005 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ with DIPEA $(1.74 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ were stirred at room temperature for 2 h . pyrazole-4,5-diones $1(0.1 \mathrm{mmol})$ was then added and the resulting mixture was cooled to $-30^{\circ} \mathrm{C}$. After stirring the mixture for 0.5 h , 5 -aminoisoxazole $2(0.12 \mathrm{mmol})$ was added in one portion. After the reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate $=10: 1$) afforded the desired product $\mathbf{3}$ as a white solid.

1.4.2 Procedure for the Friedel-Crafts hydroxyalkylation on a gram scale

A mixture of $\mathrm{Cu}(\mathrm{OTf})_{2}(36 \mathrm{mg}, 0.01 \mathrm{mmol})$ and the ligand $\left(\mathbf{L}_{4}, 56 \mathrm{mg}\right.$, 0.01 mmol) in toluene (40 mL) with DIPEA ($34.8 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) were stirred at room temperature for 2 h . pyrazole-4,5-diones $\mathbf{1 a}(4 \mathrm{mmol})$ was then added and the resulting mixture was cooled to $-30^{\circ} \mathrm{C}$. After stirring the mixture for $0.5 \mathrm{~h}, 5$-aminoisoxazole $\mathbf{2 a}(4.8 \mathrm{mmol})$ was added in one portion. After the reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate $=10: 1$) afforded the desired product 3aa as a white solid.

1.4.3 Further transformation of the product 3aa

A mixture of 3aa ($40.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), t - $\mathrm{BuOK}(11.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}$ $(6.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ were stirred at room temperature. After the reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate $=20: 1$) afforded the desired product 4aa as a white solid.

A mixture of 3aa ($40.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), t - $\mathrm{BuOK}\left(22.4 \mathrm{mg}, 0.2 \mathrm{mmol}\right.$) and $\mathrm{CH}_{3} \mathrm{I}$ $(12.4 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ were stirred at room temperature. After the
reaction was complete (monitored by TLC), the reaction mixture was evaporated in vacuo. Purification of the residue by column chromatography (petroleum ether/ ethyl acetate $=20: 1$) afforded the desired product 5aa as a white solid.

1.5 Experimental data of products

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4 -dihydro-3H-pyrazol-3-one (3aa)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ 10/1-5/1) to give the product as a white solid. $34.0 \mathrm{mg}, 87 \%$ yield; $37.5 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=157-159{ }^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}^{20} 218.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$, 99% ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=70: 30$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.7 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.58-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.29 (m, 2H), 7.18-7.06 (m, 6H), 6.59 (t, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.27 (s, 1H), 3.55-3.43 $(\mathrm{m}, 2 \mathrm{H}), 2.80(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.07(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, Acetone-d6) $\delta 171.4,169.1,167.2,161.6,138.0,129.4,128.9,128.5$, 128.4, 127.9, 124.5, 118.1, 84.7, 77.3, 37.4, 28.3, 20.4, 19.7, 15.3. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 405.1921$, found 405.1927.

(R)-5-ethyl-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-2-phenyl-2,4-dih ydro-3H-pyrazol-3-one (3ba)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $36.3 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=165-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 156.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 95 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=70: 30$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=18^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.1 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=10.0 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.59$ (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (t, J = 7.8 $\mathrm{Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, 3.49 (p, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.53 (dq, J = 17.8, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dq}, \mathrm{J}=17.8,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, Acetone-d6) $\delta 171.6,169.2,164.5,161.6,138.1,129.4,129.0,128.5,128.4,127.9$, $124.5,118.1,84.5,76.7,37.4,20.5,15.2,8.5$. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 391.1765$, found 391.1771.
(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-methyl-2-phenyl-2,4-di hydro-3H-pyrazol-3-one (3ca)

The title compound was prepared according to the general working
procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10 / 1-5 / 1$) to give the product as a white solid. $34.6 \mathrm{mg}, 92 \%$ yield; $\mathrm{mp}=170-172{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 192.9$ ($\mathrm{c}=1.0$, $\mathrm{CHCl}_{3}, 94 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=70: 30$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.4 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=12.6 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.58-7.52$ (m, 2H), 7.37-7.29 (m, 2H), 7.22-7.09 $(\mathrm{m}, 6 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.3,169.3,161.6,160.8,137.9,129.4$, 129.0, 128.5, 128.4, 127.9, 124.5, 118.1, 84.2, 76.5, 37.4, 15.2, 12.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 377.1608$, found 377.1612.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(p-tolyl)-2, 4-dihydro-3H-pyrazol-3-one (3da)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1$) to give the product as a white solid. $38.8 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=158-159{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 233.4$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 96 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=70: 30$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=8^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.0 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=9.7 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) δ 7.46-7.39 (m, 2H), 7.21-7.07 (m, 7H), $6.59(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.78$ (hept, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.1,169.1,167.0,161.5,135.6,133.9,129.4,128.9$, $128.8,128.5,127.9,118.3,84.7,77.2,37.4,28.3,20.4,20.1,19.6,15.3$. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 441.1897$, found 441.1898.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(4-methox yphenyl)-2,4-dihydro-3H-pyrazol-3-one (3ea)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $40.3 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=158-160{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}^{20}} 210.6$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 96 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=13^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=16.6 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=22.8$ \min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) δ 7.46-7.40 (m, 2H), 7.24-7.10 (m, 5H), 6.92-6.86 (m, 2H), $6.58(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.10(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.55-3.43 (m, 2H), 2.79 (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 170.8,169.1,167.0,161.6,156.8$, 131.3, 129.5, 128.9, 128.5, 127.9, 119.9, 113.4, 84.7, 77.1, 54.8, 37.4, 28.2, 20.4, 19.7, 15.3. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 435.2027$, found 435.2033 .
(R)-2-(4-chlorophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3fa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $40.3 \mathrm{mg}, 92 \%$ yield; $\mathrm{mp}=176-179{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 153.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}, 95 \%\right.$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=8^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=17.3 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=23.2 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.60-7.53$ (m, 2H), 7.38-7.32 (m, 2H), 7.19-7.07 (m, 5H), $6.60(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.44$ $(\mathrm{m}, 2 \mathrm{H}), 2.83(\mathrm{hept}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.3,169.0,167.7,161.5,136.7,129.3,129.0$, 129.0, 128.5, 128.4, 127.9, 119.4, 84.5, 77.3, 37.4, 28.2, 20.3, 19.7, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 439.1531$, found 439.1534.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-2-(4-fluorophenyl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ga)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ 10/1-5/1) to give the product as a white solid. $38.8 \mathrm{mg}, 92 \%$ yield; $\mathrm{mp}=163-164{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 239.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 95 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=14^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.2 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=14.1$ \min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.59-7.51$ (m, 2H), 7.20-7.06 (m, 7H), $6.60(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) δ $171.1,169.0,167.5,161.5,159.4(\mathrm{~d}, \mathrm{~J}=241.7 \mathrm{~Hz}$), 134.3 (d, $\mathrm{J}=2.8 \mathrm{~Hz}$), 129.3, 128.9, 128.5, 127.9, 119.9 (d, J = 8.3 Hz), 114.9 (d, J = 22.7 Hz), 84.6, 77.2, 37.4, 28.2, 20.3, 19.7, 15.2. ${ }^{19}$ F NMR (471 MHz , Acetone-d6) $\delta-119.35$. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 423.1827$, found 423.1830

(R)-2-(4-bromophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ha)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1)$ to give the product as a white solid. $43.8 \mathrm{mg}, 91 \%$ yield; $\mathrm{mp}=176-178{ }^{\circ} \mathrm{C} ;[\alpha]_{D^{20}} 172.3$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 90 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=8^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.9 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=18.3 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.55-7.46$ (m, 4H), 7.19-7.06 (m, 5H), $6.60(t, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.4,169.0,167.8,161.5,137.2,131.4,129.3,129.0,128.5,127.9$,
119.8, 116.7, 84.5, 77.3, 37.4, 28.2, 20.3, 19.7, 15.2. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 483.1026$, found 483.1031.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(4-(trifluor omethyl)phenyl)-2,4-dihydro-3H-pyrazol-3-one (3ia)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1$) to give the product as a white solid. $43.4 \mathrm{mg}, 92 \%$ yield; $\mathrm{mp}=152-154{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 214.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 93 \%\right.$ ee $) ;$ HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=14^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.8 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=14.4$ \min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.78$ (d, J = 8.6 Hz , 2H), 7.68 (d, J = 8.7 Hz, 2H), 7.14-7.04 (m, 5H), 6.62 (t, J = $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H})$, 3.56-3.44 (m, 2H), 2.86 (hept, J = 6.9 Hz, 1H), $1.31(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, Acetone-d6) $\delta 171.8,169.0,168.2,161.5,140.9,129.2,128.9$, 128.5, 127.9, 125.7 (q, J = 3.8 Hz), 125.4 (q, J = 32.2 Hz), 124.5 (q, J = 271.2 Hz), 117.8, 84.5, 77.4, 37.4, 28.3, 20.3, 19.7, 15.2. ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Acetone-d6) δ -62.44. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 473.1795$, found 473.1801.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(4-nitroph enyl)-2,4-dihydro-3H-pyrazol-3-one (3ja)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1)$ to give the product as a white solid. $40.4 \mathrm{mg}, 90 \%$ yield; $\mathrm{mp}=175-176{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}^{20}} 228.9$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 88 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=70: 30$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.4 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=6.3 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.24-8.17$ (m, 2H), 7.85-7.78 (m, 2H), 7.11-7.03 (m, 5H), 3.47 (q, J = 7.1 Hz, 2H), 2.85 (hept, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.34-1.29 (m, 6H), 1.19 (d, J = 6.9 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) δ 172.9, 169.3, 169.0, 161.8, 143.8, 142.6, 129.1, 128.3, 128.2, 127.8, 124.0, 117.5, 84.5, 77.3, 37.1, 28.3, 19.8, 19.4, 14.7. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 450.1772$, found 450.1779 .
(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(m-tolyl)-2, 4-dihydro-3H-pyrazol-3-one (3ka)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1$) to give the product as a white solid. $38.9 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=155-156{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 144.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 95 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=14^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.4 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=15.5$
\min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) δ 7.37-7.30 (m, 2H), 7.23-7.07 (m, $6 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H})$, 2.80 (hept, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, Acetone-d6) $\delta 171.3,169.1,167.1,161.6,138.0,137.9,129.4$, 128.9, 128.5, 128.2, 127.9, 125.3, 118.9, 115.6, 84.7, 77.2, 37.4, 28.3, 20.7, 20.4, 19.7, 15.3. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 419.2078$, found 419.2085 .

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(3-methox yphenyl)-2,4-dihydro-3H-pyrazol-3-one (31a)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1)$ to give the product as a white solid. $40.4 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=162-165{ }^{\circ} \mathrm{C}$; $[\alpha]_{D^{20}} 126.4$ (c = 1.0, $\mathrm{CHCl}_{3}, 96 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=13^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=13.2 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=17.0$ min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.27-7.21(\mathrm{~m}, 1 \mathrm{H})$, 7.21-7.15 (m, 3H), 7.15-7.08 (m, 4H), 6.75-6.70 (m, 1H), $6.59(t, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.24(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 6 \mathrm{H})$, 1.09 (d, J = 6.9 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) δ 171.4, 169.1, 167.1, $161.5,159.8,139.1,129.4,129.2,128.9,128.5,127.9,110.4,109.9,104.1,84.7,77.3$, 54.7, 37.4, 28.3, 20.4, 19.6, 15.2. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 435.2027 , found 435.2033.
(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-2-(3-fluorophenyl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ma)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $38.0 \mathrm{mg}, 90 \%$ yield; $\mathrm{mp}=164-165{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 248.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 92 \%\right.$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=16^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=11.0 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.43$ (ddd, $\mathrm{J}=8.3$, 2.1, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{tdd}, \mathrm{J}=8.4,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.34-1.27 (m, 6H), $1.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) δ $171.5,169.0,167.8,162.5(\mathrm{~d}, \mathrm{~J}=242.0 \mathrm{~Hz}), 161.5,139.4(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}), 130.1(\mathrm{~d}, \mathrm{~J}$ $=9.2 \mathrm{~Hz}), 129.3,128.9,128.5,127.9,113.5(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 110.8(\mathrm{~d}, \mathrm{~J}=21.3 \mathrm{~Hz})$, $104.8(\mathrm{~d}, \mathrm{~J}=27.5 \mathrm{~Hz}), 84.5,77.4,37.4,28.2,20.3,19.7,15.2 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Acetone-d6) $\delta-113.43$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$423.1827, found 423.1835.
(R)-2-(3-chlorophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3na)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1$) to give the product as a white solid. $40.3 \mathrm{mg}, 92 \%$ yield; $\mathrm{mp}=154-156{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 224.4$ (c $=1.0, \mathrm{CHCl}_{3}, 94 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2 -propanol $=90: 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=26^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.7 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=16.0$ min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}$), $7.34(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, 3.55-3.43 (m, 2H), 2.84 (hept, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.33-1.27 (m, 6H), 1.14 (d, J = 6.9 Hz , $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Acetone-d6) $\delta 171.5,169.0,167.9,161.5,139.0,133.6$, $130.0,129.3,128.9,128.6,127.9,124.2,117.6,116.2,84.5,77.4,37.4,28.2,20.3$, 19.8, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 439.1531$, found 439.1538.
(R)-2-(3-bromophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3oa)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1)$ to give the product as a white solid. $44.8 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=167-170{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 161.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 93 \%\right.$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=16^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=13.7 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=20.3$ \min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.68(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{dt}, \mathrm{J}=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.5,169.0,168.0,161.5$, $139.1,130.3,129.3,128.9,128.6,127.9,127.2,121.5,120.6,116.6,84.5,77.3,37.4$, 28.2, 20.3, 19.8, 15.2. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$483.1026, found 483.1031.

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(3-(trifluor omethyl)phenyl)-2,4-dihydro-3H-pyrazol-3-one (3pa)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1$) to give the product as a white solid. $42.4 \mathrm{mg}, 90 \%$ yield; $\mathrm{mp}=161-164{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20} 283.4$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 88 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.3 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=6.8$ min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.86-7.79$ (m, 2H), 7.57 (t, J = 8.0 $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 5 \mathrm{H}), 6.62(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}$,
$1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.88$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{dt}, \mathrm{J}=7.1,3.7 \mathrm{~Hz}, 6 \mathrm{H})$, 1.17 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) δ 171.6, 168.9, 168.2, 161.5, 138.4, 130.1 (q, J = 32.2 Hz), 129.6, 129.2, 128.9, 128.6, 127.8, 124.2 ($\mathrm{q}, \mathrm{J}=$ $271.2 \mathrm{~Hz}), 121.3,120.8(\mathrm{q}, \mathrm{J}=4.1 \mathrm{~Hz}), 114.3(\mathrm{q}, \mathrm{J}=4.4 \mathrm{~Hz}), 84.5,77.4,37.4,28.2$, 20.3, 19.8, 15.2. ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Acetone-d6) δ-63.21. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 495.1614$, found 495.1620 .

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(3-nitroph enyl)-2,4-dihydro-3H-pyrazol-3-one (3qa)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $40.9 \mathrm{mg}, 91 \%$ yield; $\mathrm{mp}=157-159{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 257.2$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 85 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=18^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=12.1 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=14.0$ \min (minor); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.35(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.00 (ddd, $\mathrm{J}=8.2,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.94(\mathrm{ddd}, \mathrm{J}=8.3,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-6.92(\mathrm{~m}, 5 \mathrm{H}), 3.47(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.35-1.29 (m, 6H), 1.21 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 172.5$, 169.2, 169.0, 161.8, 148.2, 138.4, 129.4, 129.0, 128.4, 128.3, 127.8, 123.4, 118.8, $112.4,84.5,77.4,37.1,28.2,19.8,19.5,14.7$. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 450.1772$, found 450.1780 .
(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-2-(2-fluorophenyl)-4-hydroxy-5-iso propyl-2,4-dihydro-3H-pyrazol-3-one (3ra)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1)$ to give the product as a white solid. $38.6 \mathrm{mg}, 80 \%$ yield; $\mathrm{mp}=157-158{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 115.3$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 75 \%$ ee $)$; HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=70: 30$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.8 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.7$ \min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.15(\mathrm{~m}$, $4 \mathrm{H}), 6.98(\mathrm{td}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.43(\mathrm{~m}$, $2 \mathrm{H}), 2.74($ hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.5,169.3,167.2,161.5,155.9$ (d, J = 251.9 Hz), $129.8,129.3,128.8,128.7,128.3,126.4,124.8(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}), 124.0(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz})$, $116.3(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}), 84.3,75.8,37.4,28.4,20.4,19.3,15.2 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Acetone-d6) $\delta-119.04$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$423.1827, found 423.1832.
(R)-2-(3,5-dimethylphenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5 -isopropyl-2,4-dihydro-3H-pyrazol-3-one (3sa)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1$) to give the product as a white solid. $39.8 \mathrm{mg}, 92 \%$ yield; $\mathrm{mp}=162-164{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 114.6$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 94 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=0.8$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=13^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.2 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=13.8$ min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) δ 7.25-7.16 (m, 1H), 7.16-7.09 (m, $6 \mathrm{H})$, 6.81-6.77 (m, 1H), 6.57 (t, J = 6.2 Hz, 1H), 6.19 (s, 1H), 3.55-3.43 (m, 2H), 2.79 (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.2,169.1,167.0,161.6,137.8,137.8,129.5$, 128.9, 128.6, 127.9, 126.2, 116.3, 84.8, 77.2, 37.4, 28.2, 20.6, 20.4, 19.8, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 433.2243$, found 433.2241.

(R)-2-(3,4-dichlorophenyl)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5 -isopropyl-2,4-dihydro-3H-pyrazol-3-one (3ta)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1$) to give the product as a white solid. $43.4 \mathrm{mg}, 92 \%$ yield; $\mathrm{mp}=173-176{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 198.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 87 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=6.6 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=7.7 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.69(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, 3.56-3.44 (m, 2H), 2.89-2.82 (m, 1H), 1.34-1.28 (m, 6H), $1.16(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, Acetone-d6) $\delta 171.5,168.9,168.4,161.4,137.5,131.6,130.4$, 129.2, 128.9, 128.6, 127.9, 126.8, 119.2, 117.6, 84.4, 77.4, 37.4, 28.2, 20.3, 19.8, 15.2. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 473.1142$, found 473.1148 .

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-(naphthale n-2-yl)-2,4-dihydro-3H-pyrazol-3-one (3ua)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $42.2 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=168-170{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 193.1$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 95 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.4 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 8.00(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.91-7.82 (m, 3H), 7.76 (dd, J = 9.0, 2.1 Hz, 1H), 7.55-7.43 (m, 2H), 7.20-7.12 (m, $2 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.46(\mathrm{~m}, 2 \mathrm{H})$, 2.88-2.82 (m, 1H), 1.36-1.25 (m, 6H), $1.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.5,169.1,167.5,161.6,135.6,133.4,130.9,129.4,128.9,128.6$, $128.2,127.9,127.7,127.6,126.5,125.2,118.1,115.2,84.7,77.3,37.4,28.3,20.4$,
19.8, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$455.2078, found 455.2084 .

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-methyl-2,4 -dihydro-3H-pyrazol-3-one(3va)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1$) to give the product as a white solid. $30.8 \mathrm{mg}, 90 \%$ yield; $\mathrm{mp}=103-104{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 287.9$ (c = 1.0, $\mathrm{CHCl}_{3}, 89 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.5 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=11.3 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.80$ (s, 1H), 3.51-3.36 (m, 2H), 2.67 (hept, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$), $1.19(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 170.4,168.1,167.4,160.6,128.4,127.7,127.5,126.9,83.3,59.5,36.7,29.6$, 27.1, 19.8, 19.3, 14.5. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 343.1765$, found 343.1769.

(R)-4-hydroxy-5-isopropyl-4-(5-(methylamino)-3-phenylisoxazol-4-yl)-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (3ab)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $36.3 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=177-179{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 217.2$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 96 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.3 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 7.47$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (t, J = 7.8 $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H})$, 6.86 (q, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.96(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.69$ (hept, J = 7.1 Hz, 1H), 1.21 (d, $\mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 172.2$, $169.4,168.0,161.8,137.8,129.5,129.2,129.0,128.6,128.4,125.1,118.5,84.5,77.1$, 29.3, 28.2, 21.1, 20.6. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$391.1765, found 391.1771.

(R)-4-(5-(allylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3ac)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1$) to give the product as a white solid. $37.5 \mathrm{mg}, 90 \%$ yield; $\mathrm{mp}=151-152{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 217.3$ (c = 1.0, $\mathrm{CHCl}_{3}, 93 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=12.7$
\min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, 2H), 7.21-7.06 (m, 6H), 6.76 (t, J = 6.5 Hz, 1H), 6.30 (s, 1H), 6.05 (ddt, J = 17.2, 10.4, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dq}, \mathrm{J}=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dq}, \mathrm{J}=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (ddt, $\mathrm{J}=5.0,5.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Acetone-d6) $\delta 171.3,168.9,167.1,161.6$, 138.0, 135.6, 129.3, 129.0, 128.5, 128.4, 127.9, 124.5, 118.2, 115.2, 85.0, 77.3, 44.7, 28.3, 20.4, 19.6. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 417.1921$, found 417.1925.

(R)-4-(5-(benzylamino)-3-phenylisoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (3ad)

 procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1)$ to give the product as a white solid. $43.3 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=171-172{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 192.3$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 96 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=17.8$ \min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}$, 2H), 7.42-7.26 (m, 5H), 7.21-7.05 (m, 7H), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.73-4.61(\mathrm{~m}, 2 \mathrm{H}), 2.78$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, Acetone-d6) $\delta 171.3,168.9,167.2,161.6,139.7,138.0,129.2,129.0$, 128.5, 128.5, 128.4, 127.9, 127.4, 127.2, 124.6, 118.2, 85.2, 77.3, 46.1, 28.2, 20.4, 19.7. HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 467.2078$, found 467.2085 .

(R)-4-(5-(ethylamino)-3-(p-tolyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2, 4-dihydro-3H-pyrazol-3-one (3ae)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1-5 / 1)$ to give the product as a white solid. 38.9 mg , 93% yield; $\mathrm{mp}=164-167^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 226.8$ (c = 1.0, $\mathrm{CHCl}_{3}, 93 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=20^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.3 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=15.1 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.55-7.49(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.29 (m, 2H), 7.17-7.10 (m, 1H), 7.00-6.95 (m, 2H), $6.86(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.54(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) δ $171.3,168.9,167.2,161.6,138.8,138.0,128.5,128.4,128.3,126.3,124.4,118.1$, 84.9, 77.3, 37.4, 28.2, 20.4, 20.3, 19.9, 15.3. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 441.1897$, found 441.1905.

(R)-4-(5-(ethylamino)-3-(4-methoxyphenyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3af)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1-5 / 1)$ to give the product as a white solid. 39.1 mg , 90% yield; $\mathrm{mp}=166-169{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 262.4$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 93 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol = 70:30, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=20^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.1 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.8 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.62-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.27 (m, 2H), 7.18-7.11 (m, 1H), 7.05-6.98 (m, 2H), 6.63-6.57 (m, 2H), $6.54(\mathrm{t}, \mathrm{J}$ $=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.29(\mathrm{~m}, 6 \mathrm{H})$, $1.15(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.3$, 168.9, 167.3, 161.4, 160.2, 138.1, 129.8, 128.3, 124.4, 121.3, 118.0, 113.3, 85.0, 77.3, 54.5, 37.4, 28.2, 20.4, 19.9, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$435.2027, found 435.2033.

(R)-4-(5-(ethylamino)-3-(4-fluorophenyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-p henyl-2,4-dihydro-3H-pyrazol-3-one (3ag)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ $10 / 1-5 / 1$) to give the product as a white solid. $38.4 \mathrm{mg}, 91 \%$ yield; $\mathrm{mp}=163-166^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 203.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 97 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=70: 30$, flow rate $=$ $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.7 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=$ 18.5 min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H})$, $3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.83$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.3,169.0,167.5,163.0(\mathrm{~d}, \mathrm{~J}=246.6 \mathrm{~Hz}$), 160.7, 137.9, 130.8 (d, J = 9.0 Hz), 128.5, $125.5(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}), 124.6,117.9,114.8$ $(\mathrm{d}, \mathrm{J}=22.0 \mathrm{~Hz}), 84.9,77.3,37.4,28.2,20.4,19.8,15.2 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Acetone-d6) $\delta-113.52$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$423.1827, found 423.1829.

(R)-4-(3-(4-chlorophenyl)-5-(ethylamino)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3ah)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1-5 / 1)$ to give the product as a white solid. 43.5 mg , 90% yield; $\mathrm{mp}=166-16{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20} 208.6$ (c $=1.0, \mathrm{CHCl}_{3}, 98 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=19^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.3 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=16.5 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.31 (m, 2H), 7.19-7.12 (m, 1H), $7.10(\mathrm{~s}, 4 \mathrm{H}), 6.62(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}$, $1 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=$
$6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, Acetone-d6) $\delta 171.2,169.1,167.5,160.6,137.8$, $134.8,130.2,128.5,128.1,128.0,124.6,117.9,84.8,77.2,37.4,28.2,20.4,19.9,15.2$. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 439.1531$, found 439.1535.

(R)-4-(3-(4-bromophenyl)-5-(ethylamino)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3ai)

The title compound was prepared according to the general working procedure and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10 / 1-5 / 1)$ to give the product as a white solid. 43.8 mg , 91% yield; $\mathrm{mp}=156-158{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 237.8$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 96 \%$ ee); HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=24^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.2 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=30.3 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.29 (m, 2H), 7.16-7.08 (m, 5H), $6.59(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.43$ $(\mathrm{m}, 2 \mathrm{H}), 2.80(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Acetone-d6) $\delta 171.4,169.1,167.2,161.5,138.0,129.4,128.9$, 128.5, 128.4, 127.9, 124.5, 118.1, 84.7, 77.3, 37.4, 28.3, 20.4, 19.7, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$483.1026, found 483.1033.

(R)-4-(5-(ethylamino)-3-(3-methoxyphenyl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3aj)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1$) to give the product as a white solid. $40.4 \mathrm{mg}, 93 \%$ yield; $\mathrm{mp}=163-165{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 220.3$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 96 \%$ ee); HPLC:
Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=20^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=17.5 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=21.9$ \min (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.55(\mathrm{dq}, \mathrm{J}=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.28 (m, 2H), 7.17-7.10 (m, 1H), 7.02 (t, J = 7.9 Hz, 1H), 6.73-6.67 (m, 2H), $6.64(\mathrm{dd}, \mathrm{J}=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H})$, $3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.83$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.2,169.0,167.2,161.5,159.2,137.9$, $130.5,129.0,128.3,124.5,120.8,118.2,114.8,113.8,84.6,77.2,54.4,37.4,28.3$, 20.4, 19.8, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 457.1846$, found 457.1853.

(R)-4-(3-(3-chlorophenyl)-5-(ethylamino)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3ak)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $37.4 \mathrm{mg}, 85 \%$ yield; $\mathrm{mp}=158-160{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 196.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$; HPLC:

Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=18^{\circ} \mathrm{C}$, $\mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=16.8 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, Acetone-d6) $\delta 7.59(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 5 \mathrm{H})$, $6.65(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.31(\mathrm{dt}, \mathrm{J}=7.2,3.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.2,169.1,167.4,160.3,137.9,133.5,131.2,129.6,129.1,128.5$, 128.4, 127.1, 124.6, 118.0, 84.6, 77.2, 37.4, 28.3, 20.4, 19.8, 15.2. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 461.1351$, found 461.1357.
(R)-4-(5-(ethylamino)-3-(3-(trifluoromethyl)phenyl)isoxazol-4-yl)-4-hydroxy-5-is opropyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3al)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = $10 / 1-5 / 1)$ to give the product as a white solid. $39.2 \mathrm{mg}, 83 \%$ yield; $\mathrm{mp}=150-152{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 188.6$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 81 \%$ ee); HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=90: 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}=23^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.9 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=24.1 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 2H), 7.38 (d, J = 7.8 Hz, 1H), 7.34-7.24 (m, 3H), 7.15-7.10 (m, 1H), 6.67 (t, J = 6.3 $\mathrm{Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.88$ (hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{dt}, \mathrm{J}=7.2$, $3.7 \mathrm{~Hz}, 6 \mathrm{H}$), 1.17 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 171.1$, $169.2,167.5,160.4,137.7,132.5,130.3,129.9(q, J=32.6 \mathrm{~Hz}), 129.0,128.4,125.8$ $(q, J=3.7 \mathrm{~Hz}), 125.3(\mathrm{q}, \mathrm{J}=4.1 \mathrm{~Hz}), 124.5,123.9(\mathrm{q}, \mathrm{J}=272.1 \mathrm{~Hz}), 117.7,84.7,77.2$, 37.4, 28.2, 20.4, 19.7, 15.2. ${ }^{19}$ F NMR (471 MHz , Acetone-d6) δ-63.24. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 495.1614$, found 495.1621.

(R)-4-(5-(ethylamino)-3-(thiophen-2-yl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-ph enyl-2,4-dihydro-3H-pyrazol-3-one (3am)

The title compound was prepared according to the general working procedure and purified by column chromatography (PE/EA = 10/1-5/1) to give the product as a white solid. $35.7 \mathrm{mg}, 87 \%$ yield; mp $=152-154{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 199.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$; HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}$ $=16^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.3 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=21.3 \mathrm{~min}($ minor $) ;$ ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.67$ (dd, $\mathrm{J}=8.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41-7.34 (m, 3H), $7.17(\mathrm{tt}, \mathrm{J}=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, \mathrm{J}=3.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=5.1,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.82(h e p t, \mathrm{~J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) δ $171.2,169.5,167.4,155.6,138.1,128.6,128.5,128.1,127.4,127.0,124.7,118.3$, 84.8, 77.1, 37.3, 28.4, 20.3, 19.8, 15.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 411.1485$, found 411.1490 .
(R)-4-(5-(ethylamino)-3-(furan-2-yl)isoxazol-4-yl)-4-hydroxy-5-isopropyl-2-phen yl-2,4-dihydro-3H-pyrazol-3-one (3an)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=$ 10/1-5/1) to give the product as a white solid. $33.5 \mathrm{mg}, 85 \%$ yield; mp $=159-162{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 162.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 91 \%\right.$ ee $)$; HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=70: 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}$ $=16^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.5 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=32.5 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) $\delta 7.89-7.83$ (m, 2H), 7.46-7.38 (m, 2H), 7.19 (tt, J = 7.3, 1.2 Hz, 1H), 7.08-7.03 (m, 1H), 6.73 (t, J = 6.2 Hz, 1H), $6.63(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{dd}, \mathrm{J}=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.77$ (hept, J = 6.9 Hz , $1 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) δ 171.6, 169.6, 167.0, 152.6, 143.9, 143.5, 138.7, 128.7, 124.4, 118.0, 111.3, 109.8, 83.5, 77.0, 37.4, 28.4, 20.3, 19.7, 15.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 395.1714$, found 395.1718 .

(R)-4-(5-(ethylamino)-3-phenylisoxazol-4-yl)-5-isopropyl-4-methoxy-2-phenyl-2,4 -dihydro-3H-pyrazol-3-one (4aa)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10 / 1$) to give the product as a white solid. $28.0 \mathrm{mg}, 67 \%$ yield; $\mathrm{mp}=$ 174-176 ${ }^{\circ} \mathrm{C}$; HPLC: Daicel Chiralpak AD-H, hexane: 2-propanol $=$ 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=16^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.4 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Acetone-d6) δ 7.61-7.55 (m, 2H), 7.39-7.31 (m, 2H), 7.21-7.17 (m, 1H), 7.17-7.13 (m, 1H), 7.13-7.06 (m, 4H), $6.67(t, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dtd, J = 13.3, 7.0, 2.0 Hz, 2H), 3.24 (s, 3H), 2.78 (hept, J = 7.0 Hz, 1H), 1.32-1.27 (m, 6H), 1.12 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone-d6) $\delta 169.0,168.7,165.1,161.5,137.6,129.3,129.0$, 128.6, 128.4, 127.9, 124.9, 118.3, 83.6, 83.1, 52.5, 37.4, 28.4, 19.7, 19.3, 15.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 419.2078$, found 419.2083.

(R)-4-(5-(ethyl(methyl)amino)-3-phenylisoxazol-4-yl)-5-isopropyl-4-methoxy-2-p henyl-2,4-dihydro-3H-pyrazol-3-one (5aa)

The title compound was prepared according to the general working procedure and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=20 / 1$) to give the product as a white solid. $31.5 \mathrm{mg}, 73 \%$ yield; $\mathrm{mp}=$ 159-160 ${ }^{\circ} \mathrm{C}$; HPLC: Daicel Chiralpak IC, hexane: 2-propanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=16^{\circ} \mathrm{C}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.9 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d6) δ
7.81 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38-7.27$ (m, 3H), $7.25-7.17$ (m, 3 H), $3.61-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.48$ (hept, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz ,

Acetone-d6) $\delta 171.0,169.9,164.6,163.4,137.5,129.7,129.4,128.9,128.8,128.0$, 125.3, 118.6, 83.6, 77.3, 52.4, 49.4, 38.4, 29.0, 20.2, 19.0, 12.6. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 433.2234$, found 433.2240 .

1.6 A plausible structure of the transition state and DFT calculations.

All the calculations were performed using Gaussian 16 software packages. ${ }^{[55]}$ The geometry of all reactants and transition states were optimized using the (U)B3LYP ${ }^{[56]}$-D3(Becke-Johnson damping function) ${ }^{[57]}$ in toluene (using SMD solvation model ${ }^{[88]}$. In these geometry optimizations, a mixed basis set of $\mathrm{SDD}^{[59]}$ for Cu , while $6-31 \mathrm{G}(\mathrm{d}){ }^{[10]}$ for all the other atoms was used. Vibrational frequency analysis was calculated at the same level of theory to validate each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298 K . For each transition state, the intrinsic reaction coordinate (IRC) analysis was conducted to ensure that it connects the right reactant and product. ${ }^{[S 11]}$ To obtain more accurate energies, solution-phase single point energy calculations were performed at the (U)B3LYP-D3(BJ)/6-311+G(d,p)-SDD level.

Table S3. Thermal correction of Gibbs free energy (TCG, hartree) and single point energies (SP, hartree) in toluene for all species involved in this study

Compounds	TCG	SP	Compounds	TCG	SP
Int-I	0.362192	-2342.895995	TS	0.716866	-3600.298262
$\mathbf{1 c}$	0.126058	-646.027257	Int-III	0.71518	-3600.298463
$\mathbf{2 a}$	0.172227	-611.30592	$(R)-\mathbf{3 c a}$	0.325724	-1257.364543
Int-II	0.711477	-3600.307755			

Scheme 1. (a) Gibbs energy profiles for the Cu-catalyzed Friedel-Crafts Hydroxyalkylation of $\mathbf{1 c}$ with 2a. Free energies in solution (in $\mathrm{kcal} / \mathrm{mol}$) at the (U)B3LYP-D3(BJ)/6-311+G(d,p)-SDD/SMD(Toluene)//(U)B3LYP-D3(BJ)/6-31G(d)SDD/SMD(Toluene) level are displayed. (b) The NCI analysis was obtained by VMD software. ${ }^{[S 12]}$

Cartesian coordinates:

Int-I

C	1.48885100	0.96319700	1.49749100
C	-0.19269600	-0.72949300	1.29604100
C	-0.48775000	0.00672900	2.61579900
C	0.48973800	1.20702900	2.65038800
H	2.53482600	1.08047000	1.78034600
H	1.28534100	1.62753500	0.65918900
H	-0.28268800	-1.81263700	1.39822700
H	-1.52703700	0.32288700	2.69458300
H	-0.29381700	-0.67149000	3.45266800
H	-0.03508100	2.15220800	2.49525200
H	1.00236600	1.26581600	3.61412700
N	1.26290700	-0.44407900	1.05125300
C	2.16461800	-1.41397200	1.75319300
H	1.98524300	-1.36447100	2.83410800
H	1.86309600	-2.41114100	1.41194300
C	3.62185300	-1.15633700	1.47170800
C	4.09709000	-1.08470800	0.13368500

C
C
C
H
C
H
H
O
C
F
F
F
C
C
C
C
C
H
C
H
C
H
H

C
C
C

C
H
C
H
C

H
H
O
Cu
C
C
F
F

F
F

4.51739500	-0.99983800	2.53141400
5.48040800	-0.85702000	-0.06932000
5.87972900	-0.79215300	2.31683900
4.13426400	-1.04880800	3.54825100
6.35375400	-0.72049300	1.00902100
6.55921700	-0.67986600	3.15515100
7.40695700	-0.54810100	0.81750100
3.31082800	-1.22606000	-0.92242700
5.98455600	-0.74731500	-1.47726300
5.39992700	0.27221300	-2.15529900
5.76737800	-1.86937300	-2.20128200
7.32069300	-0.51567200	-1.51804500
-1.02544000	-0.35439000	0.01133000
-1.35929800	1.15307700	-0.06993100
-0.64437900	1.98000200	-0.94274300
-2.38763200	1.72496000	0.69387000
-0.90052900	3.34823100	-1.01035000
0.11243200	1.54161400	-1.58220500
-2.65156300	3.08999800	0.63425300
-3.00750200	1.09913000	1.32629400
-1.89663400	3.90853800	-0.21005000
-0.32765500	3.97614000	-1.68435700
-3.44478900	3.51759200	1.23870800
-2.35304500	-1.13197100	-0.01030400
-3.04009700	-1.18657300	-1.23251700
-2.91779300	-1.75999400	1.10323000
-4.25229500	-1.85455100	-1.34132100
-2.60671700	-0.70201100	-2.09994300
-4.13743500	-2.43341300	1.00233700
-2.42426100	-1.73724100	2.06786000
-4.80611600	-2.48036400	-0.21826100
-4.77390900	-1.88675200	-2.29237700
-4.56440100	-2.91458900	1.87549900
-0.29508400	-0.74891700	-1.12121400
1.50747500	-0.87383400	-0.88339900
-2.21648900	5.37121300	-0.30585400
-6.08948100	-3.24500400	-0.35436800
-2.59078100	5.88394800	0.88997200
-1.16269800	6.09702800	-0.74213700
-3.23766100	5.61165100	-1.16374600
-6.72247900	-3.40055500	0.83066300
-6.95527900	-2.63314700	-1.19534900

[^0]| F | -5.88519800 | -4.48932000 | -0.85275600 |
| :---: | :---: | :---: | :---: |
| 1c | | | |
| C | 2.25170100 | -0.89868400 | 0.00116600 |
| C | 1.04083500 | 1.15728400 | -0.00140100 |
| C | 2.47464100 | 0.57249900 | -0.00088100 |
| O | 3.50500900 | 1.20259000 | -0.00189700 |
| O | 0.73428200 | 2.33416900 | -0.00301800 |
| N | 0.23841400 | 0.03812300 | 0.00049600 |
| N | 0.98753600 | -1.15663100 | 0.00179800 |
| C | -1.77717000 | -1.32629700 | -0.00335800 |
| C | -3.16642100 | -1.42605800 | -0.00350000 |
| C | -3.96383100 | -0.28101800 | -0.00009000 |
| C | -3.35471900 | 0.97390100 | 0.00354600 |
| C | -1.96650900 | 1.09717300 | 0.00389500 |
| C | -1.17646900 | -0.06081500 | 0.00034800 |
| H | -1.15855800 | -2.21416600 | -0.00586900 |
| H | -3.62470800 | -2.41092000 | -0.00635000 |
| H | -5.04636500 | -0.36583300 | -0.00028100 |
| H | -3.96119100 | 1.87507100 | 0.00624600 |
| H | -1.49974600 | 2.07203900 | 0.00665000 |
| C | 3.30929600 | -1.94298500 | 0.00260300 |
| H | 3.95290900 | -1.83618900 | -0.87870200 |
| H | 3.95184900 | -1.83484000 | 0.88452000 |
| H | 2.86170500 | -2.93967500 | 0.00308100 |
| 2a | | | |
| C | -1.79753800 | 0.20211700 | 0.03283800 |
| C | -0.60163400 | 0.88037000 | -0.00104100 |
| C | 0.37514900 | -0.15308100 | 0.02415400 |
| H | -0.45545200 | 1.94816800 | -0.03500000 |
| O | -1.57202200 | -1.12547600 | 0.06675600 |
| N | -0.17117500 | -1.35734000 | 0.06513500 |
| C | 1.84233000 | -0.01540000 | 0.00717000 |
| C | 2.66306900 | -1.15496600 | -0.00713000 |
| C | 2.44170100 | 1.25164100 | 0.00525600 |
| C | 4.04838600 | -1.02542800 | -0.02266800 |
| H | 2.20181200 | -2.13676500 | -0.00599600 |
| C | 3.82989300 | 1.37858100 | -0.01098500 |
| H | 1.82308300 | 2.14344100 | 0.01860300 |
| C | 4.63805400 | 0.24147700 | -0.02502000 |
| H | 4.67085400 | -1.91582700 | -0.03357500 |
| | | S26 | |

H
H
N
H
C
H
H
C
H
H
H

Int-II

C
C
C
C
H
H
H
H
H
H
H
N
C
H
H
C
C

C
C
C
H
C
H
H

O
C

F
F
F

4.27912300	2.36777600	-0.01187100
5.71983900	0.34048900	-0.03757100
-3.09455500	0.61294100	0.08459900
-3.23267200	1.57504700	-0.20050800
-4.19801800	-0.29778900	-0.22916900
-4.16400700	-0.61352600	-1.28277700
-4.07246200	-1.19640800	0.38081100
-5.52851000	0.37250500	0.08399000
-6.35595000	-0.30974900	-0.13581400
-5.58328200	0.65650700	1.14028200
-5.67189900	1.27528300	-0.52314300

0.43745400	2.87533800	1.88897100
2.18415200	2.40307800	0.34437900
2.87055900	3.07813800	1.54389300
1.76231100	3.19966500	2.61956200
-0.35609700	3.59965300	2.06989700
0.06147600	1.89394800	2.16793500
2.56065100	2.76452300	-0.61399000
3.73698100	2.51962700	1.89954000
3.22964200	4.06799200	1.24514000
1.92300400	2.49351200	3.43730200
1.74430600	4.20443300	3.05041100
0.76070600	2.86424200	0.43018500
0.58721900	4.23517500	-0.16315400
1.23601300	4.95105800	0.35594300
0.92534900	4.16386800	-1.20287700
-0.84273600	4.69226000	-0.08547700
-1.84434900	3.89653400	-0.70448300
-1.20169000	5.85424400	0.59554200
-3.19524500	4.30779500	-0.57770800
-2.53416800	6.26587200	0.68394400
-0.42084900	6.44853900	1.06627900
-3.52722400	5.48105100	0.10007700
-2.79505000	7.17687000	1.21271500
-4.56917900	5.77242000	0.17741600
-1.55536000	2.81219600	-1.38761400
-4.25465600	3.43369400	-1.17414500
-4.24443000	2.17413400	-0.65776100
-4.13528500	3.29321400	-2.51569800
-5.50098500	3.92180400	-0.94954000
	527	

C
C
C
C

C

H
C
H
C
H
H
C
C
C
C
H
C
H
C
H
H
O
Cu
C
C
C
H
O
N
C
C
C
C
H
C
H
C
H
H
H
N
H

2.24565500	0.83267900	0.26813600
2.14684700	0.14929600	1.65037100
3.26228600	0.01614700	2.48211100
0.92761300	-0.38334900	2.08500700
3.14987700	-0.59648200	3.73236100
4.23219800	0.37382200	2.15600000
0.81501000	-0.99640800	3.33299200
0.05912300	-0.29518100	1.44563800
1.92522300	-1.10494900	4.16871900
-0.14558000	-1.38774700	3.65613700
1.84518900	-1.57848900	5.14090300
3.55751500	0.36665700	-0.39334600
3.68391100	-1.01040300	-0.64550800
4.60175300	1.20843200	-0.78345300
4.79436100	-1.52433400	-1.29974800
2.89656600	-1.68241600	-0.32331900
5.72719400	0.69978400	-1.43827900
4.56733100	2.27294900	-0.58403800
5.82193100	-0.66334000	-1.70400500
4.87128700	-2.59015800	-1.48869700
6.52792000	1.36834400	-1.73479300
1.19600700	0.40020800	-0.55602300
-0.24818500	1.59068100	-0.79563600
0.05386500	-2.40252700	-2.04116900
-0.66246100	-2.48699500	-0.84265600
-1.49745100	-3.63032700	-1.02496000
-0.43841900	-1.94889600	0.06150400
-0.36337000	-3.36892100	-2.88367100
1.19236800	-0.77765600	-1.75137300
-1.36520900	-4.16012100	-2.22463800
-2.47237700	-4.17011900	-0.06725400
-3.53691900	-4.97157300	-0.50919200
-2.35756000	-3.87176000	1.29780800
-4.45957900	-5.47258500	0.40406800
-3.63399100	-5.18436600	-1.56835800
-1.53882000	-3.25157900	1.64890300
-4.33748800	-5.17381600	1.76395100
-3.19468300	-4.12484900	3.26107500
-5.06722300	-5.55384600	2.47270600
-1.51930700	-2.43976800	
	-6.375000	

C	1.54962000	-1.48123200	-3.77226400
H	2.33898900	-2.24140200	-3.84244500
H	0.78343200	-1.73777300	-4.51092000
C	-3.07352500	-1.24079300	-2.38957600
C	-2.47659300	-0.31563300	-0.30117300
C	-2.03649100	-0.40464100	-1.75171200
O	-1.13640700	0.27700800	-2.24967100
O	-1.90538500	0.33218500	0.57743100
N	-3.62589700	-1.04729200	-0.25407700
N	-3.96845900	-1.57792100	-1.51707500
C	-5.64920000	-2.05322400	0.63554900
C	-6.48395000	-2.33131400	1.71505100
C	-6.17121400	-1.87286800	2.99543000
C	-5.00872200	-1.12517200	3.18826700
C	-4.15927600	-0.83655100	2.12195000
C	-4.48454300	-1.30660500	0.84231500
H	-5.88138200	-2.41750400	-0.35574300
H	-7.38437400	-2.91546200	1.54853800
H	-6.82688500	-2.09329000	3.83258700
H	-4.75441300	-0.75709600	4.17823600
H	-3.26031100	-0.25592600	2.27452300
C	2.12114400	-0.09502900	-4.04460200
H	2.58229700	-0.07265000	-5.03717000
H	1.33213900	0.66344300	-4.00987600
H	2.88621900	0.16669600	-3.30700800
C	-3.13428800	-1.64415800	-3.81779000
H	-3.06624600	-0.76223100	-4.46520800
H	-2.29658600	-2.30538600	-4.06342600
H	-4.06997700	-2.17104000	-4.01867100
C	4.38316400	-0.75687100	4.57290300
C	6.99029700	-1.21346200	-2.46718400
F	7.36952800	-2.42715600	-2.00544400
F	6.69695500	-1.37763900	-3.78149900
F	8.07053000	-0.40365100	-2.40760800
F	5.19407000	0.32502900	4.48845300
F	5.12459100	-1.82241100	4.18395100
F	4.09318500	-0.93889300	5.88031900

Int-III

C
C
C

0.34178700	3.22797400	1.13000800
2.09943200	2.42796800	-0.25719200
2.75329900	3.46303900 0.67402700 s29	

C
H
H
H
H
H
H
H
N
C
H
H
C
C
C
C
C
H
C
H
H
O
C

F
F

F

C
C
C
C
C
H
C
H
C
H
H

C
C
C
C
H

1.64848200	3.83513200	1.69405900
-0.49370000	3.92683000	1.10818400
0.03106900	2.35654900	1.70163600
2.43700400	2.52152400	-1.29039800
3.65401600	3.08074200	1.15577500
3.05131600	4.33999200	0.09117800
1.86220900	3.41944900	2.68153000
1.56815300	4.92008300	1.80424000
0.64884500	2.79644000	-0.26665300
0.39154200	3.91289500	-1.24027200
1.04257700	4.76620300	-1.01307900
0.67731400	3.52690100	-2.22602100
-1.04397700	4.35299000	-1.22353100
-2.06013600	3.38574900	-1.46517600
-1.38742400	5.67844800	-0.96277500
-3.41099900	3.82562800	-1.41161300
-2.71945700	6.09881400	-0.93923600
-0.59195800	6.39753400	-0.77516500
-3.72642900	5.16026700	-1.15970200
-2.96774700	7.13648500	-0.74092700
-4.76833000	5.46068100	-1.12859800
-1.79701200	2.13501800	-1.74387400
-4.48905600	2.80722000	-1.61442700
-4.44251200	1.80951100	-0.69370900
-4.43542100	2.21038000	-2.82847200
-5.72956600	3.35488200	-1.51388300
2.27740700	0.91379600	0.11706300
2.20694700	0.65144900	1.63654200
3.31961300	0.83931700	2.46163600
1.01982500	0.18830800	2.21645100
3.23619600	0.60414100	3.83593000
4.26687100	1.15398800	2.03806900
0.93690100	-0.04664200	3.58934300
0.14845600	0.03579300	1.59148900
2.04359600	0.16163400	4.41066000
0.00099300	-0.39007600	4.02074100
1.98552000	-0.01768900	5.47846500
3.61808600	0.36237800	-0.40661400
3.86697400	-1.00295700	-0.18241700
4.54978100	1.08864800	-1.15299600
4.96986700	-1.63567100	-0.73713900
3.17215700	-1.57349100	0.42418900
330		

C
H
C
H
H
O
Cu
C
C
C
H
O
N
C
C
C
C
H

C
H
C
H
H

H
N
H

C
H
H
C
C
C
O
O
N
N

C
C
C
C
C
C

5.66271400	0.46022000	-1.71876400
4.42677800	2.15213600	-1.31943100
5.86330400	-0.90396800	-1.52849400
5.14079200	-2.69293200	-0.56151400
6.36486100	1.03529700	-2.31236600
1.27085200	0.19581900	-0.54455700
-0.30687900	1.16258800	-1.05607400
0.42491300	-2.82079200	-1.35528900
-0.61004600	-2.38887100	-0.40901800
-1.22172100	-3.70688600	-0.07914100
-0.23215700	-1.78306300	0.41288700
0.27060500	-4.10768800	-1.66739000
-0.77963700	-4.67341000	-0.82280000
-2.29356700	-3.93399100	0.89481800
-3.21228100	-4.98038300	0.70853500
-2.42230800	-3.08707800	2.00623300
-4.24381500	-5.16909300	1.62206000
-3.12038300	-5.61978200	-0.16293500
-3.45935000	-3.28046100	2.91533300
-1.72459100	-2.27058200	2.15553000
-4.37203700	-4.31812800	2.72387600
-4.96023100	-5.97003600	1.46634000
-3.56517000	-2.60777900	3.76003700
-5.19143500	-4.45419900	3.42304300
1.34504400	-2.08780100	-1.88933600
1.41225200	-1.10831800	-1.48951500
2.29355400	-2.54256700	-2.91465600
3.13153300	-3.04053000	-2.41529800
1.79032700	-3.27998300	-3.54572000
-2.73927200	-2.09474700	-1.93798300
-2.47376300	-0.70360600	-0.05771700
-1.65426000	-1.31216000	-1.21847300
-0.96706300	-0.45931900	-1.95949800
-2.02274400	0.04717100	0.80441200
-3.73558000	-1.19857800	-0.19464500
-3.87558700	-2.01534400	-1.34455200
-5.93921100	-1.92494000	0.51171700
-7.01181700	-1.84246600	1.39619300
-7.00333100	-0.91674700	2.44113800
-5.91007500	-0.06140700	2.58712300
-4.82858300	-0.12571600	1.71019100
-4.84380300	-1.06825200	0.67315100
	531	

H	-5.93456500	-2.64792200	-0.29301000
H	-7.85757500	-2.51186900	1.26609700
H	-7.84200500	-0.85752900	3.12874500
H	-5.89540900	0.67290000	3.38774200
H	-3.98538200	0.54071900	1.81980900
C	2.78583500	-1.35482700	-3.72984300
H	3.53757200	-1.69215400	-4.44995300
H	1.95968500	-0.88626200	-4.27462700
H	3.24914200	-0.60284500	-3.08547500
C	-2.55580400	-2.80974400	-3.22779400
H	-2.10954000	-2.12652600	-3.95950200
H	-1.87832700	-3.66451300	-3.11732100
H	-3.51661900	-3.16936300	-3.60410200
C	4.46971700	0.77248400	4.67420300
C	6.97163200	-1.62051200	-2.23856000
F	7.51024200	-2.60355400	-1.48222500
F	6.52021000	-2.21431400	-3.37484600
F	7.97467800	-0.79364100	-2.60323600
F	5.19622200	1.84974900	4.29123600
F	5.29529300	-0.29878600	4.57735100
F	4.18330300	0.92756400	5.98553000

(R)-3ca

C
C
C

H
O
N
C
C

C
C
H
C
H
C
H
H
H
N
H

3.08759100	0.43792300	0.05061100
1.70967700	0.30292100	-0.02440000
1.23152600	1.60941400	0.30034700
1.69014500	-1.24973600	-2.20660200
3.41102700	1.70014200	0.36405800
2.21102700	2.46138900	0.53451200
-0.16503100	2.08606800	0.38628600
-1.09874800	1.41785700	1.18944800
-0.56491400	3.21374000	-0.34270300
-2.42119600	1.85499900	1.24074100
-0.79011200	0.55904900	1.77644700
-1.88644500	3.65171700	-0.28440800
0.16222000	3.72921900	-0.96162400
-2.81800300	2.96960100	0.50077600
-3.14099700	1.31935200	1.85191600
-2.19101100	4.52121700	-0.86000900
-3.85110300	3.30361300	0.53424400
4.08407900	-0.46477600	-0.10910100
3.78050900	-1.29230000	-0.61270300

C
H
H
C
C
C
O

O
N
N
C
C
C
C
C
C
H
H
H
H
H
C
H

H
H
C
H
H
H

5.48231200	-0.06302200	-0.27020600
5.62842700	0.47784600	-1.21688400
5.72911200	0.62973500	0.53909100
0.62662900	-1.84105400	0.75334600
-0.39239900	-0.70613200	-1.03582800
0.99934500	-0.95845000	-0.42116800
1.77365300	-1.72312500	-1.35632200
-0.59117100	-0.13868600	-2.09659100
-1.28722500	-1.31602900	-0.18956600
-0.64475300	-1.98338000	0.87631900
-3.41872700	-1.99007600	0.75970600
-4.81060100	-1.92969200	0.76520300
-5.49514100	-1.17649000	-0.18939100
-4.76923400	-0.47932100	-1.15594300
-3.37719400	-0.52510600	-1.17894200
-2.70002400	-1.28598900	-0.21526500
-2.88488700	-2.56715100	1.50335900
-5.36001700	-2.47782700	1.52552100
-6.58024900	-1.13296100	-0.17957900
-5.28700200	0.11492400	-1.90358500
-2.81745400	0.02503300	-1.92177800
6.38045400	-1.29107400	-0.21260100
7.42906700	-0.99756500	-0.32428300
6.26556000	-1.81379500	0.74291600
6.14233900	-1.99427600	-1.02025500
1.60159500	-2.45085000	1.69579400
2.24234500	-3.16644600	1.16587100
2.25650500	-1.68418600	2.12474800
1.07780600	-2.97273500	2.50046700

REFERENCES:

[S1] (a) F. Guo, G. Lai, S. Xiong, S. Wang, Z. Wang, Chem. Eur. J., 2010, 16, 6438;
(b) S. Zhang, K. Xu, F. Guo, Y. Hu, Z. Zha, Z. Wang, Chem. Eur. J., 2014, 20, 979.
[S2] P. Chauhan, S. Mahajan, U. Kaya, A. Peuronen, K. Rissanen and D. Enders. J. Org. Chem., 2017, 82, 7050-7058.
[S3] R. Wang, Y. Li, H. He, Y. Xiao, F. Chen. Chem.Eur.J., 2021, 27, 4302-4306.
[S4] M. Li, Y. Chen, Y. Yan, M. Liu, M. Huang, W. Li, L. Cao and X. Zhang. Org. Biomol. Chem., 2021,19, 3820-3824.
[S5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci,
H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
[S6] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. (b) C. T. Lee, W. T. Yang, W. T. Parr, Phys. Rev. B., 1988, 37, 785.
[S7] (a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; (b) S. Grimme, S. Ehrlich, L. J. Goerigk, Comput. Chem., 2011, 32, 1456.
[S8] A. V. Marenich, C. J. Cramer, D. G.Truhlar, J. Phys. Chem. B., 2009, 113, 6378.
[S9] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta., 1990, 77, 123.
[S10] W. J. Hehre, L. Radom, P. V. R. Schleyer, J. A Pople. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
[S11] (a) K. Fukui, Acc. Chem. Res., 1981, 14, 363. (b) K. J. Fukui, Phys. Chem., 1970, 74, 4161.
[S12] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics., 1996, 14, 33. [S1] Guo, F.; Lai, G.; Xiong, S.; Wang, S.; Wang, Z. Monodentate N-Ligand-Directed Bifunctional Transition-Metal Catalysis: Highly Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes Chem. Eur. J. 2010, 16, 6438.

Part II NMR spectra

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 d}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 e}$

 NNNNNNNNN

のペ毋ூ毋 Nن NiN NiN

$\stackrel{\circ}{\circ} \stackrel{\circ}{\top}$

${ }^{1} \mathrm{H}$ NMR，${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{1 g}$
 へNNNNNNNNNNNNN

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 h}$

$\bar{\circ}$
$\stackrel{\text { in }}{1}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 k}$

-184.7
N(Nomoñ
$\stackrel{\infty}{\infty} \stackrel{\circ}{\oplus}$
ஸNㅜㅇ

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 n}$

$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\omega}{\omega} \end{aligned}$	Nov or		$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 s}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of
1v

$\stackrel{+9}{\circ}$ $\stackrel{\infty}{\infty} \stackrel{\oplus}{\sim}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ba
 rinurinininjinegoo

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ca

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3da

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 e a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f a}$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 3ga

$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ha

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 3ia

						$\begin{aligned} & \text { T } \\ & \text { O } \\ & \text { ij } \end{aligned}$							$\stackrel{\uparrow}{\top}$	$\stackrel{7}{2}$								
. 0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5. 5	5.0	$\begin{gathered} \mathbf{4}^{1} 5 \\ \mathrm{f1}(\mathrm{ppm}) \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1

Z
i
i

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 k a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 31a

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 m a}$

$\stackrel{m}{\stackrel{m}{m}}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3na

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 o a}$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 3pa

$\stackrel{\text { d }}{\stackrel{\circ}{j}}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3sa

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ta

O

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ua

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3va

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of
3ab

죽둔 N N N N N N N N N N

$\stackrel{\sim}{\infty} \underset{1}{\text { i }}$
MN~ロ

$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a c}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ad


```
NNNNNNNNNNNNNNNNO
```


${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ae

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a f}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a g}$

\qquad

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a h}$

 $\underbrace{\text { ÑNゥ }}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ai

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a j}$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 3al

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3an

$$
\begin{aligned}
& \text { NNNNNN }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 a a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 a a}$

Part III HPLC Spectra

3aa racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime [min] vidth [min]
7.70
9.51
1.44

1. 45

Arer [mAU*s]
4241.65
4197.59

Height [mAU]
247.41
196. 27

Areas
50.26
49. 74

3aa

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Areas
7.74	1.43	8510.05	487.34	99.54
9.65	0.43	39.69	2.78	0.46

3ba racemic mixture:

Signal: \quad DAD1B, Sig $=254,4 \quad$ Ref $=o f f$
RetTime [min] vidth [min]
$8.13 \quad 0.96$
Arer [mAU*s]
1286. 19
1214.00

Height [maU]
68.54

Areas
51.44
50.64
48. 56

3ba

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	Areak
8.13	1.35	9068.29	465.37	97.47
10.00	0.65	235.61	11.68	2.53

3ca racemic mixture:

Signal: \quad DAD1B, Sig $=254,4 \quad$ Ref $=o f f$

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Areas
9.54	1.84	880.42	26.65	51.79
13.0	2.44	819.59	17.97	48.21

3ca

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Areas
9.44	2.14	7774.57	257.05	97.22
12.6	1.93	222.72	5.58	2.78

3da racemic mixture:

Signal: DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Areas
6.97	1.32	3491.75	153.25	51.64
9.70	1.54	3269.36	97.91	48.36

3da

Signal: \quad DAD1B, Sig $=254,4 \quad$ Ref $=$ off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	AreaS
6.97	1.34	7958.30	349.25	98.49
9.71	0.93	121.61	4.26	1.51

3ea racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=$ off

RetTime [min]	vidth [min]	Arer[mAlJs]	Height [mAJ]	Areas\%
16.6	2.63	7309.58	150.27	49.44
22.8	3.16	7476.24	115.02	50.56

3ea

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime [min]	Tidth [min]	Arer [mAU*s]	Height [mAU]	AreaS
16.6	2.98	12521.45	254.86	98.30
22.8	1.80	216.09	3.94	1.70

3fa racemic mixture:

Signal:	DAD1B, Sig=254, 4		Ref=off		
RetTime $[\mathbf{m i n}]$	vidth [min]	Arer [mAU*s]	Height [mAU]	Areas	
17.3	2.97	1345.23	24.88	50.23	
23.2	3.69	1332.76	18.71	49.77	

3fa

Signal: \quad DAD1B, $S i g=254,4 \quad$ Ref $=o f f$

RetTime [min]	width [min]	Arer [mAU*s]	Height[mAU]	Areas
17.3	3.38	12639.41	231.01	97.55
23.2	2.47	317.20	4.80	2.45

3ga racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	vidth $[\min]$	Arer [mAU*s]	Height [mAU]	Areas
11.2	1.38	1785.62	60.88	49.97
14.0	1.65	1787.73	48.19	50.03

3ga

3ha racemic mixture:

Signal: $\quad D A D 1 B, \operatorname{Sig}=254,4 \quad$ Ref $=$ off

RetTime $[\min]$	midth [min]	Arer [mAU*s]	Height [mAU]	AreaS
15.1	2.08	3367.34	87.16	49.66
18.7	2.45	3414.11	74.21	50.34

3ha

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime[min]	width [min]	Arer [mAJ*s]	Height[mAJ]	Areas
14.9	2.21	13055.25	356.25	95.92
18.3	1.22	555.57	14.57	4.08

3ia racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	AreaS
11.8	1.75	6154.34	178.72	50.20
14.4	1.93	6104.53	152.01	49.80

3ia

Signal:	DAD1B, Sig=254, 4	Ref=off			
RetTime $[$ min]	vidth [min]	Arer [mAU*s]	Height [mAU]	AreaS	
11.8	1.73	9110.24	274.40	97.08	
14.4	1.29	273.62	7.47	2.92	

3ja racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	midth [min]	Arer [mAU*s]	Height[mAJ]	Areas
4.38	0.76	2222.76	218.93	51.08
6.29	0.80	2128.86	122.78	48.92

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref $=$ of f

RetTime [min]	vidth [min]	Arer [mAU*s]	Height[mAU]	Areas
4.36	0.94	4452.73	435.58	89.81
6.29	0.84	505.14	30.06	10.19

3ka racemic mixture:

Signal:	DAD1B, Sig=254, 4	Ref=off			
RetTime $[\mathbf{m i n}]$	vidth [min]	Arer [mAU*s]	Height [mAJ]	Areas	
11.4	1.86	2529.70	78.29	49.70	
15.5	2.25	2560.18	59.60	50.30	

3ka

3la racemic mixture:

Signal:	DAD1B, Sig=254, 4		Ref=off			Height [mavi]		Areas
RetTime	[min]	width	[min]	Arer	[mAU*s]			
	13.2		1. 82		2415.88		61.38	50.30
	16.9		2.03		2387.02		49.84	49.70

31a

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	AreaS
13.2	2.24	9154.73	230.50	97.82
17.0	1.91	203.69	4.29	2.18

3ma racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	vidth [min]	Arer [mAJ*s]	Height[mAU]	Areas
8.65	1.11	4276.33	199.29	49.82
11.0	1.33	4307.03	154.11	50.18

3ma

Signal: DAD1B, Sig=254,4 Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height[mA0]	AreaK
8.64	1.39	12722.70	568.76	97.08
11.0	0.71	382.95	17.28	2.92

3na racemic mixture:

Signal: \quad DAD1B, Sig $=254,4 \quad$ Ref $=o f f$

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAJ]	Areas\%
11.6	1.68	2750.18	98.06	50.08
15.8	1.75	2741.09	75.77	49.92

3na

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Areas
11.7	2.06	8435.20	291.65	97.16
16.0	1.22	246.89	7.31	2.84

3oa racemic mixture:

Signal: DADIB, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAV]	Areass
13.7	3.00	941.58	22.57	50.07
20.2	3.51	938.81	16.63	49.93

309

Signal: DADIB, Sig=254, 4 Ref=off

RetTime [min]	midth [min]	Arer [mAU*s]	Height [mAU]	AreaS
13.7	2.27	7098.35	176.77	96.82
20.3	1.78	232.81	4.58	3.18

3pa racemic mixture:

Signal: DAD1B, Sig=254,4 Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height[mAU]	Areas
5.34	0.81	3057.53	247.47	50.03
6.79	0.94	3053.77	189.70	49.97

3pa

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	AreaK
5.34	0.92	7393.46	554.57	94.65
6.80	0.65	418.30	28.29	5.35

3qa racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref=off
RetTime [min] width [min]
12.1

1. 64
14.0
1.99
Arer [mAU*s]
2. 30
5746.86

Height [mAU]
177.31

Areas
49.75
152.93
50.25
$3 q a$

Signal: DAD1B, Sig=254,4 Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAJ]	Areas
12.1	1.79	8180.31	254.83	93.29
14.0	1.15	588.75	17.40	6.71

3ra racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime[min]	vidth [min]	Arer [mAJ*s]	Height[mAU]	AreaS
4.83	0.97	1256.17	127.32	50.60
10.7	1.49	1226.44	39.67	49.40

3ra

Signal: DAD1B, Sig=254, 4 Ref $=$ off

RetTime[min]	vidth [min]	Arer [mAU*s]	Height [mAU]	Areas\%
4.83	0.61	4765.74	483.49	92.06
10.7	1.00	410.79	14.59	7.94

3sa racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height[mAU]	Area\%
10.2	1.42	1595.44	53.09	50.01
13.8	2.04	1594.69	42.01	49.99

3sa

Signal: \quad DADIB, $\operatorname{Sig}=254,4 \quad$ Ref=off
RetTime [min] width [min]

10.2	1.65
13.8	1.15

Arer [mAU*s]
Height [mAU]
Areas
334.31
97.67
7.21
2. 33

3ta racemic mixture:

Signal: \quad DAD1B, $\mathrm{Sig}=254,4$ Ref=off

RetTime[min]	vidth [min]	Arer [mAU*s]	Height[mAU]	Areas
6.59	0.81	5416.84	346.29	49.52
7.70	1.17	5521.42	293.29	50.48

3ta

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime[min]	vidth [min]	Arer [mAU*s]	Height[mAU]	Areas
6.59	1.06	12099.60	756.51	93.80
7.71	1.14	800.36	41.50	6.20

3ua racemic mixture:

$34 a$

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	AreaK
8.43	1.93	22340.54	954.86	97.84
12.2	1.10	492.13	16.45	2.16

3va racemic mixture:

Signal:	DAD1B, Sig=254, 4	Ref=off			
RetTime $[$ min]	width [min]	Arer [mAU*s]	Height [mAU]	Areas	
7.49	1.45	16535.91	1089.95	51.30	
10.8	1.22	15696.56	553.73	48.70	

3va

3ab racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=$ off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAJ]	AreaK
9.13	1.48	279.94	12.71	50.93
12.6	1.85	269.77	8.59	49.07

3ab

3ac racemic mixture:

Signal: DAD1B, $\operatorname{Sig}=254,4$ Ref=off
RetTime [min] width [min]
Arer [mAU*s]
2130.84
2123.98
Height [mAU]
99.28
68.41
Areas
50.08
49.92
$3 a c$

Signal: $\quad D A D 1 B, S i g=254,4 \quad$ Ref $=o f f$
RetTime [min] width [min]
$8.63 \quad 1.51$
$12.7 \quad 1.39$
Arer [mAU*s]
8094.62
97.47

Height [mAV]
Areas
98.81
ic mixture:
3ad racemic mixture:

Signal: DAD1B, $\operatorname{Sig}=254,4$ Ref $=$ off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAJ]	Areas
12.2	1.53	1630.54	52.57	49.71
17.8	2.24	1649.28	36.63	50.29

3ad

Signal: \quad DADIB, $\operatorname{Sig}=254,4$ Ref=off
RetTime [min] width [min]
$12.2 \quad 2.00$
Arer [mAU*s]
Height [mAU]
136. 18

Areas
4240.58
105.56
2. 37
97.57
17.8
1.85
2. 43

3ae racemic mixture:

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height[mAU]	AreaK
11.3	1.58	8037.74	262.58	50.34
15.1	1.69	7928.36	206.51	49.66

$3 a \mathrm{e}$

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime $[\mathbf{m i n}]$	vidth $[\mathbf{m i n}]$	Arer [mAU*s]	Height [mAU]	Areass
11.3	1.55	10401.98	341.86	96.68
15.1	1.60	357.19	9.45	3.32

3af racemic mixture:

Signal: DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	Areas
4.10	0.83	12682.65	1406.65	50.39
10.7	1.68	12487.55	347.77	49.61

3af

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime[min]	width [min]	Arer [mAU*s]	Height [mAU]	AreaK
4.09	0.85	13567.88	1438.70	96.87
10.8	1.18	438.27	13.22	3.13

3ag racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	Areass
9.70	2.43	613.29	18.73	50.40
18.6	2.80	603.67	13.65	49.60

$3 a g$

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=$ off

RetTime $[$ min]	vidth [min]	Arer [mAU*s]	Height [mAU]	AreaK
9.68	2.02	8387.63	299.49	98.26
18.5	1.80	148.56	3.42	1.74

3ah racemic mixture:

Signal: $\quad D A D 1 B, S i g=254,4 \quad$ Ref $=$ off f

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	Areas
10.4	1.46	1835.10	61.27	50.78
16.5	1.96	1778.53	42.49	49.22

3ah

Signal: \quad DAD1B, Sig $=254,4$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	AreaS
10.3	1.92	10047.43	340.29	98.92
16.5	1.56	109.37	2.66	1.08

3ai racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	width [min]	Arer [mAJ*s]	Height [mAU]	AreaK
20.2	2.20	3522.17	67.11	49.85
30.3	3.08	3543.22	46.84	50.15

3ai

3aj racemic mixture:

3aj

Signal: DAD1B, Sig=254, 4 Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height[mAU]	Areas
17.5	2.72	6708.98	137.02	98.10
21.9	1.76	129.69	2.54	1.90

3ak racemic mixture:

Signal: \quad DAD1B, Sig $=254,4$ Ref $=$ off
RetTime [min] width [min]

12.4	1.37
16.8	1.58

Arer [mAU*s]
1371.00
1333.70
Height [mAJ]
42.50
32.94
Areas
50.69
49.31

3ak

Signal: \quad DAD1B, Sig $=254,4$ Ref=off

RetTime $[\mathbf{m i n}]$	midth [min]	Arer [mAU*s]	Height [mAU]	Areas
12.3	1.65	10557.91	319.87	98.21
16.8	1.34	191.96	5.08	1.79

3al racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height[mAU]	Areas
5.94	1.26	1490.19	63.21	49.96
23.9	3.91	1492.37	19.03	50.04

3al

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	AreaK
5.95	1.28	6740.55	413.54	91.65
24.1	2.99	614.24	8.03	8.35

3am racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref=off

RetTime [min]	width [min]	Arer [mAU*s]	Height[mAU]	Areas
14.3	1.86	22191.77	566.55	49.96
21.3	2.41	22230.57	382.69	50.04

3am

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=$ off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	AreaK
14.3	2.37	8190.48	213.45	97.62
21.3	1.91	199.89	3.67	2.38

3an racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref=off

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	AreaS
14.5	2.52	13481.13	306.91	49.94
32.4	5.07	13514.97	126.01	50.06

3an

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime [min]	vidth [min]	Arer [mAU*s]	Height [mAU]	AreaK
14.5	2.40	12274.57	279.87	96.52
32.5	3.11	442.53	4.73	3.48

4aa racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4$ Ref $=o f f$

RetTime [min]	width [min]	Arer [mAU*s]	Height [mAU]	Areas
5.45	0.99	3293.22	266.90	50.30
8.25	1.18	3253.44	169.28	49.70

$4 \mathbf{a a}$

Signal: DAD1B, $\operatorname{Sig}=254,4$ Ref=off
RetTime [min]
width [min]
$5.45 \quad 0.80$
8.29
0.85
Arer [mAJ*s]
13438.68
105. 44
Height [mAJ]
1068.52
Area\%
99.22
5. 63
0.78

5aa racemic mixture:

Signal: \quad DAD1B, $\operatorname{Sig}=254,4 \quad$ Ref $=o f f$

RetTime [min]	$\boldsymbol{\text { vidth}}[\mathbf{m i n}]$	Arer [mAU*s]	Height[mAU]	Areas
8.78	0.97	1039.07	118.52	49.67
12.5	2.01	1053.01	27.02	50.33

Signal: DAD1B, Sig=254,4 Ref=off
RetTime [min] vidth [min]
8.93
1.41
Arer [maU*s]
7451.70
12.3

1. 12
73.02
Height [malu]
421.62
3.08
Areas
2. 03
0.97

Part IV Crystal data

(\boldsymbol{R})-3aa (25 mg): single crystals are formed in $\operatorname{THF}(0.7 \mathrm{ml})$ at room temperature about 5 days.

CCDC:2335999

Identification code	SCD-GSY2023-0706_auto
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$
Formula weight	404.46
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a/Å	8.99824(7)
b/Å	13.13119(9)
c/ \AA	17.79770(13)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/ \AA^{3}	2102.93(3)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.277
μ / mm^{-1}	0.701
$\mathrm{F}(000)$	856.0
Crystal size $/ \mathrm{mm}^{3}$	$0.22 \times 0.19 \times 0.18$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.368$ to 145.812	
Index ranges	$-9 \leq \mathrm{h} \leq 11,-16 \leq \mathrm{k} \leq 16,-21 \leq 1 \leq 22$
Reflections collected	15262
Independent reflections	$4132\left[\mathrm{R}_{\text {int }}=0.0284, \mathrm{R}_{\text {sigma }}=0.0172\right]$
Data/restraints/parameters	4132/0/276

```
Goodness-of-fit on F}\mp@subsup{}{}{2}\quad1.07
Final R indexes [I>=2\sigma (I)] R R = 0.0434, wR 2 = 0.1143
Final R indexes [all data] }\quad\mp@subsup{\textrm{R}}{1}{}=0.0439,\mp@subsup{\textrm{wR}}{2}{}=0.115
Largest diff. peak/hole / e }\mp@subsup{\AA}{}{-3}0.32/-0.2
Flack parameter 0.04(6)
```


[^0]: s25

