Supporting Information

Synthesis of Acridones via Ir(III)-Catalyzed Amination Annulation of Oxazoles with Anthranils

Han-Yi Zhou, Lin Dong*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
Email: dongl@scu.edu.cn

Table of Contents

1. General Methods S1
2. General Procedure for the Synthesis of Substrates S1
3. General Procedure for the Synthesis of Acridone Derivatives S2
4. Optimization of Reaction Conditions S2
5. The Scope of Substrates S5
6. Mechanistic Studies S5
7. References S10
8. Characterization Data and NMR Spectra of All Compounds S11

1. General Methods

All solvents were dried before use following the standard procedures. Unless otherwise indicated, all starting materials purchased from commercial suppliers were used without further purification. NMR data were obtained for 1 H at $400 \mathrm{MHz}, 19 \mathrm{~F}$ NMR at 376 MHz , and for 13 C at 100 or 151 MHz . Chemicl shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl 3 solution. NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, dd: doublet of doublets, t: triplet, q: quartet, sep: septet, m : multiplet, br: broad signal), coupling constant (Hz), and integration. ESI HRMS was recorded on a Waters SYNAPT G2 and Water XEVO G2 Q-ToF. TLC was performed on glass-backed silica plates. UV detection was monitored at 254 nm . Column chromatography was performed on silica gel (300-400 mesh), eluting with ethyl acetate and petroleum ether. 3-phenyl-quinazolones and α, α-difluoromethylene alkynes were obtained according to the literature procedures. ${ }^{1-2}$

2. General Procedure for the Synthesis of Substrates

2.1 General procedure for the synthesis of 2-aryloxazoline (1a)

A 100 mL oven-dried round bottom flask with a stir bar was purged with argon and charged with benzoic acid $\mathbf{A}(5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, which was added DMF (3 drop) at 0 ${ }^{\circ} \mathrm{C}$ and $(\mathrm{COCl})_{2}(1.2$ equiv) was subsequently added dropwise by syringe. After 15 min , the reaction mixture was allowed to warm to room temperature overnight. After removal of the volatiles under vacuum, the crude product \mathbf{B} was used directly without any further purification. ${ }^{3}$

To a solution of the propargylic amine (5.0 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv) and DMAP ($2 \mathrm{~mol} \%$) were added, and the acid chloride (1.0 equiv) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After 15 min , the mixture was stirred overnight at room temperature overnight. After the reaction was completed, the mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic layer was washed with brine and then the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate $=3 / 1, \mathrm{v} / \mathrm{v}$) afforded the product $\mathbf{C} .{ }^{4}$

A mixture of propargylamides $\mathrm{C}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 equiv), DMSO (10 mL), was heated at $100{ }^{\circ} \mathrm{C}$ for 2 h and cooled to room temperature. The mixture was quenched with water and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$, the combined organic layer was washed with brine and then the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate $=10 / 1, \mathrm{v} / \mathrm{v}$) afforded the product $\mathbf{1} .^{5}$
2.2 General procedure for the synthesis of substituted anthranils (2a)

A round bottom flask equipped with a magnetic stirrer bar was charged with the substituted 2nitroacylbenzene (3.00 mmol) D in EtOAc- $\mathrm{MeOH}(1: 1 ; 20 \mathrm{~mL}) . \mathrm{SnCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(9.00 \mathrm{mmol})$ was
added and the reaction was stirred at room temperature for 24 h . The reaction was quenched by saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, and filtered. The aqueous phase was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$ and the organic portions combined, washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, dried over NaSO_{4}, filtered and reduced in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc) to provide the title compound $\mathbf{2}$. ${ }^{6}$

3. General Procedure for the Synthesis of Acridone Derivatives

General procedure for the synthesis of 3ba

5-methyl-2-phenyl-oxazole 1b ($17.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), anthranil 2a ($23.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), AgNTf_{2} (0.2 equiv.), AgOTf (0.1 equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), and $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(5 \mathrm{~mol} \%$), were stirred in $\mathrm{PhNO}_{2}:$ DCE $=4: 1(1.0 \mathrm{~mL})$ under inert Ar atmosphere in preheated oil bath at $120{ }^{\circ} \mathrm{C}$ for 24 h . The reaction was then quenched with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$. The reaction was stirred for a while and extracted with $\operatorname{EtOAc}(3 * 10 \mathrm{~mL})$, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated and the residue was purified by flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10: 1, \mathrm{v} / \mathrm{v}$) to give the product $\mathbf{3 b a}$ as yellow solid ($26.4 \mathrm{mg}, 91 \%$).

General procedure for the synthesis of 4aa

5-methyl-2-phenyl-oxazole 1a ($15.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), anthranil 2a' ($26.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), AgNTf_{2} (0.2 equiv.), AgOTf (0.1 equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), and $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), were stirred in $\mathrm{PhNO}_{2}: \mathrm{DCE}=4: 1(1.0 \mathrm{~mL})$ under inert Ar atmosphere in preheated oil bath at $120^{\circ} \mathrm{C}$ for 24 h . The reaction was then quenched with saturated NaHCO_{3} solution (10 mL). The reaction was stirred for a while and extracted with $\operatorname{EtOAc}(3 * 10 \mathrm{~mL})$, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated and the residue was purified by flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10: 1, \mathrm{v} / \mathrm{v}$) to give the product 4aa as yellow solid (17.5 mg, 60\%).

4. Optimization of reaction conditions

Table S1. The effect of Lewis acid ${ }^{[a]}$

Entry	Lewis acid	Yield (\%) ${ }^{[b]}$
1	AgOTf	$<10 \%$
2	$\mathrm{Zn}(\mathrm{OTf})_{2}$	Trace
3	$\mathrm{Cu}(\mathrm{OTf})_{2}$	ND
4	$\mathrm{Sc}(\mathrm{OTf})_{3}$	NR
5	$\mathrm{La}(\mathrm{OTf})_{3}$	Trace

[a] Unless otherwise stated, reaction conditions are as follows: $\mathbf{1 a}$ (0.05 mmol), $\mathbf{2 a}$ (1.2 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), AgNTf_{2} (0.2 equiv.), Lewis acid (0.1 equiv.), PivOH (1.0 equiv.), $\mathrm{DCE}\left(0.5 \mathrm{~mL}\right.$), under $\mathrm{Ar}, 100^{\circ} \mathrm{C}, 24$ h. [b] Isolated yields.

Table S2. The effect of acid ${ }^{[a]}$

		 4aa
Entry	Acid	Yield (\%) ${ }^{[b]}$
1	$1-\mathrm{AdCOOH}$	36\%
2	AcOH	23\%
3	PhCOOH	26\%
4	TFA	NR
5	L-Serine	26\%
6	2-Aminoisobutyric Acid	24\%

[a] Unless otherwise stated, reaction conditions are as follows: $\mathbf{1 a}(0.05 \mathrm{mmol}), \mathbf{2 a}(2.0$ equiv $),\left[\mathrm{Cp} * \operatorname{IrCl}_{2}\right]_{2}(5$ $\mathrm{mol} \%), \mathrm{AgNTf}_{2}$ (0.2 equiv.), AgOTf (0.1 equiv.), acid (1.0 equiv.), DCE (0.5 mL), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}, 24 \mathrm{~h}$. [b] Isolated yields.

Table S3. The effect of base ${ }^{[a]}$

2	NaOAc	14%
3	$\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	11%
4	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	NR
5	PhCOONa	14%

[a] Unless otherwise stated, reaction conditions are as follows: 1a (0.05 mmol), $\mathbf{2 a}$ (2.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(5$ $\mathrm{mol} \%$), AgNTf_{2} (0.2 equiv.), AgOTf (0.1 equiv.), base (2.5 equiv.), $\operatorname{DCE}\left(0.5 \mathrm{~mL}\right.$), under $\mathrm{Ar}, 120{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .[\mathrm{b}]$ Isolated yields.

Table S4. The effect of silver salt ${ }^{[a]}$

[a] Unless otherwise stated, reaction conditions are as follows: $\mathbf{1 a}(0.05 \mathrm{mmol}), \mathbf{2 a}$ (2.0 equiv), $\left[\mathrm{Cp} * \operatorname{IrCl}_{2}\right]_{2}$ (5 $\mathrm{mol} \%$), AgNTf $_{2}$ (x equiv.), AgOTf (y equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), $\mathrm{PhMe}\left(0.5 \mathrm{~mL}\right.$), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}, 24 \mathrm{~h}$. [b] Isolated yields.

Table S5. The effect of solvent ${ }^{[a]}$
Entry

3
DCE 76

4

5

6

7

8

DCM
CHCl_{3}

MeOH

MeCN
PhNO_{2} : DCE (4:1)

ND
[a] Unless otherwise stated, reaction conditions are as follows: 1a (0.05 mmol), 2a (2.0 equiv), $\left[\mathrm{Cp} * \operatorname{IrCl}_{2}\right]_{2}$ (5 $\mathrm{mol} \%$), AgNTf_{2} (0.2 equiv.), AgOTf (0.1 equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), solvent (0.5 mL), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}, 24$ h. [b] Isolated yields.

Table S6. The effect of transition metal catalyst ${ }^{[a]}$

[a] Unless otherwise stated, reaction conditions are as follows: $\mathbf{1 a}$ (0.05 mmol), $\mathbf{2 a}$ (2.0 equiv), [$\mathbf{M}]$ ($5 \mathrm{~mol} \%$), AgNTf_{2} (0.2 equiv.), $\operatorname{AgOTf}\left(0.1\right.$ equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), PhNO_{2} : $\mathrm{DCE}\left(4: 1,0.5 \mathrm{~mL}\right.$), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}$, 24 h . [b] Isolated yields. [c] $\mathrm{PhMe}(0.5 \mathrm{~mL})$. [d] DCE (0.5 mL). [e]1- AdCOOH (2.5 equiv.). [f] AgNTf_{2} (0.1

```
equiv.), AgOTf (0.2 equiv.).
```


4. The Scope of Substrates

Table S7. The Substrate scope of 2-aryloxazoles

Reaction conditions: 1 (0.1 mmol), 2a (2.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), AgNTf_{2} (0.2 equiv.), $\operatorname{AgOTf}\left(0.1\right.$ equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), PhNO_{2} : $\mathrm{DCE}\left(4: 1,1.0 \mathrm{~mL}\right.$), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}, 24 \mathrm{~h}$, isolated yield.

Table S8. The Substrate scope of 1 with other directing groups

39%

Mess

Mess

decompose

Reaction conditions: $\mathbf{1}$ (0.1 mmol), $\mathbf{2 a}$ (2.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), AgNTf_{2} (0.2 equiv.), AgOTf (0.1 equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), PhNO_{2} : $\mathrm{DCE}\left(4: 1,1.0 \mathrm{~mL}\right.$), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}, 24 \mathrm{~h}$, isolated yield.

5. Mechanistic Studies

(1) Procedure for competition experiment

Representative procedure for competition between 1b and 1h: To a flame dried screw-cap tube equipped with magnetic stir bar were introduced 5-methyl-2-phenyl-oxazole $\mathbf{1 b}$ ($34.6 \mathrm{mg}, 0.2$
mmol), 5-methyl-2-phenyl-oxazole $\mathbf{1 h}(35.4 \mathrm{mg}, 1.0$ equiv), anthranil $\mathbf{2 a}(48.0 \mathrm{mg}, 4.0$ equiv), AgOTf (0.1 equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.), and $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and PhNO_{2} : $\mathrm{DCE}=4: 1$ $(1.0 \mathrm{~mL})$. The reaction mixture was stirred in preheated oil bath at $120^{\circ} \mathrm{C}$ under Ar for 24 h . After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (10:1) to give the product 3ba ($29 \mathrm{mg}, 50 \%$) and $\mathbf{3 h a}(8 \mathrm{mg}, 14 \%)$.

(2) Radical trap experiments

The free radical scavenging experiments were conducted with 2,2,6,6-tetramethyl-1piperidinyloxy (TEMPO) or 2,6-Di-tert-butyl-p-methylphenol (BHT). 1a (0.05 mmol), 2a (2.0 equiv.) and TEMPO ($12 \mathrm{mg}, 1.5$ equiv.) or BHT ($16.6 \mathrm{mg}, 1.5$ equiv.) were stirred at $120^{\circ} \mathrm{C}$ for 24 h under standard conditions. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (10:1) to give the product 3aa. Obviously, either TEMPO or BHT suppressed the reaction which indicated the free radical process might occurred in this reaction.

(3) Deuterium exchange experiments

Deuterium-labeling experiments were carried out to study the mechanism of this reaction. 1a (0.2 mmol), $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}$ (0.2 equiv.), AgOTf (0.1 equiv.), $1-\mathrm{AdCOOH}$ (5.0 equiv.) were stirred in $\mathrm{CH}_{3} \mathrm{OD}(1 \mathrm{~mL})$ under inert Ar atmosphere at $120{ }^{\circ} \mathrm{C}$ for 12 h . After completion, the reaction was then quenched with saturated NaHCO_{3} solution and extracted with EtOAc, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated and the residue was purified by column chromatography (petroleum ether/ethyl acetate $=10 / 1, \mathrm{v} / \mathrm{v}$) to afford the products $1 \mathbf{a}$ and $\left[\mathbf{D}_{2}\right]-1 \mathbf{a}$. The deuterium rate (64%) was obtained from ${ }^{1} \mathrm{H}$ NMR. Deuterium was observed at both ortho-positions, which indicated the possibility of the reaction pathway via ortho C-H activation.

(4) Kinetic isotope effect (KIE) study

In addition, the kinetic isotope effect (KIE) study was conducted. 1a (0.2 mmol), [$\left.\mathbf{D}_{5}\right] \mathbf{- 1 a}(0.2$ mmol, $99 \% \mathrm{D}$), and $\mathbf{2 a}$ (4.0 equiv) were stirred at $120^{\circ} \mathrm{C}$ for 12 h under standard conditions. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate
and petroleum ether (10:1) to give 3aa and [D]-3aa. The ratio of two products was determined by ${ }^{1} \mathrm{H}$ NMR integration method to give intermolecular kinetic isotopic effect (KIE) $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=2.3$.

$\mathbf{1 a}(0.2 \mathrm{mmol})$ or $\left[\mathbf{D}_{\mathbf{5}}\right] \mathbf{- 1 a}(0.2 \mathrm{mmol}, 99 \% \mathrm{D})$ and 2a (4.0 equiv) were stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h under standard conditions. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (10:1) to give 3aa or [D]-3aa. The yield of two products was $42 \%(23 \mathrm{mg})$ and $20 \%(11 \mathrm{mg})$ to give intramolecular kinetic isotopic effect (KIE) $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=2.1$, thus indicating that the first C-H bond cleavage might be the product determining step.

(5) Table S9. The transformation from 4aa to 3aa

4aa was obtained under the standard conditions. 4aa and $\mathbf{5}$ could converted to $\mathbf{3 a} \mathbf{a}^{7}$ under different conditions, which demonstrated Ag salt play an important role in this cyclization and $\mathbf{5}$ might be the intermediate in this conversion.

 1a		
Entry	catalyst	3aa yield (\%)
1	standard conditions ${ }^{\text {a }}$	9\%
2	standard conditions ${ }^{\text {a }}$ without $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}, 1-\mathrm{AdCOOH}$	12\%
3	standard conditions ${ }^{\text {a }}$ without $\left[\mathrm{Cp}^{*} \mid \mathrm{rCl}_{2}\right]_{2}, \mathrm{AgNTf}_{2}, \mathrm{AgOTf}$	NR
4^{12}	$\operatorname{In}(\mathrm{OTf})_{3}, \mathrm{DCE}, 115^{\circ} \mathrm{C}$	45\%

${ }^{\mathrm{a}}$ standard conditions: 1a (0.05 mmol), 2a' (2.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), AgNTf_{2} (0.2 equiv.), AgOTf (0.1 equiv.), 1- AdCOOH (5.0 equiv.), PhNO_{2} : $\operatorname{DCE}\left(4: 1,0.5 \mathrm{~mL}\right.$), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}, 12 \mathrm{~h}$,

Entry	catalyst	3aa yield (\%)
1	standard conditions ${ }^{\text {a }}$	15\%
2	standard conditions ${ }^{\text {a }}$ without $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}, 1-\mathrm{AdCOOH}$	18\%

${ }^{\text {a }}$ standard conditions: $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), AgNTf_{2} (0.2 equiv.), AgOTf (0.1 equiv.), 1-AdCOOH (5.0 equiv.), PhNO_{2} : DCE ($4: 1,0.5 \mathrm{~mL}$), under $\mathrm{Ar}, 120^{\circ} \mathrm{C}, 12 \mathrm{~h}$,

6. References

1. G. L. Huang, B. Liu, M. Y. Teng, Y. G. Chen. Synthetic Communications., 2014, 44, 1786-1794.
2. C. Q. Wang, L. Ye, C. Feng, T. K. Loh. J. Am. Chem. Soc., 2017, 139, 1762-1765.
3. Kou, X.; Kou, K. G. M. ACS Catal., 2020, 10, 3103-3109.
4. Ma, J. W.; Wang, Q. J. Org. Chem. 2018, 83, 13296-13307.
5. Zhang, L.; Xiao, K. Eur. J. Org. Chem., 2018, 48, 6913-6918.
6. Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed., 2016, 55, 794-797.
7. Zhou, W., Yang, Y., Liu, Y., \& Deng, G. J. Green Chem., 2013, 15, 76-80

7. Characterization Data and NMR Spectra of Acridone Derivatives

3aa

4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3aa). 20.7 mg , 75% yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) δ $12.59(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.2,159.3,148.5,140.5,138.3$, 133.6, 131.1, 129.7, 127.1, 123.3, 122.2, 122.0, 121.5, 120.2, 117.7, 112.7, 11.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$277.0972; Found 277.0976.

3ba

1-methyl-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ba). $26.4 \mathrm{mg}, 91 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.79(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9$, 159.7, 155.4, 148.8, 138.0, 135.7, 131.2, 130.0, 125.3, 123.6, 120.3, 119.7, 113.0, 105.9, 27.4, 11.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$291.1128; Found 291.1123.

1-isopropyl-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ca). $30.5 \mathrm{mg}, 96 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.79(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{t}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,157.4,153.1,146.5,135.7,133.3,128.9,127.7,123.0,121.2,117.9,117.4$, 110.7, 103.6, 27.7, 25.1, 24.5, 9.0. HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$319.1441; Found 319.1446.

1-(tert-butyl)-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3da). 31.5 mg , 95% yield; Yellow soild; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.79(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-$ $7.58(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9$, 159.7, 155.4, 148.8, 138.0, 135.7, 131.2, 130.0, 125.3, 123.6, 120.3, 119.7, 113.0, 105.9, 33.7, 32.1, 30.0, 27.4, 11.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 333.1598$; Found 333.1594.

1-butyl-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ea). $31.5 \mathrm{mg}, 86 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.42(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H})$, $2.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.2,159.7,149.9,148.8$, 141.0, 138.6, 131.2, 130.0, 127.3, 123.6, 122.6, 120.4, 120.1, 116.9, 112.9, 36.4, 33.5, 22.8, 14.3, 11.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$333.1598; Found 333.1592.

3fa

1-ethyl-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3fa). $27.4 \mathrm{mg}, ~ 90 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.79(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3$, 158.1, 153.8, 147.2, 136.3, 134.0, 129.5, 128.4, 123.6, 121.9, 118.6, 118.1, 111.3, 104.3, 28.4, 25.8, 9.7. (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$305.1285; Found 305.1289.

3ga

1-chloro-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ga). $17.0 \mathrm{mg}, 55 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 12.79(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 172.5,156.2$, 155.0, 148.9, 146.5, 136.4, 134.9, 133.6, 132.7, 130.8, 128.37, 128.30, 128.1, 128.0, 127.9, 127.8, 127.6, 127.3, 127.2, 127.0, 126.0, 122.4, 122.2, 120.0, 119.4, 11.7. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H1}_{2} \mathrm{ClN}_{2} \mathrm{O}_{2}{ }^{+}$311.0582; Found 311.0586.

3ha

1-fluoro-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ha). 19.7mg, 67% yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.30(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{ddd}, J=$ $8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform-d) $\delta 162.6$, $145.2,145.1,144.0,140.5,136.4,134.9,133.1,131.6,129.8,128.36,128.30,128.2,128.1,128.0$, $127.9,127.8,127.28,127.24,126.9,126.0,124.1,122.4,122.1,120.8,120.0, \delta 39.99(\mathrm{t}, J=24.4 \mathrm{~Hz})$, 28.8, 28.7. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-105.45$ ($\mathrm{s}, J=17.1 \mathrm{~Hz}$). HRMS (ESI-TOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+}$295.0877; Found 295.0873.

ethyl 4-(5-methyloxazol-2-yl)-9-oxo-9,10-dihydroacridine-1-carboxylate (3ia). $22.6 \mathrm{mg}, 65 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 12.72(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}$, $2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.83,170.75,162.60,149.99,147.97,144.40,135.97,131.79,131.45,125.65$, $123.29,119.79,115.95,112.51,62.62,14.22,11.12 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,170.8$, $162.6,150.0,148.0$, $144.4,136.0,131.8,131.5,125.7,123.3,119.8,116.0,112.5,62.6,14.2,11.1$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$335.1026; Found 335.1023.

3ja

3-methyl-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ja). $14.5 \mathrm{mg}, 50 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 12.46(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.12(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=20.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 176.6,156.7,145.9,145.3,144.2,140.6,137.2,134.5,128.6,128.3$,
128.2, 128.0, 127.9, 127.7, 127.15, 127.12, 126.9, 126.5, 126.0, 124.3, 122.7, 122.2, 119.9, 116.2, 112.2, 27.3, 11.2, $\delta 40.08\left(\mathrm{t}, J=24.6 \mathrm{~Hz}\right.$), 10.82. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$291.1128; Found 291.1125.

3-fluoro-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ka). $18.2 \mathrm{mg}, 62 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 8.62-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 2.50$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,161.2,148.1,139.61,139.0,133.3$, $132.6,130.8,130.6,126.8,126.0,121.5,121.4,120.5,117.7,116.7,109.1,108.8$, 10.1. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-100.79$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+}$295.0877; Found 295.0874.

$31 a$

4-(5-methyloxazol-2-yl)-3-phenylacridin-9(10H)-one (3la). $11.3 \mathrm{mg}, 32 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 8.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}$, $1 \mathrm{H}), 7.51(\mathrm{dd}, J=22.8,10.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,158.6,148.4,141.0,138.8,133.4,128.8$, 128.2, 127.6, 126.6, 122.7, 121.4, 120.9, 120.0, 117.1, 111.9, 11.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$353.1285; Found 353.1283.

2-methyl-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ma). $22.9 \mathrm{mg}, 79 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.46(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=20.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,158.4$, $147.4,139.4,135.5,133.3,132.4,131.3,128.9,128.2,126.1,122.3,121.2,120.7$, 120.4, 116.6, 111.6, 19.9, 10.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$291.1128; Found 291.1126.

2-bromo-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3na). $21.2 \mathrm{mg}, 60 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 12.77(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=20.2,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.8,159.9,149.2$, 141.1, 138.9, 134.3, 131.7, 130.3, 127.7, 123.9, 122.8, 122.6, 122.2, 120.9, 118.4, 113.4, 11.6. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+}$355.0077; Found 355.0072.

2-iodo-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (30a). $14.0 \mathrm{mg}, 35 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 12.51(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.4,161.6,153.6,148.9,144.1,142.2$, 138.2, 133.1, 126.0, 124.2, 119.5, 116.0, 111.2, 106.6, 12.0. HRMS (ESI-TOF) m/z:
$[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{IN}_{2} \mathrm{O}_{2}{ }^{+}$402.9938; Found 402.9933 .

3sa

1,2-dimethyl-4-(5-methyloxazol-2-yl)acridin-9(10H)-one (3sa). $10.9 \mathrm{mg}, 36 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$, $1.82(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 177.5,158.5,156.8,149.9,147.3$, $143.4,139.4,135.4,133.6,127.7,127.3,127.3,127.0,126.9,126.5,126.3,125.9$, $125.8,125.7,125.6,125.0,123.3,122.4,120.0,119.9,118.7,117.0,114.9, \delta 32.6,30.4,12.6$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$305.1285; Found 305.1282.

4-(5-phenyloxazol-2-yl)acridin-9(10H)-one (3ta). $11.1 \mathrm{mg}, 33 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) δ $8.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{ddd}, J=8.5,7.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29$ (m, 2H), $7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-$ $3.00(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 177.6,155.2,154.4,143.6,139.8,138.48,138.42,137.2,134.3,133.6,131.7,128.0$, 127.3, 127.2, 126.9, 126.6, 126.1, 125.9, 125.2, 125.1, 124.9, 123.4, 121.8, 120.4, 119.2, 117.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$339.1128; Found 339.1132.

$3 u a$
(Z)-2-((2-(5-methyloxazol-2-yl)-1-phenylprop-1-en-1-yl)amino)benzaldehyde (3ua). $6.4 \mathrm{mg}, 20 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J$ $=11.5,6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{dt}, J=35.1,7.7 \mathrm{~Hz}$, 1 H), $3.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform-d) $\delta 178.0$, 157.9, 150.2, 147.0, 145.8, 145.5, 138.8, 138.4, 138.3, 136.3, 134.6, 133.4, 131.3, 127.8, 127.4, 127.2, 127.1, 127.0, 126.7, 126.2, 126.1, 125.0, 124.7, 119.7, 119.0, 118.9, 110.5, 110.4, 23.3, 10.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$319.1441; Found 319.1445.

2-fluoro-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ab). $19.1 \mathrm{mg}, 65 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.51-8.43(\mathrm{~m}, 1 \mathrm{H}), 8.29(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,159.2,150.4,148.7$, $142.1,142.0,138.5,131.1,130.4,130.3,129.6,129.1,124.5,123.3,120.7,118.4,112.7,111.2,111.0$, 103.1, 102.9, 11.0. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-103.24$. HRMS (ESI-TOF) m/z: $[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+}$295.0877; Found 295.0881.

2-bromo-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ac). $34.0 \mathrm{mg}, 96 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.99(\mathrm{~s}, 1 \mathrm{H}), 8.60-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 2.48$
(s,3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.8,160.9,150.2,142.1,139.9,135.3,132.7,131.3,128.7$, 124.9, 123.8, 123.6, 123.2, 121.9, 119.4, 114.4, 12.6. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} 491.1935$ and $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+}$355.0077; Found 355.0074.

2-methoxy-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ad). $10.4 \mathrm{mg}, 34 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=8: 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.6,159.4,155.1,148.5,137.7$, 135.4, 130.9, 129.7, 125.0, 123.3, 120.0, 119.4, 112.7, 105.6, 55.8, 11.0. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$307.1077; Found 307.1073.

2,3-dimethoxy-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ae). $17.5 \mathrm{mg}, 52 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=5: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 9.16(\mathrm{dd}, J=8.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dt}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{ddd}, J=8.7,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 6 \mathrm{H})$, $7.33(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .2 .51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 176.8,162.3,158.6,145.9,141.3,139.9,136.9,134.5,129.7,128.6,124.8,123.7$, 122.1, 120.8, 106.1, 55.9, 41.1, 11.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$ 337.1183; Found 337.1185.

2-butyl-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3af). $20.6 \mathrm{mg}, 62 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 12.42(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, $1 \mathrm{H}), 2.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.31(\mathrm{~m}$, 2H), $0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.9,159.4,149.6,148.5,140.7,138.3$, $130.9,129.7,127.0,123.3,122.3,120.1,119.8,116.6,112.6,36.1,33.2,22.5,14.0,11.0$. HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$333.1598; Found 333.1594.

2-methyl-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ag). $23.8 \mathrm{mg}, 82 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroform- d) $\delta 11.25(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,157.4,146.4,138.4,137.5,136.4,134.4,133.3,130.9,128.2,126.1,125.3$, 124.2, 121.5, 121.3, 112.5, 110.4, 21.8, 11.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$ 291.1128; Found 291.1125.

3-butyl-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ah). 25.9 mg , 78% yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}$,
$1 \mathrm{H}), 2.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,157.7,147.9,146.8,139.0,136.6,129.2,128.0,125.3$, 121.6, 120.6, 118.4, 118.1, 114.9, 110.9, 34.4, 31.5, 20.8, 12.3, 9.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$333.1598; Found 333.1596 .

3-methyl-5-(5-methyloxazol-2-yl)acridin-9(10H)-one (3ai). $24.4 \mathrm{mg}, 84 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 12.47(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=20.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1,159.4$, $148.4,140.4,136.5,134.4,133.4,132.3,129.9,129.2,127.1,123.3,122.2,121.7$, 121.4, 117.6, 112.6, 20.9, 11.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$291.1128; Found 291.1133.

4aa

1-(2-((2-(5-methyloxazol-2-yl)phenyl)amino)phenyl)ethan-1-one (4aa). $17.5 \mathrm{mg}, 60 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 11.33(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{t}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=19.0,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}$, $1 \mathrm{H}), 6.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.7, 181.7, 161.9, 153.9, 149.2, 144.4, 142.5, 138.5, 133.4, 126.3, 124.4, 119.8, 116.3, 111.5, 106.9, 30.3, 12.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$293.1285; Found 293.1282.

4ab

3-(2-((2-(5-methyloxazol-2-yl)phenyl)amino)benzoyl)pentane-2,4-dione (4ab). $12.0 \mathrm{mg}, 32 \%$ yield; Yellow solid; eluent (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.45-9.38(\mathrm{~m}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (ddd, $J=8.8$, $7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 5.29$ $-5.14(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,181.7,161.9,153.9,149.2,144.4,142.5,138.5,133.4,126.3,124.4,119.8$, 116.3, 111.5, 106.9, 30.3, 12.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$377.1496; Found 377.1499.

(

(

