Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Photocatalytic C2-Trifluoroethylation and Perfluoroalkylation of 3-Substituted Indoles Using Fluoroalkyl Halides

Shivani Arora, Tavinder Singh and Anand Singh*

anands@iitk.ac.in

Supporting Information

Table of Contents

1. General Information	SI-2
2. General Procedure	SI-3
3. Control Experiments	SI-3
3.1. Procedure for Experiment with TEMPO:	SI-3
3.2. Procedure for Experiment with BHT:	SI-5
3.3. Procedure for Experiment with Diphenylethylene:	SI-5
4. Fluorescence Quenching Experiments:	SI-6
5. Analytical Data of Synthesized Products	SI-9
6. ¹ H , ¹³ C & ¹⁹ F Spectra of Products	SI-17
7. Crystal Structure of 3a (CCDC No.: 2322591)	SI-49

1. General Information

Unless otherwise noted, all chemicals were purchased from commercial sources and used without further purification. Yields refer to chromatographically pure material. All solvents were used as purchased, without purification. DMSO was used as after drying. Reactions were monitored by thin-layer chromatography (TLC) performed on 0.25 mm Merck silica gel plates (60F-254) using UV light. Merck silica gel (mesh size 100-200) was used for flash column chromatography. NMR spectra were recorded on JEOL 500 (¹H: 500 MHz, ¹³C: 125 MHz) or 400 (¹H: 400 MHz, ¹³C: 100 MHz) spectrometer in CDCl₃ having TMS 0.03% as internal standard. ¹⁹F NMR were recorded using CDCl₃. Mass spectrometric data were obtained using WATERS-Q-TOF Premier-ESI-MS and GC-MS.Crystal structure data for **3a** has been deposited in the Cambridge Crystallographic Data Centre with ID: CCDC No. 2322591. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, dd = doublet of a doublet of doublet, m = multiplet. All starting materials were prepared according to the literature reports.^[12]

The photocatalytic device was made by wrapping an LED strip around a 250 mL beaker. The emission of the LED was recorded and is shown below (425- 500 nm). Total power was computed to be 18W.

Figure 1: Emission profile of the LEDs

2. General Procedure

An oven dried reaction vial equipped with magnetic stir bar was charged with the indole derivative (1 equiv.), trifluoroethyliodide or perfluoroalkyliodide (2.0 equiv.), DABCO (2 equiv.), 4CzIPN (2 mol%), and then dry DMSO (2 mL) was added. The reaction mixture was purged with Ar for 15 minutes and irradiated under 18 W Blue LEDs. After completion of reaction (confirmed by TLC), reaction mixture was concentrated in vacuum. The residue was purified by column chromatography on silica gel using ethyl acetate in petroleum ether to afford the desired product.

3. Control Experiments

3.1. Procedure for Experiment with TEMPO:

Procedure: In an oven dried reaction vial equipped with a magnetic stir bar, **1a** (50 mg, 0.34 mmol), **2a** (2 equiv), DABCO (2 equiv), TEMPO (4 equiv) and 4CzIPN catalyst (2 mol%) were dissolved in 2 mL of dry DMSO. The reaction mixture was purged with Ar for 15 minutes and irradiated under 18 W Blue LED's. After 24 h TLC (Thin layer chromatography) no product formation was observed with TEMPO. We were able to detect TEMPO adduct **7** using ¹H and ¹⁹F NMR spectroscopy of a crude sample.

¹H NMR (500 MHz) spectrum of compound 7 in CDCl₃

 $^{19}\,F$ NMR (471 MHz) spectrum of compound 7 in CDCl3 with PhCF3 as reference standard.

3.2 Additional Optimization for Trifluoroethylation of Peptides

S.No.	Solvent	Base	Yield (%)
1	DMSO	K ₂ CO ₃	29
2	DMSO	Cs ₂ CO ₃	20
3	DMSO	Na ₂ CO ₃	29
4	DMSO	DIPEA	00
5	THF	DABCO	00
6	DCE	DABCO	10
7	MeCN	DABCO	20

3.3. Procedure for Experiment with BHT:

Procedure: In an oven dried reaction vial equipped with a magnetic stir bar, **1a** (50mg, 0.34 mmol), **2a** (2 equiv), DABCO (2 equiv), BHT (4 equiv) and 4CzIPN catalyst (2 mol%) were dissolved in 2 mL of dry DMSO. The reaction mixture was purged with Ar for 15 minutes and irradiated under 18 W Blue LED's. After 24 h TLC (Thin layer chromatography) product formation was observed with BHT but with lower yield.

3.4. Procedure for Experiment with Diphenylethylene:

Procedure: In an oven dried reaction vial equipped with a magnetic stir bar, **1a** (50mg, 0.34 mmol), **2a** (2 equiv), DABCO (2 equiv), DPE (4 equiv) and 4CzIPN catalyst (2 mol%) were dissolved in 2 mL of dry DMSO. The reaction mixture was purged with Ar for 15 minutes and irradiated under 18 W Blue LED's. After 24 h TLC (Thin layer chromatography) product formation was observed with DPE but with lower yield and the adduct of Diphenylethylene with trifluoroethyliodide was observed and detected by HRMS.

4. Fluorescence Quenching Experiments:

Fluorescence spectra was recorded using Horiba Fluoromax spectrofluorometer. The Stern-Volmer fluorescence quenching studies were run with freshly prepared 4 CzIPN (2µM solution in MeCN) at room temperature. The solution was irradiated at 450 nm and fluorescence was measured from 480 to 700 nm. Control experiment showed that 4CzIPN fluorescence was quenched by DABCO and indole.

Figure S1: Fluorescence intensity of a 4CzIPN solution (2 μ M solution in MeCN) containing 1,3-dimethyl-2-(2,2,2-trifluoroethyl)-1*H*-indole, trifluoroethyliodide, DABCO in MeCN (excitation wavelength: 450 nm). Peak descriptors: 4CzIPN (2 μ M) in MeCN (red line), indole (0.02mM) in MeCN (blue line), DABCO (0.02mM) in MeCN (green line), trifluoroethyliodide (0.02 mM) in MeCN (black line).

Figure S2: Fluorescence intensity of a 4CzIPN solution (2μ M solution in MeCN) containing varying amount of DABCO (excitation wavelength 450 nm).

Figure S3: Fluorescence intensity of a 4CzIPN solution (2μ M solution in MeCN) containing varying amount of indole (excitation wavelength 450 nm).

Figure S4: Fluorescence intensity of a 4CzIPN solution (2µM solution in MeCN) containing varying amount of trifluoroethyliodide (excitation wavelength 450 nm).

Figure S5: Stern Volmer Plot for fluorescence quenching studies of 4CzIPN by DABCO (black marks) and indole (red marks).

5. Analytical Data of Synthesized Products

1,3-Dimethyl-2-(2,2,2-trifluoroethyl)-1*H***-indole (3a):** According to the general procedure **2**, Me (CF₃ Ne (CF₃ Ne (CF₃ Ne (CF₃ Ne (CF₃ (CF₃) (CF₃ (CF₃) (CF₃ (CF₃) (CF₃) (CF₃ (CF₃) (CF₃) (CF₃) (CF₃ (CF₃) (CF₃

 CF_3

1-Ethyl-3-methyl-2-(2,2,2-trifluoroethyl)-1*H***-indole (3b):** According to the general procedure **2**, 1-ethyl-3-methyl-1*H*-indole (50 mg, 0.31 mmol), trifluoroethyliodide (2 equiv, 0.63 mmol), DABCO (2 equiv, 0.63 mmol) provided **3b** after flash column chromatography as yellowish liquid (45 mg,

59%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.23 (d, J = 7.4 Hz, 1H), 7.13 (t, J = 7.3 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 3.59 (q, J = 10.3 Hz, 2H), 2.32 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 136.0, 128.1, 126.9, 123.8, 122.2, 119.2, 119.0, 111.8, 109.4, 38.1, 29.9 (q, J = 31.7 Hz), 15.2, 9.0. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -64.7 (t, J = 10.3 Hz). HRMS (ESI) m/z: [M+H]⁺calcd for C₁₃H₁₅F₃N 242.1151 ; found 242.1148.

Ethyl 2-(2-(2,2,2-trifluoroethyl)-1*H*-indol-3-yl) acetate (3c): According to the general procedure 2, ethyl 2-(1*H*-indol-3-yl)acetate (50 mg, 0.25 mmol), trifluoroethyliodide (2 equiv, 0.49 mmol), DABCO (2 equiv, 0.49 mmol) provided 3c after flash column chromatography as yellowish liquid (40 mg,

57%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.73 (s, 2H), 3.60

(q, J = 10.6 Hz, 2H), 1.23 (d, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 171.5, 135.8, 127.7, 124.5, 123.9, 122.9, 120.2, 119.1, 111.0, 109.0, 61.1, 32.2 – 31.1 (m), 30.3, 14.2. ¹⁹ F NMR (471 MHz, Chloroform-*d*) δ -64.7 (t, J = 10.5 Hz). HRMS (ESI) m/z: [M+H]⁺calcd for C₁₄H₁₅F₃NO₂ 286.1049; found 286.1046.

Ethyl 3-(2-(2,2,2-trifluoroethyl)-1*H*-indol-3-yl) propanoate (3d): According to the general procedure 2, ethyl 3-(1*H*-indol-3-yl) propanoate (50 mg, 0.23 mmol), trifluoroethyliodide (2 equiv, 0.46 mmol), DABCO (2 equiv, 0.46 mmol) provided 3d after flash column chromatography as yellowish liquid (28 mg, 41%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05

(s, 1H), 7.57 (d, J = 8.6 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.14 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.65 (q, J = 10.6 Hz, 2H), 3.07 (t, J = 7.5 Hz, 2H), 2.66 (t, J = 7.5 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (125 MHz, Chloroform-*d*) δ 173.4, 136.1, 127.4, 126.5, 123.4, 122.7, 119.8, 118.8, 114.8, 111.0, 60.6, 35.0, 31.5 (q, J = 31.3 Hz), 19.4, 14.2. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -64.8 (t, J = 10.0 Hz). HRMS (ESI) m/z: [M+H]⁺calcd for C₁₅H₁₇F₃NO₂ 300.1206; found 300.1214.

Methyl 3-(2-(2,2,2-trifluoroethyl)-1*H*-indol-3-yl) propanoate (3e): According to the general procedure 2, methyl 3-(1*H*-indol-3-yl)propanoate (50 mg, 0.25 mmol), trifluoroethyliodide (2 equiv, 0.49 mmol), DABCO (2 equiv, 0.49 mmol) provided **3e** after flash column chromatography as colourless oil (25 mg, 36%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (s,

1H), 7.55 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 3.69 – 3.56 (m, 5H), 3.06 (t, J = 7.5 Hz, 2H), 2.66 (t, J = 7.5 Hz, 2H). ¹³C{¹H} NMR (125 MHz, Chloroform-*d*) δ 173.7, 136.1, 127.4, 123.4, 122.8, 119.9, 118.8, 114.8, 111.0, 51.7, 34.7, 31.5 (q, J = 31.2 Hz), 19.5. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -64.8 (t, J = 10.7 Hz). HRMS (ESI) m/z: [M+H]⁺calcd for C₁₄H₁₅F₃NO₂ 286.1049 found 286.1042.

tert-Butyl (2-(2-(2,2,2-trifluoroethyl)-1*H*-indol-3-yl) ethyl) carbamate (3f): According to the general procedure 2, *tert*-butyl (2-(1*H*indol-3-yl)ethyl)carbamate (50 mg, 0.19 mmol), trifluoroethyliodide (2 equiv, 0.38 mmol), DABCO (2 equiv, 0.38 mmol) provided 3f after flash column chromatography as yellowish liquid (35 mg, 53%). ¹H NMR (395

MHz, Chloroform d) δ 8.12 (s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.15 – 7.11 (m, 1H), 4.61 (s, 1H), 3.57 (q, J = 10.5 Hz, 2H), 3.42 – 3.35 (m, 2H), 2.94 (t, J = 6.9 Hz, 2H), 1.45 (s, 9H).¹³C{¹H} NMR (125 MHz, Chloroform d) δ 156.0, 136.1, 127.7, 122.9, 122.2, 119.9, 119.5, 119.0, 113.3, 111.0, 79.3, 41.0, 31.5 (q, J = 31.4 Hz), 28.5, 24.8.¹⁹F NMR (471 MHz, Chloroform-d) δ -64.6 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M+Na]⁺calcd for C₁₇H₂₁F₃N₂NaO₂ 365.1447; found 365.1449.

2-(2-(2,2,2-Trifluoroethyl)-1*H*-indol-3-yl) ethyl acetate (3g): According to the general procedure 2, 2-(1*H*-indol-3-yl) ethyl acetate (50 mg, 0.25 mmol), trifluoroethyliodide (2 equiv, 0.49 mmol), DABCO (2 equiv, 0.49 mmol) provided 3g after flash column chromatography as yellowish solid (26 mg, 37%). Mp = 104-106 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11

(s, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.15 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 4.27 (t, J = 7.2 Hz, 2H), 3.60 (q, J = 10.5 Hz, 2H), 3.08 (t, J = 7.2 Hz, 2H), 2.04 (s, 3H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 171.2, 136.0, 127.7, 126.7, 123.9, 122.9, 120.0, 118.9, 112.1, 111.0, 64.4, 31.5 (q, J = 31.4 Hz), 23.8, 21.1. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -64.7 (t, J = 10.5 Hz). HRMS (ESI) m/z: [M+Na]⁺calcd for C₁₄H₁₄F₃NNaO₂ 308.0869 found 308.0857.

CN 2-(2-(2,2,2-Trifluoroethyl)-1*H*-indol-3-yl)acetonitrile (3h): According to the general procedure 2, 2-(1*H*-indol-3-yl)acetonitrile (50 mg, 0.32 mmol), trifluoroethyliodide (2 equiv, 0.64 mmol), DABCO (2 equiv, 0.64 mmol) provided **3h** after flash column chromatography as yellowish solid (15 mg, 20%). Mp = 140-143 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.30 (d, *J* = 7.1 Hz, 1H), 7.22 (t, *J* = 7.9 Hz, 1H), 3.82 (s, 2H), 3.63 (q, *J* = 10.3 Hz, 2H).¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 135.7, 126.7, 124.4, 123.8, 120.9, 118.4, 117.5, 111.4, 104.5, 31.8 (q, J = 31.6 Hz), 13.1. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -64.8 (t, J = 10.3 Hz, 3F). HRMS (ESI) m/z: [M-H]⁻ calcd for C₁₂H₈F₃N₂ 237.0645 found 237.0640.

1,3-Dimethyl-2-(perfluoropropyl)-1*H***-indole (3i):** According to the general procedure **2**, 1,3-dimethyl-1*H*-indole (50 mg, 0.34 mmol), heptafluoropropyl iodide (2 equiv, 0.69 mmol), DABCO (2 equiv, 0.69 mmol) provided **3i** after flash column chromatography as colourless oil (80

mg, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (dd, J = 16.1, 8.2 Hz, 1H), 7.52 – 7.39 (m, 1H), 7.37 (d, J = 5.8 Hz, 1H), 7.19 (ddd, J = 8.0, 6.0, 1.8 Hz, 1H), 3.80 (s, 3H), 2.46 (t, J = 3.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 138.5, 127.4, 124.8, 123.2, 122.1 (t, J = 10.2 Hz), 120.1 (d, J = 11.7 Hz), 117.7, 117.6, 114.4, 109.8, 31.7, 9.2. ¹⁹ F NMR (471 MHz, Chloroform-*d*) δ -79.8 (t, J = 10.3 Hz, 2F), -79.9 (t, J = 10.3 Hz, 3F), -80.1 (m, 2F). HRMS (ESI) m/z: [M+H]⁺calcd for C₁₃H₁₁F₇N 314.0774 ; found 314.0771.

1,3-Dimethyl-2-(perfluorobutyl)-1*H***-indole (3j):** According to the general procedure **2**, 1,3-dimethyl-1*H*-indole (50 mg, 0.34 mmol), nonafluorobutyliodide (2 equiv, 0.69 mmol), DABCO (2 equiv, 0.69 mmol) provided **3j** after flash column chromatography as colourless

liquid (40 mg, 32%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.9 Hz, 1H), 7.53 – 7.41 (m, 3H), 3.87 (s, 3H), 2.44 (s, 3H). ¹³C {¹H} NMR (100 MHz, Chloroform-*d*) δ 139.7, 124.8, 124.1, 123.2, 122.2, 120.1, 120.0, 117.4, 114.5, 109.8, 32.3, 11.2. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.8 (dt, *J* = 29.6, 9.0 Hz), -120.0 (q, *J* = 9.9 Hz), -121.7 – -122.0 (m), -125.4 – -126.0 (m). HRMS (ESI) m/z: [M-H]⁻ calcd for C₁₄H₉F₉N 362.0597 found 362.0594.

1-Ethyl-3-methyl-2-(perfluorohexyl)-1*H***-indole (3k):** According to the general procedure **2**, 1-ethyl-3-methyl-1*H*-indole (50 mg, 0.31 mmol), decatrifluorohexyliodide (2 equiv, 0.63 mmol), DABCO (2 equiv, 0.63 mmol) provided **3k** after flash column chromatography as colourless oil (100 mg, 67%). ¹H NMR (500 MHz, Chloroform-

d) δ 7.69 (d, J = 8.0 Hz, 1H), 7.40 – 7.37 (m, 2H), 7.22 (ddd, J = 8.0, 4.5, 3.3 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.48 (t, J = 2.9 Hz, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (100 MHz, Chloroform-*d*) δ 138.6, 137.4, 127.9, 124.7, 123.2, 120.3, 117.9 – 117.5 (m), 116.7 – 115.4 (m),

110.1, 40.4, 15.3, 9.2. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.3 – -80.9 (m), -100.5, -101.9 – -102.7 (m), -104.0 (t, *J* = 16.9 Hz), -121.3 – -122.9 (m), -125.8 – -126.3 (m). HRMS(ESI) m/z: [M+H]⁺calcd for C₁₇H₁₃F₁₃N 478.0835; found 478.0815.

1-Benzyl-3-methyl-2-(perfluoropropyl)-1*H***-indole (3l):** According to the general procedure **2**, 1-benzyl-3-methyl-1*H*-indole (50 mg, 0.23 mmol), heptafluoropropyliodide (2 equiv, 0.45 mmol), DABCO (2 equiv, 0.45 mmol) provided **3l** after flash column chromatography as colourless oil (35 mg, 40%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 7.7 Hz, 1H),

7.31 – 7.27 (m, 2H), 7.25 – 7.16 (m, 4H), 6.94 (d, J = 6.9 Hz, 2H), 5.45 (s, 2H), 2.51 (t, J = 2.9 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 138.3, 137.8, 128.7, 127.8, 127.3, 125.6, 125.1, 120.4, 120.2, 118.2, 110.8, 48.8, 9.4. ¹⁹F NMR (373 MHz, Chloroform-*d*) δ -79.8 (t, J = 10.4 Hz), -79.9 (t, J = 10.1 Hz), -79.9 (t, J = 10.1 Hz). HRMS (ESI) m/z: [M-H]⁻ calcd for C₁₉H₁₃F₇N 388.0942 found 388.0934.

Ethyl 2-(2-(perfluoropropyl)-1*H*-indol-3-yl) acetate (3m): According to the general procedure 2, ethyl 2-(1*H*-indol-3-yl)acetate (50 mg, 0.25 mmol), heptafluoropropyliodide (2 equiv, 0.49 mmol), DABCO (2 equiv, 0.49 mmol) provided **3m** after flash column chromatography as colourless oil (55 mg, 60%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 (s, 1H), 7.68

(d, J = 8.1 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (100 MHz, Chloroform-*d*) δ 170.7, 136.0, 127.7, 125.3, 121.1, 120.4, 113.2, 111.8, 61.1, 30.1, 14.2. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.0 (t, J = 9.6 Hz, 3F), -109.0 (q, J = 9.1 Hz, 2F), -126.3 (m, 2F). HRMS (ESI) m/z: [M+Na]⁺calcd for C₁₅H₁₂F₇NNaO₂ 394.0648 found 394.0648.

tert-Butyl (2-(2-(perfluoropropyl)-1*H*-indol-3-yl)ethyl)carbamate (3n): According to the general procedure 2, *tert*-butyl (2-(1*H*-indol-3-yl)ethyl)carbamate (50 mg, 0.19 mmol), heptafluoropropyliodide (2 equiv, 0.38 mmol), DABCO (2 equiv, 0.38 mmol) provided **3n** after flash column chromatography as colourless oil (50 mg, 61%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 (s, 1H), 7.74 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 8.3 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 4.67 (s, 1H), 3.45 –

3.37 (m, 2H), 3.08 (t, J = 6.9 Hz, 2H), 1.45 (s, 9H). ¹³C{¹H} NMR (100 MHz, Chloroform-d) δ 156.0, 136.2, 127.8, 125.1, 123.5, 120.8, 120.5, 119.9 (t, J = 29.2 Hz), 116.7 (d, J = 23.1 Hz), 111.8, 79.4, 41.4, 28.4, 24.9. ¹⁹F NMR (471 MHz, Chloroform-d) δ -80.0 (t, J = 9.9 Hz, 3F), -108.3 (q, J = 9.9, 9.5 Hz, 2F), -126.3 (s, 2F). HRMS (ESI) m/z: [M+Na]⁺calcd for C₁₈H₁₉F₇N₂NaO₂ 451.1227; found 451.1221.

3-(Perfluoropropyl)-1*H***-indole or 2-(perfluoropropyl)-1***H***-indole (30): According to the general procedure 2**, indole (50 mg, 0.43 mmol), heptafluoropropyliodide (2 equiv, 0.85 mmol), DABCO (2 equiv, 0.85 mmol)

provided **3o** after flash column chromatography as colourless liquid (50 mg, 41%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 (s, 1H), 8.41 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 1H), 7.41 (d, *J* = 5.8 Hz, 2H), 7.36 (d, *J* = 7.3 Hz, 1H), 7.29 (dd, *J* = 14.9, 7.4 Hz, 2H), 7.21 (d, *J* = 7.5 Hz, 1H), 6.99 (s, 1H). ¹³C {¹H} NMR (125 MHz, Chloroform-*d*) δ 136.0, 130.9, 126.2, 125.0, 124.0, 123.0, 122.2, 121.3, 111.9, 111.8, 77.3, 77.1, 76.8. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.0 (t, *J* = 9.5 Hz, 3F), -109.0 (q, *J* = 9.9 Hz, 2F), -125.2 (m, 2F). HRMS(ESI) m/z: [M+H]⁺calcd for C₁₁H₇F₇N 286.0461 found 286.0465.

(1S,2R,5S)-2-Isopropyl-5-methylcyclohexyl 3-(2(2,2,2-

trifluoroethyl)-1*H***-indol-3-yl) propanoate (6a):** According to the general procedure **2**, (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 3-(1*H*-indol-3-yl) propanoate (50 mg, 0.15 mmol), trifluoroethyliodide (2 equiv, 0.31 mmol), DABCO (2 equiv, 0.31 mmol) provided **6a** after flash column chromatography as colourless oil (25 mg, 40%). ¹H NMR

(400 MHz, Chloroform-*d*) δ 7.97 (s, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.15

(dt, J = 31.9, 7.3 Hz, 2H), 4.62 (td, J = 10.9, 4.4 Hz, 1H), 3.74 - 3.51 (m, 2H), 3.09 - 3.00 (m, 2H), 2.62 (td, J = 7.5, 3.1 Hz, 2H), 1.89 (d, J = 11.9 Hz, 1H), 1.64 - 1.56 (m, 4H), 1.44 (dddt, J = 12.2, 9.9, 6.8, 3.4 Hz, 1H), 1.00 (dd, J = 12.9, 3.2 Hz, 1H), 0.96 - 0.83 (m, 5H), 0.77 (d, J = 7.0 Hz, 3H), 0.63 (d, J = 7.0 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (100 MHz, Chloroform-*d*) δ 172.9, 136.1, 127.4, 123.3, 122.7, 119.8, 118.9, 114.9, 110.9, 74.3, 47.0, 40.9, 35.2, 34.3, 32.1 - 31.0 (m), 26.3, 23.6, 22.1, 20.7, 19.6, 16.4. {}^{19}F NMR (471 MHz, Chloroform-*d*) δ -64.8 (t, J = 10.7 Hz, 3F). HRMS (ESI) m/z: [M-H] calcd for C₂₃H₂₉F₃NO₂ 408.2156 found 408.2152.

Ethyl 2-((*tert*-butoxycarbonyl)amino)-3-(2-(perfluorohexyl)-1*H*-indol-3-yl)propanoate (6b): According to the general procedure 2, ethyl (*tert*-butoxycarbonyl)tryptophanate (50 mg, 0.15 mmol), decatrifluorohexyliodide (2 equiv, 0.30 mmol), DABCO (2 equiv, 0.30 mmol) provided 6b after flash column chromatography as colourless liquid (40 mg, 41%). ¹H NMR

(500 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 5.13 (d, *J* = 8.2 Hz, 1H), 4.64 (d, *J* = 7.5 Hz, 1H), 4.14 – 4.08 (m, 1H), 4.05 (dd, *J* = 10.7, 7.2 Hz, 1H), 3.32 (td, *J* = 16.5, 15.4, 6.8 Hz, 2H), 1.36 (s, 9H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 172.0, 155.0, 136.1, 127.7, 125.3, 121.0, 120.5, 115.8, 111.7, 79.8, 61.5, 54.3, 28.2, 13.8. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.3 – -81.2 (m), -106.9 (t, *J* = 13.6 Hz), -107.5 (t, *J* = 13.6 Hz), -121.6, -122.6, -126.0. HRMS(ESI) m/z: [M+Na]⁺calcd for C₂₄H₂₃F₁₃N₂NaO₄ 673.1342; found 673.1341.

N-(2-(5-Methoxy-2-(perfluorobutyl)-1*H*-indol-3-yl) ethyl)
acetamide (6c): According to the general procedure 2, melatonin
(50 mg, 0.22 mmol), nonafluorobutyliodide (2 equiv, 0.43 mmol),
DABCO (2 equiv, 0.43 mmol) provided 6c after flash column
chromatography as colourless oil (25 mg, 26%). ¹H NMR (400

MHz, Chloroform-*d*) δ 8.59 (s, 1H), 7.31 (d, *J* = 9.0 Hz, 1H), 7.18 (d, *J* = 2.3 Hz, 1H), 7.00 (dd, *J* = 8.9, 2.3 Hz, 1H), 5.65 (s, 1H), 3.86 (s, 3H), 3.55 (q, *J* = 6.8 Hz, 2H), 3.07 (t, *J* = 7.0 Hz, 2H), 1.94 (s, 3H). ¹³C{¹H} NMR (125 MHz, Chloroform-*d*) δ 170.4, 154.9, 131.4, 128.1, 120.4 (t, *J* = 28.7 Hz), 117.3, 116.6, 112.8, 100.7, 55.9, 40.3, 24.4, 23.3. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ

-80.8 (t, J = 9.7 Hz, 3F), -105.7 - -109.1 (m, 2F), -122.7 (m, 2F), -124.3 - -127.6 (m, 2F). HRMS(ESI) m/z: [M+H]⁺calcd for C₁₇H₁₆F₉N₂O₂451.1063; found 451.1061.

Ethyl 2-(2-(ethoxycarbonylamino)-3-(2-(2,2,2-trifluoroethyl)-1*H*indol-3-yl) propanamido) acetate (6d): According to the general procedure 2, ethyl (ethoxycarbonyl)tryptophylglycinate (50 mg, 0.14 mmol), trifluoroethyliodide (2 equiv, 0.28 mmol), DABCO (2 equiv, 0.28 mmol) provided 6d after flash column chromatography as white

solid (19 mg, 31%).Mp = 218-220 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.21 (t, J = 7.1 Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H), 6.02 (s, 1H), 5.43 (s, 1H), 4.49 (s, 1H), 4.17 – 4.06 (m, 4H), 3.88 (dd, J = 18.3, 5.3 Hz, 1H), 3.75 (dd, J = 18.3, 5.1 Hz, 1H), 3.69 – 3.60 (m, 2H), 3.34 (d, J = 15.3 Hz, 1H), 3.16 (dd, J = 14.5, 9.0 Hz, 1H), 1.25 (d, J = 7.1 Hz, 3H), 1.23 – 1.18 (m, 3H). ¹³C{¹H} NMR (125 MHz, Chloroform-*d*) δ 171.3, 169.2, 136.0, 127.7, 125.1, 123.1, 120.4, 118.9, 111.1, 110.6, 61.6, 55.3, 41.5, 31.4 (d, J = 31.4 Hz), 27.5, 14.6, 14.1.¹⁹ F NMR (471 MHz, Chloroform-*d*) δ -64.5 (t, J = 10.3 Hz, 3F). HRMS (ESI) m/z: [M+Na]⁺calcd for C₂₀H₂₄F₃N₃NaO₅ 466.1560 found 466.1560.

Ethyl2-(2-(ethoxycarbonylamino)-3-(2-(2,2,2-trifluoroethyl)-1*H*indol-3-yl) propanamido) propanoate (6e): According to the general procedure 2, ethyl (ethoxycarbonyl)tryptophylalaninate (50 mg, 0.13 mmol), trifluoroethyliodide (2 equiv, 0.27 mmol), DABCO (2 equiv,

0.27 mmol) provided **6e** after flash column chromatography as yellowish-white solid (18 mg, 30%). Mp = 142-144 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (s, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.05 (d, *J* = 6.4 Hz, 1H), 5.50 (s, 1H), 4.42 (s, 1H), 4.34 – 4.25 (m, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 4.08 – 3.97 (m, 2H), 3.69 – 3.59 (m, 2H), 3.29 (s, 1H), 3.17 – 3.06 (m, 1H), 1.67 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 6H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 172.1, 170.6, 136.1, 127.7, 125.0, 123.0, 120.2, 118.9, 111.0, 110.7, 61.5, 55.4, 48.4, 31.5, 29.8, 27.8, 18.4, 14.6, 14.1. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -64.5 (t, *J* = 10.3 Hz, 3F). HRMS(ESI) m/z: [M+H]⁺calcd for C₂₁H₂₇F₃N₃O₅ 458.1897 found 458.1899.

Ethyl 2-(2-(ethoxycarbonylamino)-3-(2-(2,2,2trifluoroethyl)-1*H*indol-3-yl)propanamido)-4-methylpentanoate (6f): According to the general procedure 2, ethyl (ethoxycarbonyl)tryptophylleucinate (50 mg, 0.12 mmol), trifluoroethyliodide (2 equiv, 0.24 mmol), DABCO (2 equiv, 0.24 mmol) provided 6f after flash column chromatography as

viscous yellowish solid (18 mg, 30%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J*= 7.6 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 5.88 (s, 1H), 5.44 (s, 1H), 4.60 – 4.27 (m, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 4.05 – 3.97 (m, 2H), 3.60 (ddt, *J* = 15.6, 10.8, 7.1 Hz, 3H), 3.28 (d, *J* = 13.5 Hz, 1H), 3.12 (dd, *J* = 14.4, 9.3 Hz, 1H), 1.45 – 1.41 (m, 1H), 1.18 (t, *J* = 7.1 Hz, 6H), 0.82 (d, *J* = 2.5 Hz, 6H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 172.0, 170.8, 136.1, 127.7, 125.1, 122.9, 120.2, 119.0, 111.0, 110.7, 61.3, 51.1, 41.7, 31.5, 31.2, 29.8, 24.7, 22.7, 22.1, 14.6, 14.1. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -64.5 (t, *J* = 10.6 Hz, 3F). HRMS(ESI) m/z: [M+Na]⁺calcd for C₂₄H₃₂F₃N₃NaO₅ 522.2186 found 522.2190.

6. ¹H ,¹³C & ¹⁹F Spectra of Products

 ^{19}F NMR (471 MHz) spectrum of compound 3b in CDCl3 with PhCF3 as reference standard

¹H NMR (400 MHz) spectrum of compound **3c** in CDCl₃

 13 C{ 1H } NMR (100 MHz) spectrum of compound 3c in CDCl $_3$

 ^{19}F NMR (471 MHz) spectrum of compound 3c in CDCl3 with PhCF3 as reference standard

 ^1H NMR (500 MHz) spectrum of compound 3d in CDCl_3

 13 C{ 1H } NMR (125 MHz) spectrum of compound 3d in CDCl $_3$

 ^{19}F NMR (471 MHz) spectrum of compound 3d in CDCl3 with PhCF3 as reference standard

¹H NMR (400 MHz) spectrum of compound **3e** in CDCl₃

 ^{19}F NMR (471 MHz) spectrum of compound 3e in CDCl3 with PhCF3 as reference standard

¹H NMR (396 MHz) spectrum of compound **3f** in CDCl₃

 13 C{ 1H NMR (125 MHz) spectrum of compound 3f in CDCl $_3$

¹⁹F NMR (471 MHz) spectrum of compound **3f** in CDCl₃ with PhCF₃ as reference standard

 ^1H NMR (500 MHz) spectrum of compound 3g in CDCl3

 ^{19}F NMR (471 MHz) spectrum of compound 3g in CDCl3 with PhCF3 as reference standard

 13 C{ 1H } NMR (100 MHz) spectrum of compound **3h** in CDCl₃

 ^{19}F NMR (471 MHz) spectrum of compound **3h** in CDCl₃ with PhCF₃ as reference standard

¹H NMR (400 MHz) spectrum of compound **3i** in CDCl₃

¹⁹F NMR (471 MHz) spectrum of compound **3i** in CDCl₃ with PhCF₃ as reference standard

 13 C{¹H} NMR (100 MHz) spectrum of compound **3j** in CDCl₃

 ^{19}F NMR (471 MHz) spectrum of compound 3j in CDCl3 with PhCF3 as reference standard

¹H NMR (500 MHz) spectrum of compound **3k** in CDCl₃

 ^{19}F NMR (471 MHz) spectrum of compound 3k in CDCl3 with PhCF3 as reference standard

¹H NMR (400 MHz) spectrum of compound **3l** in CDCl₃

 13 C{¹H} NMR (100 MHz) spectrum of compound **31** in CDCl₃

 ^1H NMR (500 MHz) spectrum of compound 3m in CDCl_3

¹⁹F NMR (471 MHz) spectrum of compound **3m** in CDCl₃ with PhCF₃ as reference standard

 ^1H NMR (400 MHz) spectrum of compound 3n in CDCl3

 13 C{ 1H } NMR (100 MHz) spectrum of compound **3n** in CDCl₃

 ^{19}F NMR (471 MHz) spectrum of compound 3n in CDCl3 with PhCF3 as reference standard

 ^1H NMR (400 MHz) spectrum of compound 30 in CDCl3

 13 C{ 1H NMR (125 MHz) spectrum of compound **30** in CDCl₃

 ^{19}F NMR (471 MHz) spectrum of compound 30 in CDCl3 with PhCF3 as reference standard

 ^1H NMR (400 MHz) spectrum of compound **6a** in CDCl_3

 13 C{ 1H } NMR (100 MHz) spectrum of compound **6a** in CDCl₃

¹⁹F NMR (471 MHz) spectrum of compound **6a** in CDCl₃ with PhCF₃ as reference standard

 13 C{ 1H NMR (100 MHz) spectrum of compound **6b** in CDCl₃

 ^{19}F NMR (471 MHz) spectrum of compound **6b** in CDCl_3

 ^1H NMR (400 MHz) spectrum of compound **6c** in CDCl_3

 13 C{ 1H NMR (125 MHz) spectrum of compound 6c in CDCl_3

 ^{19}F NMR (471 MHz) spectrum of compound 6c in CDCl_3

¹H NMR (500 MHz) spectrum of compound **6d** in CDCl₃

 $^{19}\mathrm{F}$ NMR (471 MHz) spectrum of compound 6d in CDCl₃ with PhCF₃ as reference standard

¹H NMR (400 MHz) spectrum of compound **6e** in CDCl₃

 13 C{ 1H NMR (100 MHz) spectrum of compound **6e** in CDCl_3

¹⁹F NMR (471 MHz) spectrum of compound **6e** in CDCl₃ with PhCF₃ as reference standard

¹H NMR (500 MHz) spectrum of compound **6f** in CDCl₃

¹⁹F NMR (471 MHz) spectrum of compound **6f** in CDCl₃ with PhCF₃ as reference standard

7. Crystal Structure of 3a (CCDC No.: 2322591)

