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Traditional Friedel-Crafts reaction mechanisms 

 

Fig. S1. Reaction mechanisms of traditional Friedel-Crafts alkylation (A) and acylation (B) with aluminum chloride. 

 

 

DNA methylation mechanism 

 

Fig. S2. A reaction mechanism of cytosine methylation shown in a previous report.1 
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Natural Friedel-Crafts reaction mechanisms 

 

Fig. S3. A simplified reaction mechanism of enzymatic tryptophan mannosylation proposed in a previous report.2 Full depiction of the enzyme 
actions during the reaction is shown in the previous report.  

 

 

 

 

Fig. S4. A simplified reaction mechanism of enzymatic formation of cylindrocyclophane proposed in a previous report.3 Full depiction of the 
enzyme actions during the reaction is shown in the previous report.  
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Fig. S5. A simplified reaction mechanism of enzymatic formation of 2.4-diacetylphloroglucinol proposed in a previous report.4 Full depiction of 
the enzyme actions during the reaction is shown in the previous report. 

 

Fig. S6. A simplified reaction mechanism of enzymatic acylation of an imidazole derivative proposed in a previous report.5 Full depiction of the 
enzyme actions during the reaction is shown in the previous report.  
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Biomolecule-mediated Friedel-Crafts reaction mechanisms for unnatural 

substrates 

 

Fig. S7. A simplified reaction mechanism of prenyltransferase-mediated alkylation, based on relevant reports.6,7 Full depiction of the enzyme 
actions during relevant reactions are shown in the previous reports. 

 

 

 

 

 

Fig. S8. A reaction mechanism of copper-mediated alkylation of α,β-unsaturated carbonyl groups, based on relevant reports.8,9 Effects of 
biomolecule ligands are not considered for the shown mechanism. 
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Nucleoside synthesis mechanisms 

 

Fig. S9. A reaction mechanism of alkylation of a guanosine analogue, based on relevant reports.10,11 

 

 

Fig. S10. A reaction mechanism of alkylation of pyrene with a deoxyribose derivative, based on a relevant report.12 
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Fig. S11. A reaction mechanism of alkylation of thienoguanosine, based on relevant reports.10,11 
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Carbohydrate functionalization mechanisms 

 

Fig. S12. A reaction mechanism of formation of an intermediate for saptomycin B total synthesis, based on a relevant report.13 

 

 

Fig. S13. A reaction mechanism of formation of an intermediate for chafuroside B total synthesis, based on relevant reports.14–16 
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Fig. S14. A reaction mechanism of Fries-type rearrangement, based on relevant reports.17,18 
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Fatty acid functionalization mechanisms 

 

Fig. S15. A reaction mechanism of acylation of furan reported in previous literature.19 

 

 

 

 

Fig. S16. A reaction mechanism of acylation of an unsaturated fatty acid as a nucleophile, based on relevant reports.20,21  
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Amino acid/polypeptide synthesis and functionalization mechanisms 

 

Fig. S17. A reaction mechanism of zinc-mediated alkylation of α,β-unsaturated carbonyl groups, based on relevant reports.8,9 

 

 

 

Fig. S18. A reaction mechanism of acylation of phenylalanine acid, based on general Friedel-Crafts acylation reactions.22 
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Fig. S19. A reaction mechanism of acylation of tyrosine amino acid, based on general Friedel-Crafts acylation reactions. 

 

 

 

Fig. S20. A reaction mechanism of tryptophan alkylation on proteins reported in previous literature.23 
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