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Traditional Friedel-Crafts reaction mechanisms
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the mechanisms shown above are based on general Friedel-Crafts reactions
(e.g., Organic Chemistry, Marc Loudon and Jim Parise. Sixth edition).
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Fig. S1. Reaction mechanisms of traditional Friedel-Crafts alkylation (A) and acylation (B) with aluminum chloride

DNA methylation mechanism

Methylation of cytosine is considered to proceed through an enamine-like intermediate rather than typical electrophilic aromatic substitution

However, since Friedel-Crafts reactions of nonaromatic nucleophiles (e.g., alkene) are possible, perhaps this process can be considered
Friedel-Crafts alkylation in a broader sense.
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the mechanism shown below is based on a report: Schramm et al. Proc. Nat. Acad. Sci. 2016, 113, 2916.
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Fig. S2. A reaction mechanism of cytosine methylation shown in a previous report.*
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Natural Friedel-Crafts reaction mechanisms
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the mechanism shown below is based on a report: K. P. Locher et al. Nat. Chem. Biol. 2023, 19, 575.
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Fig. $3. A simplified reaction mechanism of enzymatic tryptophan mannosylation proposed in a previous report.? Full depiction of the enzyme
actions during the reaction is shown in the previous report.
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the mechanism shown below is based on a report: E. P. Balskus et al. eLife. 2022, 11, e75761.
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Fig. S4. A simplified reaction mechanism of enzymatic formation of cylindrocyclophane proposed in a previous report.? Full depiction of the
enzyme actions during the reaction is shown in the previous report.
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the mechanism shown below is based on a report: F. Himo et al. ACS. Catal. 2020, 10, 570.

i) formation of thioester electrophile
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Fig. S5. A simplified reaction mechanism of enzymatic formation of 2.4-diacetylphloroglucinol proposed in a previous report.* Full depiction of
the enzyme actions during the reaction is shown in the previous report.
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the mechanism shown below is based on a report: W. Zhu et al. J. Am. Chem. Soc. 2023, 145, 26308.

i) formation of thioester electrophile
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ii) enzymatic Friedel-Crafts acylation
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Fig. S6. A simplified reaction mechanism of enzymatic acylation of an imidazole derivative proposed in a previous report.> Full depiction of the
enzyme actions during the reaction is shown in the previous report.
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Biomolecule-mediated Friedel-Crafts reaction mechanisms for unnatural
substrates
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the mechanism shown below is based on general reaction mechanisms of aromatic prenyltransferases
(e.g., Zhou et al. PLOS Biol. 2014, 12, €e1001911. and Vincken et al. PLOS One. 2017, 12, e0174665.).
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Fig. S7. A simplified reaction mechanism of prenyltransferase-mediated alkylation, based on relevant reports.®’ Full depiction of the enzyme
actions during relevant reactions are shown in the previous reports.
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the mechanism shown below is based on general reaction mechanisms of alkylation reaction through 1,4-addition
(e.g., Trost et al. J. Am. Chem. Soc. 2008, 130, 24&38. and Pitchumani et al. Tetrahedron Lett. 2014, 55, 2061.
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Fig. S8. A reaction mechanism of copper-mediated alkylation of a,B-unsaturated carbonyl groups, based on relevant reports.® Effects of
biomolecule ligands are not considered for the shown mechanism.
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Nucleoside synthesis mechanisms
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the mechanism is based on reports of relevant reactions (e.g., Silyl-Hilbert-Johnson reaction): Vorbruggen et al. Acc.

Chem. Res. 1995, 28, 509. and Mao et al. Molecules 2017, 22, 84.
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Fig. S9. A reaction mechanism of alkylation of a guanosine analogue, based on relevant reports.1%!!
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the mechanism is based on general reactions of glcosyl chloride such as Wang et al. Chem. Eur. J. 2013, 19, 846
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Fig. S10. A reaction mechanism of alkylation of pyrene with a deoxyribose derivative, based on a relevant report.*?
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the mechanism is based on reports of relevant reactions (e.g., Silyl-Hilbert-Johnson reaction): Vorbruggen et al. Acc.
Chem. Res. 1995, 28, 509. and Mao et al. Molecules 2017, 22, 84.

SnCl 9
n
o) =N o~ ~CHs =~ "NH
o @ N" NN S
0.\ | o ® I - _CH,
Mo o ° o4n® CH O ) N NN~
Ph ~:0 itle) 3 SnCly H=. |
o o - Ph)LO/\Q, P~ph > S . 0 “base Ch,
<o Ph %\: ° O): OJ<Ph
o] o)
Ph PH PH
o)
s MM
A _CH
SL o NTNTN 8
ph” O /o CH,
o o«
/\:O Ph
PH

Fig. S11. A reaction mechanism of alkylation of thienoguanosine, based on relevant reports.1%!
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Carbohydrate functionalization mechanisms
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the mechanism is based on a general alkylation reaction with O-acyl leaving group (e.g.,
Vankar et al. Carbohydr. Res. 2005, 340, 2688.)
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Fig. S12. A reaction mechanism of formation of an intermediate for saptomycin B total synthesis, based on a relevant report.?
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the first part of the mechanism with silyl triflate is based on relevant reports (OTf addition could be a possible pathway as well):
Kim et al. J. Am. Chem. Soc. 2009, 131, 17705. and Pedersen et al. Chem. Commun. 2016, 52, 11418.
The second part (Fries rearragnement) is proposed in a report: Kan et al. Org. Lett. 2009, 11, 2233.
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Fig. S13. A reaction mechanism of formation of an intermediate for chafuroside B total synthesis, based on relevant reports.!4-16
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the mechanism is based on a general Fries-type rearrangement (e.g.,
Compain and Hazelard et al. J. Org. Chem. 2023, 88, 13847. and Lang et al. Chem. Soc. Rev. 2019, 48, 2829.)

Fig. S14. A reaction mechanism of Fries-type rearrangement, based on relevant reports.'”'8
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Fatty acid functionalization mechanisms
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the mechanism shown below is based on a report (arrows are not shown in the report):
Dauenhauer et al. ACS Sustainable Chem. Eng. 2020, 8, 18616.
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Fig. S15. A reaction mechanism of acylation of furan reported in previous literature.*®
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the mechanisms shown below are based on general acylation reactions of alkenes (e.g.,
Jackson et al. J. Org. Chem. 1982, 47, 5393. and Groves et al. Chem. Soc. Rev. 1972, 1, 97.
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Fig. S16. A reaction mechanism of acylation of an unsaturated fatty acid as a nucleophile, based on relevant reports.?02*
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Amino acid/polypeptide synthesis and functionalization mechanisms
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the mechanism shown below is based on general reaction mechanisms of alkylation reaction through 1,4-addition
(e.g., Trost et al. J. Am. Chem. Soc. 2008, 130, 2438. and Pitchumani et al. Tetrahedron Lett. 2014, 55, 2061.)
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Fig. S17. A reaction mechanism of zinc-mediated alkylation of a,B-unsaturated carbonyl groups, based on relevant reports.®°
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the mechanism shown below is based on general acylation mechanisms
(e.g., Organic Chemistry, Marc Loudon and Jim Parise. Sixth edition).
Protonated amines are shown since the reported reaction is under triflic acid (Hashimoto et al. Heterocycles 2013, 87, 2119.)
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Fig. S18. A reaction mechanism of acylation of phenylalanine acid, based on general Friedel-Crafts acylation reactions.?
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the mechanism shown below is based on general acylation mechanisms
(e.g., Organic Chemistry, Marc Loudon and Jim Parise. Sixth edition).
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Fig. $19. A reaction mechanism of acylation of tyrosine amino acid, based on general Friedel-Crafts acylation reactions.

the mechanism shown below is based on a report
(Ohata et al. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.3¢c13447.)
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Fig. $20. A reaction mechanism of tryptophan alkylation on proteins reported in previous literature.?
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