Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

supporting information for

Visible-light-mediated C-H amidation of imidazoheterocycles with N-amidopyridiniums

Lili Wen, Qiannan Tan, Chao Pi, ^b Juan Yuan, ^{a*} Jingyu Zhang, ^{a*} Xia Mi ^{a*}

Table of Contents

1. General information	S1
2. Preparation of Starting Materials	\$2-\$3
3. General procedure for N-(2-phenylimidazo[1,2-a]pyridin-3-	yl)acetamideS3
4. Radical-trapping experiment	S3
5. Luminescence Quenching Experiments	\$3-\$6
6. Characterization of the products	\$7-\$22
7. Copies of ¹ H and ¹³ C NMR spectra	S23-S77
8. References	S78

1. General information

Unless otherwise stated, all commercial reagents were used without additional purification. Column chromatography was undertaken on silica gel (200-300 mesh) using a proper eluent system. ¹H NMR, ¹⁹F NMR, and ¹³C NMR spectra were recorded on a spectrometer at 400, 376 and 101 MHz, respectively, with deuteraterated chloroform as solvent. The chemical shifts δ are reported in ppm relative to tetramethylsilane ($\delta = 0$ ppm) or residual CHCl₃ ($\delta = 77.00$ ppm). The following abbreviations were used to describe peak splitting patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), td (triplet of doublet). Coupling constants *J* are reported in Hertz (Hz). High-resolution mass spectrometry (**HRMS**) was performed on a Q-TOF spectrometer using electrospray ionization (**ESI**). The imidazo[1,2-*a*]pyridines¹⁻³ and N-amidopyridinium salts⁴⁻⁶ were prepared according to references.

2. Preparation of Starting Materials

Synthesis of Substrates 1

Procedure A (1a-1o, 1q-1ag, 1ai) :

A round-bottom flask equipped with a magnetic stir bar was charged with 2aminopyridine (1.3 equiv.), the corresponding α -bromo-ketones (1.0 equiv.), and NaHCO₃ (1.5 equiv.). EtOH was then added, and the resulting solution was stirred at room temperature for 6 h. After the completion of the reaction, the resulting mixture was diluted with water and extracted with ethyl acetate (three times). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography on silica gel with petroleum ether/EtOAc as eluent to afford pure product.

Procedure B (1p, 1ah) :

A round-bottom flask equipped with a magnetic stir bar was charged with 2aminopyridines (1.2 equiv.), the corresponding α -bromo-ketones (1.0 equiv.), CuI (0.2 equiv.). Dioxane was then added, and the resulting solution was stirred at 100 °C under air for 14 h. After the completion of the reaction, the reaction solvent was concentrated under reduced pressure to give the crude product, which was purified by column chromatography on silica gel with petroleum ether/EtOAc as eluent to afford pure product.

Synthesis of Substrates 2

Procedure A :

To a solution of 2,4,6-Trimethylpyrylium tetrafluor oborate (1.0 equiv.) in ethanol was added hydrazine (1.0 equiv.). The reaction mixture was stirred at room temperature for 12 h. The mixture was cooled to 0 °C and petroleum ether was added. The precipitate was collected, washed with Et2O and dried to give products **2**.

Procedure B :

Step 1: To a solution of 1-aminopyridinium iodide (1.0 equiv.) and distilled-CH₃CN (0.13 M) were added DMAP (10 mol%), K_2CO_3 (3.6 equiv.) and sulfonyl chloride (1.0 equiv.) at 0 °C (ice water bath) under N₂. Then, the cooling bath was removed and the reaction mixture was stirred at room temperature for 6 h. The suspension was filtered and concentrated in vacuo. The residue was suspended in DCM and filtered to remove inorganic impurities. After the solvent was removed under reduced pressure, The crude product was purified by column chromatography on silica gel with DCM/MeOH as eluent to afford pure product.

Step 2: The obtained ylide was disolved in DCM (0.3 M) and tetrafluoroboric acid solution (40 wt.% in H₂O) (1.3 equiv.) was added to the solution at room temperature. The reaction mixture was stirred for 30 min, then the product was precipitated with Et_2O . The resulting precipitate was filtered off, washed with Et_2O and dried under vacuum.

3. General procedure for N-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide

Under Ar atmosphere, a reaction tube (25 mL) equipped with a magnetic stirrer bar was charged with imidazo[1,2-a]pyridine (1, 0.2 mmol), N-amidopyridinium salts (2, 0.24 mmol), 4CzIPN (0.014 mmol, 7 mol%), Et₃N (0.24 mmol), and DMSO (1.0 mL). The reaction mixture was stirred with a 9 W blue LEDs irradiation at room temperature for 36 h. The resulting mixture was diluted with water (10 mL) and extract with EtOAc (10 mL). The combined organic layer was dried with anhydrous MgSO₄. After removal of EtOAc under vacuum, the residue was purified by chromatography on silica gel (eluent: EA/PE) to give the desired product **3**.

4. Radical-trapping experiment

Two equivalents of radical scavenger TEMPO (2,2,6,6-tetramethylpiperidinoxy), DPE (1,1-diphenylethylene) or BHT (butylated hydroxytoluene) was added to the reaction of **1a** with **2a** in the standard conditions. After 36 h, the reaction mixture was cooled to room temperature. The crude reaction mixture was detected by HRMS or GC-MS.

5. Luminescence Quenching Experiments

Emission intensities were recorded using an Edinburgh UK FLS100 photoluminescence spectrometer from 400 nm to 800 nm. After irradiation of 5×10 -5M of 4CzIPN and different concentration of quencher in solvent (CH₂Cl₂) at 375 nm,

its fluorescence was measured.

As shown in Figures S1-S3, the emission intensity of the excited state of photocatalyst 4CzIPN is decreased in the presence of 2a or Et₃N. In contrast, when solutions of 1a have been employed, no fluorescence quenching has been observed. The liner relationship between I₀/I and the different concentration of 1a, 2a, Et₃N was shown in Figure S4.

Figure S1. Fluorescence quenching of 4CzIPN with 1a.

Figure S2. Fluorescence quenching of 4CzIPN with 2a.

Figure S3. Fluorescence quenching of 4CzIPN with Et₃N.

Figure S4. The liner relationship between Io/I (Io and I are the florescence intensities of 4CzIPN before and after adding the **1a**, **2a** and Et₃N with various concentration)

6. Characterization of the products

N-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3a)⁷: 37 mg, 74% yield, white solid; mp 217–219 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.30 (s, 1H), 8.08 (dt, J = 6.8, 1.2 Hz, 1H), 8.03 – 7.96 (m, 2H), 7.61 (dt, J = 9.0, 1.2 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.39 – 7.27 (m, 2H), 6.95 (td, J = 6.8, 1.1 Hz, 1H), 2.24 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.9, 142.3, 137.7, 134.0, 129.0, 128.1, 127.2, 125.5, 124.3, 117.3, 116.2, 112.5, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₄N₃O 252.1131, found 252.1135.

N-(8-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3b)⁸: 36 mg, 68% yield, white solid; mp 216–218 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.17 (s, 1H), 8.02 – 7.97 (m, 2H), 7.93 (d, *J* = 6.8 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.38 – 7.32 (m, 1H), 7.12 (dt, *J* = 6.8, 1.3 Hz, 1H), 6.86 (t, *J* = 6.8 Hz, 1H), 2.55 (s, 3H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.6, 137.2, 134.1, 129.0, 128.0, 127.2, 126.8, 124.2, 122.1, 116.5, 112.5, 23.1, 16.6. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O 266.1288, found 266.1293.

N-(8-chloro-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3c): 35 mg, 61% yield, white solid; mp 248–250 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.29 (s, 1H), 8.13 (dd, J = 6.8, 1.2 Hz, 1H), 8.02 – 7.95 (m, 2H), 7.55 – 7.44 (m, 3H), 7.42 – 7.33 (m, 1H), 6.97 – 6.91 (m, 1H), 2.23 (d, J = 1.1 Hz, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 139.3, 138.3, 133.4, 129.1, 128.4, 127.3, 124.7, 123.7, 121.9, 117.8, 112.4, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃ClN₃O 286.0742, found 286.0744.

N-(7-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3d)⁸: white solid; 36 mg, 68% yield, mp 219–221 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.14 (s, 1H), 7.99

-7.94 (m, 3H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.39 -7.30 (m, 2H), 6.79 (dd, *J* = 7.0, 1.6 Hz, 1H), 2.40 -2.36 (m, 3H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.7, 137.2, 136.1, 134.2, 128.9, 127.9, 127.1, 123.6, 115.7, 115.5, 114.9, 23.1, 21.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O 266.1288, found 266.1288.

N-(7-ethyl-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3e): 38 mg, 67% yield, Colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.14 (s, 1H), 8.00 – 7.94 (m, 3H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.38 – 7.31 (m, 2H), 6.84 (dd, *J* = 7.1, 1.7 Hz, 1H), 2.68 (q, *J* = 7.5 Hz, 2H), 2.23 (s, 3H), 1.24 (t, *J* = 7.5 Hz, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.8, 142.1, 137.3, 134.2, 128.9, 127.9, 127.0, 123.8, 115.6, 114.2, 113.9, 28.2, 23.1, 15.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₇H₁₈N₃O 280.1444, found 280.1448.

N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3f): 33 mg, 58% yield, Colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 7.93 (dd, *J* = 7.8, 2.0 Hz, 3H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35 – 7.26 (m, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.64 (dd, *J* = 7.4, 2.4 Hz, 1H), 3.85 (s, 4H), 2.20 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 158.2, 143.8, 136.9, 134.2, 128.9, 127.8, 126.9, 124.9, 115.1, 106.9, 95.0, 56.1, 23.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O₂ 282.1237, found 282.1241.

N-(7-fluoro-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3g): 35 mg, 65% yield, white solid; mp 217–219 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 8.18 (dd, J = 7.5, 5.8 Hz, 1H), 7.98 – 7.93 (m, 2H), 7.51 – 7.45 (m, 3H), 7.38 – 7.33 (m, 1H), 7.02 (td, J = 7.6, 2.5 Hz, 1H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.0, 160.5 (d, J = 249.5 Hz), 142.3 (d, J = 14.1 Hz), 138.3, 133.7, 129.1, 128.2, 127.1, 126.6 (d, J = 11.1 Hz), 116.2, 104.6 (d, J = 29.3 Hz), 100.8 (d, J = 23.7 Hz), 23.2.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.72. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃FN₃O 270.1037, found 270.1037.

N-(2-phenyl-7-(trifluoromethyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3h): 38 mg, 59% yield, white solid; mp 173–175 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.39 (s, 1H), 8.34 (d, *J* = 7.1 Hz, 1H), 8.13 (s, 1H), 8.04 – 7.98 (m, 2H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.22 (dd, *J* = 7.3, 1.9 Hz, 1H), 2.26 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 140.3, 139.9, 133.2, 129.2, 128.7, 127.3, 125.9, 125.4 (q, *J* = 33.3 Hz), 124.1 (q, *J* = 272.7 Hz), 117.9, 115.5 (q, *J* = 5.1 Hz), 107.9 (q, *J* = 4.0 Hz), 23.2.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.78. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₃F₃N₃O 320.1005, found 320.1005.

N-(6-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3i): 34 mg, 60% yield, colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 7.95 – 7.92 (m, 2H), 7.58 (d, *J* = 2.4 Hz, 1H), 7.54 (d, *J* = 9.7 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.11 (dd, *J* = 9.7, 2.4 Hz, 1H), 3.82 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.8, 149.1, 139.5, 137.9, 134.2, 128.9, 127.9, 126.9, 120.2, 117.8, 117.1, 105.9, 56.9, 23.3. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O₂ 282.1237, found 282.1237.

N-(6-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (3j): 36 mg, 67% yield, pale yellow solid; mp 241–243 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.23 (s, 1H), 8.00 – 7.92 (m, 2H), 7.87 (q, J = 1.4 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.35 – 7.29 (m, 1H), 7.15 (dd, J = 9.1, 1.7 Hz, 1H), 2.33 – 2.29 (m, 3H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.9, 141.4, 137.6, 134.2, 128.9, 128.5, 127.9, 127.0, 121.8, 121.6, 116.8, 115.9, 23.2, 18.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O 266.1288, found 266.1287.

N-(2-phenyl-6-(trifluoromethyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3k): 39 mg, 62% yield, white solid; mp 204–206 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.30 (s, 1H), 8.66 – 8.63 (m, 1H), 8.03 – 7.98 (m, 2H), 7.82 (d, *J* = 9.4 Hz, 1H), 7.56 (dd, *J* = 9.5, 1.9 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.42 – 7.36 (m, 1H), 2.26 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.2, 142.1, 139.4, 133.2, 129.1, 128.7, 127.3, 124.4 (q, *J* = 272.7 Hz), 124.1 (q, *J* = 5.6 Hz), 120.9 (d, *J* = 3.0 Hz), 118.5, 117.9, 115.3 (q, *J* = 34.3 Hz), 23.7.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.03. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₃F₃N₃O 320.1005, found 320.1006.

N-(2-(o-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3l): 35 mg, 65% yield, white solid; mp 244–246 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.97 (s, 1H), 8.05 (dt, J = 6.8, 1.1 Hz, 1H), 7.60 (dt, J = 9.1, 1.1 Hz, 1H), 7.37 (dd, J = 7.1, 1.4 Hz, 1H), 7.34 – 7.21 (m, 4H), 6.96 (td, J = 6.8, 1.2 Hz, 1H), 2.34 (s, 3H), 2.11 (d, J = 0.9 Hz, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.9, 142.0, 139.5, 137.3, 133.4, 130.9, 130.5, 128.4, 125.9, 125.1, 124.4, 117.3, 117.1, 112.3, 22.9, 20.6. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O 266.1288, found 266.1288.

N-(2-(2-fluorophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3m): 39 mg, 72% yield, colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.99 (s, 1H), 8.06 (dt, J = 6.9, 1.2 Hz, 1H), 7.78 (td, J = 7.5, 1.7 Hz, 1H), 7.62 (dt, J = 9.1, 1.1 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.35 – 7.27 (m, 3H), 6.97 (td, J = 6.8, 1.2 Hz, 1H), 2.13 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.6, 159.9 (d, J = 249.1 Hz), 142.5, 133.6 (d, J = 2.3 Hz), 131.7 (d, J = 3.8 Hz), 130.4 (d, J = 8.2 Hz), 125.5, 124.9 (d, J = 3.4 Hz), 124.6, 121.9 (d, J = 14.3 Hz), 117.9, 117.4, 116.5 (d, J = 21.9 Hz), 112.6, 22.9.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.09. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃FN₃O 270.1037, found 270.1039.

N-(2-(2-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3n): 39 mg, 69% yield, white solid; mp 243–245 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.99 (s, 1H), 8.06 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.62 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.56 (ddd, *J* = 9.9, 6.0, 3.4 Hz, 2H), 7.43 (ddd, *J* = 6.0, 3.5, 0.9 Hz, 2H), 7.33 (ddt, *J* = 8.9, 6.6, 1.1 Hz, 1H), 6.98 (tt, *J* = 6.8, 1.1 Hz, 1H), 2.10 (d, *J* = 0.9 Hz, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.6, 142.1, 136.5, 133.2, 132.9, 132.8, 130.3, 130.1, 127.4, 125.4, 124.6, 117.9, 117.5, 112.5, 23.0. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃ClN₃O 286.0742, found 286.0747.

N-(2-(2-bromophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (**30**): 34 mg, 52% yield, white solid; mp 256–258 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.98 (s, 1H), 8.06 (dt, J = 6.9, 1.2 Hz, 1H), 7.77 – 7.72 (m, 1H), 7.61 (dt, J = 9.1, 1.1 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.38 – 7.29 (m, 2H), 6.98 (tt, J = 6.8, 1.1 Hz, 1H), 2.10 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.6, 141.9, 138.1, 135.1, 133.8, 132.9, 130.4, 127.9, 125.3, 124.7, 123.1, 117.6, 117.5, 112.5, 23.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃BrN₃O 330.0237, found 330.0237.

N-(2-(m-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3p): 36 mg, 67% yield, white solid; mp 223–225 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.17 (s, 1H), 8.08 (dt, J = 6.8, 1.2 Hz, 1H), 7.83 (d, J = 1.9 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.60 (dt, J = 9.1, 1.1 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.31 (ddd, J = 9.2, 6.7, 1.2 Hz, 1H), 7.19 – 7.14 (m, 1H), 6.94 (td, J = 6.8, 1.1 Hz, 1H), 2.39 (s, 3H), 2.24 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.9, 142.3, 138.0, 137.7, 133.9, 128.9, 128.7, 127.8, 125.5, 124.3, 124.2, 117.3, 116.1, 112.4, 23.1, 21.7. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O 266.1288, found 266.1293.

N-(2-(3-methoxyphenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3q): 35 mg, 62% yield, colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.19 (s, 1H), 8.09 (dt, *J* = 6.8, 1.2 Hz, 1H), 7.64 – 7.53 (m, 3H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.31 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 6.97 – 6.91 (m, 2H), 3.83 (s, 3H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.8, 159.8, 142.2, 137.4, 135.3, 130.1, 125.6, 124.3, 119.5, 117.3, 116.2, 113.9, 112.5, 112.2, 55.5, 23.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O₂ 282.1237, found 282.1237.

N-(2-(3-fluorophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3r): 35 mg, 65% yield, white solid; mp 182–184 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.37 (s, 1H), 8.10 (dt, J = 6.9, 1.2 Hz, 1H), 7.84 (dt, J = 7.9, 1.2 Hz, 1H), 7.75 (ddd, J = 10.8, 2.7, 1.5 Hz, 1H), 7.61 (dt, J = 9.1, 1.1 Hz, 1H), 7.51 (td, J = 8.0, 6.2 Hz, 1H), 7.33 (ddd, J = 9.1, 6.7, 1.3 Hz, 1H), 7.23 – 7.14 (m, 1H), 6.96 (td, J = 6.8, 1.2 Hz, 1H), 2.25 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 162.8 (d, J = 242.3 Hz), 142.3, 136.4 (d, J = 8.1 Hz), 136.3 (d, J = 2.0 Hz), 131.1 (d, J = 9.1 Hz), 125.9, 124.4, 123.1 (d, J = 3.0 Hz), 117.4, 116.7, 114.8 (d, J = 21.2 Hz), 113.4 (d, J = 23.2 Hz), 112.7, 23.2.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -112.94. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃FN₃O 270.1037, found 270.1038.

N-(2-(3-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3s): 33 mg, 58% yield, white solid; mp 221–223 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.38 (s, 1H), 8.14 – 8.07 (m, 1H), 8.00 (t, *J* = 1.9 Hz, 1H), 7.95 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.41 (ddd, *J* = 8.0, 2.2, 1.1 Hz, 1H), 7.33 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 6.97 (td, *J* = 6.7, 1.1 Hz, 1H), 2.24 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.4, 136.1, 136.1, 133.8, 131.0, 127.8, 126.6, 125.9, 125.5, 124.5, 117.4, 116.7, 112.78, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃ClN₃O 286.0742, found 286.0744.

N-(2-(3-bromophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (**3t**): 38 mg, 57% yield, white solid; mp 245–247 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.23 (s, 1H), 8.15 (t, J = 1.8 Hz, 1H), 8.11 (dt, J = 6.9, 1.2 Hz, 1H), 7.97 (dt, J = 7.8, 1.3 Hz, 1H), 7.62 (dd, J = 9.1, 1.1 Hz, 1H), 7.55 (dt, J = 8.3, 1.3 Hz, 1H), 7.44 (t, J = 7.9 Hz, 1H), 7.34 (ddd, J = 9.0, 6.7, 1.3 Hz, 1H), 6.97 (td, J = 6.8, 1.2 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 170.9, 142.4, 136.3, 135.9, 131.3, 130.7, 129.5, 126.0, 125.9, 124.5, 122.5, 117.4, 116.7, 112.8, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃BrN₃O 330.0237, found 330.0239.

N-(2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3u): 30 mg, 53% yield, white solid; mp 261–263 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.12 (s, 1H), 8.05 (dt, J = 6.8, 1.2 Hz, 1H), 7.93 – 7.88 (m, 2H), 7.57 (dt, J = 9.1, 1.1 Hz, 1H), 7.29 (ddt, J = 9.1, 6.8, 1.2 Hz, 1H), 7.07 – 7.01 (m, 2H), 6.93 (tt, J = 6.8, 1.1 Hz, 1H), 3.81

(d, J = 0.8 Hz, 3H), 2.22 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.9, 159.4, 142.2, 137.8, 128.4, 126.5, 125.3, 124.1, 117.1, 115.2, 114.5, 112.3, 55.6, 23.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O₂ 282.1237, found 282.1241.

N-(2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (**3v**): 29 mg, 55% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 10.12 (s, 1H), 8.09 – 8.03 (m, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.28 (dd, J = 8.6, 4.7 Hz, 3H), 6.93 (t, J = 6.8 Hz, 1H), 2.35 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 170.8, 142.3, 137.8, 137.4, 131.2, 129.6, 127.1, 125.4, 124.2, 117.2, 115.7, 112.4, 23.1, 21.3. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₆N₃O 266.1288, found 266.1288.

N-(2-([1,1'-biphenyl]-4-yl)imidazo[1,2-a]pyridin-3-yl)acetamide (3w): 34 mg, 52% yield, white solid; mp 273–275 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 8.02 (dd, *J* = 7.0, 4.0 Hz, 3H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.68 – 7.63 (m, 2H), 7.54 (dt, *J* = 9.0, 1.1 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.32 – 7.27 (m, 1H), 7.24 (ddd, *J* = 9.2, 6.7, 1.3 Hz, 1H), 6.88 (td, *J* = 6.8, 1.2 Hz, 1H), 2.18 (d, *J* = 1.1 Hz, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.4, 140.2, 139.7, 137.3, 133.1, 129.5, 128.0, 127.6, 127.2, 127.0, 125.6, 124.3, 117.3, 116.3, 112.5, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₈N₃O 328.1444, found 328.1444.

N-(2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (**3x**): 34 mg, 62% yield, white solid; mp 228–230 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.30 (s, 1H), 8.08 (dt, *J* = 6.8, 1.2 Hz, 1H), 8.05 – 7.99 (m, 2H), 7.60 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.38 – 7.25 (m, 3H), 6.95 (td, *J* = 6.8, 1.1 Hz, 1H), 2.24 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 162.2 (d, *J* = 245.4 Hz), 142.3, 136.9, 130.5 (d, *J* = 2.9 Hz), 129.1 (d, *J* = 8.1 Hz), 125.6, 124.3, 117.3, 115.9, 115.9 (d, *J* = 21.2 Hz), 112.5, 23.2.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -114.26. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃FN₃O 270.1037, found 270.1039.

N-(2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3y): 29 mg, 51% yield, white solid; mp 252–254 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.34 (s, 1H), 8.09 (dt, *J* = 6.9, 1.3 Hz, 1H), 8.03 – 7.95 (m, 2H), 7.59 (dd, *J* = 9.1, 1.2 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.32 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 6.96 (td, *J* = 6.8, 1.1 Hz, 1H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.4, 136.5, 132.9, 132.7, 129.1, 128.8, 125.8, 124.4, 117.3, 116.4, 112.6, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃ClN₃O 286.0742, found 286.0744.

N-(2-(4-bromophenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3z): 32 mg, 48% yield, white solid; mp 252–254 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 8.09 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.97 – 7.88 (m, 2H), 7.69 – 7.63 (m, 2H), 7.60 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.32 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 6.96 (td, *J* = 6.8, 1.1 Hz, 1H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.8, 142.4, 136.5, 133.3, 132.0, 129.1, 125.8, 124.4, 121.3, 117.4, 116.4, 112.7, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₅H₁₃BrN₃O 330.0237, found 330.0237.

N-(2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3aa): 35 mg, 55% yield, white solid; mp 212–214 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.27 (s, 1H), 8.19 (d, J = 8.2 Hz, 2H), 8.15 – 8.11 (m, 1H), 7.83 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 9.1 Hz, 1H), 7.35 (ddd, J = 8.8, 6.8, 1.3 Hz, 1H), 6.99 (td, J = 6.8, 1.1 Hz, 1H), 2.25 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.5, 138.0, 136.0, 128.2 (q, J = 32.3 Hz), 127.6, 126.1, 125.9 (q, J = 4.0 Hz), 124.8 (q, J = 272.7 Hz), 124.5, 117.5, 117.3, 112.9, 23.2.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.96. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₃F₃N₃O 320.1005, found 320.1006.

N-(7-methoxy-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3ab): 32 mg, 54% yield, white solid; mp 255–257 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.94 (s, 1H), 7.83

(d, J = 7.5 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 2.4 Hz, 1H), 6.55 (dd, J = 7.4, 2.4 Hz, 1H), 3.77 (s, 3H), 2.25 (s, 3H), 2.11 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.9, 158.1, 143.6, 137.1, 137.0, 131.4, 129.5, 126.8, 124.9, 114.7, 106.8, 94.9, 56.1, 23.1, 21.3. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₇H₁₈N₃O₂ 296.1394, found 296.1394.

N-(7-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3ac): 39 mg, 69% yield, Colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 7.94 (d, *J* = 6.9 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 1.8 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.78 (dd, *J* = 7.0, 1.6 Hz, 1H), 2.38 (s, 3H), 2.34 (s, 3H), 2.21 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 142.6, 137.4, 137.2, 135.9, 131.3, 129.5, 127.0, 123.5, 115.4, 115.3, 114.8, 23.1, 21.3, 21.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₇H₁₈N₃O 280.1444, found 280.1445.

N-(7-fluoro-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3ad): 37 mg, 66% yield, white solid; mp 228–230 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 8.16 (dd, *J* = 7.4, 5.9 Hz, 1H), 7.87 – 7.82 (m, 2H), 7.46 (dd, *J* = 10.1, 2.6 Hz, 1H), 7.27 (d, *J* = 7.9 Hz, 2H), 7.00 (tdd, *J* = 7.6, 2.6, 1.0 Hz, 1H), 2.34 (s, 3H), 2.22 (d, *J* = 1.1 Hz, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 160.4 (d, *J* = 248.3 Hz), 142.2 (d, *J* = 14.2 Hz), 138.4, 137.6, 130.9, 129.6, 127.0, 126.4 (d, *J* = 11.1 Hz), 115.8, 104.4 (d, *J* = 29.4 Hz), 100.8 (d, *J* = 23.6 Hz), 23.1, 21.3.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ - 113.98. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₅FN₃O 284.1194, found 284.1194.

N-(7-chloro-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3ae): 37 mg, 62% yield, white solid; mp 206–208 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 8.14 – 8.10 (m, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 2.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.01 (dd, *J* = 7.2, 2.1 Hz, 1H), 2.34 (s, 3H), 2.21 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.9, 141.9, 138.6, 137.8, 130.7, 130.6, 129.6, 127.1, 125.4, 116.3, 115.9, 113.5, 23.1, 21.3. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₆H₁₅ClN₃O 300.0898, found 300.0902.

N-(6-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3af): 30 mg, 54% yield, pale yellow solid; mp 208–210 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.08 (s, 1H), 7.91 – 7.79 (m, 3H), 7.49 (d, J = 9.1 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.16 (dd, J = 9.1, 1.7 Hz, 1H), 2.33 (d, J = 11.5 Hz, 7H), 2.23 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.8, 141.3, 137.7, 137.3, 131.3, 129.6, 128.4, 126.9, 121.7, 121.5, 116.6, 115.4, 23.2, 21.3, 18.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₇H₁₈N₃O 280.1444, found 280.1446.

N-(8-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (3ag)⁹: 34 mg, 61% yield, white solid; mp 221–223 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.22 (s, 1H), 7.88 (dd, J = 8.0, 6.3 Hz, 3H), 7.26 (d, J = 7.9 Hz, 2H), 7.09 (dt, J = 6.7, 1.2 Hz, 1H), 6.83 (t, J = 6.8 Hz, 1H), 2.53 (s, 3H), 2.34 (s, 3H), 2.21 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.8, 142.5, 137.4, 137.2, 131.4, 129.5, 127.1, 126.6, 123.8, 121.9, 116.1, 112.3, 23.1, 21.3, 16.6. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₇H₁₈N₃O 280.1444, found 280.1448.

N-(2-(thiophen-2-yl)imidazo[1,2-a]pyridin-3-yl)acetamide (3ah): 32 mg, 61% yield, white solid; mp 221–223 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.14 (s, 1H), 8.08 (dt, J = 6.8, 1.1 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.53 (dd, J = 3.6, 1.0 Hz, 1H), 7.31 (ddd, J = 9.3, 6.7, 1.2 Hz, 1H), 7.18 – 7.15 (m, 1H), 6.95 (td, J = 6.8, 1.1 Hz, 1H), 2.25 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.8, 142.3, 136.8, 133.9, 128.3, 126.4, 125.7, 124.8, 124.2, 117.0, 114.9, 112.7, 23.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₃H₁₂N₃OS 258.0696, found 258.0700.

N-(6-phenylimidazo[2,1-b]thiazol-5-yl)acetamide (3ai): Colorless oil; 32 mg, 62% yield, ¹H NMR (400 MHz, DMSO- d_6) δ 10.13 (s, 1H), 7.84 (dd, J = 8.2, 1.4 Hz, 2H),

7.64 (d, J = 4.5 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 4.5 Hz, 1H), 2.16 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.7, 146.2, 138.1, 134.2, 128.9, 127.4, 126.3, 119.2, 117.9, 113.4, 23.0. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₃H₁₂N₃OS 258.0696, found 258.0699.

N-(2-methylimidazo[1,2-a]pyridin-3-yl)acetamide (3aj): 16 mg, 43% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 9.80 (s, 1H), 7.94 (dt, J = 6.8, 1.2 Hz, 1H), 7.44 (dt, J = 9.1, 1.2 Hz, 1H), 7.20 (ddd, J = 9.1, 6.7, 1.3 Hz, 1H), 6.87 (td, J = 6.8, 1.2 Hz, 1H), 2.22 (s, 3H), 2.14 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.3, 141.7, 136.6, 124.1, 123.8, 116.6, 116.5, 111.7, 22.9, 13.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₀H₁₂N₃O 190.0975, found 190.0972.

N-(4-phenyl-1H-imidazol-5-yl)acetamide (3ak): 8 mg, 20% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 12.43 (s, 1H), 9.56 (s, 1H), 7.59 (s, 3H), 7.38 (t, J = 7.8 Hz, 2H), 7.23 (q, J = 9.4, 7.4 Hz, 1H), 2.01 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.1, 133.5, 129.2, 128.9, 126.9, 126.8, 125.8, 125.7, 23.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₁H₁₂N₃O 202.0975, found 202.0978.

N-(2-methyl-4-phenyl-1H-imidazol-5-yl)acetamide (3al): 8 mg, 19% yield, Colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 9.53 (s, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 7.7 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.22 – 7.15 (m, 1H), 2.27 (s, 3H), 2.01 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 170.1, 141.9, 129.1, 128.9, 126.8, 126.3, 125.3, 125.2, 23.2, 14.3. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₂H₁₄N₃O 216.1131, found 216.1130.

N-(2-phenylimidazo[1,2-a]pyridin-3-yl)pentanamide (3am): 43 mg, 73% yield, white solid; mp 148–150 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.11 (s, 1H), 8.01 – 7.94 (m, 3H), 7.60 (dt, J = 9.0, 1.2 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.37 – 7.27 (m, 2H), 6.95 (td, J = 6.7, 1.2 Hz, 1H), 2.52 (t, J = 7.5 Hz, 2H), 1.68 (m, J = 7.4 Hz, 2H), 1.47 – 1.34 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 173.7, 142.3, 137.7, 134.0, 128.9, 128.1, 127.1, 125.5, 124.1, 117.3, 116.1, 112.5, 35.3, 27.5, 22.3, 14.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₈H₂₀N₃O 294.1601, found 294.1600.

N-(2-phenylimidazo[1,2-a]pyridin-3-yl)cyclopropanecarboxamide (3an)⁹: 38 mg, 68% yield, white solid; mp 217–219 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.46 (s, 1H), 8.04 – 7.98 (m, 2H), 7.95 (dd, J = 6.9, 1.3 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.41 – 7.31 (m, 2H), 6.98 (td, J = 6.8, 1.2 Hz, 1H), 2.04 (tt, J = 7.4, 4.9 Hz, 1H), 0.97 – 0.89 (m, 4H).¹³C NMR (101 MHz, DMSO- d_6) δ 174.2, 142.3, 137.6, 134.1, 129.0, 128.1, 127.1, 125.5, 124.0, 117.4, 116.0, 112.6, 14.2, 7.9. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₇H₁₆N₃O 278.1288, found 278.1291.

N-(2-phenylimidazo[1,2-a]pyridin-3-yl)cyclohexanecarboxamide(3ao)⁷: 29 mg, 46% yield, white solid; mp 202–204 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.98 – 7.88 (m, 3H), 7.60 (dd, *J* = 9.1, 1.1 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.37 – 7.26 (m, 2H), 6.95 (t, *J* = 6.8 Hz, 1H), 2.56 (tt, *J* = 11.6, 3.6 Hz, 1H), 2.07 – 1.97 (m, 2H), 1.80 (dt, *J* = 12.6, 3.3 Hz, 2H), 1.72 – 1.65 (m, 2H), 1.49 (qd, *J* = 12.3, 3.2 Hz, 2H), 1.40 – 1.29 (m, 2H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 176.5, 142.4, 137.8, 134.0, 128.9, 128.1, 127.1, 125.4, 123.8, 117.3, 116.0, 112.6, 44.1, 29.4, 25.8, 25.6. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₀H₂₂N₃O 320.1757, found 320.1755.

N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)-2-phenylacetamide (3ap): 40 mg, 57% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 10.23 (s, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.82 – 7.72 (m, 2H), 7.46 – 7.37 (m, 4H), 7.34 – 7.25 (m, 4H), 6.98 (d, J = 2.4 Hz, 1H), 6.65 (dd, J = 7.5, 2.4 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.6, 158.1, 143.7, 136.8, 135.8, 134.0, 129.7, 128.9, 128.7, 127.7, 127.2, 126.7, 124.6, 114.8, 107.1, 95.0, 56.1, 42.9. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₂H₂₀N₃O₂ 358.1550, found 358.1551.

N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)benzamide (3aq): 42 mg, 62% yield, Colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.61 (s, 1H), 8.15 – 8.09 (m, 2H), 8.00 – 7.93 (m, 3H), 7.71 – 7.64 (m, 1H), 7.60 (dd, *J* = 8.2, 6.6 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.25 (m, 1H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.65 (dd, *J* = 7.5, 2.5 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.2, 158.2, 144.0, 137.5, 134.3, 133.5, 132.8, 129.1, 128.9, 128.4, 127.8, 126.8, 124.9, 114.8, 107.2, 95.1, 56.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₈N₃O₂ 344.1394, found 344.1393.

N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)-4-methylbenzamide (3ar): 44 mg, 62% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 10.52 (s, 1H), 8.05 – 7.98 (m, 2H), 7.98 – 7.90 (m, 3H), 7.41 (t, J = 7.7 Hz, 4H), 7.33 – 7.25 (m, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.65 (dd, J = 7.4, 2.5 Hz, 1H), 3.87 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.1, 158.2, 143.9, 142.9, 137.4, 134.3, 130.6, 129.6, 128.9,

128.4, 127.8, 126.8, 124.8, 115.0, 107.1, 95.1, 56.1, 21.5. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{22}H_{20}N_3O_2$ 358.1550, found 358.1552.

4-fluoro-N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)benzamide (3as): 39 mg, 54% yield, colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.63 (s, 1H), 8.23 – 8.15 (m, 2H), 8.01 – 7.93 (m, 3H), 7.49 – 7.38 (m, 4H), 7.34 – 7.25 (m, 1H), 7.04 (d, *J* = 2.5 Hz, 1H), 6.65 (dd, *J* = 7.4, 2.5 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.2, 166.2, 163.7, 158.2, 144.0, 137.5, 134.2, 131.2 (d, *J* = 9.2 Hz), 130.0 (d, *J* = 2.9 Hz), 128.9, 127.8, 126.8, 124.9, 116.2, 116.0, 114.7, 107.1, 95.1, 56.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.61. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{21}H_{17}FN_3O_2$ 362.1299, found 366.1298.

4-chloro-N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)benzamide (3at): 38 mg, 51% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 10.69 (s, 1H), 8.16 – 8.10 (m, 2H), 8.00 (d, J = 7.5 Hz, 1H), 7.97 – 7.86 (m, 2H), 7.72 – 7.65 (m, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.34 – 7.26 (m, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.65 (dd, J = 7.5, 2.4 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.3, 158.2, 144.0, 137.7, 137.5, 134.2, 132.2, 130.4, 129.2, 128.9, 127.9, 126.8, 125.0, 114.6, 107.2, 95.1, 56.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₇ClN₃O₂ 378.1004, found 378.1005.

4-bromo-N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)benzamide (3au): 40 mg, 48% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 10.69 (s, 1H), 8.07 – 8.03 (m, 2H), 8.00 (d, J = 7.5 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.86 – 7.79 (m, 2H), 7.42 (dd, J = 8.4, 7.0 Hz, 2H), 7.34 – 7.25 (m, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.65 (dd, J = 7.5, 2.5 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.4, 158.2, 144.0, 137.5, 134.2, 132.6, 132.1, 130.5, 128.9, 127.9, 126.8, 126.7, 125.0, 114.6, 107.2, 95.1, 56.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₇BrN₃O₂ 422.0499, found 422.0499.

3-chloro-N-(7-methoxy-2-phenylimidazo[1,2-a]pyridin-3-yl)benzamide (3av): 33 mg, 43% yield, colorless oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.73 (s, 1H), 8.16 (t, *J* = 1.9 Hz, 1H), 8.09 – 8.01 (m, 2H), 7.98 – 7.91 (m, 2H), 7.75 (ddd, *J* = 8.1, 2.3, 1.1 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 1H), 7.43 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.34 – 7.26 (m, 1H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.65 (dd, *J* = 7.5, 2.5 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.9, 158.3, 144.0, 137.5, 135.5, 134.2, 133.9, 132.5, 131.1, 129.0, 128.3, 127.9, 127.2, 126.8, 125.1, 114.4, 107.1, 95.1, 56.1. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₇ClN₃O₂ 378.1004, found 378.1002.

N-(2-phenylimidazo[1,2-a]pyridin-3-yl)nicotinamide (3aw): 40 mg, 63% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 10.94 (s, 1H), 9.31 (d, J = 2.3 Hz, 1H), 8.86 (dd, J = 4.9, 1.7 Hz, 1H), 8.47 (dt, J = 8.1, 2.1 Hz, 1H), 8.26 (dd, J = 6.7, 1.2 Hz, 1H), 8.02 (dd, J = 8.0, 1.5 Hz, 2H), 7.71 – 7.62 (m, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 – 7.30 (m, 2H), 6.98 (td, J = 6.7, 1.0 Hz, 1H).¹³C NMR (101 MHz, DMSO- d_6) δ 165.9, 153.3, 149.5, 142.7, 138.4, 136.3, 133.9, 129.3, 129.1, 128.3, 127.2, 125.8, 124.5, 124.2, 117.4, 115.4, 112.8. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₉H₁₅N₄O 315.1240, found 315.1241.

N-(2-phenylimidazo[1,2-a]pyridin-3-yl)furan-2-carboxamide (3ax)⁸: 25 mg, 41% yield, colorless oil; ¹H NMR (400 MHz, DMSO- d_6) δ 10.64 (s, 1H), 8.11 (dd, J = 6.8, 1.2 Hz, 1H), 8.04 (d, J = 1.7 Hz, 1H), 8.01 – 7.94 (m, 2H), 7.64 (dt, J = 9.1, 1.2 Hz, 1H), 7.49 – 7.40 (m, 3H), 7.38 – 7.29 (m, 2H), 6.95 (td, J = 6.8, 1.2 Hz, 1H), 6.78 (dd, J = 3.5, 1.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 158.2, 147.2, 146.9, 142.6, 138.5, 133.9, 129.1, 128.2, 127.1, 125.8, 124.3, 117.4, 116.4, 115.0, 112.8, 112.8. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₈H₁₄N₃O₂ 304.1081, found 304.1083.

4-methyl-N-(2-phenylimidazo[1,2-a]pyridin-3-yl)benzenesulfonamide (**3ay**)¹⁰: 37 mg, 52% yield, yellow solid; mp 115–117 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.64 – 10.47 (m, 1H), 8.19 (dd, J = 6.9, 1.2 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.58 (d, J = 9.1 Hz, 1H), 7.37 – 7.33 (m, 3H), 7.19 – 7.11 (m, 3H), 7.03 (d, J = 8.0 Hz, 2H), 7.00 – 6.93 (m, 1H), 2.22 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 143.8, 142.8, 140.4, 137.2, 133.0, 129.8, 128.2, 127.6, 127.3, 126.9, 126.4, 124.2, 117.3, 113.7, 112.8, 21.3. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₀H₁₈N₃O₂S 364.1114, found 364.1116.

7. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

¹³C NMR spectrum of compound 3a

¹³C NMR spectrum of compound 3b

¹³C NMR spectrum of compound 3c

¹³C NMR spectrum of compound 3d

¹³C NMR spectrum of compound 3e

¹³C NMR spectrum of compound 3f

¹³C NMR spectrum of compound 3g

¹⁹F NMR spectrum of compound 3g

¹H NMR spectrum of compound 3h

¹³C NMR spectrum of compound 3h

¹⁹F NMR spectrum of compound 3h

¹³C NMR spectrum of compound 3i

¹³C NMR spectrum of compound 3j

¹³C NMR spectrum of compound 3k

¹⁹F NMR spectrum of compound 3k

¹H NMR spectrum of compound 31

¹³C NMR spectrum of compound 31

¹H NMR spectrum of compound 3m

¹³C NMR spectrum of compound 3m

¹H NMR spectrum of compound 3n

¹³C NMR spectrum of compound 3n

¹H NMR spectrum of compound 30

¹H NMR spectrum of compound 3p

¹³C NMR spectrum of compound 3p

¹H NMR spectrum of compound 3q

¹H NMR spectrum of compound 3r

¹³C NMR spectrum of compound 3r

¹⁹F NMR spectrum of compound 3r

¹³C NMR spectrum of compound 3s

¹³C NMR spectrum of compound 3t

¹³C NMR spectrum of compound 3u

¹³C NMR spectrum of compound 3v

¹³C NMR spectrum of compound 3w

¹³C NMR spectrum of compound 3x

¹⁹F NMR spectrum of compound 3x

¹H NMR spectrum of compound 3y

¹³C NMR spectrum of compound 3y

¹H NMR spectrum of compound 3z

¹H NMR spectrum of compound 3aa

¹³C NMR spectrum of compound 3aa

¹⁹F NMR spectrum of compound 3aa

¹³C NMR spectrum of compound 3ab

¹³C NMR spectrum of compound 3ac

¹³C NMR spectrum of compound 3ad

¹⁹F NMR spectrum of compound 3ad

¹H NMR spectrum of compound 3ae

¹H NMR spectrum of compound 3af

¹H NMR spectrum of compound 3ag

¹³C NMR spectrum of compound 3ag

¹H NMR spectrum of compound 3ah

¹³C NMR spectrum of compound 3ah

01			
3	0 F F 0 H 0 0 H 0 7 0 F	47	Hr m 4
-	4 N 4 W 4 N O O & O U 4	0	000
	00000777000000	4	H CU CU CU
0			
-		m	0000
1	LLLLLIJJJ		1111
- 11			T (

¹H NMR spectrum of compound 3ai

¹H NMR spectrum of compound 3aj

¹H NMR spectrum of compound 3ak

¹H NMR spectrum of compound 3al

¹³C NMR spectrum of compound 3al

¹H NMR spectrum of compound 3am

¹H NMR spectrum of compound 3an

¹H NMR spectrum of compound 3ao

¹³C NMR spectrum of compound 3ao

¹H NMR spectrum of compound 3ap

¹³C NMR spectrum of compound 3ap

¹H NMR spectrum of compound 3aq

ppm

15

¹H NMR spectrum of compound 3ar

¹H NMR spectrum of compound 3as

¹³C NMR spectrum of compound 3as

¹⁹F NMR spectrum of compound 3as

¹³C NMR spectrum of compound 3at

¹³C NMR spectrum of compound 3au

¹³C NMR spectrum of compound 3av

¹³C NMR spectrum of compound 3aw

¹³C NMR spectrum of compound 3ax

¹³C NMR spectrum of compound 3ay

8. References

A. K. Bagdi, S. Santra, K. Monir, A. Hajra. *Chem. Commun.* 2015, *51*, 1555-1575.
G. Cao, Z.Chen, J. Song, J. Xu, M. Miao, H. Ren. *Adv. Synth. Catal.* 2018, *360*, 881-886.

3. T. Murugesan, A. Elikkottil, A. Kaliyamoorthy. J. Org. Chem. 2023, 88, 4, 2655-2665.

4. T. W. Greulich, C. G. Daniliuc, A. Studer. Org. Lett. 2015, 17, 2, 254-257.

5. K. Goliszewska, K. R. Jasińska, J. Szurmak, D. Gryko. J. Org. Chem. 2019, 84, 24, 15834-15844.

6. Y. Wang, W. Lin, H. Liu, W. Yu, Org. Chem. Front. 2022, 9, 2164-2168.

7. M. A. Bazin, S. Marhadour, A. Tonnerre, P. Marchand. *Tetrahedron Lett.* 2013, 54, 5378-5382.

8. A. G. Belyuga, V. S. Brovarets, A. N. Chernega, B. S. Drach. *Zhurnal Organichnoi ta Farmatsevtichnoi Khimii* **2004**, *2*, 25-31.

9. J. J. Chen, A. Golebiowski, J. McClenaghan, S. R. Klopfenstein, L. West. *Tetrahedron Lett.* **2001**, *42*, 2269-2271.

10. C. Yu, X. Chen, R. Wu, G. Yang, J. Shi, L. Pan. Eur. J. Org. Chem. 2014, 2037-2043.