Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Asymmetric synthesis of atropisomeric arylpyrazoles via direct arylation of 5aminopyrazoles with naphthoquinones

Jiamin Liu, Xingfu Wei, Yue Wang, Jingping Qu and Baomin Wang*

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China

Contents

1. General information	1
2. Procedures for the preparation of substrate 1	1
3. Procedures for the preparation of substrate 2	1
4. The racemization experiment	2
5. HPLC traces	3
6. References	21
7. NMR spectra for compounds	22
8. X-ray crystal structure of 3ha	75

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at 30 °C with UV detector at 254 nm. Optical rotations were reported as follows: $[\alpha]_{D}^{T}$ (*c* g/100 mL, solvent). All ¹H NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 600 MHz, ¹³C NMR spectra were recorded on a Bruker Avance II 101 MHz and Bruker Avance III 151 MHz, ¹⁹F NMR spectra were recorded on a Bruker Avance II 376 MHz and Bruker Avance III 377 MHz with chemical shifts reported as ppm (in CDCl₃, TMS as an internal standard). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet, dd = double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of **3ha** was assigned by the X-ray analysis.

Catalyst **C6** was synthesized according to the literature procedure.¹ The racemic products were synthesized using diphenylphosphinic acid as the catalyst.

2. Procedures for the preparation of substrate 1

5-Aminopyrazoles 1 were prepared according to the following procedure:²

A solution of arylhydrazine hydrochloride (10 mmol, 1.0 equiv), potassium carbonate (11 mmol, 1.1 equiv) and alkyl formyl acetonitrile (11 mmol, 1.1 equiv) in EtOH (0.5 M relative to arylhydrazine hydrochloride) was heated to reflux for 6 h. After cooling to room temperature, the solution was concentrated under reduced pressure. The residue was dissolved in CH_2Cl_2 and saturated NaHCO₃ (aq.). The layers were separated, and the aqueous layer was extracted twice with CH_2Cl_2 . The combined organic layers were washed with brine and dried with anhydrous Na₂SO₄. The salts were removed via gravity filtration, and the resulting solution was concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel. In addition, substrates **1s** and **1t** were synthesized according to the literature procedure.³

3. Procedures for the preparation of substrate 2

1,4-Naphthoquinone derivatives 2 were prepared according to the following procedure:⁴

Solid KHCO₃ (0.92 g, 11 mmol) was added to a stirred mixture of 1,4-dihydroxy-2-naphthoic acid (2.04 g, 10 mmol) and iodoalkane derivatives (11 mmol) in DMF (20 mL). The mixture was heated to

70 °C in an oil bath and stirred for 24 h. The reaction mixture was cooled down to room temperature, diluted with 1 M HCl (50 mL), and extracted with DCM (30 mL x 2). The organic phases were washed with water (20 mL x 2) and dried over MgSO₄. After evaporation of the solvent, the residue was subjected to column chromatography on silica gel with petroleum ether/ethyl acetate 10:1 as eluting solvent to yield 1,4-dihydroxy-2-naphthoate.

Manganese dioxide (6.0 mmol) and magnesium sulfate (3.0 mmol) were added to the solution of 1,4-dihydroxy-2-naphthoate (1.0 mmol) and DCM (20 mL). The reaction mixture was stirred at 25 °C for 5 h, and the filtrate filtered by diatomite was evaporated in a vacuum to obtain the required quinone **2**.

4. The racemization experiment

The enantiomerisation barrier was obtained by kinetic of racemization of an enantiomer. The slope of the first order kinetic line gives the racemization $(k_{ent} = \frac{1}{2} k_{rac})$. Erying equation gives the enantiomerisation barrier (ΔG_T^{\neq}) from enantiomerisation constant (k_{ent}) , R = 8.31451 J·K⁻¹mol⁻¹, h = 6.62608×10^{-34} J·s, $k_B = 1.38066 \times 10^{-23}$ J·K⁻¹. Enantiomeric excess values were determined by HPLC.

Table S1. Racemization of 3aa in mesitylene at 90 °C.

p/m	(1+(p/m))/(1-(p/m))	t/s	ln[(1+(p/m))/(1-(p/m))]
0.065	1.138	0	0.129
0.068	1.145	1800	0.136
0.072	1.155	3600	0.144
0.074	1.161	5400	0.149
0.077	1.168	7200	0.155
0.080	1.175	9000	0.161
0.082	1.179	10800	0.165
0.086	1.188	12600	0.172
0.089	1.196	14400	0.179
0.093	1.205	16200	0.187

Figure S1. The plot of $\ln[(1+(p/m))/(1-(p/m))]$ vs time of **3aa** at 90 °C

T = 90 °C (mesitylene); $k_{ent} = \frac{1}{2} k_{rac} = \frac{1}{2} slope = 1.5 \times 10^{-6} \text{ s}^{-1}$; $t_{1/2} = \ln 2/k_{rac} = 64.2 \text{ h}$; $\Delta G_T^{\neq} = \ln(\frac{k_B T}{h \times k_{ent}}) \text{ RT} = 130.03 \text{ kJ} \cdot \text{mol}^{-1} = 31.1 \text{ kcal} \cdot \text{mol}^{-1}$

T = 25 °C; $k_{rac} = 2.06 \times 10^{-10} \text{ s}^{-1}$; $t_{1/2} = \ln 2/k_{rac} = 107$ years;

5. HPLC traces

Compound 3aa

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	olo
					-	
1	9.291	BB	0.4232	1.68656e4	612.52307	99.1009
2	14.157	BB	0.4670	153.01498	4.87020	0.8991

Compound 3ca

Compound 3da

							,		
#	[min]		[min]	mAU	*5	ImAU	1	~	
	[Ŭ,	
1	7 600		0 2600	. 1 1 1 7	6101	612 0	00000	E0 0701	
1	1.002	гD	0.2000	1.14/	0164	042.0	00000	20.0/91	
2	10 447	BB	0 3464	1 1/12	0001	192 7	11222	10 0200	
4	TO.44/	מם	0.3404	1.143	2224	402.7	1444	₹9.9209	

1	7.659	PB	0.2774	3.75162e4	2051.58301	96.0438
2	10.500	PB	0.3643	1545.34241	62.15542	3.9562

Compound 3ea

Compound 3fa

Compound 3ga

			1	I	I I	
1	9.885	BB	0.4234	4925.13574	177.13052	50.1538
2	12.128	BB	0.5915	4894.93848	127.24306	49.8462

Compound 3ha

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	10.440	PB	0.3788	362.	06198	14.7	78962	1.5810
2	13.778	BB	0.5922	2.253	81e4	596.5	58563	98.4190

Compound 3ia

Compound 3ja

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	11.860	BB	0.3979	1.222	208e4	446.5	51791	49.9967
2	17.496	BB	0.5767	1.222	224e4	304.0	8835	50.0033

Compound 3ka

Compound 3la

Compound 3ma

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	olo	
1	9.870	PB	0.4537	5129.	75830	175.	93369	49.9791	
2	18.708	PB	0.6441	5134.	05420	117.4	40109	50.0209	

Compound 3na

Compound 3oa

Compound 3pa

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	아	
1	18.151	BB	0.6671	1.53	599e4	326.2	29727	50.0600	
2	24.959	BB	0.8386	1.53	231e4	260.1	5469	49.9400	

Compound 3qa

Compound 3ra

Compound 3sa

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	~
1	7.625	PV	0.3075	9026	.89160	437.8	34744	50.6440
2	9.338	VB	0.4543	8797	.30664	291.3	80371	49.3560

#	[min]		[min]	mAU	*s	[mAU]	olo
1	7.996	MM	0.3642	2393	.50049	109.	53661	64.7209
2	9.565	VB	0.5071	1304	.68726	37.	43550	35.2791

Compound 3ab

Compound 3ac

Compound 3ad

 Peak RetTime Type
 Width
 Area
 Height
 Area

 #
 [min]
 [min]
 mAU
 *s
 [mAU]
 *

 1
 10.454
 BB
 0.5450
 5970.06982
 175.66077
 49.9479

 2
 13.433
 PB
 0.7840
 5982.51758
 115.93729
 50.0521

Compound 3ae

Compound 3af

Compound 4

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	olo
1	7.409	VV	0.2465	9783	.51563	583.	60919	49.9251
2	8.400	VB	0.2780	9812	.86133	517.	62292	50.0749

rear	Veritille	Type	WIGCH	Alea neight		t Alea	Area	
#	[min]		[min]	mAU *:	s [m	nAU] %	
1	7.460	MM	0.2791	1.570320	e4 9	37.85	052 98.451	4
2	8.458	MM	0.3153	247.00	552	13.05	557 1.548	36

Compound 5

6. References

- 1. M. Bartoszek, M. Beller, J. Deutsch, M. Klawonn, A. Köckritz, N. Nemati and A. Pews-Davtyan, *Tetrahedron*, 2008, **64**, 1316-1322.
- D. S. Huang, E. V. LeBlanc, T. Shekhar-Guturja, N. Robbins, D. J. Krysan, J. Pizarro, L. Whitesell, L. E. Cowen and L. E. Brown, *J. Med. Chem.*, 2019, 63, 2139-2180.
- 3. R. Abonia, J. Castillo, B. Insuasty, J. Quiroga, M. Nogueras and J. Cobo, *Eur. J. Org. Chem.*, 2010, 6454-6463.
- 4. M. A. Brimble, C. Burgess, R. Halim, M. Petersson and J. Ray, *Tetrahedron*, 2004, **60**, 5751-5758.

7. NMR spectra for compounds

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

8. X-ray crystal structure of 3ha

Figure S2. ORTEP diagram of **3ha**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms on carbon are omitted for clarity.

Table 1 Crystal data and structure refinement for 1.	
Identification code	1
Empirical formula	C ₂₅ H ₂₄ BrN ₃ O ₄
Formula weight	510.38
Temperature/K	299.0
Crystal system	orthorhombic
Space group	P212121
a/Å	8.5837(8)
b/Å	16.3187(15)
c/Å	19.3809(17)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2714.8(4)
Z	4
ρ _{calc} g/cm ³	1.249
µ/mm ⁻¹	1.546
F(000)	1048.0
Crystal size/mm ³	0.33 × 0.32 × 0.29
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.204 to 52.742
Index ranges	$-10 \leq h \leq 10, -20 \leq k \leq 20, -24 \leq l \leq 24$
Reflections collected	70426
Independent reflections	5559 [R _{int} = 0.0755, R _{sigma} = 0.0490]
Data/restraints/parameters	5559/0/306
Goodness-of-fit on F ²	1.020
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0539, wR_2 = 0.1205$
Final R indexes [all data]	$R_1 = 0.0944$, $wR_2 = 0.1364$
Largest diff. peak/hole / e $Å^{-3}$	0.33/-0.44
Flack parameter	0.041(16)

CCDC: 2311460