Supplementary Information

Combinatorial Synthesis of Substituted Pyrazolo-Fused Quinazolines by the Rh(III)-Catalyzed [5+1] Annulation of Phenyl-1H-pyrazol-5-amine with Alkynoates and Alkynamide

Wei-Jung Chiu^a, Ting-Yen Chu^b and Chung-Ming Sun^{a,b*}

^aDepartment of Applied Chemistry, Laboratory of Combinatorial Drug Design, 1001 Ta-Hseuh Road, National Yang-Ming Chiao-Tung University, Hsinchu 300-10, Taiwan

^bDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan

E-mail: cmsun@nycu.edu.tw

Table of contents

1. General Information	S2
2. Analytical Methods	S2
3. General procedure for synthesis of 1	S2
4. General procedure for synthesis of 2	S2
5. General procedure for synthesis of 3aa	S3
6. Mechanism Experiments	S3
7. Characterization Data of 3aa-3al	S11
8. Spectral Data of 3aa-3al	S20

9. X-Ray C	Crystallographic	Data	S64	4
------------	------------------	------	-----	---

1. General Information

All reactions were carried out in oven-dried round bottoms. All other chemicals were also purchased from Sigma-Aldrich and TCI and were used as received. All the solvents were distilled before use.

2. Analytical Methods

Analytical thin-layer chromatography (TLC) was performed using 0.25mm silica gel coated plates. Flash chromatography was performed using the indicated solvent and silica gel 60 (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on 400 MHz spectrometers. Chemical shifts are reported in parts per million (ppm) on the δ scale from an internal standard (TMS). High resolution mass spectra (HRMS) were recorded in ESI mode using TOF mass spectrometer.

3. General procedure for synthesis of 1

A round bottom flask was charged with β -ketonitrile (1 equiv.), aryl hydrazine (1.1 equiv.) and PTSA (0.1 equiv.) in water, which was heated at 105 °C for 3-6 h. The reaction was monitored by TLC. After disappearance of the starting material, the reaction mixture was then cooled to room temperature and was extracted with ethyl acetate trice. The combined organic layer was washed with brine solution, dried over anhydrous MgSO₄, then the residue was separated by silica gel chromatography using 20% ethyl acetate in hexane as eluent (Rf = 0.18) to obtain the desired 5-amino-4-arylpyrazoles in 72-90% yield.

4. General procedure for synthesis of 2

To a solution of alkyl amine S4 (1.2 equiv.) in 5 mL, alkynyl ester S3 (1 equiv.) was added dropwise at 0 °C for 30 min. The mixture was stirred for 2 h at 0 °C, and then a few drops of acetic acid were added. The mixture was stirred for another 2h and saturated with NaCl, followed by extraction with ethyl acetate (3×10 mL), dried over MgSO₄, then the residue was separated by silica gel chromatography with hexane/ethyl acetate (1:1, Rf = 0.3) to obtain the desired alkynyl amide 2 in 66-78% yield.

5. General procedure for synthesis of 3aa

To an oven-dried 25 mL round bottom equipped with magnetic stir bar, **1a** (200 mg, 1.16 mmol), methyl oct-2-ynoate **2a** (232 mg, 1.5 mmol), $[Cp*RhCl_2]_2$ (17 mg, 2.5 mol%), $Zn(OAc)_2$ (106 mg, 0.58 mmol) and HOAc (139 mg, 2.32 mmol) in toluene (6.0 mL) was stirred in 120 °C oil bath for 8 h under air atmosphere. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with hexane/ethyl acetate (3:1, Rf = 0.25) as eluent to afford corresponding products.

6. Mechanism Experiments

Deuterium exchange

(A) An oven-dried 25 mL round bottom is equipped with 3-methyl-1-phenyl-1H-pyrazol-5amine **1a** (50 mg, 0.29 mmol.), [Cp*RhCl₂]₂ (4.4 mg, 2.5 mol%), Zn(OAc)₂ (27 mg, 0.15 mmol) and DOAc (34 mg, 0.57 mmol) in toluene (2 mL). The reaction mixture was stirred in 120 °C oil bath for 30 mins. The solvent was evaporated and the crude product obtained was purified

by silica gel column chromatography with hexane/ethyl acetate (1:3, Rf = 0.22). The H/D exchange was found to be 23 % at the protons attached to C-2' and C-6' in the recovered **1a**-*d*₂.

(B) An oven-dried 25 mL round bottom is equipped with 3-methyl-1-phenyl-1H-pyrazol-5amine **1a** (50 mg, 0.29 mmol), methyl oct-2-ynoate **2a** (52 mg, 0.34 mmol), $[Cp*RhCl_2]_2$ (4.4 mg, 2.5 mol%), Zn(OAc)₂ (27 mg, 0.15 mmol) and DOAc (34 mg, 0.57 mmol) in toluene (2 mL). The reaction mixture was stirred in 120 °C oil bath for 30 mins. The solvent was evaporated and the crude product obtained was purified by silica gel column chromatography with hexane/ethyl acetate (1:3, Rf = 0.25). The H/D exchange was found to be 0% at the alpha-carbon proton in the recovered **3aa-dz**.

(2) Competition KIE study

An oven-dried 25 mL round bottom containing **1a** (25 mg, 0.14 mmol) and **1a**-*d*⁵ (25 mg, 0.14 mmol), methyl oct-2-ynoate **2a** (56.1 mg, 0.36 mmol), $[Cp*RhCl_2]_2$ (4.4 mg, 2.5 mol%), $Zn(OAc)_2$ (26 mg, 0.14 mmol) and HOAc (34 mg, 0.57 mmol) in toluene (2 mL). The reaction mixture was stirred in 120 °C oil bath for 2 h under air atmosphere. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (3:1, Rf = 0.25) as eluent to afford the corresponding products. The KIE value was determined using ¹H NMR.

Two separated oven-dried 25 mL round bottom containing **1a** (25 mg, 0.14 mmol) or **1a**-*d*₅ (25 mg, 0.14 mmol), methyl oct-2-ynoate **2a** (25 mg, 0.16 mmol), $[Cp*RhCl_2]_2$ (2.2 mg, 2.5 mol%), Zn(OAc)₂ (13 mg, 0.07 mmol) and HOAc (18.6 mg, 0.31 mmol) in toluene (2 mL). The reaction mixture was stirred in 120 °C oil bath for 2 h under air atmosphere. Then the two separated reaction mixture was transferred to 25-mL round bottom flask and washed with CH₂Cl₂ (2 mL × 3). After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (3:1, Rf = 0.25) as eluent to afford the corresponding products. The KIE value was determined using ¹H NMR.

(4) Intermolecular competition experiments

An oven-dried 25 mL round bottom containing **1h** (25 mg, 0.14 mmol) and **1j** (25 mg, 0.14 mmol), methyl oct-2-ynoate **2a** (56.1 mg, 0.18 mmol), $[Cp*RhCl_2]_2$ (4.4 mg, 2.5 mol%), $Zn(OAc)_2$ (26 mg, 0.14 mmol) and HOAc (17 mg, 0.28 mmol) in toluene (2 mL). The reaction mixture was stirred in 120 °C oil bath for 8 h under air atmosphere. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (3:1, Rf = 0.25) as eluent to afford the **3ha** and **3ja** in 42% and 31% yields respectively.

(5) The synthesis of **6aa**

To an oven-dried 25 mL round bottom equipped with magnetic stir bar, **5a** (100 mg, 0.28 mmol), methyl oct-2-ynoate **2a** (65 mg, 0.42 mmol), [Cp*RhCl₂]₂ (17 mg, 2.5 mol%), Zn(OAc)₂ (26 mg, 0.14 mmol) and HOAc (85 mg, 1.42 mmol) in toluene (6.0 mL) was stirred in 120 °C oil bath for 8 h under air atmosphere. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with hexane/ethyl acetate (20:1, Rf = 0.45) as eluent to afford corresponding product **6aa** in 66% yield.

¹H spectrum (400 MHz) of compound **6aa** in CDCl₃

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound 6aa inCDCl_3

HRMS Mass (ESI) spectrum of compound 6aa

7. Characterization Data of 3aa-3ak

ethyl 2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinazolin5-yl)acetate (3aa)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow solid; mp 183–185 °C. Yield= 161.0 mg; (82%); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.4 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.08 (m, 2H), 5.28 (s, 1H), 5.23 (s, 1H), 3.66 (s, 3H), 2.87 (d, *J* = 15.7 Hz, 1H), 2.65 (d, *J* =

15.7 Hz, 1H), 2.24 (s, 3H), 1.89 (m, 2H), 1.42 – 1.28 (m, 1H), 1.27 – 1.12 (m, 5H), 0.81 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 151.3, 144.1, 134.3, 128.7, 125.2, 124.6, 124.1, 114.5, 87.7, 57.7, 51.9, 44.8, 38.9, 32.1, 23.9, 22.6, 14.3, 14.1. HRMS (ESI, m/z) calculated for C₁₉H₂₆N₃O₂ (M + H)⁺: 328.2020, Found: 328.2019.

methyl 2-(2,9-dimethyl-5-pentyl-4,5-dihydropyrazolo[1,5a|quinazolin-5-yl)acetate (3ba)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 176.6 mg; (86%); ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.10 (m, 1H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.96-6.92 (m, 1H), 5.37 (s, 1H), 5.15 (s, 1H), 3.66 (s, 3H), 2.82-2.71 (m, 4H), 2.60 (d, *J* = 15.6 Hz, 1H), 5.15 (s, 1H), 3.66 (s, 3H), 2.82-2.71 (m, 4H), 2.60 (d, *J* = 15.6 Hz, 1H), 5.15 (s, 1H), 3.66 (s, 3H), 2.82-2.71 (m, 4H), 2.60 (d, *J* = 15.6 Hz, 1H), 5.15 (s, 1H), 3.66 (s, 3H), 2.82-2.71 (m, 4H), 2.60 (d, *J* = 15.6 Hz, 1H), 5.15 (s, 1H), 3.66 (s, 3H), 2.82-2.71 (m, 4H), 3.66 (s, 3H), 3.85 (s,

1H), 2.24 (s, 3H), 2.00-1.90 (m, 1H), 1.86-1.76 (m, 1H), 1.32-1.26 (m, 1H), 1.24-1.13 (m, 5H), 0.81 (t, J = 6.8 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 172.0, 149.4, 145.4, 133.1, 132.6, 128.0, 127.4, 123.9, 122.3, 88.4, 58.2, 51.8, 43.5, 37.7, 32.2, 23.9, 22.6, 22.6, 14.5, 14.1. HRMS (ESI, m/z) calculated for C₂₀H₂₈N₃O₂ (M + H)⁺: 342.2176, Found: 342.2174.

pyrazolo[1,5-a]quinazolin-5-yl)acetate (3ca)

methyl 2-(9-methoxy-2-methyl-5-pentyl-4,5-dihydro-

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 169.3 mg; (79%); ¹H NMR (400 MHz, CDCl₃) δ 7.11 – 7.03 (m, 1H), 6.96 (d, *J* = 9.2 Hz, 1H), 6.73 (d, *J* = 9.2 Hz, 1H), 5.37 (s, 1H), 5.19 (s, 1H), 3.94 (s, 3H), 3.65 (s, 3H), 2.77 (d, *J*

= 15.6 Hz, 1H), 2.62 (d, J = 15.6 Hz, 1H), 2.28 (s, 3H), 1.86 (m, 2H), 1.34 (m, 1H), 1.19 (m, 5H), 0.80 (t, J = 6.8Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.9, 150.5, 149.3, 145.4, 129.3, 124.7, 124.3, 116.9, 112.9, 88.5, 58.2, 56.9, 51.9, 43.5, 38.1, 32.1, 23.8, 22.6, 14.7, 14.1. HRMS (ESI, m/z) calculated for C₂₀H₂₈N₃O₃ (M + H)⁺: 358.2125, Found: 358.2127.

methyl 2-(9-fluoro-2-methyl-5-pentyl-4,5-dihydropyrazolo-[1,5-a]quinazolin-5-yl)acetate (3da)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 149.1 mg; (72%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.9, 5.1 Hz, 1H), 7.02 (td, J = 8.7, 2.7 Hz, 1H), 6.81 (dd, J = 9.4, 2.6

Hz, 1H), 5.30 (s, 1H), 5.23 (s, 1H), 3.68 (s, 3H), 2.87 (d, J = 15.7 Hz, 1H), 2.64 (d, J = 15.7 Hz, 1H), 2.24 (s, 3H), 1.93-1.84 (m, 2H), 1.39 (q, J = 8.3, 7.6 Hz, 1H), 1.29 – 1.14 (m, 5H), 0.82 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 151.3, 143.7, 127 (d, J = 6.6 Hz), 116.1 (d, J = 7.4 Hz), 115.5 (d, J = 22.9 Hz), 111.8 (d, J = 24.8 Hz), 88.0, 57.8, 52.0, 44.4, 38.8, 32.0, 23.9, 22.6, 14.3, 14.1. ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ 121.4. HRMS (ESI, m/z) calculated for C₁₉H₂₅FN₃O₂ (M + H)⁺: 346.1925, Found: 346.1925.

methyl 2-(2,8-dimethyl-5-pentyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)acetate (3ea)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 167.9 mg; (82%); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 6.97-6.93 (d, J = 7.92 Hz, 1H), 6.90-6.86 (d, J = 7.96 Hz, 1H), 5.27 (s, 1H), 5.24 (s, 1H), 3.64 (s, 3H), 2.83 (d, J = 15.6 Hz, 1H), 2.64 (d, J = 15.7

Hz, 1H), 2.33 (s, 3H), 2.23 (s, 3H), 1.98-1.76 (m, 2H), 1.36 (m, 1H), 1.18 (m, 5H), 0.79 (t, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 151.2, 144.3, 138.8, 133.9, 124.9, 124.5, 122.3, 114.9, 87.7, 57.5, 51.8, 44.9, 38.9, 32.0, 23.9, 22.5, 21.2, 14.2, 14.1. HRMS (ESI, m/z) calculated for C₂₀H₂₈N₃O₂ (M + H)⁺: 342.2176, Found: 342.2176.

methyl 2-(8-methoxy-2-methyl-5-pentyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)acetate (3fa)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow solid; mp 193–196 °C. Yield= 180.0 mg; (84%); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 6.96 (d, *J* = 8.6 Hz, 1H), 6.64 (d, *J* = 10.3 Hz, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.66 (s, 3H), 2.84 (d, *J* = 15.8 Hz, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.66 (s, 3H), 2.84 (d, *J* = 15.8 Hz, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.66 (s, 3H), 2.84 (d, *J* = 15.8 Hz, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.66 (s, 3H), 2.84 (d, *J* = 15.8 Hz, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.66 (s, 3H), 2.84 (d, *J* = 15.8 Hz, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.66 (s, 3H), 2.84 (d, *J* = 15.8 Hz, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.66 (s, 3H), 3.84 (d, *J* = 15.8 Hz), 3.85 (s, 3H), 3.

1H), 2.64 (d, J = 15.7 Hz, 1H), 2.26 (s, 3H), 1.90-1.83 (m, 2H), 1.39 – 1.29 (m, 1H), 1.20 (m, 5H), 0.80 (t, J = 6.5 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.8, 159.9, 151.2, 144.4, 144.4, 125.7, 117.0, 111.3, 98.9, 87.7, 57.4, 55.7, 51.7, 44.9, 39.0, 31.9, 23.8, 22.5, 14.1, 14.0. HRMS (ESI, m/z) calculated for C₂₀H₂₈N₃O₃ (M + H)⁺: 358.2125, Found: 358.2125.

methyl 2-(2,7-dimethyl-5-pentyl-4,5-dihydropyrazolo[1,5a]quinazolin-5-yl)acetate (3ha)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25.Yellow liquid; Yield= 163.8 mg; (80%); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 6.87 (s, 1H), 5.28 (s, 1H), 5.24

(s, 1H), 3.67 (s, 3H), 2.86 (d, J = 15.7 Hz, 1H), 2.66 (d, J = 15.6 Hz, 1H), 2.32 (s, 3H), 2.25 (s, 3H), 1.99 – 1.80 (m, 2H), 1.36 (d, J = 9.1 Hz, 1H), 1.21 (m, 6H), 0.81 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 150.9, 143.9, 133.6, 132.0, 129.2, 125.1, 125.1, 114.3, 87.6, 57.7, 51.9, 44.9, 38.9, 32.1, 23.9, 22.5, 21.3, 14.3, 14.1. HRMS (ESI, m/z) calculated for C₂₀H₂₈N₃O₂ (M + H)⁺: 342.2176, Found: 342.2175.

methyl 2-(7-fluoro-2-methyl-5-pentyl-4,5-dihydropyrazolo-[1,5-a]quinazolin-5-yl)acetate (3ia)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 153.3 mg; (74%); ¹H NMR (400 MHz, CDCl₃) δ 7.11 (dd, J = 11.3, 8.7 Hz, 1H), 7.04 (td, J = 8.0, 4.8 Hz, 1H), 6.89 (d, J = 7.7 Hz, 1H), 5.34 (s, 1H), 5.25 (s, 1H), 3.65 (s, 3H), 2.82 (d, J = 15.7 Hz,

1H), 2.65 (d, J = 15.7 Hz, 1H), 2.26 (s, 3H), 1.97-1.77 (m, 2H), 1.41-1.26 (m, 1H), 1.25-1.08 (m, 5H), 0.80 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 151.8 (d, J = 4.3 Hz), 151.4 (d, J = 254.8 Hz), 144.9, 129.3, 124.3 (d, J = 7.8 Hz), 123.1 (d, J = 8.4 Hz), 120.2 (d, J = 3.5 Hz), 117.1 (d, J = 20.8 Hz), 88.1, 58.1, 51.9, 43.9, 38.4, 32.0, 23.8, 22.5, 14.5, 14.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ 118.3. HRMS (ESI, m/z) calculated for C₁₉H₂₅FN₃O₂ (M + H)⁺: 346.1925, Found: 346.1933.

methyl 2-(2-methyl-5-pentyl-7-(trifluoromethyl)-4,5 dihydropyrazolo[1,5-a]quinazolin-5-yl)acetate (3ja)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 170.7 mg; (72%); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 1H), 7.55 (d, *J* = 8.9 Hz, 1H), 7.29 (s, 1H), 5.34 (s, 1H), 5.28 (s, 1H), 3.65 (s, 3H), 2.87 (d, *J* = 15.6 Hz, 1H), 2.68 (d, *J* = 15.7 Hz, 1H),

2.22 (s, 3H), 1.93-1.88 (m, 2H), 1.33 (m, 1H), 1.21 (m, 5H), 0.79 (t, J = 6.8 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.4, 152.7, 144.5, 136.7, 126.1, 126.0 (q, J = 3.4 Hz), 125.8, 125.6, 122.9, 122.0 (q, J = 3.6 Hz), 121.0 (q, J = 273.0 Hz), 114.7, 88.1, 57.8, 52.0, 44.6, 38.9, 31.9, 23.8, 22.4, 14.3, 14.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ 62.0. HRMS (ESI, m/z) calculated for C₂₀H₂₅F₃N₃O₂ (M + H)⁺: 396.1893, Found: 396.1899.

methyl 5-(2-methoxy-2-oxoethyl)-2-methyl-5-pentyl-4,5dihydropyrazolo[1,5-a]quinazoline-7-carboxylate (3ka)

Flash chromatography for purification: hexane/ethyl acetate = 2:1. Rf = 0.3. Yellow solid; mp 170–172 °C; Yield= 183.4 mg; (78%); ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.97 (m, 1H), 7.81 – 7.74 (m, 2H), 5.40 (s, 1H), 5.28 (s, 1H), 3.89 (s, 3H), 3.66 (s, 3H), 2.88 (d, *J* = 15.8 Hz, 1H), 2.74 (d, *J* = 15.8 Hz, 1H), 2.24 (s, 3H), 2.00 – 1.86 (m, 2H), 1.34 – 1.13 (m, 6H), 0.81 – 0.73 (m,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 166.5, 152.7, 144.5, 137.3, 130.4, 126.5, 125.5, 124.9, 114.1, 87.8, 57.6, 52.1, 51.8, 44.7, 39.2, 31.8, 23.7, 22.4, 14.2, 13.9. HRMS (ESI, m/z) calculated for C₂₁H₂₈N₃O₄ (M + H)⁺: 386.2074, Found: 386.2079.

methyl 2-(7-acetyl-2-methyl-5-pentyl-4,5-dihydropyrazolo[1,5a]quinazolin-5-yl)acetate (3la)

Flash chromatography for purification: hexane/ethyl acetate = 1:1. Rf = 0.3. Yellow solid; mp 184–188 °C; Yield= 184.1 mg; (81%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.86 (m, 1H), 7.78 (dd, *J* = 15.7, 5.8 Hz, 2H), 5.44 (s, 1H), 5.29 (s, 1H), 3.68 (s, 3H), 2.88 (d, *J* = 15.8 Hz, 1H), 2.75 (d, *J* = 15.9 Hz, 1H), 2.57 (s, 3H), 2.24 (s, 3H), 2.01 – 1.85 (m, 2H), 1.30 – 1.07

(m, 6H), 0.78 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 171.6, 153.0, 144.7, 137.6, 132.8, 130.9, 129.9, 125.4, 125.1, 114.1, 113.8, 87.9, 57.7, 52.0, 44.8, 39.4, 31.9, 26.5, 23.8, 22.5, 14.3, 14.0. HRMS (ESI, m/z) calculated for C₂₁H₂₈N₃O₃ (M + H)⁺: 370.2125, Found: 370.2128.

methyl 2-(7-cyano-2-methyl-5-pentyl-4,5-dihydropyrazolo[1,5a]quinazolin-5-yl)acetate (3ma)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.22. Yellow solid; mp 172–174 °C; Yield= 147.9 mg; (70%); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 1H), 7.61 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.36 (d, *J* = 1.7 Hz, 1H), 5.44 (s, 1H), 5.32 (s, 1H), 3.69 (s, 3H), 2.88 (d, *J* = 15.8 Hz, 1H), 5.44 (s, 1H), 5.32 (s, 1H), 3.69 (s, 3H), 2.88 (d, *J* = 15.8 Hz, 1H), 5.44 (s, 1H), 5.32 (s, 1H), 3.69 (s, 3H), 2.88 (d, *J* = 15.8 Hz), 5.44 (s, 1H), 5.32 (s, 1H), 3.69 (s, 3H), 2.88 (d, *J* = 15.8 Hz), 5.44 (s, 1H), 5.32 (s, 1H), 5.44 (s, 1H), 5.32 (s, 1H), 5.44 (s, 1H), 5.32 (s, 1H), 5.44 (s, 1H), 5.44 (s, 1H), 5.32 (s, 1H), 5.44 (s, 1H), 5.44

1H), 2.68 (d, J = 15.8 Hz, 1H), 2.26 (s, 3H), 1.91 (m, 2H), 1.33-1.13 (m, 6H), 0.85 – 0.79 (t, J = 6.84 Hz 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 153.5, 144.8, 137.1, 133.1, 129.1, 125.9, 118.9, 115.3, 107.4, 88.5, 57.7, 52.2, 44.6, 39.2, 31.9, 23.9, 22.5, 14.2, 14.1. HRMS (ESI, m/z) calculated for C₂₀H₂₅N₄O₂ (M + H)⁺: 353.1972, Found: 353.1960.

methyl 2-(2,7,8-trimethyl-5-pentyl-4,5-dihydropyrazolo-

[1,5-a]quinazolin-5-yl)acetate (30a) Flash chromatography for purification: hexane/e

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 179.0 mg; (84%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 6.80 (s, 1H), 5.26 (s, 1H), 5.18 (s, 1H), 3.67 (s, 3H), 2.83 (d, *J* = 15.6 Hz, 1H), 2.63 (d, *J* = 15.7 Hz, 1H), 2.25 (s, 3H), 2.24 (s, 3H), 2.23

(s, 3H), 1.98-1.76 (m, 2H), 1.36 (m, 1H), 1.20 (m, 5H), 0.81 (t, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 150.8, 144.0, 137.3, 132.3, 132.1, 125.6, 122.6, 115.4, 87.5, 57.5, 51.9, 45.1, 38.9, 32.1, 23.9, 22.6, 19.7, 19.6, 14.3, 14.1. HRMS (ESI, m/z) calculated for C₂₁H₃₀N₃O₂ (M + H)⁺: 356.2333, Found: 356.2347.

methyl 2-(7,8-dichloro-2-methyl-5-pentyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)acetate (3pa)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 154.1 mg; (65%); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.13 (s, 1H), 5.28 (s, 2H), 3.67 (s, 3H), 2.84 (d, *J* = 15.8 Hz,

1H), 2.64 (d, J = 15.8 Hz, 1H), 2.22 (s, 3H), 1.87 (m, 2H), 1.39 – 1.30 (m, 1H), 1.22 (m, 5H), 0.86 – 0.77 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 152.3, 144.1, 133.6, 132.9, 127.3, 126.6, 125.2, 116.3, 88.1, 57.6, 52.0, 44.6, 39.1, 31.9, 23.8, 22.5, 14.3, 14.1. HRMS (ESI, m/z) calculated for C₁₉H₂₄Cl₂N₃O₂ (M + H)⁺: 396.1240, Found: 396.1239.

methyl 2-(2-methyl-5-pentyl-4,5-dihydrobenzo[g]pyrazolo-[1,5a]quinazolin-5-yl)acetate (3qa)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.28. Yellow solid; mp 188–190 °C. Yield= 183.3 mg; (81%); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.54 (s, 1H), 7.43 (m, 1H), 7.40 – 7.35 (m, 1H), 5.39 (s, 1H), 5.35 (s, 1H), 3.67 (s,

3H), 2.96 (d, J = 15.7 Hz, 1H), 2.81 (d, J = 15.9 Hz, 1H), 2.30 (s, 3H), 2.22 – 1.87 (m, 2H), 1.36 (m, 1H), 1.23 (m, 5H), 0.79 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 151.9, 144.5, 133.5, 131.9, 130.5, 127.9, 127.5, 127.0, 126.6, 125.1, 124.3, 110.7, 88.0, 57.9, 51.9, 44.8, 39.1, 32.1, 23.9, 22.5, 14.4, 14.1. HRMS (ESI, m/z) calculated for C₂₃H₂₈N₃O₂ (M + H)⁺: 378.2176, Found: 378.2179.

methyl 2-(2-isopropyl-5-pentyl-4,5-dihydropyrazolo[1,5a]quinazolin-5-yl)acetate (3ba)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 181.2 mg; (85%); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.31 – 7.23 (m, 1H), 7.07 (d, *J* = 0.9 Hz, 1H), 7.06 (dd, *J* = 1.9, 0.9 Hz, 1H), 5.31 (s, 1H), 5.25 (s, 1H), 3.64 (s, 3H), 2.97 – 2.89 (m, 1H), 2.86 (d, *J* = 15.6 Hz, 1H), 2.64 (d, *J* = 15.6 Hz, 1H), 2.02 – 1.77 (m, 2H), 1.43 – 1.31 (m, 1H), 1.26 (s, 3H),

1.25 (s, 3H), 1.23 – 1.14 (m, 5H), 0.84 – 0.73 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 161.5, 143.7, 134.3, 128.4, 125.0, 124.5, 124.4, 123.9, 114.5, 84.4, 57.5, 51.7, 44.7, 38.6, 31.9, 28.4, 23.8, 22.7, 22.4, 13.9. HRMS (ESI, m/z) calculated for C₂₁H₃₀N₃O₂ (M + H)⁺: 356.2333, Found: 356.2333.

methyl 2-(2-(tert-butyl)-5-pentyl-4,5-dihydropyrazolo[1,5a]quinazolin-5-yl)acetate (3ca)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 186.1 mg; (84%); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.1 Hz, 1H), 7.35 – 7.27 (m, 1H), 7.08 (d, J = 4.3 Hz, 2H), 5.36 (s, 1H), 5.21 (s, 1H), 3.67 (s, 3H), 2.89 (d, J = 15.6 Hz, 1H), 2.65 (d, J = 15.6 Hz, 1H), 2.02 – 1.82 (m, 2H), 1.32 (s, 9H), 1.25 –

1.16 (m, 6H), 0.86 - 0.76 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 164.1, 143.5, 134.4, 128.4, 125.0, 124.4, 124.4, 123.8, 114.7, 84.4, 57.5, 51.7, 44.6, 38.5, 32.5, 31.9, 30.2, 23.9, 22.5, 14.0. HRMS (ESI, m/z) calculated for C₂₂H₃₂N₃O₂ (M + H)⁺: 370.2489, Found: 370.2491.

methyl 2-(5-pentyl-2-phenyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)acetate (3da)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.3. Yellow solid; mp 184–188 °C; Yield= 189.1 mg; (81%); ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.96 (m, 1H), 7.93 – 7.82 (m, 2H), 7.44 – 7.37 (m, 3H), 7.37 – 7.30 (m, 1H), 7.21 – 7.09 (m, 2H), 5.84 (s, 1H), 5.49 (s, 1H), 3.69 (s, 3H), 2.94 (d, *J* = 15.8 Hz, 1H), 2.74 (d, *J* = 15.8 Hz, 1H),

 $2.02 - 1.87 \text{ (m, 2H)}, 1.46 - 1.30 \text{ (m, 1H)}, 1.28 - 1.13 \text{ (m, 5H)}, 0.86 - 0.75 \text{ (m, 3H)}. {}^{13}\text{C NMR}$ (101 MHz, CDCl₃) δ 171.7, 152.7, 144.4, 134.0, 133.1, 128.7, 128.5, 128.1, 125.8, 125.5, 124.6, 124.5, 114.9, 110.5, 85.0, 57.7, 51.8, 44.7, 38.9, 31.9, 23.8, 22.4, 14.0. HRMS (ESI, m/z) calculated for C₂₄H₂₈N₃O₂ (M + H)⁺: 390.2176, Found: 390.2176.

ethyl 2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)acetate (3ab)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.25. Yellow liquid; Yield= 135.2 mg; (79%); ¹H NMR (400 MHz, acetone- d_6) δ 7.68 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.1 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 5.96 (s, 1H), 5.29 (s, 1H), 3.99 (q, J = 7.1 Hz, 2H), 2.78 – 2.66 (m, 2H), 2.14

(s, 3H), 1.74 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, acetone- d_6) δ 169.8, 150.1, 144.3, 133.8, 128.2, 127.6, 124.5, 123.8, 113.8, 87.0, 60.0, 54.4, 45.4, 26.0, 13.4. HRMS (ESI, m/z) calculated for C₁₆H₂₀N₃O₂ (M + H)⁺: 386.1550, Found: 386.1546.

ethyl 2-(2-methyl-5-phenyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5yl)acetate (3ac)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.28. Yellow liquid; Yield= 160.4 mg; (77%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 1.3, 0.4 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.37 – 7.31 (m, 2H), 7.31 – 7.26 (m, 2H), 6.99 (td, J = 7.6, 1.3 Hz, 1H), 6.80 (m, 1H), 6.08 (s, 1H), 5.43

(s, 1H), 4.12 - 4.00 (m, 2H), 3.21 (d, J = 2.7 Hz, 2H), 2.29 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 151.6, 144.3, 143.1, 133.5, 128.9, 128.6, 127.9, 127.3, 127.1, 126.0, 124.2, 114.5, 88.5, 60.9, 60.7, 42.6, 14.4, 14.1. HRMS (ESI, m/z) calculated for C₂₁H₂₂N₃O₂ (M + H)⁺: 348.1707, Found: 348.1706.

methyl 2-(2-methyl-5-(thiophen-2-yl)-4,5-dihydropyrazolo[1,5a]quinazolin-5-yl)acetate (3ad)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.3. Yellow solid; mp 184–188 °C; Yield= 159.4 mg; (79%); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.07 (d, J = 3.6 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 4.3 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.29 (s, 1H), 5.48 (s, 1H), 3.65 (s, 3H), 3.22 - 3.11 (m, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 151.5, 148.0, 143.6, 132.7, 129.5, 126.8, 126.8, 126.7, 125.5, 125.2, 124.9, 114.8, 89.3, 59.4, 52.2, 43.1, 14.2. HRMS (ESI, m/z) calculated for C₁₈H₁₈N₃O₂S (M + H)⁺: 340.1114, Found: 340.1114.

2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)-Npropylacetamide (3ae)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2. Yellow liquid; Yield= 143.1 mg; (80%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.1, 1.2 Hz, 1H), 7.31 (ddd, J = 8.1, 7.3, 1.5 Hz, 1H), 7.16 (dd, J =

7.8, 1.5 Hz, 1H), 7.09 (td, J = 7.5, 1.3 Hz, 1H), 5.70 (s, 1H), 5.53 (s, 1H), 5.35 (s, 1H), 3.26 – 3.06 (m, 2H), 2.77 (d, J = 14.7 Hz, 1H), 2.33 (d, J = 14.7 Hz, 1H), 2.26 (s, 3H), 1.68 (d, J = 0.6 Hz, 3H), 1.42 (p, J = 7.3 Hz, 2H), 0.84 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 151.4, 144.3, 133.6, 128.8, 127.9, 124.5, 123.8, 114.5, 88.7, 55.0, 46.1, 41.23, 26.5, 22.8, 14.4, 11.4. HRMS (ESI, m/z) calculated for C₁₇H₂₃N₄O (M + H)⁺: 299.1866, Found: 299.1866.

2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)-Nisobutylacetamide (3af)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2. Yellow liquid; Yield= 163.0 mg; (87%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 1.2 Hz, 1H), 7.31 (m, 1H), 7.16 (dd, J = 7.8, 1.4 Hz, 1H), 7.09

(td, J = 7.5, 1.3 Hz, 1H), 5.78 (m, 1H), 5.52 (s, 1H), 5.35 (s, 1H), 3.11 – 3.04 (m, 1H), 2.95 (m, 1H), 2.80 (d, J = 14.8 Hz, 1H), 2.35 (d, J = 14.8 Hz, 1H), 2.26 (s, 3H), 1.70 – 1.64 (m, 4H), 0.84 – 0.76 (t, 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 151.4, 144.3, 133.6, 128.8, 127.9, 124.5, 123.8, 114.6, 88.8, 55.0, 46.9, 46.1, 28.5, 26.7, 20.1, 14.4. HRMS (ESI, m/z) calculated for C₁₈H₂₅N₄O (M + H)⁺: 313.2023, Found: 313.2026.

N-cyclopentyl-2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)acetamide (3ag)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2. Yellow liquid; Yield= 157.6 mg; (81%); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.0, 1.2 Hz, 1H), 7.32 (m, 1H), 7.16 (dd, J = 7.8, 1.4 Hz, 1H), 7.09

(m, 1H), 5.54 (d, J = 7.5 Hz, 1H), 5.47 (s, 1H), 5.35 (s, 1H), 4.14 (m, 1H), 2.74 (d, J = 14.6 Hz, 1H), 2.32 (d, J = 14.6 Hz, 1H), 2.26 (s, 3H), 1.96 – 1.84 (m, 2H), 1.71 – 1.64 (m, 4H), 1.60 – 1.52 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 151.4, 144.3, 133.6, 128.8, 127.8, 124.5, 123.9, 114.6, 88.7, 55.1, 51.3, 46.4, 33.2, 26.5, 23.7, 14.4. HRMS (ESI, m/z) calculated for C_{19H25}N₄O (M + H)⁺: 325.2023, Found: 325.2017.

2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)-Noctylacetamide (3ah)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2.Yellow liquid; Yield= 156.9 mg; (71%); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 7.4 Hz, 1H), 7.13 (m, 1H), 7.07 (m, 1H),

5.79 (s, 1H), 5.61 (s, 1H), 5.34 (s, 1H), 3.25 – 3.06 (m, 2H), 2.74 (d, J = 14.8 Hz, 1H), 2.32 (d, J = 14.7 Hz, 1H), 2.25 (s, 3H), 1.64 (s, 3H), 1.43 – 1.13 (m, 12H), 0.90 – 0.81 (t, J = 6.8 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 170.3, 151.4, 144.4, 133.4, 128.7, 127.8, 124.5, 123.9, 114.5, 88.7, 55.0, 46.0, 39.6, 31.9, 29.6, 29.3, 29.3, 27.0, 26.6, 22.7, 14.3, 14.2. HRMS (ESI, m/z) calculated for C₂₂H₃₃N₄O (M + H)⁺: 369.2649, Found: 369.2646.

N-benzyl-2-(2-methyl-5-pentyl-4,5-dihydropyrazolo[1,5 a]quinazolin-5-yl)acetamide (3ai)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2. Yellow liquid; Yield= 222 mg; (92%); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.69 (m, 1H), 7.33 – 7.22 (m, 4H), 7.12 – 7.04 (m, 4H), 6.23 (t, J = 5.8 Hz, 1H), 5.31 (s, 1H), 5.29 (s, 1H), 4.41 (dd, J = 14.8, 6.0 Hz, 1H),

4.28 (dd, J = 14.8, 5.5 Hz, 1H), 2.85 (d, J = 14.9 Hz, 1H), 2.46 (d, J = 14.9 Hz, 1H), 2.24 (s, 3H), 1.91 (td, J = 6.9, 5.8, 3.5 Hz, 2H), 1.19 (tt, J = 6.7, 4.2 Hz, 6H), 0.85 – 0.76 (t, 6,8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 151.3, 144.1, 137.9, 134.2, 128.8, 128.7, 127.6, 125.5, 124.7, 124.3, 114.5, 88.2, 58.4, 46.3, 43.5, 39.8, 32.0, 23.8, 22.6, 14.3, 14.1. HRMS (ESI, m/z) calculated for C₂₅H₃₁N₄O (M + H)⁺: 403.2429, Found: 403.2494.

2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5-yl)-N-(4-methylbenzyl)-acetamide (3aj)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2. Yellow liquid; Yield= 181.5 mg; (84%); ¹H NMR (400

MHz, CDCl₃) δ 7.70 (dd, J = 8.1, 1.2 Hz, 1H), 7.30 (m, 1H), 7.15 – 7.08 (m, 2H), 7.08 – 7.01 (m, 4H), 6.10 (t, J = 5.7 Hz, 1H), 5.51 (s, 1H), 5.31 (s, 1H), 4.32 (m, 2H), 2.78 (d, J = 14.8 Hz, 1H), 2.35 (d, J = 14.9 Hz, 1H), 2.31 (s, 3H), 2.24 (s, 3H), 1.67 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 170.1, 151.4, 144.2, 137.4, 134.9, 133.6, 129.5, 128.7, 127.8, 127.7, 124.5, 123.8, 114.6, 88.7, 55.1, 46.1, 43.3, 26.6, 21.2, 14.3. HRMS (ESI, m/z) calculated for C₂₂H₂₅N₄O (M + H)⁺: 361.2023, Found: 361.2027.

2-(2-methyl-5-pentyl-4,5-dihydropyrazolo[1,5-a]quinazolin-5yl)-N-(naphthalen-2-ylmethyl)acetamide (3ak)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2. Yellow liquid; Yield= 252.3 mg; (93%); ¹H NMR (400 MHz, CDCl₃)) δ 7.93 – 7.84 (m, 2H), 7.78 (dt, *J* = 8.3, 1.0 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.55 – 7.44 (m, 2H), 7.36 (dd, *J* = 8.3, 7.0 Hz, 1H), 7.29 – 7.18 (m, 2H), 7.04 – 6.93 (m, 2H), 6.16 (t, J = 5.5 Hz, 1H), 5.23 (s, 1H), 5.12 (s, 1H), 4.80 (qd, J = 14.5, 5.4 Hz, 2H), 2.79 (d, J = 14.8 Hz, 1H), 2.40 (d, J = 14.8 Hz, 1H), 1.94 – 1.87 (m, 2H), 1.17 (m, 6H), 0.84 – 0.76 (t, 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 151.3, 144.0, 134.1, 133.9, 133.3, 131.3, 129.0, 128.8, 128.6, 126.8, 126.7, 126.1, 125.5, 125.4, 124.6, 124.2, 123.3, 114.4, 88.1, 58.4, 46.5, 41.6, 39.5, 32.0, 23.8, 22.6, 14.3, 14.1. HRMS (ESI, m/z) calculated for C₂₉H₃₃N₄O (M + H)⁺: 453.2649, Found: 453.2651.

2-(2,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quina-zolin-5-yl)-N-(pyridin-3-ylmeth-yl)acetamide (3al)

Flash chromatography for purification: hexane/ethyl acetate = 3:1. Rf = 0.2. Yellow liquid; Yield= 193.7 mg; (93%); ¹H NMR (400 MHz,

CDCl₃) δ 8.45 (s, 1H), 8.40 (s, 1H), 7.68 (s, 1H), 7.43 (d, J = 9.1 Hz, 1H), 7.33 – 7.26 (m, 1H), 7.20 (s, 1H), 7.13 (s, 1H), 7.06 (s, 1H), 6.57 (m, 1H), 5.35 (s, 1H), 5.33 (s, 1H), 4.40 (m, 1H), 4.29 (m, 1H), 2.82 (d, J = 15.0 Hz, 1H), 2.45 (d, J = 15.0 Hz, 1H), 2.23 (s, 3H), 1.66 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 170.4, 151.4, 148.7, 148.5, 144.1, 136.0, 133.5, 128.9, 127.5, 124.7, 124.0, 123.9, 114.6, 88.9, 55.2, 46.2, 40.9, 29.4, 27.1, 14.3. HRMS (ESI, m/z) calculated for C₂₀H₂₂N₅O (M + H)⁺: 348.1819, Found: 348.1815.

methyl (E)-3-(2-(5-(dibenzylamino)-3-methyl-1H-pyrazol-1yl)phenyl)oct-2-enoate (6aa)

Flash chromatography for purification: hexane/ethyl acetate = 20:1. Rf=0.45. Yellow liquid; Yield=95.0 mg; (66%); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dt, J = 5.1, 2.4 Hz, 3H), 7.33 – 7.28 (m, 1H), 7.26 – 7.19 (m, 6H), 7.01 (dd, J = 7.3, 2.0 Hz, 4H), 5.92 (s, 1H), 5.58 (s, 1H), 3.85 (s, 4H), 3.68 (s, 3H), 2.52 – 2.40 (m, 2H), 2.21 (s, 3H), 1.28 – 1.04 (m, 6H), 0.78 – 0.73 (m, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 166.7, 162.3, 152.5, 148.6, 139.6, 137.7, 137.0, 130.5, 129.3, 128.6, 128.5, 128.3, 128.3, 127.3, 119.4, 96.0, 55.6, 51.1, 31.9, 30.6, 28.8, 22.5, 14.2, 14.1. HRMS (ESI, m/z) calculated for C₃₃H₃₈N₃O₂ (M + H)⁺: 508.2959, Found: 508.2956.

8. Spectral Data of 3aa-3al

Ion Formula C19H26N3O2 err [ppm] 0.2 mSigma rdb e⁻ Conf N-Rule Adduct Meas. m/z # m/z # Sigma Score 328.2019 1 328.2020 M+H 13.1 1 100.00 8.5 even ok

HRMS Mass (ESI) spectrum of compound 3aa

HRMS Mass (ESI) spectrum of compound 3ba

¹³C{1 H} spectrum (101 MHz) of compound **3ca** inCDCl₃

 $^{19}\mathrm{F}\{1~\mathrm{H}\}$ spectrum (376 MHz) of compound 3da inCDCl_3

¹³C{1 H} spectrum (101 MHz) of compound **3ea** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3ea

-5.29 - 5.29 -

¹³C{1 H} spectrum (101 MHz) of compound **3fa** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3ha

 19 F{1 H} spectrum (376 MHz) of compound **3ia** inCDCl₃

 $^{13}\mathrm{C}\{1~\mathrm{H}\}$ spectrum (101 MHz) of compound 3ia inCDCl_3

HRMS Mass (ESI) spectrum of compound 3ia

 1 H spectrum (400 MHz) of compound **3ja** in CDCl₃

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

 $^{19}\mathrm{F}\{1~\mathrm{H}\}$ spectrum (376 MHz) of compound $3ja~\mathrm{inCDCl}_3$

HRMS Mass (ESI) spectrum of compound 3ja

¹³C{1 H} spectrum (101 MHz) of compound **3ka** inCDCl₃

¹H spectrum (400 MHz) of compound **3la** in CDCl₃

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound 3la inCDCl_3

HRMS Mass (ESI) spectrum of compound 3la

¹H spectrum (400 MHz) of compound **3ma** in CDCl₃

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound **3ma** inCDCl₃

HRMS Mass (ESI) spectrum of compound 30a

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound **3pa** inCDCl₃

¹H spectrum (400 MHz) of compound **3qa** in CDCl₃

HRMS Mass (ESI) spectrum of compound 3qa

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7.1

 7

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound **3ba** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3ba

¹H spectrum (400 MHz) of compound **3ca** in CDCl₃

$\begin{array}{c} -171.7 \\ -164.1 \\ -164.1 \\ 134.4 \\ 134.4 \\ 124.4 \\ 124.4 \\ -84$

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

$^{13}C\{1~H\}$ spectrum (101 MHz) of compound **3ca** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3ca

 1 H spectrum (400 MHz) of compound **3da** in CDCl₃

S47

¹³C{1 H} spectrum (101 MHz) of compound **3da** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3da

¹H spectrum (400 MHz) of compound **3ab** in acetone- d^6

 $^{13}C{1 H}$ spectrum (101 MHz) of compound **3ab** in acetone- d^6

HRMS Mass (ESI) spectrum of compound 3ab

¹³C{1 H} spectrum (101 MHz) of compound **3ac** inCDCl₃

											+MS, 0.7m	in #37
348.1706												
			N'N NIH O									
						Í	Ph	,—0 н [⊕]				
		I					/					
				m/z:	348.1707 (10	00.0%), 349.1	740 (22.7%	6), 350.1	774 (2.5%),	349.1677 (1	.1%)	
					349.	1735						
						A						
		1	0			1			350.175	59		
									A			
				Di	splay	Repor						
m/z 1706	# 1	Ion Formula C21H22N3O2	m/z 348.1707	err [ppm] 0.2	mSigma 20.6	# Sigma	Score 100.00	rdb 12.5	e ⁻ Conf	N-Rule ok	Adduct M+H	
-	m/z 1706	m/z #	348.1 m/z # lon Formula 1706 1 C21H22N3O2	348.1706 348.1706 m/z # Ion Formula m/z 1706 1 C21H22N3O2 348.1707	348.1706 m/z: m/z: m/z # lon Formula m/z err [ppm] 1706 1 C21H22N3O2 348.1707 0.2	348.1706 m/z: 348.1707 (10 349. Display m/z # Ion Formula m/z err [ppm] mSigma 1706 1 C21H22N3O2 348.1707 0.2 20.6	348.1706 m/z: 348.1707 (100.0%), 349.1 349.1735 Display Report m/z # lon Formula m/z err [ppm] mSigma # Sigma 1706 1 C21H22N302 348.1707 0.2 20.6 1	348.1706 N H N H m/z: 348.1707 (100.0%), 349.1740 (22.7%) 349.1735 Display Report m/z # Ion Formula m/z err [ppm] mSigma # Sigma Score 1 100.00	348.1706 N → H → O → H → H → m/z: 348.1707 (100.0%), 349.1740 (22.7%), 350.1 349.1735 Display Report m/z # Ion Formula m/z err [ppm] mSigma # Sigma Score rdb 1/206 1 C21H22N3O2 348.1707 0.2 20.6 1 100.00 12.5	348.1706 N → H → J → J N → H → J m/z: 348.1707 (100.0%), 349.1740 (22.7%), 350.1774 (2.5%), 349.1735 348.1707 (100.0%), 349.1740 (22.7%), 350.1774 (2.5%), 349.1735 Display Report Mig and the second se	348.1706 → N → y →	*MS, 0.7m 348.1706 N + H + G () + H + H m/z: 348.1707 (100.0%), 349.1740 (22.7%), 350.1774 (2.5%), 349.1677 (1.1%) 349.1735 350.1759 Display Report m/z # Ion Formula m/z err [ppm] mSigma # Sigma Score rdb e Conf N-Rule Adduct 1706 1 C21H22N3Q2 348 1707 0.2 20.6 1 100.00 12.5 even ok M+H

HRMS Mass (ESI) spectrum of compound 3ac

 $^1\mathrm{H}$ spectrum (400 MHz) of compound **3ad** in CDCl_3

¹³C{1 H} spectrum (101 MHz) of compound **3ad** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3ad

¹³C{1 H} spectrum (101 MHz) of compound **3ae** inCDCl₃

¹H spectrum (400 MHz) of compound **3af** in CDCl₃

HRMS Mass (ESI) spectrum of compound 3af

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound $\textbf{3ag}~inCDCl_3$

HRMS Mass (ESI) spectrum of compound 3ag

HRMS Mass (ESI) spectrum of compound 3ah

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound **3ai** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3ai

¹H spectrum (400 MHz) of compound **3aj** in CDCl₃

HRMS Mass (ESI) spectrum of compound 3aj

 $\begin{array}{c} 7,7,90\\ 7,88\\ 7,88\\ 7,78\\ 7,78\\ 7,78\\ 7,78\\ 7,77\\ 7,77\\ 7,77\\ 7,77\\ 7,77\\ 7,77\\ 7,77\\ 7,75\\ 7,77\\ 7,77\\ 7,77\\ 7,75\\ 7,77\\ 7,75\\ 7,77\\ 7,75\\ 7,7$

¹³C{1 H} spectrum (101 MHz) of compound **3ak** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3ak

 $^{13}C\{1~H\}$ spectrum (101 MHz) of compound **3al** inCDCl₃

HRMS Mass (ESI) spectrum of compound 3al

9. X-Ray Crystallographic Data

X-ray single crystallographic data of the compounds 3aa

CCDC 2247902

Table 1 Crystal data and structure refinement for 230307lt_auto.

Identification code	230307lt_auto
Empirical formula	$C_{19}H_{26}N_3O_2$
Formula weight	328.43
Temperature/K	103(6)
Crystal system	monoclinic
Space group	Ia
a/Å	10.83365(16)
b/Å	14.19083(19)
c/Å	11.90925(15)
α/°	90
β/°	97.2955(13)
$\gamma/^{\circ}$	90
Volume/Å ³	1816.09(4)
Z	4
$\rho_{calc}g/cm^3$	1.201
μ/mm^{-1}	0.628
F(000)	708.0
Crystal size/mm ³	$0.16 \times 0.14 \times 0.04$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	9.742 to 134.12
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}16 \leq k \leq 16, \text{-}14 \leq l \leq 13$
Reflections collected	13765
Independent reflections	2734 [$R_{int} = 0.0243, R_{sigma} = 0.0199$]

Data/restraints/parameters	2734/2/221
Goodness-of-fit on F ²	1.056
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0290, wR_2 = 0.0785$
Final R indexes [all data]	$R_1 = 0.0296, wR_2 = 0.0790$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.37
Flack parameter	-0.04(11)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 230307lt_auto. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

1 <i>x</i>	У	Z	U(eq)	
5248.5(19)	3236.2(14)	4710.9(19)	20.4(4)	
5349.6(18)	3958.4(14)	3775.4(18)	19.8(4)	
6199(2)	4702.8(15)	3904(2)	25.7(5)	
6372(2)	5277.5(16)	2991(2)	30.1(5)	
5695(2)	5127.1(16)	1946(2)	32.4(5)	
4820(2)	4402.4(16)	1799(2)	27.2(5)	
4658.9(18)	3830.0(14)	2711.0(19)	20.0(4)	
2195.4(19)	2289.0(15)	1928.0(19)	22.4(5)	
2374.7(19)	2111.3(14)	3103.1(19)	20.4(4)	
3398.0(18)	2646.2(14)	3511.4(18)	18.2(4)	
6195(2)	2418.4(15)	4573(2)	24.8(5)	
7469(2)	2782.1(15)	4417(2)	27.5(5)	
8787(2)	3185(2)	3049(3)	45.1(7)	
5473.2(19)	3647.2(15)	5903.4(19)	22.7(5)	
4563.3(18)	4425.4(14)	6140.7(19)	21.7(4)	
4698(2)	4696.8(16)	7383(2)	25.4(5)	
3676(2)	5357.7(16)	7676(2)	32.9(6)	
3731(4)	5523(2)	8936(3)	60.0(10)	
1227(2)	1881.2(18)	1056(2)	31.6(5)	
3985.0(15)	2836.1(12)	4558.5(15)	20.8(4)	
3783.8(15)	3093.1(12)	2605.6(15)	18.4(4)	
	x $5248.5(19)$ $5349.6(18)$ $6199(2)$ $6372(2)$ $5695(2)$ $4820(2)$ $4658.9(18)$ $2195.4(19)$ $2374.7(19)$ $3398.0(18)$ $6195(2)$ $7469(2)$ $8787(2)$ $5473.2(19)$ $4563.3(18)$ $4698(2)$ $3676(2)$ $3731(4)$ $1227(2)$ $3985.0(15)$ $3783.8(15)$	xy5248.5(19)3236.2(14)5349.6(18)3958.4(14)6199(2)4702.8(15)6372(2)5277.5(16)5695(2)5127.1(16)4820(2)4402.4(16)4658.9(18)3830.0(14)2195.4(19)2289.0(15)2374.7(19)2111.3(14)3398.0(18)2646.2(14)6195(2)2418.4(15)7469(2)2782.1(15)8787(2)3185(2)5473.2(19)3647.2(15)4563.3(18)4425.4(14)4698(2)4696.8(16)3676(2)5357.7(16)3731(4)5523(2)1227(2)1881.2(18)3985.0(15)2836.1(12)3783.8(15)3093.1(12)	xyz5248.5(19)3236.2(14)4710.9(19)5349.6(18)3958.4(14)3775.4(18)6199(2)4702.8(15)3904(2)6372(2)5277.5(16)2991(2)5695(2)5127.1(16)1946(2)4820(2)4402.4(16)1799(2)4658.9(18)3830.0(14)2711.0(19)2195.4(19)2289.0(15)1928.0(19)2374.7(19)2111.3(14)3103.1(19)3398.0(18)2646.2(14)3511.4(18)6195(2)2418.4(15)4573(2)7469(2)2782.1(15)4417(2)8787(2)3185(2)3049(3)5473.2(19)3647.2(15)5903.4(19)4563.3(18)4425.4(14)6140.7(19)4698(2)4696.8(16)7383(2)3676(2)5357.7(16)7676(2)3731(4)5523(2)8936(3)1227(2)1881.2(18)1056(2)3985.0(15)2836.1(12)4558.5(15)3783.8(15)3093.1(12)2605.6(15)	

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 230307lt_auto. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom x		У	z	U(eq)
N10	3033.7(16)	2883.5(12)	1618.0(15)	21.4(4)
016	7635.6(15)	2769.6(11)	3316.9(15)	31.4(4)
018	8229.4(16)	3070.0(14)	5158.1(17)	41.6(5)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 230307lt_auto. TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom	I U11	U22	U33	U23	U13	U12
C2	15.8(9)	21.0(10)	24.0(12)	-1.4(8)	0.8(8)	-0.7(7)
C3	16.4(9)	20.7(9)	22.4(11)	-2.8(8)	3.6(8)	-0.8(8)
C4	21.4(10)	24.9(10)	30.7(13)	-6.3(9)	2.9(9)	-3.6(8)
C5	26.2(11)	24.8(10)	40.8(15)	-2.7(10)	9.6(11)	-7.8(9)
C6	35.5(12)	27.9(11)	35.6(14)	5.9(10)	11.7(11)	-5.7(10)
C7	27.7(12)	29.0(11)	25.2(13)	0.7(9)	4.7(10)	-2.3(9)
C8	17.4(9)	19.6(9)	23.5(11)	-4.4(8)	5.0(8)	-0.9(8)
C11	16.7(10)	23.9(10)	26.4(12)	-4.7(9)	2.0(9)	0.3(8)
C12	17.9(10)	20.0(9)	23.4(11)	-1.8(8)	3.7(9)	-1.1(7)
C13	16.6(9)	17.5(9)	20.7(11)	-2.0(7)	3.1(8)	1.3(7)
C14	23.3(11)	23.1(10)	26.9(12)	-2.6(9)	-1.2(9)	1.0(8)
C15	22.0(11)	27.6(10)	32.1(13)	-7.0(9)	0.1(10)	4.7(9)
C17	30.0(13)	51.9(16)	56(2)	-5.1(13)	17.7(14)	-3.9(11)
C19	20.3(10)	24.0(10)	22.8(12)	-1.9(8)	-0.8(9)	-0.6(8)
C20	21.0(10)	21.5(10)	21.8(11)	-0.5(8)	-0.6(9)	-1.1(8)
C21	28.2(11)	25.4(10)	22.3(12)	0.3(9)	1.6(9)	2.7(8)
C22	44.8(14)	28.1(11)	26.5(13)	3.7(9)	7.9(11)	10.6(10)
C23	99(3)	54.0(17)	29.8(16)	6.4(13)	18.2(17)	38.4(18)
C24	25.6(12)	41.0(13)	26.8(13)	-6.7(10)	-2.2(10)	-7.1(10)
N1	19.4(9)	24.8(8)	18.2(10)	-0.6(7)	2.6(7)	-6.7(7)
N9	16.7(8)	21.0(8)	17.5(9)	-0.8(7)	1.5(7)	-2.0(6)
N10	21.0(9)	26.7(9)	16.2(9)	-2.8(7)	0.5(7)	-1.1(7)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 230307lt_auto. TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom U11	U22	U33	U23	U13	U12
O16 23.0(8)	37.2(9)	34.5(10)	-4.1(8)	5.3(7)	-0.9(7)
O18 23.0(8)	57.2(11)	42.8(12)	-18.3(9)	-3.0(8)	1.6(8)

Table 4 Bond Lengths for 230307lt_auto.

Aton	n Aton	n Length/Å	Atom	Atom Atom Length/Å					
C2	C3	1.528(3)	C11	N10	1.326(3)				
C2	C14	1.571(3)	C12	C13	1.380(3)				
C2	C19	1.526(3)	C13	N1	1.353(3)				
C2	N1	1.472(3)	C13	N9	1.362(3)				
C3	C4	1.396(3)	C14	C15	1.508(3)				
C3	C8	1.400(3)	C15	O16	1.345(3)				
C4	C5	1.391(3)	C15	O18	1.200(3)				
C5	C6	1.378(4)	C17	O16	1.452(3)				
C6	C7	1.395(3)	C19	C20	1.530(3)				
C7	C8	1.385(3)	C20	C21	1.517(3)				
C8	N9	1.406(2)	C21	C22	1.525(3)				
C11	C12	1.411(3)	C22	C23	1.512(4)				
C11	C24	1.496(3)	N9	N10	1.375(2)				

Table 5 Bond Angles for 230307lt_auto.

Aton	n Aton	1 Atom	n Angle/°	Atom Atom Atom Angle/°				
C3	C2	C14	108.15(18)	C13	C12	C11	104.74(18)	
C19	C2	C3	113.86(17)	N1	C13	C12	134.2(2)	
C19	C2	C14	110.51(17)	N1	C13	N9	118.79(17)	
N1	C2	C3	108.69(17)	N9	C13	C12	106.90(19)	
N1	C2	C14	108.12(16)	C15	C14	C2	112.33(17)	
N1	C2	C19	107.35(17)	O16	C15	C14	110.74(19)	
C4	C3	C2	122.3(2)	O18	C15	C14	125.4(2)	
C4	C3	C8	117.81(19)	O18	C15	O16	123.9(2)	
C8	C3	C2	119.57(17)	C2	C19	C20	114.66(17)	

Table 5 Bond Angles for 230307lt_auto.

Aton	1 Aton	1 Aton	n Angle/°	Atom Atom Atom Angle/°				
C5	C4	C3	120.7(2)	C21	C20	C19	112.25(17)	
C6	C5	C4	120.4(2)	C20	C21	C22	113.38(19)	
C5	C6	C7	120.2(2)	C23	C22	C21	112.6(2)	
C8	C7	C6	119.0(2)	C13	N1	C2	120.76(18)	
C3	C8	N9	117.03(18)	C13	N9	C8	123.14(18)	
C7	C8	C3	121.86(19)	C13	N9	N10	111.68(16)	
C7	C8	N9	121.11(19)	N10	N9	C8	123.77(17)	
C12	C11	C24	128.0(2)	C11	N10	N9	104.53(17)	
N10	C11	C12	112.15(18)	C15	016	C17	115.7(2)	
N10	C11	C24	119.8(2)					

Table 6 Torsion Angles for 230307lt_auto.

B	С	D	Angle/°	Α	B	С	D	Angle/°
C3	C4	C5	172.1(2)	C12	C13	N9	C8	168.02(18)
C3	C8	C7	-172.62(19)	C12	C13	N9	N10	1.1(2)
C3	C8	N9	7.7(3)	C13	N9	N10	C11	-1.1(2)
C14	C15	016	-99.8(2)	C14	C2	C3	C4	-88.2(2)
C14	C15	018	78.3(3)	C14	C2	C3	C8	85.6(2)
C19	C20	C21	170.86(17)	C14	C2	C19	C20	-177.67(17)
C2	C14	C15	47.9(2)	C14	C2	N1	C13	-78.3(2)
C2	C19	C20	60.4(2)	C14	C15	016	C17	174.6(2)
C2	N1	C13	38.9(2)	C19	C2	C3	C4	35.1(3)
C4	C5	C6	0.8(3)	C19	C2	C3	C8	-151.16(18)
C8	N9	C13	14.4(3)	C19	C2	C14	C15	-77.4(2)
C8	N9	N10	179.66(17)	C19	C2	N1	C13	162.47(17)
C3	C8	C7	1.4(3)	C19	C20	C21	C22	-171.06(18)
C3	C8	N9	-178.29(18)	C20	C21	C22	C23	172.8(2)
C5	C6	C7	0.7(4)	C24	C11	C12	C13	178.9(2)
C6	C7	C8	-1.1(4)	C24	C11	N10	N9	-178.34(19)
C7	C8	C3	0.0(3)	N1	C2	C3	C4	154.68(19)
C7	C8	N9	179.7(2)	N1	C2	C3	C8	-31.6(3)
C8	N9	C13	-165.36(19)	N1	C2	C14	C15	165.39(19)
	B C3 C3 C14 C14 C14 C19 C2 C2 C2 C2 C2 C4 C8 C3 C3 C3 C5 C6 C7 C7 C7 C8	B C $C3$ $C4$ $C3$ $C8$ $C1 + C15$ $C10$ $C2$ $C14$ $C2$ $C14$ $C2$ $C14$ $C2$ $C19$ $C2$ $N1$ $C4$ $C5$ $C8$ $N9$ $C3$ $C8$ $C4$ $C5$ $C8$ $N9$ $C3$ $C8$ $C4$ $C5$ $C6$ $C7$ $C7$ $C8$ <td>BCDC3C4C5C3C8C7C3C8N9C14C15O16C14C15C18C19C20C21C2C14C15C2C14C15C2N1C13C4C5C6C8N9C13C3C8N9C5C6C7C6C7C8C7C8N9C8N9C13C8N9C13</td> <td>BCDAngle/°C3C4C5$172.1(2)$C3C8C7$-172.62(19)$C3C8N9$7.7(3)$C14C15$-99.8(2)$C14C15$-99.8(2)$C14C15$-170.86(17)$C2C14C15C19C20C21C2C14C15C2C19C20C2N1C13C3C60.8(3)C4C5C60.8(3)C13C3C8N9-178.29(18)C5C5C6C7C6C7C7(4)C7C8C3C9N9179.7(2)C8N9179.7(2)C8N9179.7(2)C8N9C13<-165.36(19)</td>	BCDC3C4C5C3C8C7C3C8N9C14C15O16C14C15C18C19C20C21C2C14C15C2C14C15C2N1C13C4C5C6C8N9C13C3C8N9C5C6C7C6C7C8C7C8N9C8N9C13C8N9C13	BCDAngle/°C3C4C5 $172.1(2)$ C3C8C7 $-172.62(19)$ C3C8N9 $7.7(3)$ C14C15 $-99.8(2)$ C14C15 $-99.8(2)$ C14C15 $-170.86(17)$ C2C14C15C19C20C21C2C14C15C2C19C20C2N1C13C3C60.8(3)C4C5C60.8(3)C13C3C8N9-178.29(18)C5C5C6C7C6C7C7(4)C7C8C3C9N9179.7(2)C8N9179.7(2)C8N9179.7(2)C8N9C13<-165.36(19)	BCDAngle/°AC3C4C5 $172.1(2)$ C12C3C8C7 $-172.62(19)$ C12C3C8N9 $7.7(3)$ C13C14C15O16<-99.8(2)	BCDAngle/°ABC3C4C5172.1(2)C12C13C3C8C7 $-172.62(19)$ C12C13C3C8N97.7(3)C13N9C14C15O16<-99.8(2)	BCDAngle/°ABCC3C4C5172.1(2) $C12 C13 N9$ C3C8C7 $-172.62(19)$ $C12 C13 N9$ C3C8N97.7(3) $C13 N9$ N10C14 C15O16 -99.8(2)C14 C2C3C14 C15O18 78.3(3)C14 C2C3C19 C20C21 170.86(17)C14 C2C19C2C14 C15 47.9(2)C14 C2N1C2C19 C2060.4(2)C14 C15 O16C2N1C13 38.9(2)C19 C2C3C4C5C60.8(3)C19 C2C3C4C5C60.8(3)C19 C2C14C3C8N9A.4(3)C19 C2C14C3C8C71.4(3)C19 C2C14C3C8N9-178.29(18)C20 C21 C22C5C6C70.7(4)C24 C11 N10C7C8C30.0(3)N1C2C7C8N9179.7(2)N1C2C7C8N9179.7(2)N1C2	BCDAngle/°ABCDC3C4C5172.1(2) $C12 C13 N9$ C8C3C8C7 $-172.62(19)$ $C12 C13 N9$ N10C3C8N97.7(3) $C13 N9$ N10C11C14 C15O16-99.8(2)C14 C2C3C4C14 C15O18 78.3(3)C14 C2C1C20C2C14 C15Ar.9(2)C14 C2N1C13C2C19 C20C21170.86(17)C14 C2N1C13C2C19 C2060.4(2)C14 C15O16C17C2N1C1338.9(2)C19 C2C3C4C4C5C60.8(3)C19 C2C14C15C8N9N10179.66(17)C19 C2C14C12C3C8C71.4(3)C19 C2C14C12C3C8N9-178.29(18)C20 C21C22C23C5C6C70.7(4)C24C11C12C13C6C7C8-1.1(4)C24C11N1N9C7C8N9179.7(2)N1C2C3C8C8N9C13<-165.36(19)

Table 6 Torsion Angles for 230307lt_auto.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C7	C8	N9	N10	-0.1(3)	N1	C2	C19	C20	-60.0(2)
C8	C3	C4	C5	-1.8(3)	N1	C13	N9	C8	-8.2(3)
C8	N9	N10	C11	-167.83(18)	N1	C13	N9	N10	-175.10(17)
C11	C12	C13	N1	174.7(2)	N9	C13	N1	C2	-21.1(3)
C11	C12	C13	N9	-0.7(2)	N10	C11	C12	C13	0.1(2)
C12	C11	N10	N9	0.6(2)	O18	C15	016	C17	-3.6(3)
C12	C13	N1	C2	163.9(2)					

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 230307lt_auto.

Atom	x	у	z	U(eq)
H4	6662.9	4817.87	4622.04	31
H5	6960.09	5776.69	3087.83	36
H6	5825.38	5518.05	1324.08	39
H7	4340.92	4302.91	1083.64	33
H12	1896.68	1711.87	3520.91	24
H14A	6261.77	2010.65	5252.89	30
H14B	5872.99	2028.49	3910.87	30
H17A	.8814.6	3149.69	2230.41	68
H17B	9495.83	2839.91	3445.6	68
H17C	8828.85	3846	3289.01	68
H19A	6329.23	3904.01	6030.84	27
H19B	5421.14	3131.21	6454.89	27
H20A	4710.5	4987.92	5684.36	26
H20B	3701.57	4207.45	5903.31	26
H21A	.5514.95	5005.88	7586.46	31
H21B	4687.77	4117.31	7844.13	31
H22A	.3753.73	5969.74	7292.45	39
H22B	2855.18	5086.08	7386.4	39
H23A	3028.09	5918.84	9083.84	90
H23B	4513.11	5840.32	9216.85	90
H23C	3687.7	4917.17	9324.02	90

Atom	ı <i>x</i>	у	z	U(eq)
H24A	403.13	2106.64	1190.27	47
H24B	B 1250.51	1192.01	1105.66	47
H24C	2 1392.13	2077.93	300.43	47
H1	3606.96	2718.9	5155.24	25
H10	3095.88	3096.18	933.36	26

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 230307lt_auto.

Experimental

Single crystals of C₁₉H₂₆N₃O₂ **[230307lt_auto]** were **[]**. A suitable crystal was selected and **[]** on a **XtaLAB Synergy R, DW system, HyPix-Arc 150** diffractometer. The crystal was kept at 103(6) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [230307lt_auto]

Crystal Data for C₁₉H₂₆N₃O₂ (M=328.43 g/mol): monoclinic, space group Ia (no. 9), a = 10.83365(16) Å, b = 14.19083(19) Å, c = 11.90925(15) Å, $\beta = 97.2955(13)^{\circ}$, V = 1816.09(4) Å³, Z = 4, T = 103(6) K, μ (Cu K α) = 0.628 mm⁻¹, Dcalc = 1.201 g/cm³, 13765 reflections measured (9.742° $\leq 2\Theta \leq 134.12^{\circ}$), 2734 unique ($R_{int} = 0.0243$, $R_{sigma} = 0.0199$) which were used in all calculations. The final R_1 was 0.0290 (I > 2 σ (I)) and wR_2 was 0.0790 (all data).

Refinement model description

Number of restraints - 2, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups, All N(H) groups

At 1.5 times of:

All C(H,H,H) groups

2.a Secondary CH2 refined with riding coordinates:

```
C14(H14A,H14B), C19(H19A,H19B), C20(H20A,H20B), C21(H21A,H21B), C22(H22A,H22B)
```

2.b Aromatic/amide H refined with riding coordinates:

C4(H4), C5(H5), C6(H6), C7(H7), C12(H12), N1(H1), N10(H10)

2.c Idealised Me refined as rotating group:

C17(H17A,H17B,H17C), C23(H23A,H23B,H23C), C24(H24A,H24B,H24C)

This report has been created with Olex2, compiled on 2023.02.24 svn.rf166f9f3 for OlexSys.

Please <u>let us know</u> if there are any errors or if you would like to have additional features.