Highly Enantio- and Diastereoselective Construction of Spirocyclic Oxindoles *via* a Palladium-Catalyzed Decarboxylative Asymmetric [4 + 2] Annulation Strategy

Pengyuan You,^{abc†} Minjie Liu, ^{bc†} Ke Zhang,^{bc} Fan Yang,^{abc} Zequn Tan,^{abc} Fener Chen *^{abc}

^a School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China

^b Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China. E-mail: rfchen@fudan.edu.cn

^c Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs,
 200433 Shanghai, China

[†] These authors contributed equally to this work.

Table of contents

1.Supporting tables and figures	3
Table S1. Screen of reaction conditions	3
Figure S1. NMR spectra of 2a	4
Figure S2. HRMS analysis of [Pd-L9] ⁺	5
2. General information	6
3. General Procedures for the Synthesis of the substrates	7
3.1 Preparation of 2a-2u	7
3.2 Preparation of 1a	19
3.3 Preparation of 1b	20
4. General procedure for the synthesis of products 3	21
5. Scaled-up Synthesis of the Product 3a	39
6. Transformations of the Product 3a	40
7. Isomerization of methyleneindodonone	45
8. Crystal data for enantiopure products 3a	46
Figure S3. Single crystal structure 3a	46
9. Reference	49
10. NMR spectra of representative compounds	50
11. HPLC chromatograms of representative compounds	95

1. Supporting tables and figures

	Ph HO Boc 2a 1b	Pd₂(dba)₃•C ∠OBoc L9 (1 K₂CO₃ THF "standaro	HCl ₃ (5 mol%) 5 mol%) (1.2 eq) 7, 70°C 7 conditions"	Ph Ph Boc 3a	
entry	Variation from the "standard conditions" ^a	yield ^b	dr ^c	ee (%) ^d	
screen of [Pd]					
1	Pd(OAc) ₂	53	>20:1	70	
screen of addictive					
2	-	80	>20:1	75	
3	Et ₃ N	82	>20:1	78	
4	Pyridine	81	>20:1	76	
5	DMAP	40	>20:1	78	
6	TsOH	trace	-	-	
7	AcOH	trace	-	-	

Table S1. Screen of reaction conditions

^a Reactions were performed with **1b** (0.15 mmol), **2a** (0.1 mmol), Pd₂(dba)₃•CHCl₃ (5 mol%), and **L9** (15 mol %) in THF (1.0

mL) at 70 $^{\rm o}{\rm C}$ for 48 h under an argon atmosphere.

^b Isolated yield.

^c dr values were determined by crude ¹H NMR analysis.

^{*d*} ee values were determined by chiral HPLC analysis.

Figure S2. HRMS analysis of [Pd-L9]+

2. General information

Unless otherwise noted, all reactions were carried out in oven-dried glassware under N_2 atmosphere using standard Schlenk techniques. Column chromatography was performed over silica gel (200-300 mesh). Reactions were monitored by TLC, GC-MS, and NMR. Reactions employing elevated temperatures were performed using heating mantles.

Commercial reagents were obtained from Adamas, Bide, Jiuding, Leyan, and TCI and used as received. When necessary, solvents were distilled and stored over 4Å molecular sieves.

¹H NMR spectra were recorded with a Bruker AM400 spectrometer, and chemical shifts (in ppm) were referenced from the residual protium in CDCl₃ (δ = 7.26 ppm). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qd = quartet of doublet, m = multiplet), coupling constant (s) in Hertz, integration]. ¹³C {¹H} NMR spectra were obtained using the same NMR spectrometer and were calibrated with CDCl₃ (δ = 77.0 ppm). HRMS were recorded on a Bruker microTOF spectrometer using an electrospray ionization source (ESI). IR data were obtained with a Thermo Fisher Scientific FT-IR. Melting point (MP) was obtained with Hanon MP-430. All HPLC analyses were performed on an Agilent Technologies 1220 system with chiralcel IC HPLC column.

3. General Procedures for the Synthesis of the substrates

3.1 Preparation of 2a-2u

Preparation of the N-Boc protected Alkylidene Oxindoles^[1]

To oxindole **A** (20 mmol, 1 eq) and aldehyde **B** (24 mmol, 1.2 eq) in EtOH (30 mL) was added piperidine (2 mmol, 0.1 eq). After refluxing for 8 hours, the reaction was cooled to room temperature. Crude product was collected by flash filtration. The solid (5mmol) was dissolved by THF (50 mL), then DMAP (0.5 mmol) and (Boc)₂O (7.5 mmol) were added. After stirring for 1 hour, the reaction was quenched by addition of 50 mL of cold water. The organic layer was then washed with cold water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated. Crude product was purified by EtOH recrystallization to give the corresponding products.

2a-2u

tert-butyl (E)-3-benzylidene-2-oxoindoline-1-carboxylate (2a)

Yellow solid, yield 63% (1.01 g, 3.1 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[1]

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2 Hz, 1H), 7.88 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.62 (dd, *J* = 7.1, 1.2 Hz, 2H), 7.50 – 7.42 (m, 3H), 7.34 – 7.28 (m, 1H), 6.99 (td, *J* = 7.7, 1.0 Hz, 1H), 1.67 (s, 9H).

tert-butyl (E)-3-(4-methylbenzylidene)-2-oxoindoline-1-carboxylate (2b)

Yellow solid, yield 33% (0.56 g, 1.7 mmol), purified by EtOH recrystallization. **Mp** 97.1 - 98.0 °C.

¹**H NMR** (400 MHz, CDCl₃) *δ* 7.91 (d, *J* = 8.1 Hz, 1H), 7.85 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.33 – 7.26 (m, 3H), 7.00 (td, *J* = 7.7, 1.0 Hz, 1H), 2.43 (s, 3H), 1.67 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 149.3, 140.3, 139.8, 138.7, 131.6, 129.8, 129.4, 129.3, 125.3, 123.6, 122.2, 121.7, 115.1, 84.2, 28.1, 21.6.

HRMS-ESI (positive): $M = C_{21}H_{21}NNaO_3$, calculated (M+Na) m/z: 358.1414, found: 358.1420.

IR (cm⁻¹): 3045, 2965, 1775, 1463, 1155, 746.

tert-butyl (*E*)-3-(4-fluorobenzylidene)-2-oxoindoline-1-carboxylate (2c)

Yellow solid, yield 62% (1.06 g, 3.1 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[1]

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 8.1 Hz, 1H), 7.81 (s, 1H), 7.66 – 7.59 (m, 3H), 7.35 – 7.28 (m, 1H), 7.21 – 7.12 (m, 2H), 7.00 (td, J = 7.7, 0.9 Hz, 1H), 1.67 (s, 9H).

tert-butyl (*E*)-3-(4-chlorobenzylidene)-2-oxoindoline-1-carboxylate (2d) Yellow solid, yield 25% (0.45 g, 1.3 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[2] ¹**H NMR** (400 MHz, CDCl₃) *δ* 7.91 (d, *J* = 8.2 Hz, 1H), 7.78 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.35 – 7.29 (m, 1H), 7.00 (td, *J* = 7.7, 0.9 Hz, 1H), 1.67 (s, 9H).

tert-butyl (*E*)-3-(4-bromobenzylidene)-2-oxoindoline-1-carboxylate (2e) Yellow solid, yield 38% (0.75 g, 1.9 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[1]

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 8.2 Hz, 1H), 7.76 (s, 1H), 7.61 (d, J = 8.4 Hz, 3H), 7.49 (d, J = 8.3 Hz, 2H), 7.35 – 7.28 (m, 1H), 7.00 (td, J = 7.7, 0.9 Hz, 1H), 1.67 (s, 9H).

tert-butyl (*E*)-3-(4-cyanobenzylidene)-2-oxoindoline-1-carboxylate (2f) Yellow solid, yield 47% (0.82 g, 2.4 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 1H), 7.80 – 7.74 (m, 3H), 7.71 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 7.5 Hz, 1H), 7.37 – 7.32 (m, 1H), 7.00 (td, J = 7.7, 0.9 Hz, 1H), 1.67 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 165.9, 149.0, 140.5, 139.3, 134.7, 132.5, 131.0, 129.5, 128.3, 123.9, 122.4, 120.5, 118.3, 115.4, 112.9, 84.5, 28.0.

HRMS-ESI (positive): $M = C_{21}H_{18}N_2O_3$, calculated (M+Na) m/z: 369.1210, found: 369.1206.

tert-butyl(E)-3-(4-(methoxycarbonyl)benzylidene)-2-oxoindoline-1-

carboxylate (2g)

Yellow solid, yield 53% (1.00 g, 2.6 mmol), purified by EtOH recrystallization. **Mp** 125.5 - 126.0 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 8.3 Hz, 2H), 7.91 (d, J = 8.2 Hz, 1H), 7.85 (s, 1H), 7.67 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 7.6 Hz, 1H), 7.35 – 7.29 (m, 1H), 6.98 (td, J = 7.7, 0.9 Hz, 1H), 3.96 (s, 3H), 1.67 (d, J = 3.1 Hz, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.3, 166.2, 149.1, 140.3, 139.2, 136.3, 131.6, 130.9, 130.5, 129.9, 129.1, 128.9, 127.5, 123.8, 122.5, 121.0, 115.3, 84.4, 52.3, 28.1.

HRMS-ESI (positive): M = C₂₂H₂₂NO₅, calculated (M+H) m/z: 380.1492, found: 380.1489.

IR (cm⁻¹): 3026, 2984, 1717, 1461, 1152, 780.

tert-butyl (*E*)-3-(2-methylbenzylidene)-2-oxoindoline-1-carboxylate (2h) Yellow solid, yield 63% (1.06 g, 3.2 mmol), purified by EtOH recrystallization. **Mp** 101.1 - 101.6 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 – 7.89 (m, 2H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.35 – 7.30 (m, 3H), 7.29 (dd, *J* = 4.4, 3.1 Hz, 1H), 6.96 (td, *J* = 7.7, 0.9 Hz, 1H), 2.36 (s, 3H), 1.70 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.4, 149.4, 139.9, 137.6, 137.3, 133.9, 130.6, 129.9, 129.6, 128.1, 126.7, 125.8, 123.8, 122.5, 121.6, 115.1, 84.2, 28.1, 19.9. **HRMS-ESI** (positive): M = C₂₁H₂₁NNaO₃, calculated (M+Na) m/z: 358.1414, found: 358.1409.

IR (cm⁻¹): 3012, 2985, 1724, 1460, 1152, 747.

tert-butyl (*E*)-3-(2-nitrobenzylidene)-2-oxoindoline-1-carboxylate (2i) Yellow solid, yield 49% (0.83 g, 2.3 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[2]

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (dd, J = 7.1, 2.5 Hz, 1H), 8.09 (s, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.74 (dd, J = 10.8, 4.1 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.29 (ddd, J = 8.6, 5.3, 3.6 Hz, 1H), 6.92 – 6.84 (m, 2H), 1.67 (s, 9H).

tert-butyl (*E*)-3-(2-chlorobenzylidene)-2-oxoindoline-1-carboxylate (2j) Yellow solid, yield 54% (0.96 g, 2.7 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[2]

¹H NMR (400 MHz, CDCl₃) δ 7.94 - 7.88 (m, 2H), 7.66 (dd, J = 7.5, 1.6 Hz, 1H), 7.52 (dd, J = 7.9, 1.2 Hz, 1H), 7.40 (td, J = 7.7, 1.8 Hz, 1H), 7.37 - 7.28 (m, 3H), 6.95 (td, J = 7.7, 0.9 Hz, 1H), 1.67 (s, 9H).

tert-butyl (*E*)-3-(3-methoxybenzylidene)-2-oxoindoline-1-carboxylate (2k) Yellow solid, yield 26% (0.46 g, 1.3 mmol), purified by EtOH recrystallization. **Mp** 85.8 - 86.7 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 1H), 7.84 (s, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.12 (s, 1H), 6.99 (t, J = 8.2 Hz, 2H), 3.83 (s, 3H), 1.67 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.6, 159.7, 149.3, 140.0, 138.1, 135.9, 130.0, 129.8, 126.3, 123.7, 122.6, 121.5, 121.4, 115.7, 115.1, 114.1, 84.2, 55.3, 28.1. **HRMS-ESI** (positive): M = C₂₁H₂₁NNaO₄, calculated (M+Na) m/z: 374.1363, found: 374.1358.

IR (cm⁻¹): 3055, 2977, 1722, 1457, 1151, 788.

tert-butyl (*E*)-3-(3-chlorobenzylidene)-2-oxoindoline-1-carboxylate (2I) Yellow solid, yield 30% (0.53 g, 1.5 mmol), purified by EtOH recrystallization. **Mp** 108.4 - 109.0 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 1H), 7.77 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 3.0 Hz, 1H), 7.41 (dd, *J* = 3.8, 1.5 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.05 – 6.97 (m, 1H), 1.67 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.3, 149.2, 140.3, 136.4, 136.0, 134.8, 130.5, 130.1, 129.7, 128.8, 127.2, 127.1, 123.8, 122.4, 121.0, 115.3, 84.4, 28.1.

HRMS-ESI (positive): $M = C_{20}H_{18}CINNaO_3$, calculated (M+Na) m/z: 378.0867, found: 378.0875.

IR (cm⁻¹): 3060, 2965, 1775, 1463, 1155, 746.

tert-butyl (*E*)-3-(cyclohexylmethylene)-2-oxoindoline-1-carboxylate (2m) White solid, yield 15% (0.24 g, 0.7 mmol), purified by EtOH recrystallization. **Mp** 105.6 - 106.4 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 9.9 Hz, 1H), 3.02 – 2.85 (m, 1H), 1.83 (dd, *J* = 15.8, 6.8 Hz, 4H), 1.74 (d, *J* = 12.5 Hz, 1H), 1.64 (s, 9H), 1.45 – 1.25 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 149.4, 148.4, 139.4, 128.9, 124.8, 124.0, 123.0, 122.3, 115.1, 84.0, 38.0, 31.4, 28.1, 25.7, 25.4.

HRMS-ESI (positive): M = C₂₂H₂₂NO₅, calculated (M+H) m/z: 328.1907, found: 328.1903.

IR (cm⁻¹): 3084, 2926, 1753, 1464, 1158, 739.

tert-butyl (*E*)-2-oxo-3-(pyridin-3-ylmethylene)indoline-1-carboxylate (2n) Yellow solid, yield 31% (0.50 g, 1.6 mmol), purified by EtOH recrystallization. **Mp** 131.6 - 132.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (d, *J* = 2.2 Hz, 1H), 8.67 (dd, *J* = 4.8, 1.4 Hz, 1H), 7.93 – 7.88 (m, 2H), 7.78 (s, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.42 (dd, *J* = 7.8, 4.9 Hz, 1H), 7.37 – 7.30 (m, 1H), 6.99 (td, *J* = 7.7, 0.9 Hz, 1H), 1.67 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.0, 150.4, 149.8, 149.1, 140.4, 136.2, 133.5, 130.7, 130.7, 128.1, 123.9, 123.5, 122.2, 120.9, 115.4, 84.4, 28.1.

HRMS-ESI (positive): $M = C_{19}H_{19}N_2O_3$, calculated (M+H) m/z: 323.1390, found: 323.1382.

IR (cm⁻¹): 3055, 2975, 1721, 1459, 1154, 743.

tert-butyl (*E*)-3-(naphthalen-2-ylmethylene)-2-oxoindoline-1-carboxylate

(20)

Yellow solid, yield 26% (0.46 g, 1.2 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.

Mp 98.8 - 99.4 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (s, 1H), 8.03 (s, 1H), 7.90 (ddd, *J* = 14.1, 8.9, 4.8 Hz, 4H), 7.72 (t, *J* = 7.2 Hz, 2H), 7.56 (p, *J* = 8.1 Hz, 2H), 7.32 (t, *J* = 7.9 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 1.69 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 149.3, 140.1, 138.3, 133.8, 133.0, 132.1, 130.0, 129.3, 128.4, 128.4, 127.9, 127.4, 126.8, 126.2, 126.1, 123.7, 122.3, 121.6, 115.2, 84.2, 28.1.

HRMS-ESI (positive): $M = C_{24}H_{21}NNaO_3$, calculated (M+Na) m/z: 394.1414, found: 394.1411.

IR (cm⁻¹): 3052, 2976, 1717, 1462, 1159, 740.

tert-butyl (*E*)-3-benzylidene-6-fluoro-2-oxoindoline-1-carboxylate (2p)

Yellow solid, yield 74% (1.26 g, 3.7 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.

Mp 159.0 - 159.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.87 (m, 2H), 7.61 – 7.57 (m, 2H), 7.52 – 7.44 (m, 3H), 7.35 (dd, J = 8.8, 2.7 Hz, 1H), 7.01 (td, J = 8.9, 2.7 Hz, 1H), 1.66 (s, 9H).

¹³**C** NMR (100 MHz, CDCl₃) δ 166.3, 159.1 (d, J = 241.90), 149.2, 139.8, 136.1 (d, J = 2.11), 134.0, 132.3, 130.2, 129.0, 128.9, 125.6 (d, J = 3.00), 122.7 (d, J = 8.95), 116.4 (d, J = 23.35), 116.3 (d, J = 7.97), 109.4 (d, J = 25.81), 84.4, 53.4, 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -118.25.

HRMS-ESI (positive): $M = C_{20}H_{18}FNNaO_3$, calculated (M+Na) m/z: 362.1163, found: 362.1163.

IR (cm⁻¹): 3063, 2986, 1721, 1466, 1145, 710.

tert-butyl (*E*)-3-benzylidene-6-chloro-2-oxoindoline-1-carboxylate (2q) Yellow solid, yield 70% (1.24 g, 3.5 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[1]

¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.55 (s, 1H), 7.52 (d, J = 6.8 Hz, 2H), 7.41 (q, J = 5.8 Hz, 3H), 7.18 (d, J = 8.6 Hz, 1H), 1.58 (s, 9H).

tert-butyl (*E*)-3-benzylidene-6-bromo-2-oxoindoline-1-carboxylate (2r) Yellow solid, yield 68% (1.36 g, 3.4 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[1]

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.80 (dd, J = 13.8, 5.4 Hz, 2H), 7.60 (dd, J = 7.1, 1.3 Hz, 2H), 7.53 – 7.46 (m, 3H), 7.42 (dd, J = 8.7, 2.1 Hz, 1H), 1.66 (s, 9H).

tert-butyl (*E*)-3-benzylidene-6-methyl-2-oxoindoline-1-carboxylate(2s) Yellow solid, yield 75% (1.25 g, 3.5 mmol), purified by EtOH recrystallization. **Mp** 134.5 – 135.4 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 2H), 7.78 – 7.70 (m, 2H), 7.44 – 7.38 (m, 3H), 7.21 (t, *J* = 7.9 Hz, 1H), 6.97 (d, *J* = 7.7 Hz, 1H), 2.63 (s, 3H), 1.65 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 164.1, 149.4, 141. 7, 139.1, 133.9, 133.1, 131.4, 129.9, 128.5, 127.9, 127.1, 126.9, 121.6, 112.6, 84.1, 28.1, 22.0.

HRMS-ESI (positive): C₂₁H₂₁NNaO₃, calculated (M+Na) m/z: 358.1423, found: 358.1429.

IR (cm⁻¹): 3054,1721, 1436, 1243,1121, 734.

tert-butyl (E)-3-benzylidene-5-methyl-2-oxoindoline-1-carboxylate(2t)

Yellow solid, yield 72% (1.20 g, 3.6 mmol), purified by EtOH recrystallization. **Mp** 157.5 – 158.8 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.79 (d, *J* = 8.3 Hz, 1H), 7.63 (dd, *J* = 7.1, 1.2 Hz, 2H), 7.50 – 7.42 (m, 4H), 7.11 (dd, *J* = 8.3, 0.9 Hz, 1H), 2.22 (s, 3H), 1.67 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 149.3, 137.9, 137.8, 134.6, 133.1, 130.6, 129.7, 129.1, 128.6, 126.2, 122.8, 121.4, 114.9, 84.0, 28.1, 21.1.

HRMS-ESI (positive): $M = C_{21}H_{21}NNaO_3$, calculated (M+Na) m/z: 358.1421, found: 358.1427.

IR (cm⁻¹): 2983,1723, 1332, 1157, 757, 697.

tert-butyl (E)-3-benzylidene-5-fluoro-2-oxoindoline-1-carboxylate (2u)

Yellow solid, yield 52% (0.88 g, 2.6 mmol), purified by EtOH recrystallization. **Mp** 160.1 – 161.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (dd, J = 9.7, 5.5 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.52 – 7.43 (m, 3H), 7.35 (dd, J = 8.8, 2.7 Hz, 1H), 7.00 (td, J = 8.9, 2.7 Hz, 1H), 1.66 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 164.1, 149.4, 141. 7, 139.1, 133.9, 133.1, 131.4, 129.9, 128.5, 127.9, 127.1, 126.9, 121.6, 112.6, 84.1, 28.1, 22.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -118.23.

HRMS-ESI (positive): $M = C_{20}H_{28}FNNaO_3$, calculated (M+Na) m/z: 362.1263, found: 362.1267.

IR (cm⁻¹): 3081,1725, 1336, 1147, 737, 621.

tert-butyl (E)-3-benzylidene-4-methyl-2-oxoindoline-1-carboxylate(2v)

Yellow solid, yield 72% (1.20 g, 3.6 mmol), purified by EtOH recrystallization. **Mp** 178.5 – 179.3 °C.

¹**H NMR** (400 MHz, CDCl₃) *δ* 7.84 (s, 1H), 7.79 (d, *J* = 8.3 Hz, 1H), 7.63 (dd, *J* = 7.1, 1.2 Hz, 2H), 7.50 – 7.43 (m, 4H), 7.11 (dd, *J* = 8.3, 0.9 Hz, 1H), 2.22 (s, 3H), 1.67 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.8, 149.3, 137.9, 137.8, 134.6, 133.1, 130.6, 129.7, 129.1, 128.6, 126.2, 122.8, 121.4, 114.9, 84.0, 28.1, 21.1. **HRMS-ESI** (positive): M = C₂₁H₂₁NNaO₃, calculated (M+Na) m/z: 358.1429, found: 358.1432.

IR (cm⁻¹): 3201,1745, 1224, 1163, 734, 654.

tert-butyl (*E*)-3-benzylidene-4-chloro-2-oxoindoline-1-carboxylate(2w) Yellow solid, yield 79% (1.41 g, 3.9 mmol), purified by EtOH recrystallization. **Mp** 122.1 – 123.4 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.92 (dd, J = 6.5, 2.7 Hz, 2H), 7.74 (dd, J = 8.0, 0.9 Hz, 1H), 7.35 (dd, J = 5.0, 1.8 Hz, 3H), 7.20 – 7.11 (m, 2H), 1.57 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 163.2, 149.2, 143.9, 140.1, 133.5, 131.8, 130.6, 129.0, 128.5, 128.0, 126.1, 124.1, 120.2, 113.2, 84.6, 28.1.

HRMS-ESI (positive): $M = C_{20}H_{18}CINNaO_3$, calculated (M+Na) m/z: 378.0821, found: 378.0823.

IR (cm⁻¹): 3066,1729, 1442, 1251,1130, 754.

Preparation of the N-Cbz protected Alkylidene Oxindoles.^[3]

To oxindole **A** (20 mmol, 1 eq.) and aldehyde **B** (24 mmol, 1.2 eq.) in EtOH (30 mL) was added piperidine (2 mmol, 0.1 eq.). After refluxing for 8 hours, the reaction was cooled to room temperature. Crude product was collected by flash filtration. 4 mmol fraction of the crude benzylideneoxindole was diluted in DCM (40 mL, 0.1 M), DMAP was added portionwise (1.02 g, 2.1 mmol, 2.1 equiv.) and Et₃N (1.2 mL, 2.1 mmol, 2.1 equiv.). After 5 min, CbzCl (1.2 mL,

2.1 mmol, 2.1 equiv.) was added dropwise at 0 °C and stirred at rt. After full consumption of the starting material, monitored by TLC (usually after 16h), the reaction was quenched with water. The organic layer was washed with 2×100 mL of water. The organic layer was dried with Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA =10/1), giving the desired *N*-Cbz protected 3-benzyloxindole in 29% yield.

benzyl (E)-3-benzylidene-2-oxoindoline-1-carboxylate (2x)

Yellow solid, yield 27% (0.40 g, 1.1 mmol), The crude product was purified by column chromatography (PE/EA =10/1), giving the desired *N*-Cbz protected 3-benzyloxindole. The spectroscopic data corresponds to those previously reported in the literature.^[3]

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.91 (s, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 6.6 Hz, 2H), 7.55 (d, *J* = 7.5 Hz, 2H), 7.50 – 7.44 (m, 3H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.36 (d, *J* = 7.1 Hz, 1H), 7.33 – 7.29 (m, 1H), 7.01 (t, *J* = 7.7 Hz, 1H), 5.49 (s, 2H).

Preparation of the N-Ac protected Alkylidene Oxindoles.^[4]

To oxindole A (20 mmol, 1 eq.) and aldehyde B (24 mmol, 1.2 eq.) in EtOH (30 mL) was added piperidine (2 mmol, 0.1 eq.). After refluxing overnight, the reaction was cooled to room temperature. Crude product was collected by flash filtration. 4.9 mmol fraction of the crude benzylideneoxindole was diluted in acetic anhydride (24 mL) was heated to 100 °C (bath temperature) with

stirring overnight, during which time the suspension cleared to a deep redbrown solution. The mixture was cooled and poured into 120 mL of H₂O. A yellow-orange product precipitated and was dissolved by shaking with 30 mL of MTBE/Et₂O = 1/1. The organic layer was separated, and the aqueous layer was extracted twice more with 30 mL of MTBE/Et₂O = 1/1. The combined organic extracts were washed with aqueous 2M NaOH (2 × 30 mL), H₂O (2 × 40 mL), and brine (1 × 30 mL), then dried over Na₂SO₄. Filtration and concentration under reduced pressure afforded a crude orange-red solid, which was recrystallized from EtOH, to afford the yellow needles in 38%.

(E)-1-acetyl-3-benzylideneindolin-2-one (2y)

Yellow needles, yield 38% (0.48 g, 1.8 mmol), purified by EtOH recrystallization. The spectroscopic data corresponds to those previously reported in the literature.^[4]

¹H NMR (400 MHz, CDCl₃) δ 8.2 (d, J = 8.2 Hz, 1H), 7.8 (s, 1H), 7.6 (d, J = 7.8 Hz, 1H), 7.6 (d, J = 6.4 Hz, 2H), 7.4 (q, J = 5.9 Hz, 3H), 7.2 (t, J = 7.9 Hz, 1H), 6.9 (t, J = 7.6 Hz, 1H), 2.7 (s, 3H).

3.2 Preparation of 1a^[5]

According to a previous reference: A solution of triphosgene (1.48 g, 5.0 mmol) in DCM (50.0 mL) was slowly added to a solution of 2-methylenepropane-1,3diol (2.2 g, 25 mmol) and triethylamine (34.8 mL, 250 mmol) in DCM (250 mL) at 0 °C over 30 min. The resulting mixture was stirred for 2 h while gradually raising the temperature to 20 °C. The reaction was quenched with NH₄Cl aq and extracted with DCM. The organic layer was dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with PE/EA = 2/1 to afford a white solid (1.2 g, 42% yield).

5-methylene-1,3-dioxan-2-one (1a)

White solid, yield 42% (1.2 g, 2.1 mmol), The crude product was purified by column chromatography (PE/EA = 2/1), giving the desired **1a**. The spectroscopic data corresponds to those previously reported in the literature.^[5] **¹H NMR** (400 MHz, CDCl₃) δ 5.32 – 5.28 (m, 2H), 4.84 (d, *J* = 1.2 Hz, 4H).

3.3 Preparation of 1b^[6]

To a solution of freshly distilled 2-methylene propane-1,3-diol (2 g, 22.5 mmol), 4-DMAP (270 mg, 2.5 mmol) in DCM (20 mL), was added dropwise a solution of Boc₂O (0.8M in DCM, 5.7 mL) at 0 °C. After 16 h stirring at rt, the reaction mixture was quenched with HCl 1M and extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (PE/EA = 4/1) afforded 1.84 g (43%) as a colourless oil.

tert-butyl (2-(hydroxymethyl)allyl) carbonate (1b)

colourless oil, yield 43% (1.84 g, 9.7 mmol), The crude product was purified by column chromatography (PE/EA = 4/1), giving the desired **1b**. The spectroscopic data corresponds to those previously reported in the literature.^[6] **¹H NMR** (400 MHz, CDCl₃) δ 5.25 (s, 1H), 5.20 (s, 1H), 4.62 (s, 2H), 4.16 (s, 2H), 1.91 (s, 1H), 1.48 (s, 9H).

4. General procedure for the synthesis of products 3

To an oven-dried Schlenk tube was added $Pd(OAc)_2$ (0.005 mmol), Chiral ligand L9 (0.01 mmol) followed by the addition of THF (0.5 mL). The reaction mixture was allowed to stir for 30 mins at room temperature (25 °C), to the reaction mixture was then added methyleneindolinones 2 (0.1 mmol), 2-Methylidenetrimethylene **1a** (0.15 mmol). The reaction mixture was allowed to stir at 35 °C for 24 h and then directly purified by silica gel chromatography (PE/EA = 20/1 to 10/1) to provide the desired product **3**.

To an oven-dried Schlenk tube was added $Pd2(dba)_3 \cdot CHCl_3$ (0.005 mmol), Chiral ligand L9 (0.015 mmol) followed by the addition of THF (0.5 mL). The reaction mixture was allowed to stir for 30 mins at room temperature (25 °C), to the reaction mixture was then added methyleneindolinones 2 (0.1 mmol), 2-Methylidenetrimethylene **1a** (0.15 mmol), K₂CO₃ (0.12 mmol). The reaction mixture was allowed to stir at 70 °C for 48 h and then directly purified by silica gel chromatography (PE/EA = 20/1 to 10/1) to provide the desired product **3**.

tert-butyl(2'S,3S)-5'-methylene-2-oxo-2'-phenyl-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3a)

Method A: **3a** (35.2 mg, 0.09 mmol) was obtained in 90% yield as a white solid. >20:1 *dr*, 90% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Method B: 35.1mg, 0.09mmol, yield 90%, >20:1 dr, 80% ee.

Mp 115.9 - 116.7°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.4 Hz, 1H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.19 (td, *J* = 7.9, 1.3 Hz, 1H), 7.13 (dd, *J* = 10.9, 4.1 Hz, 1H), 7.06 (t, *J* = 7.2 Hz, 1H), 6.99 (t, *J* = 7.4 Hz, 2H), 6.89 (d, *J* = 7.4 Hz, 2H), 5.19 (s, 1H), 4.94 (s, 2H), 4.65 (d, *J* = 12.6 Hz, 1H), 4.46 (d, *J* = 12.6 Hz, 1H), 3.25 (d, *J* = 13.8 Hz, 1H), 2.46 (d, *J* = 13.8 Hz, 1H), 1.55 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.6, 148.5, 138.9, 138.2, 136.3, 128.25, 128.1, 127.8, 127.3, 126.5, 126.0, 123.6, 114.1, 113.5, 84.1, 83.7, 73.4, 54.8, 39.3, 28.0.

HRMS-ESI (positive): $M = C_{24}H_{25}NNaO_4$, calculated (M+Na) m/z: 414.1676, found: 414.1679.

IR (cm⁻¹): 3080, 1727, 1465, 1150, 750, 677. **[α]²⁵**_D = - 62.77 (c = 0.64, CHCl₃).

tert-butyl(2'S,3S)-5'-methylene-2-oxo-2'-(p-tolyl)-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3b)

Method A: **3b** (26.6 mg, 0.066 mol) was obtained in 66% yield as a white liquid. >20:1 *dr*, 85% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Method B: 36.9mg, 0.091 mmol, yield 91%, >20:1 dr, 80% ee.

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.62 (m, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.20 (td, *J* = 8.0, 1.3 Hz, 1H), 7.13 (dd, *J* = 10.9, 4.1 Hz, 1H), 6.78 (q, *J* = 8.3 Hz, 4H), 5.17 (s, 1H), 4.93 (s, 1H), 4.90 (s, 1H), 4.68 – 4.59 (m, 1H), 4.45 (d, *J* = 12.6 Hz, 1H), 3.23 (d, *J* = 13.8 Hz, 1H), 2.45 (d, *J* = 13.8 Hz, 1H), 2.16 (s, 3H), 1.55 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.7, 148.5, 138.9, 138.2, 137.4, 133.3, 128.4, 128.0, 128.0, 126.4, 126.0, 123.6, 114.2, 113.4, 84.0, 83.7, 77.3, 77.0, 76.7, 73.4, 54.8, 39.4, 27.9, 21.0.

HRMS-ESI (positive): $M = C_{25}H_{27}NNaO_4$, calculated (M+Na) m/z: 432.1832, found: 432.1839.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 5.26$ min (major), $t_R = 6.43$ min (minor).

IR (cm⁻¹): 2980, 1732, 1250, 1152, 754, 731.

 $[\alpha]^{25}_{D} = -60.35 (c = 0.35, CHCl_3).$

tert-butyl(2'S,3S)-2'-(4-fluorophenyl)-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3c)

Method A: **3c** (36.3 mg, 0.089 mmol) was obtained in 89% yield as a yellow liquid. >20:1 *dr*, 80% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Method B: 34.7mg, 0.085 mmol, yield 85%, >20:1 dr, 77% ee.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (dd, J = 7.5, 1.1 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.21 (td, J = 7.9, 1.4 Hz, 1H), 7.12 (td, J = 7.5, 1.0 Hz, 1H), 6.89 – 6.83 (m, 2H), 6.71 – 6.65 (m, 2H), 5.18 (d, J = 1.3 Hz, 1H), 4.94 (s, 1H), 4.91 (s, 1H), 4.64 (dd, J = 12.6, 1.5 Hz, 1H), 4.45 (d, J = 12.6 Hz, 1H), 3.23 (dd, J = 13.8, 1.1 Hz, 1H), 2.45 (dd, J = 13.8, 1.5 Hz, 1H), 1.56 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.5, 162.2, 148.4, 138.8, 137.9, 132.2, 128.3,

128.3, 128.1, 125.9, 123.7, 114.3, 114.1, 113.6, 84.3, 83.0, 73.4, 54.7, 39.3, 28.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.09.

HRMS-ESI (positive): $M = C_{24}H_{24}FNNaO_4$, calculated (M+Na) m/z: 432.1582, found: 432.1585.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 4.47$ min (major), $t_R = 5.34$ min (minor).

IR (cm⁻¹): 3076, 1733, 1251, 1152, 1090, 756.

 $[\alpha]^{25}_{D} = -46.44 \text{ (c} = 0.52, \text{ CHCl}_3).$

tert-butyl(2'S,3S)-2'-(4-chlorophenyl)-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3d)

Method A: **3d** (38.4 mg, 0.09 mmol) was obtained in 90% yield as a white solid. >20:1 *dr*, 87% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Method B: 38.6mg, 0.091mmol, yield 91%, >20:1 dr, 80% ee.

Mp 117.6 - 118.6°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 7.4 Hz, 1H), 7.48 (d, J = 8.1 Hz, 1H),

7.22 (dd, *J* = 11.3, 4.4 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 8.5 Hz,

2H), 6.84 (d, *J* = 8.5 Hz, 2H), 5.18 (s, 1H), 4.93 (s, 1H), 4.91 (s, 1H), 4.64 (d, *J* = 12.6 Hz, 1H), 4.45 (d, *J* = 12.6 Hz, 1H), 3.23 (d, *J* = 13.8 Hz, 1H), 2.45 (d, *J* = 13.8 Hz, 1H), 1.56 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.5, 148.3, 138.8, 137.8, 134.9, 133.6, 128.3, 127.9, 127.5, 125.9, 123.8, 114.3, 113.8, 84.4, 82.9, 73.4, 54.6, 39.3, 29.7, 28.0.

HRMS-ESI (positive): $M = C_{24}H_{24}CINNaO_4$, calculated (M+Na) m/z: 448.1286, found: 448.1281.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 4.66 min (major), t_R = 5.82 min (minor). IR (cm⁻¹): 2985, 1724, 1293, 1150, 756, 733. [α]²⁵_D = - 51.00 (c = 0.68, CHCl₃).

tert-butyl(2'S,3S)-2'-(4-bromophenyl)-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3e)

Method A: **3e** (39.7 mg, 0.084 mmol) was obtained in 84% yield as a white solid. >20:1 *dr*, 87% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Method B: 30.7mg, 0.065 mmol, yield 65%, >20:1 dr, 78% ee.

Mp 126.8 - 127.4°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, *J* = 6.9 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.24 – 7.19 (m, 1H), 7.12 (t, *J* = 7.4 Hz, 3H), 6.78 (d, *J* = 8.5 Hz, 2H), 5.18 (s, 1H), 4.93 (s, 1H), 4.89 (s, 1H), 4.63 (d, *J* = 12.7 Hz, 1H), 4.44 (d, *J* = 12.6 Hz, 1H), 3.22 (d, *J* = 13.8 Hz, 1H), 2.45 (d, *J* = 13.8 Hz, 1H), 1.56 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.5, 148.3, 138.8, 137.7, 135.5, 130.4, 128.3, 128.2, 127.8, 125.9, 123.8, 121.9, 114.3, 113.8, 84.4, 83.0, 73.4, 54.6, 39.4, 28.0.

HRMS-ESI (positive): M = C₂₄H₂₄BrNNaO₄, calculated (M+Na) m/z: 492.0781, found: 492.0791.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 4.80 min (major), t_R = 6.08 min (minor).

IR (cm⁻¹): 2977, 1732, 1250, 1147, 752, 731.

 $[\alpha]^{25}_{D} = -46.63 (c = 0.73, CHCl_3).$

tert-butyl(2'S,3S)-2'-(4-cyanophenyl)-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3f)

3f (36.6 mg, 0.088 mmol) was obtained in 88% yield as a white solid. >20:1 *dr*, 75% *ee*, purified by silica gel column chromatography (PE/EA = 20/1). **Mp** 65.1 - 66.2°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (dd, J = 7.5, 1.1 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.20 (td, J = 7.9, 1.4 Hz, 1H), 7.11 (td, J = 7.6, 1.0 Hz, 1H), 7.04 (d, J = 8.3 Hz, 2H), 5.20 (s, 1H), 4.98 (s, 1H), 4.95 (s, 1H), 4.65 (dd, J = 12.6, 1.4 Hz, 1H), 4.45 (d, J = 12.6 Hz, 1H), 3.23 (dd, J = 13.8, 0.9 Hz, 1H), 2.46 (dd, J = 13.8, 1.4 Hz, 1H), 1.56 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.2, 148.2, 141.7, 138.5, 137.2, 131.0, 128.5, 127.3, 127.2, 125.8, 123.9, 118.5, 114.3, 114.1, 111.5, 84.6, 82.6, 73.2, 54.5, 39.4, 27.9.

HRMS-ESI (positive): $M = C_{25}H_{24}N_2NaO_4$, calculated (M+Na) m/z: 439.1628, found: 439.1628.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 10.68 min (major), t_R = 12.49 min (minor).

IR (cm⁻¹): 3081, 1751, 1251, 1149, 1092, 756.

 $[\alpha]^{25}_{D} = -42.04 \ (c = 0.66, CHCl_3).$

tert-butyl(2'S,3S)-2'-(4-(methoxycarbonyl)phenyl)-5'-methylene-2-oxo5',6'-dihydro-2'H,4'H-spiro[indoline-3,3'-pyran]-1-carboxylate (3g)
3g (37.8 mg, 0.084 mmol) was obtained in 84% yield as a white liquid. >20:1

dr, 85% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 – 7.62 (m, 3H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.18 (td, *J* = 7.9, 1.5 Hz, 1H), 7.11 (td, *J* = 7.5, 1.1 Hz, 1H), 6.99 (d, *J* = 8.3 Hz, 2H), 5.19 (s, 1H), 4.99 (s, 1H), 4.94 (s, 1H), 4.65 (dd, *J* = 12.6, 1.3 Hz, 1H), 4.45 (d, *J* = 12.6 Hz, 1H), 3.81 (s, 3H), 3.24 (d, *J* = 13.8 Hz, 1H), 2.45 (dd, *J* = 13.8, 1.3 Hz, 1H), 1.54 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.4, 166.7, 148.3, 141.5, 138.6, 137.6, 129.4, 128.6, 128.3, 127.7, 126.5, 125.9, 123.8, 114.2, 113.8, 84.4, 83.0, 73.3, 54.6, 52.0, 39.4, 27.9.

HRMS-ESI (positive): $M = C_{26}H_{27}NNaO_6$, calculated (M+Na) m/z: 472.1731, found: 472.1719.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 10.12 min (major), t_R = 14.07 min (minor).

IR (cm⁻¹): 2980, 1732, 1250, 1152, 754, 731.

 $[\alpha]^{25}_{D} = -42.6 \text{ (c} = 0.77, \text{CHCl}_3).$

tert-butyl(2'S,3S)-5'-methylene-2-oxo-2'-(o-tolyl)-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3h)

Method A: **3h** (21.9 mg, 0.054 mmol) was obtained in 54% yield as a yellow solid. >20:1 *dr*, 92% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Mp 141.5 - 142.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.3 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.32 – 7.22 (m, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.02 – 6.89 (m, 2H), 6.69 – 6.58 (m, 1H), 6.39 (d, *J* = 7.9 Hz, 1H), 5.21 (s, 1H), 5.19 (s, 1H), 4.97 (s, 1H), 4.64 (d, *J* = 12.7 Hz, 1H), 4.49 (d, *J* = 12.7 Hz, 1H), 3.29 (d, *J* = 13.9 Hz, 1H), 2.51 (t, *J* = 12.2 Hz, 1H), 2.38 (s, 3H), 1.50 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 148.5, 139.3, 138.4, 135.3, 134.3, 129.9, 128.5, 128.3, 127.8, 127.1, 126.3, 124.7, 123.7, 114.2, 113.4, 83.8, 79.5, 77.3, 77.0, 76.7, 73.8, 53.9, 39.6, 27.9, 19.9.

HRMS-ESI (positive): $M = C_{25}H_{27}NNaO_4$, calculated (M+Na) m/z: 428.1832, found: 428.1827.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 4.36 min (major), t_R = 4.75 min (minor).

IR (cm⁻¹): 3073, 1734, 1282, 1152, 751, 732.

 $[\alpha]^{25}_{D} = -26.44 \ (c = 0.40, \ CHCl_3).$

tert-butyl(2'S,3S)-5'-methylene-2'-(2-nitrophenyl)-2-oxo-5',6'-dihydro-

2'H,4'H-spiro[indoline-3,3'-pyran]-1-carboxylate (3i)

3i (39.5 mg, 0.08 mmol) was obtained in 91% yield as a white solid. >20:1 *dr*, 80% *ee*, purified by silica gel column chromatography (PE/EA = 10/1). **Mp** 119.0 - 119.5°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (dd, J = 7.5, 1.0 Hz, 1H), 7.64 (dd, J = 11.6, 4.6 Hz, 2H), 7.29 – 7.21 (m, 2H), 7.16 (td, J = 7.6, 1.0 Hz, 1H), 7.10 – 7.04 (m, 1H), 6.82 (dd, J = 8.0, 1.2 Hz, 1H), 5.90 (s, 1H), 5.22 (s, 1H), 4.97 (s, 1H), 4.68 (d, J = 12.7 Hz, 1H), 4.59 (d, J = 12.8 Hz, 1H), 3.24 (dd, J = 13.9, 0.9 Hz, 1H), 2.48 (dd, J = 13.8, 1.0 Hz, 1H), 1.59 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 173.7, 148.7, 148.5, 139.1, 137.6, 131.2, 129.7, 129.0, 128.7, 128.6, 127.6, 126.1, 123.8, 123.7, 114.4, 114.0, 84.4, 73.7, 54.3, 40.0, 27.8.

HRMS-ESI (positive): $M = C_{24}H_{24}N_2NaO_6$, calculated (M+Na) m/z: 459.1527, found: 459.1522.

HPLC (IC, *n*-hex/2-propanol = 80/20, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 10.53 min (major), t_R = 15.27 min (minor).

IR (cm⁻¹): 3078, 2980, 1727, 1534, 1152, 788, 692. **[α]²⁵**_D = + 152.87 (c = 0.64, CHCl₃).

tert-butyl(2'*R*,3*S*)-2'-(2-chlorophenyl)-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3j)

3j (36.6 mg, 0.086 mmol) was obtained in 86% yield as a white solid. >20:1 *dr*, 60% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).
Mp 134.8 - 135.9°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (dd, J = 7.5, 0.8 Hz, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.27 (td, J = 7.9, 1.3 Hz, 1H), 7.18 (dtd, J = 8.3, 7.8, 0.9 Hz, 2H), 7.01 (td, J = 7.9, 1.6 Hz, 1H), 6.76 – 6.68 (m, 1H), 6.45 (dd, J = 8.0, 1.4 Hz, 1H), 5.51 (s, 1H), 5.19 (s, 1H), 4.99 (s, 1H), 4.66 – 4.58 (m, 1H), 4.51 (d, J = 12.7 Hz, 1H), 3.33 (d, J = 14.0 Hz, 1H), 2.51 (dd, J = 14.0, 1.0 Hz, 1H), 1.52 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 174.0, 148.7, 139.4, 138.3, 133.8, 132.7, 129.2, 128.9, 128.9, 128.5, 128.2, 126.2, 125.7, 123.7, 114.3, 113.6, 84.0, 79.1, 73.8, 53.6, 39.3, 28.0.

HRMS-ESI (positive): $M = C_{24}H_{24}CINNaO_4$, calculated (M+Na) m/z: 448.1286, found: 448.1279.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 4.96 min (major), t_R = 6.16 min (minor).

IR (cm⁻¹): 3075, 1721, 1283, 1152, 845, 755.

 $[\alpha]^{25}_{D} = -10.38 (c = 0.68, CHCl_3).$

tert-butyl(2'S,3S)-2'-(3-methoxyphenyl)-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3k)

Method A: **3k** (31.4 mg, 0.075 mmol) was obtained in 75% yield as a white solid. >20:1 *dr*, 86% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Method B: 38.3mg, yield 91%, >20:1 dr, 80% ee.

Mp 146.6 - 147.6°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 1H), 7.47 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.31 (td, *J* = 8.1, 1.4 Hz, 1H), 7.10 (td, *J* = 7.6, 0.9 Hz, 1H), 5.02 (d, *J* = 1.2 Hz, 1H), 4.70 (s, 1H), 4.42 (dd, *J* = 12.3, 1.7 Hz, 1H), 4.18 (d, *J* = 12.3 Hz, 1H), 3.69 (d, *J* = 6.0 Hz, 1H), 2.92 (d, *J* = 13.4 Hz, 1H), 2.17 (dd, *J* = 13.4, 1.7 Hz, 1H), 1.64 (s, 9H), 1.55 – 1.43 (m, 4H), 1.16 (d, *J* = 10.4 Hz, 1H), 1.07 – 0.83 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 176.4, 149.1, 138.4, 138.3, 129.5, 127.9, 125.9, 123.9, 114.6, 112.7, 85.3, 84.4, 72.9, 52.6, 43.0, 40.7, 29.7, 29.0, 28.1, 26.1, 26.0, 25.8.

HRMS-ESI (positive): $M = C_{25}H_{27}NNaO_5$, calculated (M+Na) m/z: 444.1781, found: 444.1790.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 6.42$ min (major), $t_R = 8.28$ min (minor).

IR (cm⁻¹): 3071, 1729, 1297, 1150, 1094, 755.

 $[\alpha]^{25}_{D} = -62.89 (c = 0.66, CHCl_3).$

tert-butyl(2'S,3S)-2'-(3-chlorophenyl)-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3l)

3I (31.2 mg, 0.073 mmol) was obtained in 73% yield as a white solid. >20:1 *dr*,

83% ee, purified by silica gel column chromatography (PE/EA = 20/1).

Mp 129.5 - 130.4°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 7.4 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.20 (dd, J = 11.3, 4.3 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.03 (d, J = 7.9 Hz, 1H), 6.92 (t, J = 7.8 Hz, 2H), 6.79 (d, J = 7.7 Hz, 1H), 5.19 (s, 1H), 4.94 (s, 1H), 4.90 (s, 1H), 4.64 (d, J = 12.6 Hz, 1H), 4.44 (d, J = 12.6 Hz, 1H), 3.22 (d, J = 13.8 Hz, 1H), 2.45 (d, J = 13.8 Hz, 1H), 1.57 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.3, 148.5, 138.7, 138.4, 137.7, 133.2, 128.5, 128.3, 127.9, 127.8, 126.7, 125.8, 124.6, 123.8, 114.1, 113.7, 84.3, 82.8, 73.3, 54.6, 39.2, 27.9.

HRMS-ESI (positive): M = C₂₄H₂₄CINNaO₄, calculated (M+Na) m/z: 448.1286, found: 448.1279.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 4.31 min (major), t_R = 5.13 min (minor).

IR (cm⁻¹): 2979, 1732, 1253, 1148, 754, 730.

tert-butyl(2'S,3S)-2'-cyclohexyl-5'-methylene-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3m)

3m (32.3 mg, 0.081mmol) was obtained in 81% yield as a white liquid. >20:1 *dr*, 70% *ee*, purified by silica gel column chromatography (PE/EA = 20/1). **1H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 1H), 7.47 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.31 (td, *J* = 8.1, 1.4 Hz, 1H), 7.10 (td, *J* = 7.6, 0.9 Hz, 1H), 5.02 (d, *J* = 1.2 Hz, 1H), 4.70 (s, 1H), 4.42 (dd, *J* = 12.3, 1.7 Hz, 1H), 4.18 (d, *J* = 12.3 Hz, 1H), 3.69 (d, *J* = 6.0 Hz, 1H), 2.92 (d, *J* = 13.4 Hz, 1H), 2.17 (dd, *J* = 13.4, 1.7 Hz, 1H), 1.64 (s, 9H), 1.55 – 1.43 (m, 4H), 1.16 (d, *J* = 10.4 Hz, 1H), 1.07 – 0.83 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 176.4, 149.1, 138.4, 138.3, 129.5, 127.9, 125.9, 123.9, 114.6, 112.7, 85.3, 84.4, 72.9, 52.6, 43.0, 40.7, 29.7, 29.0, 28.1, 26.1,

26.0, 25.8.

HRMS-ESI (positive): $M = C_{24}H_{31}NNaO_4$, calculated (M+Na) m/z: 420.2145, found: 420.2145.

HPLC (IC, *n*-hex/2-propanol = 99/1, flow rate = 1.0 mL/min, I = 254 nm, T =

25 °C) t_R = 4.67 min (major), t_R = 5.11 min (minor).

IR (cm⁻¹): 3550, 2927, 1733, 1283, 1152, 756.

 $[\alpha]^{25}_{D} = -33.08 (c = 0.64, CHCl_3).$

tert-butyl(2'S,3S)-5'-methylene-2-oxo-2'-(pyridin-3-yl)-5',6'-dihydro-

2'H,4'H-spiro[indoline-3,3'-pyran]-1-carboxylate (3n)

3n (36.1 mg, 0.092 mmol) was obtained in 92% yield as a white solid. >20:1
dr, 82% ee, purified by silica gel column chromatography (PE/EA = 20/1).
Mp 91.5 - 92.4°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (dd, J = 4.8, 1.6 Hz, 1H), 8.18 (d, J = 1.9 Hz, 1H), 7.65 (dd, J = 7.4, 0.9 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.20 (td, J = 7.9, 1.4 Hz, 1H), 7.14 (dt, J = 14.2, 4.6 Hz, 2H), 6.90 (dd, J = 7.9, 4.8 Hz, 1H), 5.19 (s, 1H), 4.94 (s, 2H), 4.64 (d, J = 12.7 Hz, 1H), 4.44 (d, J = 12.6 Hz, 1H), 3.22 (d, J = 13.8 Hz, 1H), 2.47 (d, J = 13.8 Hz, 1H), 1.55 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.0, 149.2, 148.3, 148.0, 138.7, 137.5, 134.0, 132.0, 128.5, 127.4, 125.9, 123.9, 122.2, 114.3, 113.9, 84.4, 81.5, 73.3, 54.5, 39.3, 27.9.

HRMS-ESI (positive): $M = C_{23}H_{25}N_2O_4$, calculated (M+H) m/z: 393.1809, found: 393.1806.

HPLC (IC, *n*-hex/2-propanol = 99/1, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 15.77 min (minor), t_R = 16.84 min (major).

IR (cm⁻¹): 2979, 1756, 1283, 1152, 1092, 776.

 $[\alpha]^{25}_{D} = -52.04 \text{ (c} = 0.53, \text{CHCl}_3).$

tert-butyl(2'S,3S)-5'-methylene-2'-(naphthalen-2-yl)-2-oxo-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (30)

Method A: **3o** (41.4 mg, 0.094 mmol) was obtained in 94% yield as a white solid. >20:1 *dr*, 86% *ee*, purified by silica gel column chromatography (PE/EA = 20/1).

Method B: 40.2mg, yield 91%, >20:1 dr, 80% ee.

Mp 83.0 - 84.2°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.72 (m, 1H), 7.68 – 7.59 (m, 2H), 7.48 – 7.42 (m, 2H), 7.40 – 7.31 (m, 3H), 7.16 (dd, *J* = 5.5, 3.6 Hz, 2H), 6.98 (dd, *J* = 8.7, 0.9 Hz, 1H), 5.22 (s, 1H), 5.13 (s, 1H), 4.97 (s, 1H), 4.71 (d, *J* = 12.5 Hz, 1H), 4.53 (d, *J* = 12.6 Hz, 1H), 3.32 (d, *J* = 13.7 Hz, 1H), 2.50 (d, *J* = 13.7 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.6, 148.3, 138.8, 138.1, 133.9, 132.8, 132.4, 128.2, 128.1, 128.0, 127.3, 126.8, 126.0, 125.8, 125.6, 124.1, 123.6, 114.2, 113.5, 84.0, 83.8, 73.5, 54.9, 39.5, 27.8.

HRMS-ESI (positive): M = C₂₈H₂₇NNaO₄, calculated (M+Na) m/z: 464.1832, found: 464.1846.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 6.81$ min (major), $t_R = 7.65$ min (minor).

IR (cm⁻¹): 3054, 1728, 1280, 1147, 1049, 741.

 $[\alpha]^{25}_{D} = -1.05 (c = 0.71, CHCl_3)$

tert-butyl(2'S,3S)-6-fluoro-5'-methylene-2-oxo-2'-phenyl-5',6'-dihydro-

2'H,4'H-spiro[indoline-3,3'-pyran]-1-carboxylate (3p)

3p (37.5 mg, 0.092 mmol) was obtained in 92% yield as a white solid. >20:1 dr, 84% *ee*, purified by silica gel column chromatography (PE/EA = 20/1). **Mp** 116.3 - 117.5°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (ddd, J = 11.0, 8.6, 3.6 Hz, 2H), 7.09 – 7.04 (m, 1H), 7.02 (t, J = 7.4 Hz, 2H), 6.93 – 6.85 (m, 3H), 5.21 (s, 1H), 4.98 – 4.90 (m, 2H), 4.64 (d, J = 12.6 Hz, 1H), 4.44 (d, J = 12.6 Hz, 1H), 3.24 (d, J = 13.8 Hz, 1H), 1.54 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 175.1, 160.4, 158.0, 148.4, 137.6, 136.1, 134.8, 130.0 (d, J = 8.86 Hz), 127.9, 127.4, 126.3, 115.2 (d, J = 7.96 Hz), 114.4, 114.1 (d, J = 106.48 Hz), 114.0, 113.3, 84.2, 83.5, 73.3, 54.9, 39.1, 27.4.

¹⁹**F NMR** (376 MHz, CDCl₃) *δ* -118.26.

HRMS-ESI (positive): $M = C_{24}H_{24}FNNaO_4$, calculated (M+Na) m/z: 432.1582, found: 432.1576.

HPLC (IC, *n*-hex/2-propanol = 80/20, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 4.35 min (major), t_R = 4.96 min (minor).

IR (cm⁻¹): 3077, 1728, 1242, 1148, 1047, 706.

 $[\alpha]^{25}_{D} = -57.21 \text{ (c} = 0.75, \text{ CHCl}_3).$

tert-butyl(2'S,3S)-6-chloro-5'-methylene-2-oxo-2'-phenyl-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3q)

3q (31.4 mg, 0.074 mmol) was obtained in 74% yield as a yellow solid. >20:1 *dr*, 80% *ee,* purified by silica gel column chromatography (PE/EA = 20/1).
Mp 124.8 - 125.7°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 2.0 Hz, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.16 (dd, J = 8.7, 2.0 Hz, 1H), 7.08 – 6.99 (m, 3H), 6.90 (d, J = 7.4 Hz, 2H),
5.23 (s, 1H), 4.98 (s, 1H), 4.91 (s, 1H), 4.66 (d, J = 12.6 Hz, 1H), 4.44 (d, J = 12.6 Hz, 1H), 3.24 (d, J = 13.9 Hz, 1H), 2.44 (d, J = 13.8 Hz, 1H), 1.54 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.9, 148.3, 137.5, 137.4, 136.0, 130.0, 129.2, 128.1, 128.0, 127.4, 126.3, 125.9, 115.3, 114.1, 84.4, 83.6, 73.4, 54.8, 39.0, 27.9.

HRMS-ESI (positive): $M = C_{24}H_{24}CINNaO_4$, calculated (M+Na) m/z: 448.1286, found: 448.1294.

HPLC (IC, *n*-hex/2-propanol = 80/20, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 4.29 min (major), t_R = 4.82 min (minor).

IR (cm⁻¹): 3059, 1729, 1250, 1149, 1090, 742.

 $[\alpha]^{25}_{D} = -14.76 (c = 0.39, CHCl_3).$

tert-butyl(2'S,3S)-6-bromo-5'-methylene-2-oxo-2'-phenyl-5',6'-dihydro-

2'H,4'H-spiro[indoline-3,3'-pyran]-1-carboxylate (3r)

Method A: **3r** (44.5mg, 0.094 mmol) was obtained in 94% yield as a white solid. >20:1 *dr*, 80% *ee*, purified by silica gel column chromatography (PE/EA = 15/1).

Method B: 34.9mg, 0.074 mmol, yield 74%, >20:1 dr, 80% ee.

Mp 136.1 - 137.7°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 1.7 Hz, 1H), 7.33 (dt, J = 8.7, 5.2 Hz, 2H), 7.10 – 7.05 (m, 1H), 7.03 (t, J = 7.3 Hz, 2H), 6.89 (d, J = 7.0 Hz, 2H), 5.22 (s, 1H), 4.98 (s, 1H), 4.91 (s, 1H), 4.66 (d, J = 12.6 Hz, 1H), 4.44 (d, J = 12.6 Hz, 1H), 3.23 (d, J = 13.8 Hz, 1H), 2.44 (d, J = 13.9 Hz, 1H), 1.54 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.7, 148.2, 137.9, 137.4, 135.9, 131.0, 130.3, 128.7, 128.0, 127.4, 126.3, 116.8, 115.7, 114.1, 84.4, 83.6, 73.3, 54.7, 39.0, 27.9.

HRMS-ESI (positive): $M = C_{24}H_{24}BrNNaO_4$, calculated (M+Na) m/z: 492.0781,

found: 492.0773.

HPLC (IC, *n*-hex/2-propanol = 80/20, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 4.34$ min (major), $t_R = 4.86$ min (minor). **IR** (cm⁻¹): 3055, 1732, 1249, 1148, 1090, 747 cm⁻¹; **[\alpha]**²⁵_D = - 0.34 (c = 0.82, CHCl₃).

tert-butyl(2'S,3S)-5-methyl-5'-methylene-2-oxo-2'-phenyl-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate(3t)

3t (28.9 mg, 0.071 mmol) was obtained in 71% yield as a yellow liquid. >20:1 *dr*, 80% *ee,* purified by silica gel column chromatography (PE/EA = 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, J = 0.7 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.09 – 7.03 (m, 1H), 7.03 – 6.97 (m, 3H), 6.88 (d, J = 7.2 Hz, 2H), 5.19 (d, J =1.1 Hz, 1H), 4.95 (s, 1H), 4.92 (s, 1H), 4.66 (dd, J = 12.6, 1.3 Hz, 1H), 4.46 (d, J = 12.6 Hz, 1H), 3.24 (d, J = 14.7 Hz, 1H), 2.45 (dd, J = 13.8, 1.3 Hz, 1H), 2.37 (s, 3H), 1.54 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.7, 148.5, 138.2, 136.5, 136.3, 133.2, 128.5, 128.3, 128.2, 127.8, 127.3, 126.5, 126.5, 113.9, 113.4, 83.9, 83.8, 73.4, 54.72, 39.3, 28.0, 21.2.

HRMS-ESI (positive): $M = C_{25}H_{27}NNaO_4$, calculated (M+Na) m/z: 428.1864, found: 428.1866.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 5.34$ min (major), $t_R = 6.32$ min (minor).

IR (cm⁻¹): 2979, 1731, 1277, 1153, 908, 732.

 $[\alpha]^{25}_{D} = -59.12 (c = 0.43, CHCl_3).$

tert-butyl(2'S,3S)-4-chloro-5'-methylene-2-oxo-2'-phenyl-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (3w)

3w (25.6 mg, 0.062 mmol) was obtained in 62% yield as a white solid. >20:1 *dr*, 11% *ee,* purified by silica gel column chromatography (PE/EA = 20/1).
Mp 142.8 – 143.7 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (dd, J = 6.7, 2.4 Hz, 1H), 7.15 – 7.06 (m, 3H), 7.03 (d, J = 4.4 Hz, 4H), 5.43 (s, 1H), 5.18 (s, 1H), 5.00 (s, 1H), 4.69 (dd, J = 12.8, 1.3 Hz, 1H), 4.41 (d, J = 12.7 Hz, 1H), 3.80 (dd, J = 14.8, 1.1 Hz, 1H), 2.56 (dd, J = 14.7, 1.2 Hz, 1H), 1.52 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.6, 148.6, 141.3, 138.0, 136.2, 129.8, 129.8, 128.1, 127.4, 126.4, 125.5, 124.9, 113.2, 112.3, 84.2, 79.4, 72.6, 54.7, 34.6, 23.0.

HRMS-ESI (positive): $M = C_{24}H_{24}CINNaO_4$, calculated (M+Na) m/z: 448.1298, found: 448.1297.

HPLC (IC, *n*-hex/2-propanol = 80/20, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 15.51 min (minor), t_R = 35.44 min (major).

IR (cm⁻¹): 2983, 1733, 1304, 1129, 1071, 734.

 $[\alpha]^{25}_{D} = -1.67 (c = 0.06, CHCl_3).$

benzyl(2'S,3S)-5'-methylene-2-oxo-2'-phenyl-5',6'-dihydro-2'H,4'H-

spiro[indoline-3,3'-pyran]-1-carboxylate (3x)

3x (26.7 mg, 0.063 mmol) was obtained in 63% yield as a yellow solid. >20:1

dr, 86% *ee,* purified by silica gel column chromatography (PE/EA = 10/1). **Mp** 113.5 - 114.2°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (dd, J = 7.4, 1.1 Hz, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.46 – 7.35 (m, 5H), 7.18 (dtd, J = 22.9, 7.6, 1.3 Hz, 2H), 7.05 – 6.99 (m, 1H), 6.89 (dt, J = 8.5, 4.7 Hz, 4H), 5.35 (q, J = 12.5 Hz, 2H), 5.20 (s, 1H), 4.95 (d, J = 3.8 Hz, 2H), 4.66 (dd, J = 12.6, 1.3 Hz, 1H), 4.47 (d, J = 12.6 Hz, 1H), 3.26 (dd, J = 13.8, 0.9 Hz, 1H), 2.48 (dd, J = 13.8, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 175.3, 150.1, 138.4, 137.9, 136.2, 135.0, 128.6, 128.4, 128.3, 127.9, 127.9, 127.4, 126.4, 126.0, 124.0, 114.3, 113.6, 83.7, 73.4, 68.3, 54.9, 39.5.

HRMS-ESI (positive): $M = C_{24}H_{24}CINO_4$, calculated (M+H) m/z: 426.1700, found: 426.1702.

HPLC (IC, *n*-hex/2-propanol = 80/20, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 7.03 min (major), t_R = 11.75 min (minor).

IR (cm⁻¹): 3030, 1782, 1232, 1152, 767, 693.

 $[\alpha]^{25}_{D} = -67.11 \text{ (c} = 0.43, \text{ CHCl}_3).$

(2'S,3S)-1-acetyl-5'-methylene-2'-phenyl-5',6'-dihydro-2'H,4'H-

spiro[indoline-3,3'-pyran]-2-one (3u)

3y (22.0 mg, 0.066 mmol) was obtained in 66% yield as a white solid. >20:1 dr, 87% *ee*, purified by silica gel column chromatography (PE/EA = 20/1). **Mp** 65.1 - 66.2°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.0, 0.7 Hz, 1H), 7.70 (dd, J = 7.4, 1.2 Hz, 1H), 7.26 – 7.15 (m, 2H), 7.10 – 7.04 (m, 1H), 6.99 (dd, J = 10.2, 4.6 Hz, 2H), 6.85 (d, J = 7.2 Hz, 2H), 5.21 (d, J = 1.2 Hz, 1H), 4.96 (s, 1H), 4.93 (s, 1H), 4.67 (dd, J = 12.7, 1.4 Hz, 1H), 4.48 (d, J = 12.6 Hz, 1H), 3.23 (dd, J = 13.7, 1.1 Hz, 1H), 2.53 (d, J = 9.8 Hz, 3H), 2.48 (dd, J = 13.8, 1.3 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 177.8, 170.2, 139.2, 137.7, 136.1, 128.3, 128.2, 127.4, 126.4, 125.8, 124.4, 115.6, 113.8, 83.9, 73.5, 54.8, 39.5, 26.5. **HRMS-ESI** (positive): M = C₂₁H₂₀NO₃, calculated (M+H) m/z: 334.1438, found: 334.1444.

HPLC (IC, *n*-hex/2-propanol = 80/20, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 5.54$ min (major), $t_R = 5.95$ min (minor).

IR (cm⁻¹): 3075, 1745, 1270, 1195, 1097, 722.

 $[\alpha]^{25}_{D} = -32.42 \text{ (c} = 0.33, \text{CHCl}_3).$

5. Scaled-up Synthesis of the Product 3a

To an oven-dried Schlenk tube was added $Pd(OAc)_2$ (0.2 mmol), Chiral ligand L9 (0.4 mmol) followed by the addition of THF (20 mL). The reaction mixture was allowed to stir for 30 mins at room temperature (25 °C), to the reaction mixture was then added methyleneindolinones 2a (40 mmol), 2-Methylidenetrimethylene 1a (60 mmol). The reaction mixture was allowed to stir at 35 °C for 24 h and then directly purified by silica gel chromatography (PE/EA = 20/1 to 10/1) to provide the desired product 3a in 89% yield (1.39g, 34.8 mmol) with 87% ee and > 20:1 *dr*.

6. Transformations of the Product 3a^[7, 8]

A sealed tube was charged with chiral **3a** (0.2 mmol, 78.4 mg), trifluoroacetic acid (TFA, 1 mL) and dichloromethane (3 mL). The reaction mixture was stirred at ambient temperature until the reaction was judged to be completed by TLC analysis. 50 mL H₂O was added, and the mixture was extracted by DCM (40 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by chromatography on silica gel (PE/EA = 4/1) to afford the desired product **4a**.

(2'S,3S)-5'-methylene-2'-phenyl-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'pyran]-2-one (4a)

4a (55.7 mg, 0.192 mmol) was obtained in 96% yield as a white solid. >20:1 *dr*, 86% *ee*, purified by silica gel column chromatography (PE/EA = 4/1).
Mp 146.5 - 147.8°C.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 7.09 – 7.01 (m, 2H), 6.97 (td, J = 6.1, 3.9 Hz, 4H), 6.60 (d, J = 7.7 Hz, 1H), 5.18 (s, 1H), 4.95 (s, 1H), 4.92 (s, 1H), 4.64 (d, J = 12.5 Hz, 1H), 4.45 (d, J = 12.5 Hz, 1H), 3.18 (d, J = 13.6 Hz, 1H), 2.40 (d, J = 13.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 139.9, 138.4, 136.7, 129.8, 127.9, 127.7, 127.3, 126.8, 126.5, 121.8, 113.3, 109.2, 83.0, 82.9, 73.3, 55.1, 39.3. HRMS-ESI (positive): $M = C_{19}H_{18}NO_2$, calculated (M+H) m/z: 292.1332, found: 292.1327.

HPLC (AD-H, *n*-hex/2-propanol = 95/5, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 14.49 min (major), t_R = 15.49 min (minor).

IR (cm⁻¹): 3181, 1704, 1469, 1094, 753, 681.

 $[\alpha]^{25}_{D} = -3.33(c = 1.12, CHCl_3).$

A solution of NalO₄ (85 mg, 0.4 mmol) in water (0.6 mL) was added to a solution of RuCl₃·H₂O (3.1 mg, 15 mol%) in MeCN (0.8 mL). This mixture was stirred 2 minutes and then a solution of the **3a** (0.1 mmol) in EA (0.8 mL) was added. The mixture was stirred for 10 minutes until TLC indicates complete consumption of the starting material. MgSO₄ was added and the resulting heterogeneous mixture was washed with EA, and finally evaporated under reduced pressure. Purified by flash chromatography on silica gel with PE/EA (4/1) as the solvent give a white solid **5a**.

tert-butyl(2'S,3S)-2,5'-dioxo-2'-phenyl-5',6'-dihydro-2'*H*,4'*H*-spiro[indoline-3,3'-pyran]-1-carboxylate (5a)

5a (18,8 mg, 0.096 mmol) was obtained in 48% yield as a colourless oil, >20:1 *dr*, 85% *ee*, purified by silica gel column chromatography (PE/EA = 5/1). **1H NMR** (400 MHz, CDCl₃) δ 7.46 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 7.3 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.20 – 7.09 (m, 2H), 7.04 (t, J = 7.6 Hz, 2H), 6.89 (d, J = 7.5 Hz, 2H), 5.20 (s, 1H), 4.57 (d, J = 16.3 Hz, 1H), 4.46 (d, J = 16.2 Hz, 1H), 3.42 (d, J = 16.7 Hz, 1H), 2.66 (d, J = 16.6 Hz, 1H), 1.53 (s, 9H). **1**³**C NMR** (100 MHz, CDCl₃) δ 203.9, 174.0, 148.1, 139.0, 134.5, 129.1, 128.4, 127.5, 127.0, 126.4, 124.8, 124.4, 114.6, 84.5, 83.1, 75.5, 56.3, 44.6, 27.9. **HRMS-ESI** (positive): M = C₂₃H₂₃NNaO₅, calculated (M+Na) m/z: 416.1459, found: 416.1468.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 13.32 min (major), t_R = 23.26 min (minor).

IR (cm⁻¹): 2979, 1733, 1252, 1152, 751, 715.

 $[\alpha]^{25}_{D} = -55.13 (c = 0.23, CHCl_3).$

To a solution of **3a** (0.10 mmol, 1.0 equiv.) in dichloromethane (2 mL) was added the dichloromethane solution of *m*-CPBA (0.30 mmol, 0.30 M, 1.0 mL) dropwise at 0°C under nitrogen. The reaction mixture was sealed under nitrogen and allowed to warm to room temperature and stir for 24 hours. The reaction was then quenched with saturated NaHCO₃ solution and extracted with dichloromethane. The combined organic phase was collected and dried with Na₂SO₄. After filtration and evaporation, the residue was purified by silica gel chromatography (PE/EA = 5/1) to afford a white solid.

tert-butyl(2'S,3S)-2-oxo-2'-phenyl-2'*H*,4'*H*,6'H-dispiro[indoline-3,3'-pyran-5',2"-oxirane]-1-carboxylate (6a)

6a (18.5 mg, 0.138 mmol) was obtained in 69% yield as a white solid. 2:1 *dr*, 86% *ee*, purified by silica gel column chromatography (PE/EA = 5/1).

Mp 123.7 - 124.8°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (dd, J = 7.3, 1.0 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.25 – 7.14 (m, 2H), 7.10 – 7.04 (m, 1H), 7.01 (t, J = 7.4 Hz, 2H), 6.93 (d, J = 7.3 Hz, 2H), 4.93 (s, 1H), 4.23 (dd, J = 11.7, 1.8 Hz, 1H), 3.82 (dd,

J = 11.7, 1.8 Hz, 1H), 3.10 (d, *J* = 4.9 Hz, 1H), 3.06 (d, *J* = 13.3 Hz, 1H), 2.80 (dd, *J* = 4.9, 1.8 Hz, 1H), 1.61 – 1.57 (m, 1H), 1.56 (d, *J* = 3.9 Hz, 9H).

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 – 8.07 (m, 1H), 7.43 – 7.37 (m, 1H), 7.24 – 7.15 (m, 2H), 7.07 (t, *J* = 7.2 Hz, 1H), 7.01 (t, *J* = 7.4 Hz, 2H), 6.93 (d, *J* = 7.3 Hz, 2H), 4.87 (s, 1H), 4.42 (d, *J* = 12.8 Hz, 1H), 3.85 (dd, *J* = 12.8, 2.3 Hz, 1H), 3.18 (d, *J* = 14.5 Hz, 1H), 2.81 (d, *J* = 4.1 Hz, 1H), 2.74 (d, *J* = 4.1 Hz, 1H), 1.55 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 148.4, 139.0, 135.5, 128.5, 128.0, 127.7, 127.4, 126.4, 125.4, 123.9, 114.6, 84.4, 84.0, 72.7, 56.8, 55.8, 52.5, 37.7, 27.9.

HRMS-ESI (positive): $M = C_{24}H_{25}NNaO_5$, calculated (M+Na) m/z: 430.1625, found: 430.1619.

HPLC (IC, *n*-hex/2-propanol = 90/10, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) t_R = 9.39 min (major), t_R = 13.97 min (minor).

IR (cm⁻¹): 2924, 1732, 1299, 1153, 1118, 714.

 $[\alpha]^{25}_{D} = -60.56 (c = 0.23, CHCl_3).$

In a reaction tube with a magnetic stirring bar, the solution of **3a** (0.1 mmol, 1.0 equiv.) and NiCl₂(0.1 mmol, 1.0 equiv.) in MeOH (4.0 mL) was obtained, and then, NaBH₄(1.0 mmol, 10 equiv.) was slowly added at 0°C. After stirring for 2 h at 0°C, the reaction was quenched by adding NH₄Cl (*aq*). The mixture was extracted with DCM (5 mL × 3), and the combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified using flash column chromatography on silica gel (PE/EA = 5/1) to afford product **7a**.

tert-butyl(2'S,3S,5'*R*)-5'-methyl-2-oxo-2'-phenyl-5',6'-dihydro-2'H,4'Hspiro[indoline-3,3'-pyran]-1-carboxylate (7a)

7a (23.9 mg, 0.123 mmol) was obtained in 61% yield as a colourless oil, >20:1 *dr*, 86% *ee,* purified by silica gel column chromatography (PE/EA = 5/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 1H), 7.48 – 7.42 (m, 1H), 7.11 – 7.03 (m, 2H), 7.01 – 6.96 (m, 5H), 5.09 (s, 1H), 4.25 (dd, *J* = 10.5, 5.9 Hz, 1H), 3.88 (dd, *J* = 10.6, 7.4 Hz, 1H), 2.62 (dh, *J* = 13.9, 7.0 Hz, 1H), 2.44 (dd, *J* = 13.9, 5.1 Hz, 1H), 1.77 (dd, *J* = 14.0, 8.9 Hz, 1H), 1.61 (s, 9H), 1.14 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.1, 148.8, 138.8, 137.4, 130.2, 127.7, 127.3, 127.3, 125.8, 125.5, 123.8, 114.2, 84.1, 80.7, 73.7, 54.3, 38.5, 28.1, 24.7, 19.1.

HRMS-ESI (positive): $M = C_{24}H_{27}NNaO_4$, calculated (M+Na) m/z: 416.1832, found: 416.1829.

HPLC (IC, *n*-hex/2-propanol = 95/5, flow rate = 1.0 mL/min, I = 254 nm, T = 25 °C) $t_R = 6.02 \text{ min (major)}, t_R = 6.69 \text{ min (minor)}.$

IR (cm⁻¹): 2928, 1733, 1287, 1152, 1065, 752.

 $[\alpha]^{25}_{D} = -56.34 (c = 0.42, CHCl_3).$

7. Isomerization of methyleneindodonone

To an oven-dried Schlenk tube was added $Pd(OAc)_2$ (0.005 mmol), Chiral ligand L9 (0.01 mmol) followed by the addition of THF (0.5 mL). The reaction mixture was allowed to stir for 30 mins at room temperature (25 °C), to the reaction mixture was then added methyleneindolinone (pure *E* or *Z/E* = 5/4, 0.1 mmol), MeOH (0.15 mmol). The reaction mixture was allowed to stir at 35 °C for 24 h and then directly purified by silica gel chromatography (PE/EA = 20/1 to 10/1) to provide the product methyleneindolinone (*Z/E*=1/4.6).

8. Crystal data for enantiopure products 3a

Preparations: Compound **3a** (20.0 mg) was dissolved in n-Hexane / isopropanol =1 (10.0 mL) in a vial. The vial was properly sealed with parafilm and kept at 25 °C to allow the slow evaporation of the solvent until a single crystal was obtained. The crystals were subjected for single crystal XRD to determine the absolute configuration of **3a**.

Methods: The data set was collected by a Bruker D8 VENTURE with MetalJet source at 173 K equipped with micro-focus Ga radiation source (K α = 1.34138 Å). Applied with face-indexed numerical absorption correction, the structure solution and refinement were processed by SHELXTL program package.

Date of 3a: CCDC 2302972 contains the supplementary crystallographic data, and can be obtained via <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u>.

Figure S3. Single crystal structure 3a (ellipsoid contour probability 50%).

Table 1. Crystal data and structure refinement for **3a**.

Identification code	3a		
Empirical formula	$C_{24}H_{25}NO_4$		
Formula weight	391.45		
Temperature	173(2) K		
Wavelength	1.34139 Å		
Crystal system	Monoclinic		
Space group	P21		
Unit cell dimensions	$a = 8.0358(3)$ Å $a = 90^{\circ}$.		
	$b = 10.9125(4)$ Å $b = 90.7150(10)^{\circ}$.		
	c = 12.2549(5) Åg = 90°.		
Volume	1074.56(7) Å ³		
Ζ	2		
Density (calculated)	1.210 Mg/m ³		
Absorption coefficient	0.422 mm ⁻¹		
F(000)	416		
Crystal size	0.210 x 0.180 x 0.140 mm ³		
Theta range for data collection	4.788 to 54.927°.		
Index ranges	-9<=h<=9, -13<=k<=13, -14<=l<=14		
Reflections collected	15052		
Independent reflections	4049 [R(int) = 0.0239]		
Completeness to theta = 53.594°	99.5 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.864 and 0.753		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4049 / 44 / 297		
Goodness-of-fit on F ²	1.059		
Final R indices [I>2sigma(I)]	R1 = 0.0295, wR2 = 0.0780		
R indices (all data)	R1 = 0.0305, wR2 = 0.0793		
Absolute structure parameter	0.09(5)		
Extinction coefficient	0.0100(14)		
Largest diff. peak and hole	0.321 and -0.186 e.Å ⁻³		

Table 2. Atomic coordinates $(x 10^4)$ and equivalent isotropic

displacement parameters ($Å^2 x 10^3$) for **3a**. U(eq) is defined as one third of

	Х	У	Z	U(eq)
N(1)	7467(2)	4947(2)	2412(1)	30(1)
O(1)	7654(2)	3126(1)	3413(1)	43(1)
O(2)	5305(2)	5546(1)	5769(1)	37(1)
O(3)	7054(2)	3393(2)	1264(1)	55(1)

the trace of the orthogonalized U^{ij} tensor.

O(4)	7997(3)	5164(2)	603(1)	75(1)
C(1)	7502(2)	4226(2)	3367(2)	32(1)
C(2)	5541(2)	4811(2)	4829(2)	31(1)
C(3)	7295(2)	5078(2)	4337(2)	30(1)
C(4)	8628(2)	4803(2)	5224(2)	36(1)
C(5)	8205(3)	5403(2)	6292(2)	41(1)
C(6)	6441(3)	5196(2)	6626(2)	45(1)
C(7)	7408(2)	6327(2)	3831(2)	29(1)
C(8)	7488(2)	6215(2)	2701(2)	30(1)
C(9)	7605(2)	7225(2)	2026(2)	36(1)
C(10)	7648(2)	8373(2)	2516(2)	40(1)
C(11)	7586(2)	8506(2)	3641(2)	37(1)
C(12)	7462(2)	7477(2)	4306(2)	33(1)
C(13)	4126(2)	5046(2)	4031(2)	30(1)
C(14)	3221(2)	6132(2)	4051(2)	36(1)
C(15)	1963(3)	6340(2)	3281(2)	44(1)
C(16)	1612(2)	5470(2)	2491(2)	43(1)
C(17)	2485(3)	4381(2)	2479(2)	44(1)
C(18)	3734(3)	4164(2)	3250(2)	37(1)
C(19)	9266(3)	6059(3)	6880(2)	56(1)
C(20)	7535(3)	4523(2)	1334(2)	37(1)
C(21)	7263(3)	2684(2)	243(2)	51(1)
C(22)	6381(17)	3221(9)	-729(11)	58(2)
C(23)	9030(20)	2488(19)	143(13)	104(6)
C(24)	6220(30)	1507(10)	507(9)	85(3)

9. Reference

- M. Rehan, J. Flegel, F. Heitkamp, J. L. Pergomet, F. Otte, C. Strohmann and K. Kumar, Asymmetric Synthesis of 3,3'-Piperidinoyl Spirooxindoles and Discovery of Stereospecific Cycloadducts as Novel Hedgehog Pathway Modulators, *Synthesis.*, 2020, 52, 3140-3152.
- G. Wang, X. Liu, T. Huang, Y. Kuang, L.Lin and X. Feng, Asymmetric Catalytic 1,3-Dipolar Cycloaddition Reaction of Nitrile Imines for the Synthesis of Chiral Spiro-Pyrazoline-Oxindoles, *Org. Lett.*, 2013, **15**, 76-79.
- P. Franceschi, J. Mateos, A. Vega-Peñaloza, L. Dell'Amico, Microfluidic Visible-Light Paternò-Büchi Reaction of Oxindole Enol Ethers, *Eur. J. Org. Chem.*, 2020, 43, 6718-6722.
- Q. Tian, X. Chen, W. Liu, Z. Wang, S. Shi and C. Kuang, Regioselective halogenation of 2-substituted-1,2,3-triazoles via sp2 C–H activation, *Org. Biomol. Chem.*, 2013, **11** 7830– 7833.
- 5. S. Zhang, Y. Liu, Y. Zheng, H. Xie, S. Chen, J. Song and B. Shu, Rhodium(III)-Catalyzed Regioselective C, *Adv. Synth.Catal.*, 2022, **364**, 64-70.
- A. Archambeau, J. Garrec, A. Scuiller, X. Liu and M. Cordier, A Palladium-Catalyzed Oxa-(4+4)-Cycloaddition Strategy Towards Oxazocine Scaffolds, *Synlett*, 2021, 32, 981-986.
- J. Wang, L. Zhao, Q. Rong, C. Lv, Y. Lu, X. Pan, L. Zhao and L. Hu, Asymmetric Synthesis of 3,3'-Tetrahydrofuryl Spirooxindoles via Palladium-Catalyzed [3+2] Cycloadditions of Methyleneindolinones with Vinylethylene Carbonates, *Org. Lett.*, 2020, 22, 5833-5838.
- B. Mao, H. Liu, Z. Yan, Y. Xu, J. Xu, W. Wang, Y. Wu and H. Guo, Palladium-Catalyzed Asymmetric [4+2] Cycloaddition of 2-Methylidenetrimethylene Carbonate with Alkenes: Access to Chiral Tetrahydropyran-Fused Spirocyclic Scaffolds, *Angew. Chem. Int. Ed.*, 2020, **59**, 11316-11320.
- P. Dou, S. Yuan, Y. Chen, J. Zhao, Z. Wang, Y. You, Y. Zhang, M. Zhou and W. Yuan, Dearomatization of 3-Nitroindoles Enabled Using Palladium-Catalyzed Decarboxylative [4 + 2] Cycloaddition of 2-Alkylidenetrimethylene Carbonates, *J. Org. Chem.*, 2022, 87, 6025-6037.

10. NMR spectra of representative compounds

¹H NMR of **2a** (400 MHz, CDCl₃)

^{13}C {¹H} NMR of **2b** (100 MHz, CDCl₃)

¹H NMR of **2f** (400 MHz, CDCl₃)

¹H NMR of **20** (400 MHz, CDCl₃)

¹H NMR of **2r** (400 MHz, CDCl₃)

^{13}C {¹H} NMR of **2t** (100 MHz, CDCl₃)

¹⁹F NMR of **2u** (376 MHz, CDCl₃)

¹H NMR of **2x** (400 MHz, CDCl₃)

¹H NMR of **3b** (400 MHz, CDCl₃)

¹³C {¹H} NMR of **3e** (100 MHz, CDCl₃)

^{13}C {1H} NMR of **3f** (100 MHz, CDCl₃)

¹H NMR of **3g** (400 MHz, CDCl₃)

¹³C {¹H} NMR of **3h** (100 MHz, CDCl₃)

¹³C {¹H} NMR of **3i** (100 MHz, CDCl₃)

¹³C {¹H} NMR of **3j** (100 MHz, CDCl₃)

¹³C {¹H} NMR of **3k** (100 MHz, CDCl₃)

¹³C {¹H} NMR of **3I** (100 MHz, CDCl₃)

^{13}C {1H} NMR of 3n (100 MHz, CDCl_3)

¹H NMR of **3o** (400 MHz, CDCl₃)

^{13}C {1H} NMR of 3o (100 MHz, CDCl_3)

¹H NMR of **3p** (400 MHz, CDCl₃)

¹³C {¹H} NMR of **3p** (100 MHz, CDCl₃)

¹H NMR of **3w** (400 MHz, CDCl₃)

95

¹H NMR of **3y** (400 MHz, CDCl₃)

¹³C {¹H} NMR of **4a** (100 MHz, CDCl₃)

¹³C {¹H} NMR of **5a** (100 MHz, CDCl₃)

11. HPLC chromatograms of representative compounds

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	4.910	MF	0.1350	2746.08789	338.96597	94.8419
2	5.887	MF	0.1350	149.35091	18.44167	5.1581

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	5.271	MF	0.1420	1676.79724	196.83427	50.1362
2	6.417	MM	0.1721	1667.68677	161.52570	49.8638
1 2	5.271 6.417	MF MM	0.1420 0.1721	1676.79724 1667.68677	196.83427 161.52570	50.1362 49.8638

chrial: Method A

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	5.252	MM	0.1587	4095.69214	430.03888	90.1235
2	6.382	MM	0.1636	448.84137	45.71336	9.8765

racemic:

chrial:

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|
 -----|------|
 -----|
 1

 1
 4.467 FM
 0.1179
 2977.93018
 420.90634
 90.0624

 2
 5.340 MF
 0.1306
 328.58804
 41.92053
 9.9376

3d

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	4.602	MM	0.1444	4615.93359	532.86615	89.7104
2	5.689	MM	0.1410	529.43555	62.58767	10.2896

3e

chrial: Method A

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	4.798	MF	0.1264	5391.36816	710.97644	93.3965
2	6.076	MF	0.1542	381.18967	41.19269	6.6035

3i

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.390	MF	0.1759	4772.33252	452.06946	49.6762
2	8.239	FM	0.2263	4834.54492	356.12601	50.3238

chiral: Method A

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.252	FM	0.1737	984.78021	94.47954	89.7507
2	7.971	MM	0.2031	112.45901	9.23032	10.2493

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	4.312	MF	0.1079	2783.65063	430.07074	91.2482
2	5.128	MF	0.1566	266.98697	28.42067	8.7518

Peak RetTime	e Type	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	00
1 4.674	MF	0.2582	1676.73083	108.24329	85.1371
2 5.111	MF	0.2325	292.71674	20.98120	14.8629

3n

racemic:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	15.774	FM	0.4903	1304.78638	44.35469	8.9091
2	16.843	MF	0.6127	1.33408e4	362.91104	91.0909

chrial: Method A

Peak RetTime Type Width Area Height Area [min] [mAU*s] # [min] [mAU] 00 ----|-----|-----|-----| 0.1923 2938.55200 254.70947 92.9167 1 6.805 FM 2 7.648 MF 0.2124 224.01491 17.57987 7.0833 Method B mAU] .722 700 -600 -500 -Boc 400 -30 300 -200 -.525 100 -0-8 5.5 6 6.5 7.5 8.5 Peak RetTime Type Width Area Height Area

min

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	4.333	MF	0.1133	7734.58838	1137.72021	50.0703
2	4.840	MF	0.1290	7712.86328	996.29578	49.9297

chrial: Method A

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	<i>c</i> y
1	4.286	MM	0.1534	4235.17236	460.00714	89.8424
2	4.821	MM	0.1482	478.83002	53.84668	10.1576

3t

racemic:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	5.335	BV	0.1310	6278.23535	740.13330	89.9620
2	6.315	MF	0.1711	700.52844	68.24059	10.0380

3w

chrial:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		·				
1	15.512	BB	0.5561	2070.10693	57.62291	44.7898
2	35.443	BB	1.0853	2551.72290	35.05412	55.2102

3х

racemic:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.034	MF	0.1794	2330.57617	216.48880	92.7029
2	11.752	MF	0.3593	183.45044	8.50857	7.2971

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	olo
5.538	FM	0.1364	6787.28564	829.41815	93.2710
5.947	MF	0.1420	489.66843	57.45892	6.7290
	RetTime [min] 5.538 5.947	RetTime Type [min] 5.538 FM 5.947 MF	RetTime Type Width [min] [min] 	RetTime Type Width Area [min] [min] [mAU*s] 	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 5.538 FM 0.1364 6787.28564 829.41815 5.947 MF 0.1420 489.66843 57.45892

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.490	MM	0.4835	399.73343	13.77929	7.1178
2	15.491	MM	0.6015	5216.21094	144.52611	92.8822

5a

racemic:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ofo
1	13.316	MM	0.3885	3946.72461	169.31685	92.3644
2	23.261	MM	0.6358	326.26807	8.55324	7.6356

6a

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.388	BB	0.2610	3492.31396	206.86449	92.8108
2	13.970	MM	0.3577	270.51639	12.60367	7.1892

7a

0 -

5

5.5

racemic:

6.687

7

7.5

min

6.5

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	6.022	MM	0.1882	7029.52002	622.37854	92.9785
2	6.687	MM	0.2247	530.84863	39.36784	7.0215