Supporting Information

"One pot" synthesis of quinazolinone-[2,3]-fused polycyclic scaffolds in a three-step reaction sequence

Yuanmu Zhang, Lingxuan Zhu, Yi Lu, Xinsheng Lei* and Yingxia Li*

Institutes of Biomedical Sciences & School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.

Email: leixs@fudan.edu.cn

Table of Contents:

1.	General Chemistry Information	S-3
2.	Optimization of Reaction Conditions for the Synthesis of 3a-Fmoc	S-4
3.	Synthesis	S-5
4.	Reference	.S-42
5.	¹ H and ¹³ C NMR Spectra of Compounds	.S-43
6.	HPLC Reports	S-111

General Chemistry Information

The chemicals and reagents were purchased from Acros, Alfa Aesar, and National Chemical Reagent Group Co. Ltd., P. R. China, and used without further purification. Anhydrous solvents (THF, MeOH, DMF, DCM, and CH₃CN) used in the reactions were dried and freshly distilled before use. Petroleum ether (PE) used had a boiling range of 60-90 °C. All the reactions were carried out under Ar atmosphere, otherwise stated else. Oxygen and/or moisture sensitive solids and liquids were transferred appropriately. Concentration of solutions in vacuo was accomplished using a rotary evaporator fitted with a water aspirator. Residual solvents were removed under high vacuum (0.1 - 0.2 mm Hg). The progress of the reactions was monitored by TLC (silica-coated glass plates) and visualized under UV light, and by using iodine, ceric ammonium molybdate stain or phosphomolybdic acid. ¹H NMR and ¹³C NMR spectra were recorded either on a 400 MHz Varian Instrument at 25 °C or 600 MHz Bruke Instrument at 25 °C, using TMS as an internal standard, respectively. Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, and m for multiplet. Coupling constants (J) are reported in Hertz. ¹³C NMR spectra were completely hetero-decoupled and measured at 150 MHz. HRMS spectra were recorded on Finnigan-Mat-95 mass spectrometer, equipped with ESI source.

Optimization of Reaction Conditions for the Synthesis of 3a-Fmoc

Table S1. Coupling of <i>o</i> -iodo-benzenamine with L-Boc(Me)-alanine						
$F_{\text{moc}} \xrightarrow{NH_2} \xrightarrow{NH_2} \xrightarrow{NH_2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{F} \xrightarrow{moc} \xrightarrow{F} \xrightarrow{Moc} \xrightarrow{N} \xrightarrow{F} \xrightarrow{F} \xrightarrow{Moc} \xrightarrow{N} \xrightarrow{N} \xrightarrow{F} \xrightarrow{Moc} \xrightarrow{N} $						
Entry	Acid	Amine	Reaction Condition	Yield		
1	1.0 mmol.	2.0 eq.	HATU (2.0 eq.), TEA(2.0 eq.), THF (10 mL), r.t., 15 h	trace		
2	1.0 mmol.	1.1 eq.	HOBT (1.1 eq.), DCC (1.1 eq.), THF (10 mL), r.t., 10 h	trace		
3	1.0 mmol.	1.2 eq.	TCFH (1.1 eq.), NMI (2.1 eq.), MeCN (10 mL), r.t., 10 h	trace		
4	1.0 mmol.	1.1 eq.	HOBT (1.1 eq.), DCC (1.1 eq.), THF (10 mL), 50 °C, 23 h	trace		
5	1.0 mmol.	1.2 eq.	TCFH (1.1 eq.), NMI (2.1 eq.), MeCN (10 mL), 50 °C, 23 h	trace		
6	1.2 mmol.	1.0 eq.	Isopropyl Chloroacetate (1.2 eq.), TEA (2.4 eq.), THF (10 mL), r.t., 40 h	30%		
7	1.0 mmol	1.0 eq.	Triphosgen (0.33 eq.), 2,4,6-collidine (2.0 eq.), THF (10 mL), r.t., 9 h	97%		

S-4

Synthesis

Synthesis of 3a-Cy

tert-Butyl (S)-methyl[1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)ethyl]carbamate (3a-Cy)

To a flame dried round bottom flask containing **3a-Boc** (0.243 g, 0.60 mmol, 1.0 eq.) were added anhydrous MeCN (10 mL), methyl L-alaninate (0.084 g, 0.60 mmol, 1.0 eq.), Pd(PPh₃)₄ (0.069 g, 0.06 mmol, 0.10 eq.) and TEA (0.21 mL, 1.50 mmol, 2.50 eq.). The reaction mixture was stirred at 50 °C under CO atmosphere (1 atm.) for 9 h, after which sat. NH₄Cl aq. (20 mL) was added to quench the reaction. The aqueous phase was extracted with EA (20 mL×3). The combined organic phase was washed with water (100 mL×1) and brine (100 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **3a-Cy** in white solid (0.143 g, 78%). **TLC**: R_f=0.21 (PE/EA=8/1). ¹H NMR (600 MHz, DMSO-d₆, 95 °C) δ 8.13 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.94-7.90 (m, 1H, Ar*H*), 7.64-7.59 (m, 2H, Ar*H*), 4.97 (m, 1H, NC*H*), 2.87 (s, 3H, NC*H*₃), 1.53 (d, *J* = 7.2 Hz, 3H, CHC*H*₃), 1.38 (s, 9H, C(C*H*₃)₃).¹³C NMR (600 MHz, DMSO-d₆, 25 °C) δ 161.5 (rotamer), 158.9, 154.9 (rotamer), 145.6, 137.0 (rotamer), 128.8, 128.0, 126.7, 116.8 (rotamer), 79.3, 54.8 (rotamer), 31.8 (rotamer), 27.8 (rotamer), 15.2 (rotamer). ESI-MS (m/z): 305.34 [M+H]⁺

Known Compound. Data consistent with the previous report.¹

Synthesis of 9e

(S)-2-{2-[(tert-Butoxycarbonyl)(methyl)amino]propanamido}benzoic acid (9e)

To a flame dried round bottom flask containing **3a-Cy** (0.100 g, 0.33 mmol, 1.0 eq.) were added THF/H₂O=1/1 (8 mL) and LiOH (0.010 g). The reaction mixture was allowed to stir at room temperature for 9 h, after which sat. NH₄Cl aq. (10 mL) was added to quench the reaction. The aqueous phase was extracted with EA (10 mL×3). The combined organic phase was washed with water (30 mL×1) and brine (30 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **9e** in white solid (0.052 g, 51%). **TLC**: R_f=0.27 (DCM/MeOH=20/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 11.53 (s, 1H, OH, rotamer), 8.74 (d, *J* = 8.8 Hz, 1H, ArH), 8.11 (m, 1H, ArH), 7.56 (m, 1H, ArH), 7.21 (brs, 1H, NH), 7.09 (m, 1H, ArH), 4.81 (m, 1H, NCHCH₃,

rotamer), 2.94 (s, 3H, NCH₃), 1.47 (ms, 9H, C(CH₃)₃, rotamer), 1.41 (m, 3H, NCHCH₃, rotamer). **ESI-MS** (m/z): 345.26 [M+Na]⁺

Synthesis of 9f

tert-Butyl

(S)-(1-{[2-(diethylcarbamoyl)phenyl]amino}-1-oxopropan-2-yl)(methyl)carbamate (9f)

To a flame dried round bottom flask containing **3a-Cy** (0.100 g, 0.33 mmol, 1.0 eq.) were added anhydrous MeCN (4 mL) and Et₂NH (2 mL). The reaction mixture was stirred at room temperature for 9 h, after which sat. NH₄Cl aq. (10 mL) was added to quench the reaction. The aqueous phase was extracted with EA (10 mL×3). The combined organic phase was washed with water (30 mL×1) and brine (30 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **9f** in white solid (0.110 g, 92%). **TLC**: R_f =0.64 (DCM/MeOH=20/1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.14 (s, 1H, CON*H*), 8.24 (d, *J* = 8.8 Hz, 1H, Ar*H*), 7.36 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.20 (d, *J* = 7.6 Hz, 1H, Ar*H*), 7.07 (t, *J* = 7.6 Hz, 1H, Ar*H*), 4.74 (m, 1H, NC*H*CH₃, rotamer), 3.38 (m, 4H, 2NC*H*₂CH₃), 2.75 (s, 3H, NC*H*₃), 1.47 (s, 9H, C(C*H*₃)₃), 1.39 (d, *J* = 7.2 Hz, 3H, NCHC*H*₃), 1.28-1.04 (m, 6H, 2NCH₂C*H*₃). **ESI-MS** (m/z): 400.29 [M+Na]⁺

Synthesis of 5a-Cy

tert-Butyl

((S)-1-{methyl[(S)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)ethyl]amino}-1-oxopropan-2-yl)ca rbamate (5a-Cy)

To a flame dried round bottom flask containing **5a-Boc** (0.285 g, 0.60 mmol, 1.0 eq.) were added anhydrous MeCN (10 mL), Pd(PPh₃)₄ (0.069 g, 0.06 mmol, 0.10 eq.) and TEA (0.21 mL, 1.50 mmol, 2.50 eq.). The reaction mixture was stirred at 50 °C under CO atmosphere (1 atm.) for 12 h, after which sat. NH₄Cl aq. (10 mL) was added to quench the reaction. The aqueous phase was extracted with EA (10 mL×3). The combined organic phase was washed with water (30 mL×1) and brine (30 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **5a-Cy** in white solid (0.083 g, 37%). **TLC:** R_f =0.25 (PE/EA=3/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (dd, *J* = 8.0, 1.6 Hz, 1H, Ar*H*), 7.81-7.77 (m, 1H, Ar*H*), 7.59-7.50 (m, 2H, Ar*H*), 5.68 (q, *J* = 7.2 Hz, 1H, MeNC*H*CH₃), 5.48 (d, *J* = 8.4 Hz, 1H, N*H*CO), 4.70 (m, 1H, NHC*H*CH₃),

3.07 (s, 3H, NCH₃, rotamer), 1.59 (d, J = 7.2 Hz, 3H, MeNCHCH₃, rotamer), 1.43 (s, 9H, C(CH₃)₃), 1.40 (d, J = 6.8 Hz, 3H, HNCHCH₃). **ESI-MS** (m/z): 398.20 [M+Na]⁺

Synthesis of 2l-Fmoc

(S)-2-({[(9H-Fluoren-9-yl)methoxy]carbonyl}amino)-3-{4-[(tert-butyldimethylsilyl)oxy]phe nyl}propanoic acid (2l-Fmoc)

To a flame dried round bottom flask containing Fmoc-L-tyrosine (1.614 g, 4.00 mmol, 1.0 eq.) was added anhydrous DCM (15 mL), imidazole (0.545 g, 8.00 mmol, 2.0 eq.) and TBSCl (0.904 g, 6.00 mmol, 1.5 eq.) under ice bath. The reaction mixture was then warmed to room temperature and allowed to react for another 9 h until completion of conversion as indicated by monitoring of thin layer chromatography, after which sat. NH₄Cl aq. (30 mL) was added to quench the reaction. The aqueous phase was extracted with DCM (40 mL×3). The ccombined organic phase was washed with water (150 mL×1) and brine (150 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **21-Fmoc** in yellow oil (1.822 g, 88%). $[a]_D^{20}=16.4$ (c=1.00, CHCl₃); **TLC:** R_f=0.37 (DCM/MeOH=15/1). ¹H NMR (400 MHz, Chloroform-d) δ 7.71 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.48 (m, 2H, Ar*H*), 7.34 (m, 2H, Ar*H*), 7.23 (m, 2H, Ar*H*), 6.99 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.71 (d, *J* = 8.4 Hz, 2H, Ar*H*), 5.37 (s, 1H, CON*H*), 4.58-4.13 (m, 4H, CHCH₂O, CHCH₂O, NHC*H*), 3.14-2.99 (m, 2H, CH₂Ar), 0.95 (s, 9H, C(CH₃)₃), 0.13 (s, 6H, Si(CH₃)₂). **ESI-MS** (m/z): 540.39 [M+Na]⁺

Known Compound. Data consistent with the previous report.²

Representative procedure for the synthesis of 3-Fmoc

(9H-Fluoren-9-yl)methyl

(S)-{1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}(methyl)carbamate (3a-Fmoc)

To a flame dried round bottom flask containing **2a-Fmoc** (2.928 g, 9.00 mmol, 1.0 eq.) was added anhydrous THF 50 mL. The mixture was cooled to 0 °C, and was added triphosgen (0.890 g, 3.00 mmol, 0.33 eq.) and 2,4,6-collidine (2.40 mL, 18.00 mmol, 2.0 eq.) under ice bath. The mixture was allowed to stir at 0 °C for another 10 min, after which amine **1** (1.971 g, 9.00 mmol, 1.0 eq.) was added to the reaction mixture. The mixture was warmed to room temperature and was allowed to react for another 9 h until completion of reaction as indicated

by monitoring of thin layer chromatography. Afterwards, 100 mL sat. NH₄Cl aq. was added to the mixture. The aqueous phase was extracted with EA (150 mL×3) and the combined organic phase was washed with brine (300 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **3a-Fmoc** in white powder (4.595 g, 97%). $[a]_D^{20} = -30.1$ (c=2.00, CHCl₃); **TLC**: $R_f=0.32$ (PE/EA=5/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.18 (d, J = 6.4 Hz, 1H, ArH), 8.11 (brs, 1H, CONH), 7.75 (m, 3H, ArH), 7.59 (m, 2H, ArH), 7.36 (m, 3H, ArH), 7.28 (m, 2H, ArH), 6.88-6.81 (m, 1H, ArH), 5.01 (m, 1H, CHCH₃), 4.58 (d, J = 6.4 Hz, 2H, OCH₂CH), 4.28 (t, J = 6.4 Hz, 1H, OCH₂CH), 2.88 (s, 3H, NCH₃), 1.42 (d, J = 7.2 Hz, 3H, CHCH₃). ¹³C NMR (150 MHz, Chloroform-d) δ 169.4, 143.8, 143.8, 141.5, 141.4, 138.9, 129.3, 127.9, 127.9, 127.2, 126.2, 124.9, 122.0, 120.1, 120.1, 90.4, 68.0, 55.6, 47.3, 30.1, 13.4. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₅H₂₄IN₂O₃⁺: 527.0826, found: 527.0806.

(9H-Fluoren-9-yl)methyl {2-[(2-iodophenyl)amino]-2-oxoethyl}carbamate (3b-Fmoc)

Similar to the synthesis of **3a-Fmoc**. The crude white powder (4.472g, 100%) obtained after concentration was subjected to the next step without further purification.

(9H-Fluoren-9-yl)methyl (S)-{1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}carbamate (3c-Fmoc)

white powder (4.472g, 100%). $[a]_D^{20} = -2.14$ (c=0.700, CHCl₃); **TLC** : R_f =0.46 (PE/EA=3/1).¹**H NMR** (600 MHz, DMSO- d_6) δ 9.28 (s, 1H, CON*H*Ph), 7.89 (d, J = 7.2 Hz, 2H, Ar*H*), 7.86 (d, J = 7.8 Hz, 1H, Ar*H*), 7.77-7.69 (m, 3H, Ar*H*, CON*H*CH), 7.56 (d, J = 9.6 Hz, 1H, Ar*H*), 7.44-7.35 (m, 3H, Ar*H*), 7.33 (m, 2H, Ar*H*), 6.96 (m, 1H, Ar*H*), 4.33 (d, J = 7.2 Hz, 2H, OC*H*₂CH), 4.25-4.23 (m, 2H, C*H*CH₃, OCH₂C*H*), 1.38 (d, J = 7.2 Hz, 3H, CHC*H*₃).¹³**C NMR** (150 MHz, DMSO- d_6) δ 171.5, 155.9, 143.9, 143.8, 140.8, 139.0, 138.9, 128.8, 127.7, 127.4, 127.1, 125.9, 125.3, 120.2, 95.0, 65.8, 50.7, 46.7, 17.9. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₂₄H₂₂IN₂O₃⁺: 513.0670, found: 513.0665.

(9H-Fluoren-9-yl)methyl

(S)-{1-[(2-iodophenyl)amino]-3-methyl-1-oxobutan-2-yl}carbamate (3h-Fmoc)

yellow solid (1.507 g, 93%). $[a]_D^{20} = -14.0$ (c=0.500, CHCl₃); **TLC**: $R_f=0.47$ (PE/EA=6/1). ¹**H NMR** (600 MHz, DMSO-d₆) δ 9.37 (s, 1H, CON*H*Ph), 7.89 (d, J = 7.2 Hz, 2H, Ar*H*), 7.87 (d, J = 7.8 Hz, 1H, Ar*H*), 7.80-7.75 (m, 2H,Ar*H*), 7.61 (d, J = 8.4 Hz, 1H, Ar*H*), 7.49 (d, J = 7.8Hz, 1H, Ar*H*), 7.44-7.34 (m, 3H, Ar*H*, CON*H*CH), 7.34-7.29 (m, 2H, Ar*H*), 6.99-6.95 (m, 1H, Ar*H*), 4.36-4.28 (m, 2H, OC*H*₂CH), 4.25 (t, J = 7.2 Hz, 1H, OCH₂C*H*), 4.15-4.09 (m, 1H, C*H*NHFmoc), 2.21 (m, 1H, C*H*(CH₃)₂), 1.00 (d, J = 6.6 Hz, 3H, CH(C*H*₃)₂), 0.96 (d, J = 6.6Hz, 3H, CH(C*H*₃)₂). ¹³**C** NMR (150 MHz, Chloroform-d) δ 169.7, 156.6, 143.8, 141.5, 139.0, 137.8, 129.4, 127.9, 127.3, 126.5, 125.1, 122.2, 120.2, 90.5, 67.3, 61.5, 47.3, 30.8, 19.6. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₆H₂₆IN₂O₃⁺: 541.0983, found: 541.0978. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₆H₂₅IN₂O₃Na⁺: 563.0802, found: 563.0797. (*9H-Fluoren-9-yl)methyl*

(R)-{1-[(2-iodophenyl)amino]-1-oxo-3-(tritylthio)propan-2-yl}carbamate (3j-Fmoc)

white foamy solid (2.112 g, 89%). $[a]_D^{20} = -2.55$ (c=1.80, CHCl₃); **TLC** : R_f =0.23 (PE/EA=10/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (d, J = 8.4 Hz, 1H, Ar*H*), 8.11 (s, 1H, CON*H*Ar), 7.80-7.70 (m, 3H, Ar*H*), 7.59-7.16 (m, 18H, Ar*H*), 6.83 (m, 1H, Ar*H*), 4.93 (d, J = 7.2 Hz, 1H, C*H*NHFmoc), 4.48 (d, J = 6.4 Hz, 2H, OC*H*₂CH), 4.22 (t, J = 6.4 Hz, 1H, OCH₂C*H*), 4.10 (m, 1H, N*H*Fmoc), 2.80 (m, 2H, SC*H*₂CH). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 168.4, 156.2, 144.3, 143.7, 143.7, 141.5, 141.5, 138.9, 137.6, 129.6, 129.3, 128.3, 127.9, 127.2, 127.1, 126.4, 125.1, 125.0, 122.0, 120.2, 90.4, 67.7, 67.2, 55.1, 47.2, 33.6. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₄₃H₃₅IN₂O₃SNa⁺: 809.1305, found: 809.1328. (*9H*-*Fluoren-9-yl*)*methyl*

(S)-(3-{4-[(tert-butyldimethylsilyl)oxy]phenyl}-1-[(2-iodophenyl)amino]-1-oxopropan-2-yl)c arbamate (31-Fmoc)

white solid (1.377 g, 90%). $[a]_D^{20}$ =-13.0 (c=1.40, CHCl₃); **TLC**: R_f=0.24 (PE/EA=10/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.20 (d, J = 10.0 Hz, 1H, Ar*H*), 7.97 (s, 1H, CON*H*Ar), 7.79-7.70 (m, 3H, Ar*H*), 7.54 (d, J = 7.8 Hz, 2H, Ar*H*), 7.40-7.28 (m, 5H, Ar*H*), 7.07 (d, J = 6.8 Hz, 2H, Ar*H*), 6.88-6.82 (m, 1H, Ar*H*), 6.77 (d, J = 8.4 Hz, 2H, Ar*H*), 5.30 (brs, 1H, N*H*Fmoc), 4.56 (m, 1H, C*H*NHFmoc), 4.45 (m, 2H, CHC*H*₂O), 4.21 (t, J = 6.8 Hz, 1H, C*H*CH₂O), 3.14 (m, 2H, C*H*₂Ar), 0.97 (s, 9H, C(C*H*₃)₃), 0.16 (s, 6H, Si(C*H*₃)₂). ¹³C **NMR** (150 MHz, Chloroform-d) δ 169.4, 156.1, 155.1, 143.8, 141.5, 138.9, 137.7, 130.4, 129.4, 127.9, 127.2, 126.4, 125.1, 122.0, 120.7, 120.2, 120.2, 90.4, 67.5, 57.3, 47.2, 37.5, 25.8, 18.3, -4.3. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₃₆H₄₀IN₂O₄Si⁺: 719.1797, found: 719.1799. (*9H-Fluoren-9-yl)methyl*

{(2S,3R)-3-(tert-butoxy)-1-[(2-iodophenyl)amino]-1-oxobutan-2-yl}carbamate (3n-Fmoc)

grey solid (1.615 g, 90%). $[a]_D^{20}$ =-3.90 (c=1.00, CHCl₃); **TLC**: R_f=0.33 (PE/EA=10/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.77 (s, 1H, CON*H*Ph), 8.08 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.79 (m, 3H, Ar*H*), 7.68-7.58 (m, 2H, Ar*H*), 7.45-7.30 (m, 5H, Ar*H*), 6.91-6.85 (m, 1H, Ar*H*), 6.05 (d, *J* = 6.0 Hz, 1H, N*H*Fmoc), 4.52-4.42 (m, 2H, OC*H*₂CH), 4.39-4.30 (m, 2H, C*H*NHFmoc, OC*H*CH₃), 4.26 (m, 1H, OCH₂C*H*), 1.33 (s, 9H, C(C*H*₃)₃), 1.20 (d, *J* = 6.4 Hz, 3H, CHC*H*₃). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 168.4, 156.3, 143.9, 143.8, 141.4, 139.2, 138.3, 129.1, 127.9, 127.2, 126.5, 125.3, 125.2, 123.3, 120.2, 120.1, 90.7, 76.0, 67.2, 67.1, 60.3, 47.3, 28.6, 18.1. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₂₉H₃₂IN₂O₄⁺: 599.1401, found: 599.1407.

Representative procedure for the synthesis of 4 (S)-N-(2-Iodophenyl)-2-(methylamino)propanamide (4a)

To a flame dried round bottom flask containing **3a-Fmoc** (5.263 g, 10.00 mmol, 1.0 eq.) was added anhydrous MeCN (30 mL) and Et₂NH (15 mL). The reaction mixture was allowed to stir at room temperature for 25 min. After completion of reaction as indicated by monitoring of thin layer chromatography, sat. NH₄Cl aq. (50 mL) was added to quench the reaction. The aqueous phase was extracted with EA (80 mL×3). The combined organic phase was washed with water (200 mL×1) and brine (200 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **4a** in colorless oil (2.888 g, 95%). $[a]_D^{20} = -21.9$ (c=3.20, CHCl₃); **TLC**: R_f=0.12 (PE/EA=5/1). ¹**H NMR** (600 MHz, Chloroform-d) δ 9.79 (s, 1H, CON*H*Ph), 8.24 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.68 (d, *J* = 7.8 Hz, 1H, Ar*H*), 7.24 (t, *J* = 7.8 Hz, 1H, Ar*H*), 6.72 (t, *J* = 7.8 Hz, 1H, Ar*H*), 3.08 (m, 1H, C*H*CH₃), 2.42 (d, *J* = 2.0 Hz, 3H, NHC*H*₃), 1.50 (brs, 1H, N*H*CH₃), 1.31 (d, *J* = 7.2 Hz, 3H, CHC*H*₃). ¹³**C NMR** (150 MHz, CDCl₃) δ 173.5, 138.9, 138.5, 129.1, 125.5, 121.3, 89.3, 61.2, 35.7, 19.6. **ESI-MS** (m/z): 305.08 [M+H]⁺

2-Amino-N-(2-iodophenyl)acetamide (4b)

colorless oil (1.037 g, 94%). **TLC**: $R_f=0.36$ (DCM/MeOH=3/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 9.89 (s, 1H, CON*H*Ph), 8.34 (d, J = 8.0 Hz, 1H, Ar*H*), 7.78 (d, J = 7.2 Hz, 1H, Ar*H*), 7.37-7.30 (m, 1H, Ar*H*), 6.86-6.79 (m, 1H, Ar*H*), 3.52 (s, 2H, NH₂CH₂), 1.70 (s, 2H, NH₂CH₂). ¹³**C NMR** (150 MHz, Chloroform-d) δ 171.4, 139.1, 138.5, 129.3, 125.8, 121.4, 89.3, 45.6. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₈H₁₀IN₂O ⁺: 276.9832, found: 276.9831.

(S)-2-Amino-N-(2-iodophenyl)propanamide (4c)

yellow oil (2.481 g, 98%). $[a]_D^{20} = 10.8$ (c=4.20, CHCl₃); **TLC**: R_f=0.15 (PE/EA=3/1). ¹**H NMR** (600 MHz, CDCl₃) δ 9.93 (s, 1H, CON*H*Ph), 8.30 (dd, J = 8.4, 1.8 Hz, 1H, Ar*H*), 7.76 (dd, J = 7.8, 1.8 Hz, 1H, Ar*H*), 7.51-7.17 (m, 1H, Ar*H*), 6.99-6.70 (m, 1H, Ar*H*), 3.63 (q, J = 7.2 Hz, 1H, C*H*CH₃), 1.76 (s, 2H, N*H*₂CH), 1.43 (d, J = 7.2 Hz, 3H, CHC*H*₃). ¹³**C NMR** (150 MHz, CDCl₃) δ 174.3, 139.0, 138.5, 129.1, 125.6, 121.3, 89.5, 51.5, 21.7. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₉H₁₂IN₂O⁺: 290.9989, found: 290.9987.

(S)-2-Amino-N-(2-iodophenyl)-3-methylbutanamide (4h)

yellow oil (0.839 g, 96%). $[a]_D^{20}$ = -23.6 (c=2.13, CHCl₃); **TLC**: R_f=0.45 (DCM/MeOH=15/1) ¹**H NMR** (400 MHz, Chloroform-d) δ 9.95 (s, 1H, CON*H*Ph), 8.33 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.77 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.32 (m, 1H, Ar*H*), 6.80 (m, 1H, Ar*H*), 3.42 (d, *J* = 3.6 Hz, 1H, NH₂C*H*), 2.43 (m, 1H, NH₂CHC*H*), 1.57 (s, 2H, N*H*₂CH), 1.05 (d, *J* = 6.8 Hz, 3H, CHC*H*₃), 0.90 (d, *J* = 7.2 Hz, 3H, CHC*H*₃). ¹³C **NMR** (150 MHz, Chloroform-d) δ 173.1, 139.0, 138.6, 129.1, 125.6, 121.4, 89.5, 30.9, 19.9, 16.1. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₁H₁₆IN₂O⁺: 319.0302, found: 319.0301.

(R)-2-Amino-N-(2-iodophenyl)-3-(tritylthio)propenamide (4j)

white foamy solid (1.105 g, 98%). $[a]_D^{20} = 21.8$ (c=2.63, CHCl₃); **TLC**: R_f=0.39 (PE/EA=5/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.78 (s, 1H, CON*H*Ph), 8.25 (d, *J* = 9.8 Hz, 1H, Ar*H*), 7.73 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.51-7.43 (m, 6H, Ar*H*), 7.29 (m, 7H, Ar*H*), 7.25-7.15 (m, 3H, Ar*H*), 6.78 (m, 1H, Ar*H*), 3.21 (m, 1H, NH₂C*H*), 2.87 (m, 1H, SC*H*₂), 2.65 (m, 1H, SC*H*₂). ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.7, 144.6, 139.0, 138.4, 129.7, 129.1, 128.1, 127.0, 125.8, 121.3, 89.5, 67.2, 54.8, 37.1. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₂₅IN₂OSNa⁺: 587.0625, found: 587.0630.

(S)-2-Amino-3-{4-[(tert-butyldimethylsilyl)oxy]phenyl}-N-(2-iodophenyl)propenamide (4l)

colorless oil (1.071 g, 90%). $[a]_D^{20} = -38.5$ (c=1.10, CHCl₃); **TLC**: $R_f=0.24$ (PE/EA=6/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 9.92 (s, 1H, CON*H*Ph), 8.36 (d, J = 8.0 Hz, 1H, Ar*H*), 7.79 (d, J = 8.0 Hz, 1H, Ar*H*), 7.39-7.32 (m, 1H, Ar*H*), 7.12 (d, J = 8.8 Hz, 2H, Ar*H*), 6.84 (d, J = 7.9 Hz, 1H, Ar*H*), 6.80 (d, J = 8.0 Hz, 2H, Ar*H*), 3.73 (dd, J = 9.6, 4.0 Hz, 1H, NH₂C*H*), 3.31 (dd, J = 14.0, 4.0 Hz, 1H, CHCH₂), 2.76 (dd, J = 14.0, 9.6 Hz, 1H, CHCH₂), 0.98 (s, 9H, C(CH₃)₃), 0.19 (s, 6H, Si(CH₃)₂). ¹³C **NMR** (150 MHz, Chloroform-d) δ 173.2, 154.8, 139.1,

138.6, 130.4, 130.2, 129.3, 125.8, 121.5, 120.5, 89.6, 57.4, 40.1, 25.9, 18.3, -4.3. **HRMS** (ESI) m/z: $[M+H]^+$ calculated for C₂₁H₃₀IN₂O₂Si⁺: 497.1116, found: 497.1119. (2*S*,*3R*)-2-Amino-3-(tert-butoxy)-N-(2-iodophenyl)butanamide (4n)

yellow liquid (1.084 g, 96%). **TLC** : Rf=0.24 (PE/EA=5/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.01 (s, 1H, CON*H*Ph), 8.26 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.79 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.33 (m, 1H, Ar*H*), 6.86-6.79 (m, 1H, Ar*H*), 4.30 (m, 1H, OC*H*CH₃), 3.26 (d, *J* = 2.4 Hz, 1H, OCH*CH*), 1.85 (s, 2H, N*H*₂CH), 1.25 (d, *J* = 6.4 Hz, 3H, CHC*H*₃), 1.14 (s, 9H, C(C*H*₃)₃). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 172.9, 139.1, 138.9, 129.2, 125.7, 121.7, 89.6, 74.1, 67.3, 61.1, 28.7, 21.3. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₄H₂₂IN₂O₂⁺: 377.0721, found: 377.0723.

Synthesis of 4k

(S)-2-[(tert-Butoxycarbonyl)amino]-3-{4-[(tert-butyldimethylsilyl)oxy]phenyl}propanoic acid (4k)

To a flame dried round bottom flask containing (tert-Butoxycarbonyl)-L-tyrosine (1.125 g, 4.00 mmol, 1.0 eq.), was added anhydrous DCM (15 mL), imidazole (0.545 g, 8.00 mmol, 2.0 eq.) and TBSC1 (0.904 g, 6.00 mmol, 1.5 eq.) under ice bath. The reaction mixture was warmed to room temperature and allowed to stir for 9 h until completion of conversion as indicated by monitoring of thin layer chromatography, after which sat. NH₄Cl aq. (30 mL) was added to quench the reaction. The aqueous phase was extracted with DCM (40 mL×3). The combined organic phase was washed with water (150 mL×1) and brine (150 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford **4k** in yellow oil (1.499 g, 95%). $[a]_D^{20}$ =19.9 (c=1.30, CHCl₃); **TLC**: R_f=0.35 (DCM/MeOH=15/1). ¹**H** NMR (400 MHz, Chloroform-d) δ 7.04 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.78 (d, *J* = 8.0 Hz, 2H, Ar*H*), 4.92 (d, *J* = 8.4 Hz, 1H, CON*H*), 4.58-4.53 (m, 1H, CHNHBoc), 3.15-2.98 (m, 2H, CH₂Ph), 1.40 (s, 9H, OC(CH₃)₃), 0.97 (s, 9H, SiC(CH₃)₃), 0.17 (s, 6H, Si(CH₃)₂). **ESI-MS** (m/z): 418.22 [M+Na]⁺ Known Compound. Data consistent with the previous report.³

tert-Butyl {(S)-1-[{(S)-1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}(methyl)amino]-1-oxopropan-2-yl}c arbamate (5a-Boc)

To a flame dried round bottom flask containing (tert-butoxycarbonyl)-L-alanine (2.838 g, 15.00 mmol, 1.5 eq.) was added anhydrous DMF (30 mL). The reaction mixture was heated to 50 °C, and was added DIPEA (8.70 mL, 50.00 mmol, 5.0 eq.) and HATU (7.605 g, 20.00 mmol, 2.0 eq.). After stirring at 50 °C for 10 min, 4a (3.041 g, 10.00 mmol, 1.0 eq.) was added to the reaction mixture. The reaction mixture was allowed to stir at 50 °C for another 9 h, until completion of conversion as indicated by monitoring of thin layer chromatography, after which sat. NH₄Cl aq. (50 mL) was added to quench the reaction. The organic phase was extracted with EA (80 mL \times 3). The combined organic phase was washed with H₂O (300 mL \times 1) and brine (300 mL×1), dried over anhydrous Na_2SO_4 , concentrated in vacuo. The residue obtained was purified by silica gel chromatography to afford **5a-Boc** in colorless oil (3.603 g, 78%). $[a]_D^{20} = -74.4$ (c=2.26, CHCl₃); **TLC**: $R_f=0.31$ (PE/EA=3/1). ¹H NMR (400 MHz, Chloroform-d) δ 8.13 (d, J = 10.0 Hz, 1H, ArH), 8.01 (m, 1H, NH), 7.74 (t, J = 7.2 Hz, 1H, ArH), 7.35-7.27 (m, 1H, ArH), 6.82 (t, J = 7.2 Hz, 1H, ArH), 5.50 (m, 1H, NHBoc, rotamers), 5.39 (m, 1H, CHCH₃, rotamers), 4.80-4.58 (m, 1H, CHCH₃, rotamers), 3.15-2.98 (m, 3H, NCH₃, rotamers), 1.48-1.33 (m, 15H, C(CH₃)₃, CHCH₃, CHCH₃, rotamers). HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{18}H_{27}IN_3O_4^+$: 476.1041, found: 476.1057.

tert-Butyl

(S)-[1-({2-[(2-iodophenyl)amino]-2-oxoethyl}amino)-1-oxopropan-2-yl]carbamate (5b-Boc)

yellow oil (1.456 g, 90%). $[a]_D^{20}$ =-9.19 (c=1.53, CHCl₃); **TLC**: R_f=0.33 (PE/EA=1/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.19 (brs, 1H, CON*H*Ar), 7.99 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.74 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.48 (brs, 1H, CON*H*), 7.28 (m, 1H, Ar*H*), 6.83 (m, 1H, Ar*H*), 5.35 (brs, 1H, N*H*Boc), 4.33 (m, 1H, CON*H*CH), 4.11 (m, 2H, NHC*H*₂), 1.41-1.30 (m, 12H, CHC*H*₃, C(C*H*₃)₃). ¹³**C NMR** (150 MHz, Chloroform-d) δ 174.0, 167.6, 155.8, 139.1, 137.9, 129.2, 126.8, 123.3, 91.4, 80.5, 50.3, 44.4, 28.4, 18.7. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₆H₂₂IN₃O₄Na⁺: 470.0547, found: 470.0552.

tert-Butyl

(S)-[2-({1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}amino)-2-oxoethyl]carbamate (5c-Boc)

yellow solid (0.442 g, 98%). $[a]_D^{20} = -19.7$ (c=1.15, CHCl₃); **TLC**: $R_f=0.27$ (PE/EA=2/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.17 (s, 1H, CON*H*Ar), 8.03 (d, *J* = 7.6 Hz, 1H, Ar*H*), 7.76 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.30 (m, 1H, Ar*H*), 7.05 (s, 1H, CON*H*CH), 6.84 (m, 1H, Ar*H*), 5.33 (t, *J* = 6.0 Hz, 1H, N*H*CH₂), 4.67-4.74 (m, 1H, C*H*CH₃), 3.89 (s, 2H, COC*H*₂), 1.50 (d, *J* = 7.2 Hz, 3H, CHC*H*₃), 1.43 (s, 9H, C(C*H*₃)₃). ¹³**C NMR** (150 MHz, Chloroform-d) δ 170.5, 170.0, 156.3, 139.1, 138.0, 129.2, 126.7, 123.2, 91.3, 80.6, 49.8, 44.5, 28.5, 17.9. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₆H₂₃IN₃O₄⁺: 448.0728, found: 448.0725. *tert-Butyl*

[(S)-1-({(S)-1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}amino)-1-oxopropan-2-yl]carbamat e (5d-Boc)

white solid (0.444 g, 96%). $[a]_D^{20} = -46.4$ (c=1.15, CHCl₃); **TLC**: R_f=0.28 (PE/EA=2/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.16 (s, 1H, CONHAr), 8.08 (d, J = 8.4 Hz, 1H, ArH), 7.77 (d, J = 8.0 Hz, 1H, ArH), 7.35-7.29 (m, 1H, ArH), 7.07 (s, 1H, NHCOCHCH₃), 6.88-6.81 (m, 1H, ArH), 5.08 (d, J = 7.6 Hz, 1H, CONHCHCH₃), 4.66 (m, 1H, NHCOCHCH₃), 4.26 (m, 1H, CONHCHCH₃), 1.49 (d, J = 7.2 Hz, 3H, NHCOCHCH₃), 1.43 (s, 9H, C(CH₃)₃), 1.39 (d, J = 7.2 Hz, 3H, CONHCHCH₃). ¹³C NMR (150 MHz, Chloroform-d) δ 173.1, 170.4, 155.9, 139.1, 138.1, 129.3, 126.6, 123.0, 91.0, 80.6, 50.1, 49.9, 28.4, 18.1, 17.9. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₇H₂₅IN₃O₄⁺: 462.0884, found: 462.0884.

tert-Butyl

[(R)-1-({(S)-1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}amino)-1-oxopropan-2-yl]carbamat e (5e-Boc)

white solid (0.429 g, 93%). $[a]_D^{20} = -6.81$ (c=1.10, CHCl₃); **TLC**: R_f=0.24 (PE/EA=2/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.20 (s, 1H, CON*H*Ar), 8.01 (d, *J* = 8.4 Hz, 1H, Ar*H*),

7.76 (d, J = 8.0 Hz, 1H, Ar*H*), 7.30 (m, 1H, Ar*H*), 7.04 (s, 1H, N*H*COCHCH₃), 6.84 (m, 1H, Ar*H*), 5.14 (d, J = 7.6 Hz, 1H, CON*H*CHCH₃), 4.68 (m, 1H, NHCOCHCH₃), 4.26 (m, 1H, CONHCHCH₃), 1.50 (d, J = 7.2 Hz, 3H, NHCOCHCH₃), 1.40 (s, 9H, C(CH₃)₃), 1.38 (d, J = 7.2 Hz, 3H, CONHCHCH₃). ¹³C **NMR** (150 MHz, Chloroform-d) δ 173.2, 170.5, 155.7, 139.1, 138.1, 129.2, 126.7, 123.3, 91.3, 80.6, 50.4, 49.9, 28.4, 18.5, 17.8. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₇H₂₅IN₃O₄⁺: 462.0884, found: 462.0887.

tert-Butyl

[(S)-1-({(S)-1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}amino)-3-methyl-1-oxobutan-2-yl]c arbamate (5g-Boc)

yellow solid (0.445 g, 91%). $[a]_D^{20} = -32.2$ (c=0.950, CHCl₃); **TLC:** R_f=0.41 (PE/EA=5/1). ¹**H NMR** (600 MHz, Chloroform-d) δ 8.12 (s, 1H, CONHAr), 7.96 (d, J = 7.2 Hz, 1H, ArH), 7.71 (d, J = 8.4 Hz, 1H, ArH), 7.25 (t, J = 7.8 Hz, 1H, ArH), 6.96 (s, 1H, NHCOCHCH₃), 6.78 (t, J = 7.8 Hz, 1H, ArH), 5.13 (d, J = 8.0 Hz, 1H, CHCH(CH₃)₂), 4.65 (m, 1H, CHCH₃), 3.97 (s, 1H, CONHCHCH₃), 2.11 (m, 1H, CH(CH₃)₂), 1.43 (d, J = 7.2 Hz, 3H, CHCH₃), 1.36 (s, 9H, C(CH₃)₃), 0.90 (d, J = 6.8 Hz, 3H, CH(CH₃)₂), 0.85 (d, J = 6.6 Hz, 3H, CH(CH₃)₂). ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 170.4, 139.1, 138.1, 129.2, 126.6, 123.1, 91.0, 80.3, 60.0, 49.8, 30.9, 28.4, 19.6, 18.0, 17.9. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₉H₂₉IN₃O₄ ⁺: 490.1197, found: 490.1195.

tert-Butyl

[(S)-1-({(S)-1-[(2-iodophenyl)amino]-3-methyl-1-oxobutan-2-yl}amino)-1-oxopropan-2-yl]c arbamate (5h-Boc)

white solid (0.943 g, 95%). $[a]_D^{20}$ =-284 (c=0.900, CHCl₃); **TLC**: R_f=0.26 (PE/EA=3/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.14 (d, J = 8.0 Hz, 1H, Ar*H*), 8.07 (s, 1H, CON*H*Ar), 7.77 (d, J = 8.0 Hz, 1H, Ar*H*), 7.32 (t, J = 6.8 Hz, 1H, Ar*H*), 7.12 (s, 1H, N*H*COCHCH₃), 6.84 (m, 1H, Ar*H*), 5.08 (d, J = 7.2 Hz, 1H, C*H*CH(CH₃)₂), 4.51-4.42 (m, 1H, C*H*CH₃), 4.28 (s, 1H, CON*H*CHCH₃), 2.45-2.29 (m, 1H, C*H*(CH₃)₂), 1.43 (s, 9H, C(C*H*₃)₃), 1.39 (d, J = 7.2 Hz, 3H, CHC*H*₃), 1.07-0.96 (m, 6H, CH(C*H*₃)₂). ¹³**C NMR** (150 MHz, Chloroform-d) δ 173.3, 169.6, 156.0, 139.0, 138.0, 129.3, 126.5, 122.7, 90.7, 80.6, 59.6, 50.2, 30.6, 28.4, 19.6, 17.7. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₉H₂₈IN₃O₄Na⁺: 512.1017, found: 512.1023.

tert-Butyl

[(R)-1-({(S)-1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}amino)-1-oxo-3-(tritylthio)propan-2-yl]carbamate (5i-Boc)

white foamy solid (0.727 g, 99%). $[a]_D^{20} = -12.0$ (c=1.05, CHCl₃); **TLC** : R_f =0.52 (PE/EA=5/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.09 (s, 1H, CONHAr), 8.02 (d, J = 8.0 Hz, 1H, Ar*H*), 7.75 (d, J = 8.4 Hz, 1H, Ar*H*), 7.40 (m, 6H, Ar*H*), 7.30-7.25 (m, 7H, Ar*H*), 7.21 (m, 3H, Ar*H*), 6.87-6.80 (m, 1H, Ar*H*), 6.71 (s, 1H, N*H*CHCH₃), 4.83 (m, 1H, C*H*CH₃), 4.59 (m, 1H, SCH₂C*H*), 3.92 (s, 1H, OCOC*H*), 2.74-2.60 (m, 2H, SCH₂CH), 1.45 (d, J = 7.2 Hz, 3H, CHCH₃), 1.41 (s, 9H, C(CH₃)₃). ¹³C **NMR** (150 MHz, Chloroform-d) δ 171.0, 170.0, 155.7, 144.4, 139.0, 138.1, 129.7, 129.2, 128.3, 127.1, 126.6, 123.0, 91.3, 80.8, 67.4, 53.7, 50.0, 33.5, 28.4, 17.7. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₃₆H₃₈IN₃O₄SNa⁺: 758.1520, found: 758.1526.

tert-Butyl

[(S)-1-({(R)-1-[(2-iodophenyl)amino]-1-oxo-3-(tritylthio)propan-2-yl}amino)-1-oxopropan-2-yl}carbamate (5j-Boc)

white solid (1.550 g, 92%). $[a]_D^{20}$ =-15.5 (c=1.70, CHCl₃); **TLC**: R_f=0.17 (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04-8.00 (m, 2H, CONHAr, ArH), 7.75 (dd, J = 7.6, 1.2 Hz, 1H, ArH), 7.45-7.43 (m, 6H, ArH), 7.30-7.27 (m, 6H, ArH), 7.23-7.20 (m, 3H, ArH), 6.83 (m, 1H, ArH), 6.73 (s, 1H, NHCO), 4.95 (d, J = 7.2 Hz, 1H), 4.28 (m, 1H, SCH₂CH), 4.19 (s, 1H), 2.86-2.72 (m, 2H, SCH₂CH), 1.39 (s, 9H, C(CH₃)₃), 1.34 (d, J = 7.2 Hz, 3H, CHCH₃). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 173.0, 168.3, 155.6, 144.4, 139.1, 138.0, 129.7, 129.1, 128.2, 127.1, 126.7, 123.1, 91.1, 80.6, 67.5, 60.5, 53.2, 50.2, 33.3, 28.4. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₃₆H₃₈IN₃O₄SNa⁺: 758.1520, found: 758.1540.

tert-Butyl

[(S)-3-{4-[(tert-butyldimethylsilyl)oxy]phenyl}-1-({(S)-1-[(2-iodophenyl)amino]-1-oxopropa n-2-yl}amino)-1-oxopropan-2-yl]carbamate (5k-Boc)

yellow solid (1.326 g, 96%). $[a]_D^{20}$ = -12.5 (c=1.60, CHCl₃); **TLC:** R_f=0.37 (PE/EA=3/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H, CON*H*Ar), 8.05 (d, *J* = 6.8 Hz, 1H, Ar*H*), 7.78 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.32 (m, 1H, Ar*H*), 7.03 (d, *J* = 8.8 Hz, 2H, Ar*H*), 6.90-6.82 (m, 1H, Ar*H*), 6.73 (s, 1H, CON*H*CHCH₃), 6.68 (d, *J* = 8.4 Hz, 2H, Ar*H*), 5.04 (m, 1H, C*H*CH₂), 4.65 (m, 1H, C*H*CH₃), 4.38 (s, 1H, OCON*H*), 3.13-2.94 (m, 2H, CHC*H*₂), 1.43 (d, *J* = 7.2 Hz, 3H, CHC*H*₃), 1.39 (s, 9H, OC(C*H*₃)₃), 0.95 (s, 9H, Si(C*H*₃)₃), 0.15 (s, 6H, Si(CH₃)₂). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 171.9, 170.1, 155.7, 154.8, 139.1, 138.1, 130.4, 129.2, 128.9, 126.6, 123.0, 120.4, 91.0, 80.6, 55.9, 49.9, 37.4, 28.4, 25.8, 18.3, 17.7, -4.3. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₂₉H₄₃IN₃O₅Si⁺: 668.2011, found: 668.2018.

tert-Butyl

[(S)-1-({(S)-3-{4-[(tert-butyldimethylsilyl)oxy]phenyl}-1-[(2-iodophenyl)amino]-1-oxopropa n-2-yl}amino)-1-oxopropan-2-yl]carbamate (5l-Boc)

white solid (0.984 g, 88%). $[a]_D^{20} = -28.7$ (c=1.40, CHCl₃); **TLC**: Rf=0.38 (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.04 (s, 1H, CON*H*Ar), 8.00 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.72 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.28 (m, 1H, Ar*H*), 7.08 (d, *J* = 8.4 Hz, 2H, Ar*H*), 6.97 (s, 1H, CON*H*CHCH₂), 6.82 (m, 1H, Ar*H*), 6.74 (d, *J* = 8.4 Hz, 2H, Ar*H*), 5.12 (m, 1H, C*H*CH₂), 4.81 (m, 1H, C*H*CH₃), 4.21 (s, 1H, OCON*H*), 3.22-3.04 (m, 2H, CHC*H*₂), 1.40 (s, 9H, OC(C*H*₃)₃), 1.25 (d, *J* = 7.2 Hz, 3H), 0.95 (s, 9H, Si(C*H*₃)₃), 0.15 (s, 6H, Si(C*H*₃)₂)). ¹³C **NMR** (150 MHz, Chloroform-d) δ 173.3, 169.5, 155.6, 154.9, 139.0, 137.9, 130.4, 129.2, 128.9, 126.7, 123.1, 120.5, 91.3, 80.4, 55.4, 50.3, 37.0, 28.5, 25.8, 18.7, 18.3, -4.3. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₄₂IN₃O₅SiNa⁺: 690.1831, found: 690.1853. *tert-Butyl*

[(2S,3R)-3-(tert-butoxy)-1-({(S)-1-[(2-iodophenyl)amino]-1-oxopropan-2-yl}amino)-1-oxob utan-2-yl]carbamate (5m-Boc)

white solid (0.503 g, 92%). $[a]_D^{20} = -0.130$ (c=1.53, CHCl₃); **TLC**: R_f=0.27 (PE/EA=6/1). ¹**H NMR** (600 MHz, Chloroform-d) δ 8.14 (s, 1H, CONHAr), 8.05 (d, J = 7.8 Hz, 1H, ArH), 7.78 (d, J = 7.8 Hz, 1H, ArH), 7.53 (s, 1H, CONHCHCH₃), 7.32 (m, 1H, ArH), 6.87-6.80 (m, 1H, ArH), 5.57 (d, J = 6.0 Hz, 1H, CONHCHCH), 4.64 (m, 1H, NHCHCH₃), 4.18 (m, 2H, CONHCHCH), 1.50 (d, J = 7.2 Hz, 3H, NHCHCH₃), 1.44 (s, 9H, COOC(CH₃)₃), 1.25 (s, 9H, CHOC(CH₃)₃), 1.07 (d, J = 6.0 Hz, 3H, OCHCH₃). ¹³C NMR (150 MHz, Chloroform-d) δ 170.7, 170.2, 155.8, 139.1, 138.2, 129.2, 126.5, 123.1, 91.0, 80.1, 75.4, 67.1, 58.9, 50.0, 28.5, 28.5, 18.2, 17.8. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₂H₃₅IN₃O₅⁺: 548.1616, found: 548.1611.

tert-Butyl

[(S)-1-({(2S,3R)-3-(tert-butoxy)-1-[(2-iodophenyl)amino]-1-oxobutan-2-yl}amino)-1-oxopro pan-2-yl]carbamate (5n-Boc)

yellow solid (1.298 g, 85%). $[a]_D^{20} = -5.33$ (c=0.900, CHCl₃); **TLC**: R_f=0.24 (PE/EA=5/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.73 (s, 1H, CON*H*Ar), 8.01 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.80 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.39-7.30 (m, 1H, Ar*H*), 7.22 (s, 1H, CON*H*CHCH), 6.91-6.81 (m, 1H, Ar*H*), 5.07 (s, 1H, CON*H*CHCH₃), 4.51 (m, 1H, COC*H*CH₃), 4.29 (m, 2H, CONHC*H*C*H*), 1.45 (s, 9H, COOC(C*H*₃)₃), 1.40 (d, *J* = 7.2 Hz, 3H, COCHC*H*₃), 1.33 (s, 9H, CHOC(C*H*₃)₃), 1.13 (d, *J* = 6.4 Hz, 3H, OCHC*H*₃). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 172.9, 168.2, 155.5, 139.3, 138.3, 129.0, 126.6, 123.6, 90.8, 80.2, 76.1, 66.6, 58.9, 50.3, 28.6, 28.5, 18.5, 17.8. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₂₂H₃₅IN₃O₅⁺: 548.1616, found: 548.1621.

Representative procedure for the synthesis of 8

To a flame dried round bottom flask containing **5-Boc** (0.50 mmol, 1.0 eq.) was added DCM (5 mL), Pd(OAc)₂ (0.011 g, 0.05 mmol, 0.10 eq.), XantPhos (0.058 g, 0.10 mmol, 0.10 eq.) and TEA (0.20 mL, 1.25 mmol, 2.50 eq.). The reaction was carried out under CO atmosphere (CO balloon, 1 atm.) at 40 °C. After stirring at 40 °C for 1.5 h, the CO balloon was removed and TFA (1 mL, TFA/DCM=20/100) was added to the reaction mixture, which was allowed to stir at room temperature for another 2 h until completion of reaction as indicated by

monitoring of thin layer chromatography. Sat. NaHCO₃ aq. (30 mL) was added to quench the reaction. The aqueous phase was extracted with EA (30 mL×3). The combined organic phase was washed with water (100 mL×1) and brine (100 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford the desired compound **8**.

(1S,4S)-1,2,4-Trimethyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (8a)

white solid (0.091 g, 71%). $[a]_D^{20} = -89.6$ (c=1.20, CHCl₃); **TLC** : R_f =0.21 (DCM/Et₂O=20/1). ¹**H NMR** (600 MHz, Chloroform-d) δ 8.26 (d, J = 7.8 Hz, 1H, Ar*H*), 7.75 (m, 1H, Ar*H*), 7.61 (d, J = 8.4 Hz, 1H, Ar*H*), 7.49-7.45 (m, 1H, Ar*H*), 5.32 (q, J = 4.8 Hz, 1H, COC*H*CH₃), 4.57 (q, J = 4.8 Hz, 1H, NC*H*CH₃), 3.10 (s, 3H, NCH₃), 1.71 (d, J = 4.8 Hz, 3H, CHC*H*₃), 1.69 (d, J = 4.8 Hz, 3H, CHC*H*₃). ¹³**C NMR** (150 MHz, Chloroform-d) δ 166.0, 159.3, 150.5, 146.4, 133.7, 126.0, 125.9, 125.8, 119.2, 58.1, 51.1, 31.5, 20.0, 18.2. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₄H₁₆N₃O₂⁺: 258.1237, found: 258.1231.

(S)-4-Methyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (8b)

white solid (0.063 g, 55%). $[a]_D^{20} = 33.0$ (c=0.300, CHCl₃); **TLC** : R_f=0.40 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.30 (d, J = 8.0 Hz, 1H, Ar*H*), 7.78 (m, 1H, Ar*H*), 7.65 (d, J = 8.4 Hz, 1H, Ar*H*), 7.51 (m, 1H, Ar*H*), 6.58 (brs, 1H, CON*H*),

5.52-5.42 (q, J = 7.2 Hz, 1H, CHCH₃), 4.69 (d, J = 16.8 Hz, 1H, NHCH₂), 4.50 (dd, J = 16.8, 4.8 Hz, 1H, NHCH₂), 1.66 (d, J = 7.2 Hz, 3H, CHCH₃). ¹³C NMR (150 MHz, Chloroform-d) δ 169.9, 160.3, 147.7, 147.3, 135.0, 127.5, 127.1, 120.6, 53.6, 52.0, 45.2, 17.1. ESI-MS (m/z): 230.11 [M+H]⁺

Known Compound. Data consistent with the previous report.⁴

(S)-1-Methyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (8c)

white solid (0.065 g, 57%). $[a]_D^{20} = -0.067$ (c=0.600, CHCl₃); **TLC** : R_f=0.30 (DCM/MeOH=15/1). ¹**H** NMR (400 MHz, Chloroform-d) δ 8.29 (d, J = 8.0 Hz, 1H, Ar*H*), 7.82-7.74 (m, 1H, Ar*H*), 7.68 (d, J = 8.4 Hz, 1H, Ar*H*), 7.55-7.46 (m, 1H, Ar*H*), 6.95 (s, 1H, CON*H*), 4.75 (s, 2H, COC*H*₂), 4.70 (m, 1H, C*H*CH₃), 1.73 (d, J = 6.8 Hz, 3H, CHC*H*₃). **ESI-MS** (m/z): 230.13 [M+H]⁺ (0.063 g, 55%).

Known Compound. Data consistent with the previous report.⁵

(1S,4S)-1,4-Dimethyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (8d)

white solid (0.071 g, 58%). $[a]_D^{20} = 98.0$ (c=0.500, CHCl₃); **TLC** : R_f=0.38 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.29 (d, J = 8.0 Hz, 1H, Ar*H*), 7.77 (m, 1H, Ar*H*), 7.64 (d, J = 8.0 Hz, 1H, Ar*H*), 7.50 (m, 1H, Ar*H*), 7.10 (brs, 1H, CON*H*),

5.32 (q, J = 7.2 Hz, 1H, COCHCH₃), 4.75 (m, 1H, NHCHCH₃), 1.76 (d, J = 7.2 Hz, 3H, CHCH₃), 1.75 (d, J = 7.2 Hz, 3H, CHCH₃). **ESI-MS** (m/z): 244.16 [M+H]⁺ Known Compound. Data consistent with the previous report.⁴

(1S,4S)-1,4-Dimethyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (8e)

white solid (0.077 g, 64%). $[a]_D^{20} = -24.5$ (c=0.400, CHCl₃); **TLC** : R_f=0.38 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.30 (d, J = 8.0 Hz, 1H, Ar*H*), 7.78 (m, 1H, Ar*H*), 7.65 (d, J = 8.0 Hz, 1H, Ar*H*), 7.50 (m, 1H, Ar*H*), 6.56 (s, 1H, CON*H*), 5.33 (m, 1H, COC*H*CH₃), 4.75 (m, 1H, NHC*H*CH₃), 1.76 (d, J = 7.2 Hz, 3H, CHC*H*₃), 1.75 (d, J = 7.2 Hz, 3H, CHC*H*₃). **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₇H₂₅IN₃O₄ ⁺: 462.0884, found: 462.0887.

Known Compound. Data consistent with the previous report.⁴

(1S,4S)-4-Isopropyl-1-methyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (8g)

white solid (0.120 g, 89%). $[a]_D^{20} = 53.1$ (c=1.20, CHCl₃); **TLC** : R_f=0.47 (DCM/MeOH=20/1). ¹**H** NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.0 Hz, 1H, ArH), 7.80-7.73 (m, 1H, ArH), 7.63 (d, J = 8.4 Hz, 1H, ArH), 7.51-7.44 (m, 1H, ArH), 7.16 (s, 1H, CON*H*), 5.22 (d, J = 7.6 Hz, 1H, CHCH(CH₃)₂), 4.81-4.72 (m, 1H, CHCH₃), 2.26 (m, 1H,

CHC*H*(CH₃)₂), 1.80 (d, J = 7.2 Hz, 3H, CHCH(CH₃)₂), 1.19 (d, J = 6.8 Hz, 3H, CHCH₃), 1.07 (d, J = 7.2 Hz, 3H, CHCH(CH₃)₂). **ESI-MS** (m/z): 272.18 [M+H]⁺ Known Compound. Data consistent with the previous report.⁶ (*1S*,*4S*)-*1-Isopropyl-4-methyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione* (*8h*)

white solid (0.090 g, 67%). $[a]_D^{20} = 52.1$ (c=0.900, CHCl₃); **TLC** : R_f=0.46 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.0 Hz, 1H, Ar*H*), 7.76 (m, 1H, Ar*H*), 7.65 (d, J = 8.0 Hz, 1H, Ar*H*), 7.48 (m, 1H, Ar*H*), 7.37 (s, 1H, CON*H*), 5.26 (m, 1H, CHCH₃), 4.29 (m, 1H, CHCH(CH₃)₂), 2.38 (m, 1H, CHCH(CH₃)₂), 1.76 (d, J = 7.2 Hz, 3H, CHCH₃), 1.15 (d, J = 6.8 Hz, 3H, CHCH(CH₃)₂), 1.09 (d, J = 6.8 Hz, 3H, CHCH(CH₃)₂). ¹³**C NMR** (150 MHz, Chloroform-d) δ 169.8, 160.9, 149.7, 147.1, 134.9, 127.2, 126.9, 120.3, 62.3, 52.1, 35.9, 19.8, 19.4, 18.7. **ESI-MS** (m/z): 272.21 [M+H]⁺ Known Compound. Data consistent with the previous report.⁷

(1S,4S)-4-{4-[(tert-Butyldimethylsilyl)oxy]benzyl}-1-methyl-1,2-dihydro-6H-pyrazino[2,1-b] quinazoline-3,6(4H)-dione (8k)

white solid (0.159 g, 71%). $[a]_D^{20} = 195$ (c=0.600, CHCl₃); **TLC** : R_f=0.35 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.34 (d, J = 8.0 Hz, 1H, Ar*H*), 7.84-7.77 (m, 1H, Ar*H*), 7.62 (d, J = 8.0 Hz, 1H, Ar*H*), 7.52 (m, 1H, Ar*H*), 6.78 (d, J = 8.8 Hz, 2H, Ar*H*), 6.65 (d, J = 8.4 Hz, 2H, Ar*H*), 6.39 (s, 1H, CON*H*), 5.52-5.47 (m, 1H, COC*H*), 4.54 (m, 1H, CHCH₃), 3.57 (m, 1H, CHC*H*₂), 3.43 (m, 1H, CHC*H*₂), 0.93 (s, 9H, C(C*H*₃)₃), 0.80 (d, J = 7.2 Hz, 3H, CHC*H*₃), 0.11 (s, 6H, Si(C*H*₃)₂). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 166.6, 161.0, 155.5, 151.2, 147.3, 135.0, 131.4, 127.9, 127.1, 127.0, 120.7, 120.1, 57.3, 52.3, 36.0, 25.8, 23.6, 1.2, -4.3. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₂₅H₃₂N₃O₃⁺: 450.2207, found: 450.2210.

(1S,4S)-1-{4-[(tert-Butyldimethylsilyl)oxy]benzyl}-4-methyl-1,2-dihydro-6H-pyrazino[2,1-b] quinazoline-3,6(4H)-dione (8l)

white solid (0.154 g, 69%). $[a]_D^{20} = 11.3$ (c=0.600, CHCl₃); **TLC**: R_f =0.57 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.30 (d, J = 8.0 Hz, 1H, Ar*H*), 7.80 (m, 1H, Ar*H*), 7.70 (d, J = 8.4 Hz, 1H, Ar*H*), 7.52 (m, 1H, Ar*H*), 7.09 (d, J = 8.4 Hz, 2H, Ar*H*), 6.81 (d, J = 8.4 Hz, 2H, Ar*H*), 6.30 (s, 1H, CON*H*), 5.24 (q, J = 7.2 Hz, 1H, C*H*CH₃), 4.77 (m, 1H, NHC*H*), 3.38 (m, 1H, NHCHC*H*₂), 3.13 (m, 1H, NHCHC*H*₂), 1.49 (d, J = 7.2 Hz, 3H, CHC*H*₃), 0.97 (s, 9H, C(C*H*₃)₃), 0.18 (s, 6H, Si(C*H*₃)₂). ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.7, 160.6, 155.5, 149.9, 147.3, 135.0, 130.9, 127.8, 127.3, 127.1, 127.0, 120.9, 120.4, 58.3, 52.0, 43.6, 25.8, 19.1, 18.3, -4.3. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₅H₃₂N₃O₃⁺: 450.2207, found: 450.2211.

(1S,4S)-4-[(R)-1-(tert-Butoxy)ethyl]-1-methyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (8m)

white solid (0.069 g, 54%). $[a]_D^{20} = 32.8$ (c=0.500, CHCl₃); **TLC** : R_f=0.30 (DCM/MeOH=20/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.56 (s, 1H, CON*H*), 8.14 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.88-7.82 (m, 1H, Ar*H*), 7.67 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.54 (m, 1H, Ar*H*),

5.34 (d, J = 5.6 Hz, 1H, CHO*H*), 5.14 (d, J = 4.8 Hz, 1H, CHCHCH₃), 4.98 (m, 1H, CHCHCH₃), 4.39-4.26 (m, 1H, NHCHCH₃), 1.54 (d, J = 6.8 Hz, 3H, NHCHCH₃), 1.10 (d, J = 6.4 Hz, 3H, CHCHCH₃). ¹³C NMR (150 MHz, DMSO- d_6) δ 168.1, 160.6, 153.9, 146.7, 134.7, 127.1, 126.9, 126.5, 119.8, 68.5, 61.2, 49.2, 21.3, 17.4. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₄H₁₆N₃O₃⁺: 274.1186, found: 274.1187.

(1S,4S)-1-[(R)-1-Hydroxyethyl]-4-methyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4 H)-dione (8n)

white solid (0.070 g, 51%). $[a]_D^{20} = -422$ (c=0.400, CHCl₃); **TLC** : R_f =0.28 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.58 (s, 1H, CON*H*), 8.27 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.76 (m, 1H, Ar*H*), 7.68 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.47 (m, 1H, Ar*H*), 6.66 (m, 1H, COC*H*CH₃), 5.53 (m, 1H, CHC*H*CH₃), 1.96 (d, *J* = 7.6 Hz, 3H, COCHC*H*₃), 1.67 (m, 1H, C*H*CHCH₃), 1.62 (d, *J* = 7.2 Hz, 3H, CHCHC*H*₃). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 167.5, 160.5, 147.5, 144.2, 134.9, 127.6, 127.5, 127.1, 127.0, 120.3, 114.8, 51.8, 19.2, 11.9. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₄H₁₆N₃O₃⁺: 274.1186, found: 274.1185.

Representative procedure for the synthesis of 10-Boc

To a flame dried round bottom flask containing the carboxylic acid (1.0 eq.) was added anhydrous THF (5 mL/mmol). The mixture was cooled to 0 °C, and was added triphosgen (0.33 eq.) and 2,4,6-collidine (2.0 eq.) under ice bath. The mixture was allowed to stir at 0 °C for another 10 min, after which the amine (1.0 eq.) was added to the reaction mixture. The mixture was warmed to room temperature and was allowed to react for another 9 hours until completion of reaction as indicated by monitoring of thin layer chromatography. Afterwards, 10 mL/mmol sat. NH₄Cl aq. was added to the mixture. The aqueous phase was extracted with EA (15 mL/mmol×3) and the combined organic phase was washed with brine (30 mL/mmol×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford the desired compound **10-Boc**.

tert-Butyl {5-[(2-iodophenyl)amino]-5-oxopentyl}carbamate (10a-Boc)

white solid (0.610 g, 73%). **TLC**: $R_f=0.30$ (PE/EA=3/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.16 (d, J = 8.0 Hz, 1H, ArH), 7.76 (d, J = 9.6 Hz, 1H, ArH), 7.47 (s, 1H, CONHPh), 7.32 (m, 1H, ArH), 6.88-6.79 (m, 1H, ArH), 4.64 (s, 1H, OCONH), 3.17 (m, 2H, NHCH₂), 2.45 (t, J = 7.2 Hz, 2H, COCH₂), 1.77 (m, 2H, COCH₂CH₂), 1.59 (m, 2H, NHCH₂CH₂), 1.43 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, Chloroform-d) δ 171.1, 156.2, 138.9, 138.3, 129.3, 126.2, 122.5, 90.4, 79.3, 40.1, 37.3, 29.6, 28.5, 22.6. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₆H₂₄IN₂O₃⁺: 419.0826, found: 419.0828.

tert-Butyl {4-[(2-iodophenyl)amino]-4-oxobutyl}carbamate (10b-Boc)

colorless oil (0.400 g, 50%). **TLC**: $R_f=0.21$ (PE/EA=4/1). ¹**H NMR** (600 MHz, Chloroform-d) δ 8.11 (d, J = 7.2 Hz, 1H, ArH), 7.76 (d, J = 8.4 Hz, 1H, ArH), 7.67 (s, 1H, CONHPh), 7.31 (t, J = 7.8 Hz, 1H, ArH), 6.83 (t, J = 7.8 Hz, 1H, ArH), 4.80 (s, 1H, OCONH), 3.23 (m, 2H, NHCH₂), 2.47 (m, 2H, COCH₂), 1.92 (m, 2H, CH₂CH₂CH₂), 1.41 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.4, 156.4, 150.4, 139.0, 129.3, 126.3, 122.8, 82.9, 79.5, 46.6, 33.1, 28.2, 17.5. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₂₁IN₂O₃Na⁺: 427.0489, found: 427.0493.

tert-Butyl {6-[(2-iodophenyl)amino]-6-oxohexyl}carbamate (10c-Boc)

light yellow solid (0.776 g, 90%). **TLC**: $R_f=0.19$ (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.4 Hz, 1H, Ar*H*), 7.75 (d, J = 8.0 Hz, 1H, Ar*H*), 7.46 (s, 1H, CON*H*Ph), 7.31 (m, 1H, Ar*H*), 6.85-6.79 (m, 1H, Ar*H*), 4.62 (s, 1H, OCON*H*), 3.11 (m, 2H, NHC*H*₂), 2.41 (t, J = 7.2 Hz, 2H, COC*H*₂), 1.75 (m, 2H, COCH₂C*H*₂), 1.52 (m, 2H, NHCH₂C*H*₂), 1.41 (m, 11H, C(C*H*₃)₃, CO(CH₂)₂C*H*₂). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 171.2, 156.1, 138.8, 138.2, 129.3, 126.1, 122.4, 90.4, 79.1, 40.4, 37.7, 29.9, 28.5, 26.4, 25.2. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₂₅IN₂O₃Na⁺: 455.0802, found: 455.0806.

tert-Butyl {5-[(2-iodo-5-methylphenyl)amino]-5-oxopentyl}carbamate (10d-Boc)

white solid (0.843 g, 98%). **TLC**: $R_f=0.24$ (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H, CON*H*Ph), 7.60 (d, J = 8.0 Hz, 1H, Ar*H*), 7.42 (s, 1H, Ar*H*), 6.66 (d, J = 8.0 Hz, 1H, Ar*H*), 4.66 (s, 1H, OCON*H*), 3.16 (m, 2H, N*H*CH₂), 2.43 (t, J = 7.2 Hz, 2H, COC*H*₂), 2.30 (s, 3H, PhCH₃), 1.77 (m, 2H, COCH₂CH₂), 1.59 (m, 2H, NHCH₂CH₂), 1.42 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.1, 156.2, 139.6, 138.4, 137.9, 127.2, 123.2, 86.4, 79.3, 40.1, 37.3, 29.6, 28.5, 22.6, 21.3. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₂₅IN₂O₃Na⁺: 455.0802, found: 455.0804.

tert-Butyl {5-[(2-iodo-4-methylphenyl)amino]-5-oxopentyl}carbamate (10e-Boc)

white solid (0.826 g, 96%). **TLC**: $R_f=0.20$ (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.4 Hz, 1H, Ar*H*), 7.59 (s, 1H, CON*H*Ph), 7.39 (s, 1H, Ar*H*), 7.12 (d, J = 8.4 Hz, 1H, Ar*H*), 4.65 (s, 1H, OCON*H*), 3.16 (m, 2H, NHC*H*₂), 2.43 (t, J = 7.2 Hz, 2H, COC*H*₂), 2.26 (s, 3H, PhC*H*₃), 1.76 (m, 2H, COCH₂C*H*₂), 1.59 (m, 2H, NHCH₂C*H*₂), 1.42 (s, 9H, C(C*H*₃)₃). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 171.1, 156.2, 139.1, 136.2, 135.8, 130.0, 122.4, 90.7, 79.3, 40.1, 37.2, 29.6, 28.5, 22.7, 20.4. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₂₅IN₂O₃Na⁺: 455.0802, found: 455.0806.

tert-Butyl {5-[(2-iodo-3-methylphenyl)amino]-5-oxopentyl}carbamate (10f-Boc)

white solid (0.863 g, 99%). **TLC**: $R_f=0.19$ (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (d, J = 8.0 Hz, 1H, Ar*H*), 7.62 (s, 1H, CON*H*Ph), 7.21 (t, J = 8.0 Hz, 1H, Ar*H*), 7.02 (d, J = 6.8 Hz, 1H, Ar*H*), 4.64 (s, 1H, OCON*H*), 3.17 (m, 2H, NHC*H*₂), 2.47 (m, 5H, COC*H*₂, PhC*H*₃), 1.79 (m, 2H, COCH₂C*H*₂), 1.60 (m, 2H, NHCH₂C*H*₂), 1.43 (s, 9H, C(C*H*₃)₃). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 171.1, 156.2, 142.4, 138.4, 128.6, 126.0, 119.8, 98.1, 79.3,

40.1, 37.4, 29.8, 29.7, 28.6, 22.7. **HRMS** (ESI) m/z: $[M+Na]^+$ calculated for $C_{17}H_{25}IN_2O_3Na^+$: 455.0802, found: 455.0805.

tert-Butyl (5-{[2-iodo-5-(trifluoromethyl)phenyl]amino}-5-oxopentyl)carbamate (10g-Boc)

white solid (0.397 g, 94%). **TLC**: R_f =0.35 (PE/EA=3/1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.53 (s, 1H, CON*H*Ph), 7.89 (d, *J* = 5.6 Hz, 1H, Ar*H*), 7.60 (s, 1H, Ar*H*), 7.08 (d, *J* = 5.2 Hz, 1H, Ar*H*), 4.64 (s, 1H, OCON*H*), 3.17 (m, 2H, NHC*H*₂), 2.49 (t, *J* = 4.8 Hz, 2H, COC*H*₂), 1.83-1.76 (m, 2H, COCH₂C*H*₂), 1.59 (m, 2H, NHCH₂C*H*₂), 1.42 (s, 9H, C(C*H*₃)₃). ¹³C NMR (150 MHz, Chloroform-d) δ 171.3, 156.2, 139.4, 139.0, 131.9 (q, *J* = 33 Hz), 123.7 (q, *J* = 273 Hz), 122.2, 118.7, 93.8, 79.4, 40.0, 37.2, 29.6, 28.6, 22.5. ¹⁹F NMR (565 MHz, Chloroform-d) δ -63.01. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₂₃F₃IN₂O₃⁺: 487.0700, found: 487.0702.

tert-Butyl {5-[(4-iodopyridin-3-yl)amino]-5-oxopentyl}carbamate (10h-Boc)

yellow oil (0.560 g, 69%). **TLC:** $R_f=0.16$ (PE/EA=1/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.43 (s, 1H, CON*H*Ph), 8.25 (d, J = 5.2 Hz, 1H, Ar*H*), 7.72 (s, 1H, Ar*H*), 7.31 (d, J = 5.2 Hz, 1H, Ar*H*), 4.72 (s, 1H, OCON*H*), 3.16 (m, 2H, NHC*H*₂), 2.49 (t, J = 7.6 Hz, 2H, CON*H*₂), 1.77 (m, 2H, COCH₂C*H*₂), 1.57 (m, 2H, NHCH₂C*H*₂), 1.41 (s, 9H, C(C*H*₃)₃). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 171.3, 156.3, 145.5, 144.3, 132.1, 124.0, 79.4, 60.5, 39.8, 36.7, 29.6, 28.5, 22.5. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₂₂IN₃NaO₃⁺: 442.0598, found: 442.0595.

tert-Butyl {5-[(3-iodopyridin-4-yl)amino]-5-oxopentyl}carbamate (10i-Boc)

white solid (0.757 g, 91%). **TLC:** $R_f=0.17$ (PE/EA=3/1). ¹H NMR (400 MHz, Chloroform-d) δ 8.78 (s, 1H, CON*H*Ph), 8.37 (d, J = 5.2 Hz, 1H, Ar*H*), 8.28 (d, J = 5.6 Hz, 1H, Ar*H*), 7.64 (s, 1H, Ar*H*), 4.69 (s, 1H, OCON*H*), 3.15 (m, 2H, NHCH₂), 2.49 (t, J = 8.0 Hz, 2H, COCH₂),

1.76 (m, 2H, COCH₂CH₂), 1.57 (m, 2H, NHCH₂CH₂), 1.41 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, Chloroform-d) δ 171.6, 157.4, 156.2, 150.4, 144.9, 115.2, 87.5, 79.3, 39.9, 37.4, 29.6, 28.5, 22.3. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₅H₂₃IN₂O₃ ⁺: 420.0779, found: 420.0788.

tert-Butyl {5-[(2-iodopyridin-3-yl)amino]-5-oxopentyl}carbamate (10j-Boc)

white solid (0.793 g, 95%). **TLC**: $R_f=0.10$ (PE/EA=3/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.41 (d, J = 8.4 Hz, 1H, Ar*H*), 8.08 (m, 1H, Ar*H*), 7.56 (s, 1H, CON*H*Ph), 7.21 (m, 1H, Ar*H*), 4.65 (s, 1H, OCON*H*), 3.17 (m, 2H, NHC*H*₂), 2.48 (t, J = 7.6 Hz, 2H, COC*H*₂), 1.79 (m, 2H, COCH₂C*H*₂), 1.62-1.55 (m, 2H, NHCH₂C*H*₂), 1.42 (s, 9H, C(C*H*₃)₃). ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.5, 156.2, 146.0, 136.4, 128.4, 123.6, 114.6, 79.4, 40.0, 37.3, 29.7, 28.5, 22.5. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₅H₂₃IN₃O₃⁺: 420.0779, found: 420.0783.

tert-Butyl (2-{2-[(2-iodophenyl)amino]-2-oxoethoxy}ethyl)carbamate (10k-Boc)

colorless oil (0.660 g, 79%). **TLC**: $R_f=0.18$ (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.78 (s, 1H, CON*H*Ph), 8.32 (d, J = 8.0 Hz, 1H, Ar*H*), 7.77 (d, J = 8.0 Hz, 1H, Ar*H*), 7.37-7.31 (m, 1H, Ar*H*), 6.88-6.81 (m, 1H, Ar*H*), 5.04 (s, 1H, OCON*H*), 4.11 (s, 2H, OCH₂CO), 3.70 (t, J = 5.2 Hz, 2H, NHCH₂CH₂), 3.45 (m, 2H, NHCH₂CH₂), 1.42 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.6, 155.9, 138.9, 137.7, 129.4, 126.2, 121.4, 89.5, 79.7, 71.1, 70.8, 40.5, 28.5. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₂₁IN₂O₄Na⁺: 443.0438, found: 443.0445.

tert-Butyl [2-({2-[(2-iodophenyl)amino]-2-oxoethyl}thio)ethyl]carbamate (10l-Boc)

yellow oil (0.784 g, 90%). **TLC**: $R_f=0.19$ (PE/EA=10/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.00 (s, 1H, CON*H*Ph), 8.09 (d, J = 8.4 Hz, 1H, Ar*H*), 7.69 (d, J = 8.0 Hz, 1H, Ar*H*), 7.29-7.19 (m, 1H, Ar*H*), 6.76 (m, 1H, Ar*H*), 5.11 (s, 1H, OCON*H*), 3.34 (s, 2H, SC*H*₂CO), 3.29 (m, 2H, NHC*H*₂CH₂), 2.71 (t, J = 6.4 Hz, 2H, NHC*H*₂C*H*₂), 1.33 (s, 9H, C(C*H*₃)₃). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 167.0, 155.7, 138.9, 137.8, 129.0, 126.3, 122.0, 90.0, 79.3, 39.4, 36.9, 33.4, 28.3. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₁₅H₂₁IN₂O₃SNa⁺: 437.0390, found: 437.0390 **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₂₁IN₂O₃SNa⁺: 459.0210, found: 459.0216.

Benzyl

{2-[(tert-butoxycarbonyl)amino]ethyl}{2-[(2-iodophenyl)amino]-2-oxoethyl}carbamate (10m-Boc)

white solid (0.703 g, 65%). **TLC**: $R_f=0.21$ (PE/EA=3/1). ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.17 (d, J = 12.6 Hz, 1H, Ar*H*), 8.08-8.00 (brs, 1H,PhN*H*), 7.74 (dd, J = 12.0, 2.4 Hz, 1*H*, Ar*H*), 7.33 (m, 6H, Ar*H*), 6.85 (t, J = 8.4 Hz, 1H, Ar*H*), 5.19 (s, 2H, COC*H*₂N), 5.07 (brs, 1H, CON*H*CH₂), 4.11 (s, 2H, C*H*₂Ph), 3.58-3.36 (m, 4H, NC*H*₂C*H*₂NH), 1.40 (s, 9H, OC(C*H*₃)₃). ¹³C **NMR** (150 MHz, Chloroform-*d*) δ 167.6, 156.9, 156.2, 138.9, 137.8, 136.1, 129.4, 128.7, 128.3, 126.5, 122.3, 122.0, 90.2, 79.6, 68.2, 53.0, 48.9, 39.3, 28.5. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₈IN₃O₅Na⁺: 576.0966, found: 576.0970.

tert-Butyl (2-{2-[(2-iodophenyl)amino]-2-oxoethyl}benzyl)carbamate (10n-Boc)

white solid (0.895 g, 97%). **TLC**: $R_f=0.41$ (PE/EA=4/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 7.2 Hz, 1H, Ar*H*), 7.67 (d, J = 8.0 Hz, 1H, Ar*H*), 7.57 (s, 1H, CON*H*Ph), 7.43-7.38 (m, 1H, Ar*H*), 7.36-7.27 (m, 4H, Ar*H*), 6.79 (t, J = 7.6 Hz, 1H, Ar*H*), 5.09 (s, 1H, OCON*H*), 4.37 (d, J = 6.0 Hz, 2H, NHC*H*₂), 3.83 (s, 2H, COC*H*₂), 1.37 (s, 9H, C(C*H*₃)₃). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 169.2, 155.8, 138.8, 138.1, 137.9, 132.6, 131.6, 130.1, 129.1, 128.6, 128.5, 126.2, 122.1, 89.8, 79.6, 42.8, 42.1, 28.4. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₂₀H₂₄IN₂O₃⁺: 467.0826, found: 467.0830.

tert-Butyl {2-[(2-iodophenyl)carbamoyl]phenethyl}carbamate (10o-Boc)

white solid (0.237 g, 5%). **TLC:** $R_f=0.40$ (PE/EA=3/1). ¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 8.2 Hz, 1H, ArH), 7.90 (s, 1H, PhNHCO), 7.83 (d, J = 7.9 Hz, 1H, ArH), 7.64 (d, J = 7.5 Hz, 1H, ArH), 7.49-7.34 (m, 4H, ArH), 6.92 (t, J = 7.5 Hz, 1H, ArH), 5.27 (s, 1H, NHBoc), 3.47 (m, 2H, CH₂NHBoc), 3.04 (t, J = 6.8 Hz, 2H, CH₂CH₂NHBoc), 1.38 (s, 9H, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 156.3, 139.1, 138.9, 138.4, 136.1, 131.6, 131.1, 129.5, 127.0, 126.9, 126.7, 122.5, 90.9, 79.1, 42.3, 33.3, 28.5. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₀H₂₄IN₂O₃⁺: 467.0826, found: 467.0823.

tert-Butyl (2-{2-[(2-iodophenyl)amino]-2-oxoethyl}phenyl)carbamate (10p-Boc)

white solid (0.257 g, 16%). **TLC:** $R_f=0.50$ (PE/EA=4/1). ¹**H NMR** (600 MHz, CDCl₃) δ 8.13 (d, J = 7.6 Hz, 1H, ArH), 7.83 (d, J = 8.1 Hz, 1H, ArH), 7.74 (d, J = 8.0 Hz, 1H, ArH), 7.70 (s, 1H, NHCO), 7.64 (s, 1H, NHCO), 7.36-7.28 (m, 3H, ArH), 7.12 (t, J = 7.4 Hz, 1H, ArH), 6.85 (t, J = 8.1 Hz, 1H, ArH), 3.75 (s, 2H, CH₂CO), 1.51 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 153.7, 139.0, 137.8, 137.6, 130.8, 129.4, 128.9, 126.7, 125.6, 124.7, 124.0, 122.5, 90.5, 80.6, 42.3, 28.5. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₁₉H₂₁IN₂NaO₃⁺: 475.0489, found: 475.0487.

tert-Butyl (2-{3-[(2-iodophenyl)amino]-3-oxopropyl}-4-methoxyphenyl)carbamate (10q-Boc)

white solid (3.272 g, 68%). **TLC**: $R_f=0.33$ (PE/EA=3/1). ¹**H** NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.2 Hz, 1H, ArH), 7.75 (d, J = 7.9 Hz, 1H, ArH), 7.47-7.38 (m, 2H, NHCO, ArH), 7.32 (t, J = 7.8 Hz, 1H, ArH), 7.08 (s, 1H, NHCO), 6.83 (t, J = 7.6 Hz, 1H, ArH), 6.77-6.73 (m, 2H, ArH), 3.77 (s, 3H, OCH₃), 2.99 (t, J = 7.0 Hz, 2H, CH₂Ph), 2.79 (t, J = 7.0 Hz, 2H, COCH₂CH₂), 1.52 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 157.2, 154.8,

138.9, 138.1, 135.2, 129.3, 129.0, 126.9, 126.4, 122.6, 115.1, 112.4, 90.5, 80.1, 55.6, 28.3, 28.6, 26.4. **HRMS** (ESI) m/z: $[M+H]^+$ calculated for $C_{21}H_{26}IN_2O_4$ ⁺: 497.0932, found: 497.0939.

tert-Butyl (2-{3-[(2-iodophenyl)amino]-3-oxopropyl}-4-nitrophenyl)carbamate (10r-Boc)

light yellow solid (0.605 g, 52%). **TLC:** $R_f=0.42$ (PE/EA=3/1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H, CON*H*), 8.18-8.05 (m, 4H, Ar*H*), 7.77 (d, *J* = 7.9 Hz, 1H, Ar*H*), 7.43 (s, 1H, CON*H*), 7.38-7.32 (m, 1H, Ar*H*), 6.87 (t, *J* = 7.6 Hz, 1H, Ar*H*), 3.07 (t, *J* = 6.4 Hz, 2H, CH₂Ph), 2.92 (t, *J* = 6.4 Hz, 2H, COCH₂CH₂), 1.56 (s, 9H, C(CH₃)₃). ¹³C NMR (150 MHz, CDCl₃) δ 170.7, 153.1, 143.3, 142.9, 139.1, 137.6, 130.5, 129.4, 126.7, 125.4, 123.3, 122.4, 121.3, 90.4, 81.4, 37.7, 28.4, 25.3. **HRMS** (ESI) m/z: [M+H]⁺ calculated for C₂₀H₂₃IN₃O₅⁺: 512.0677, found: 512.0682.

tert-Butyl (2-{3-[(2-iodophenyl)amino]-3-oxopropyl}phenyl)carbamate (10s-Boc)

light yellow solid (0.849 g, 59%). **TLC:** $R_f=0.38$ (PE/EA=4/1). ¹**H** NMR (400 MHz, CDCl₃) $\delta 8.14$ (d, J = 8.2 Hz, 1H, Ar*H*), 7.75 (d, J = 7.6 Hz, 1H, Ar*H*), 7.69 (d, J = 8.2 Hz, 1H, Ar*H*), 7.46 (s, 1H, CON*H*), 7.38 (s, 1H, CON*H*), 7.33 (t, J = 8.4 Hz, 1H, Ar*H*), 7.23-7.17 (m, 2H, Ar*H*), 7.07 (t, J = 7.6 Hz, 1H, Ar*H*), 6.84 (t, J = 7.6 Hz, 1H, Ar*H*), 3.02 (t, J = 6.8 Hz, 2H, CH₂Ph), 2.81 (t, J = 6.8 Hz, 2H, COCH₂CH₂), 1.53 (s, 9H, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 154.1, 138.9, 138.0, 136.3, 131.8, 129.6, 129.4, 127.4, 126.4, 124.7, 123.9, 122.5, 90.3, 80.3, 38.3, 28.6, 25.9. **HRMS** (ESI) m/z: [M+Na]⁺ calculated for C₂₀H₂₃IN₂NaO₃ ⁺: 489.0646, found: 489.0647.

Representative procedure for the synthesis of 13

To a flame dried round bottom flask containing **10-Boc** (0.50 mmol, 1.0 eq.) was added DCM (5 mL), Pd(OAc)₂ (0.011 g, 0.05 mmol, 0.10 eq.), XantPhos (0.058 g, 0.10 mmol, 0.10 eq.) and TEA (0.20 mL, 1.25 mmol, 2.50 eq.). The reaction was carried out under CO atmosphere (CO balloon, 1 atm.) at 40 °C. After stirring at 40 °C for 1.5 h, the CO balloon was removed and TFA (1 mL, TFA/DCM=20/100) was added to the reaction mixture, which was allowed to stir at room temperature for another 2 h until completion of reaction as indicated by monitoring of thin layer chromatography. Sat. NaHCO₃ aq. (30 mL) was added to quench the reaction. The aqueous phase was extracted with EA (30 mL×3). The combined organic phase

was washed with water (100 mL×1) and brine (100 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford the desired compound **13**.

6,7,8,9-Tetrahydro-11H-pyrido[2,1-b]quinazolin-11-one (13a)

white solid (0.84 g, 84%). **TLC**: R_f =0.37 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.25 (d, J = 8.0 Hz, 1H, Ar*H*), 7.73-7.67 (m, 1H, Ar*H*), 7.59 (d, J = 8.4 Hz, 1H, Ar*H*), 7.41 (m, 1H, Ar*H*), 4.07 (t, J = 6.2 Hz, 2H, NC*H*₂), 2.99 (t, J = 6.8 Hz, 2H, N(CH₂)₃C*H*₂), 2.01 (m, 2H, NCH₂C*H*₂), 1.94 (m, 2H, N(CH₂)₂C*H*₂). ¹³C **NMR** (150 MHz, Chloroform-d) δ 162.3, 155.0, 147.5, 134.3, 126.8, 126.5, 126.2, 120.5, 42.5, 32.1, 22.2, 19.5. **ESI-MS** (m/z): 201.06 [M+H]⁺

Known Compound. Data consistent with the previous report.⁸

2,3-Dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (13b)

white solid (0.066 g, 71%). **TLC**: $R_f=0.45$ (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 8.29 (d, J = 8.0 Hz, 1H, Ar*H*), 7.76-7.70 (m, 1H, Ar*H*), 7.65 (d, J = 8.4 Hz, 1H, Ar*H*), 7.49-7.42 (m, 1H, Ar*H*), 4.24-4.19 (m, 2H, N(CH₂)₂C*H*₂), 3.19 (t, J = 8.0 Hz, 2H, NCH₂), 2.33-2.25 (m, 2H, NCH₂C*H*₂). **ESI-MS** (m/z): 187.05 [M+H]⁺ Known Compound. Data consistent with the previous report.⁹ *3-Methyl-6,7,8,9-tetrahydro-11H-pyrido*[2,1-*b*]*quinazolin-11-one* (13*d*)

light yellow solid (0.092 g, 86%). **TLC:** $R_f=0.19$ (DCM/MeOH=20/1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (d, J = 8.0 Hz, 1H, Ar*H*), 7.38 (s, 1H, Ar*H*), 7.23 (d, J = 8.0 Hz, 1H, Ar*H*), 4.06 (t, J = 6.0 Hz, 2H, NC*H*₂), 2.98 (t, J = 6.8 Hz, 2H, N(CH₂)₃C*H*₂), 2.47 (s, 3H, C*H*₃Ph), 2.04-1.97 (m, 2H, NCH₂C*H*₂), 1.96-1.90 (m, 2H, N(CH₂)₂C*H*₂). **ESI-MS** (m/z): 215.12 [M+H]⁺

Known Compound. Data consistent with the previous report.¹⁰

2-Methyl-6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-one (13e)

light yellow solid (0.088 g, 83%). **TLC:** $R_f=0.25$ (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H, ArH), 7.53 (m, 1H, ArH), 7.50 (d, J = 8.0 Hz, 1H, ArH), 4.08 (t, J = 6.4 Hz, 2H, NCH₂), 2.98 (t, J = 6.8 Hz, 2H, N(CH₂)₃CH₂), 2.47 (s, 3H, CH₃Ph), 2.01 (m, 2H, NCH₂CH₂), 1.97-1.91 (m, 2H, N(CH₂)₂CH₂). **ESI-MS** (m/z): 215.14 [M+H]⁺ Known Compound. Data consistent with the previous report.¹¹ *3-(Trifluoromethyl)-6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-one* (*13g*)

white solid (0.071 g, 53%). **TLC**: $R_f=0.19$ (DCM/MeOH=20/1). ¹**H** NMR (600 MHz, Chloroform-d) δ 8.33 (d, J = 8.4 Hz, 1H, Ar*H*), 7.88 (s, 1H, Ar*H*), 7.60 (d, J = 8.4 Hz, 1H, Ar*H*), 4.07 (t, J = 6.6 Hz, 2H, NC*H*₂), 3.03 (t, J = 6.6 Hz, 2H, N(CH₂)₃C*H*₂), 2.03 (m, 2H, NCH₂C*H*₂), 1.96 (m, 2H, N(CH₂)₂C*H*₂). ¹³**C** NMR (150 MHz, Chloroform-d) δ 161.3, 157.0, 146.8, 136.0 (q, J = 33 Hz), 128.0, 123.5 (q, J = 273 Hz), 123.7 (q, J = 4 Hz), 122.6, 122.3(q, J = 4 Hz), 42.9, 31.7, 22.0, 19.2. ¹⁹**F** NMR (565 MHz, Chloroform-d) δ -63.29. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₃H₁₂F₃N₂O⁺: 269.0896, found: 269.0897.

7,8,9,10-Tetrahydro-5H-dipyrido[1,2-a:3',4'-d]pyrimidin-5-one (13h)

white solid (0.072 g, 72%). **TLC**: $R_f=0.51$ (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.06 (s, 1H, Ar*H*), 8.63 (d, *J* = 5.2 Hz, 1H, Ar*H*), 8.02 (d, *J* = 5.2 Hz, 1H, Ar*H*), 4.09 (t, *J* = 6.4 Hz, 2H, NCH₂), 3.05 (t, *J* = 6.8 Hz, 2H, N(CH₂)₃CH₂), 2.04 (m, 2H, NCH₂CH₂), 2.00-1.95 (m, 2H, N(CH₂)₂CH₂). **ESI-MS** (m/z): 202.14 [M+H]⁺ Known Compound. Data consistent with the previous report.¹² *6*,*7*,*8*,*9*-*Tetrahydro-11H-dipyrido*[*1*,*2-a:4'*,*3'-d*]*pyrimidin-11-one* (*13i*)

white solid (0.085 g, 85%). **TLC**: $R_f=0.37$ (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-d) δ 9.47 (s, 1H, Ar*H*), 8.78 (d, *J* = 5.6 Hz, 1H, Ar*H*), 7.41 (d, *J* = 5.6 Hz, 1H, Ar*H*), 4.08 (t, *J* = 6.4 Hz, 2H, NCH₂), 3.02 (t, *J* = 6.8 Hz, 2H, N(CH₂)₃CH₂), 2.08-2.01 (m, 2H, NCH₂CH₂), 1.97 (m, 2H, N(CH₂)₂CH₂). **ESI-MS** (m/z): 202.15 [M+H]⁺ Known Compound. Data consistent with the previous report.¹³ *3,4-Dihydro-[1,4]oxazino[3,4-b]quinazolin-6(1H)-one (13k)*

СО Pd(OAc)₂ `Вос Boc **XantPhos** TEA DCM 40 °C 10k-Boc 1.5 h NH_2 20 % TFA Ô DCM റ rt Ο 2 h 13k

light yellow solid (0.053 g, 52%). **TLC:** R_f =0.36 (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.28 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.74 (m, 1H, Ar*H*), 7.61 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.49-7.44 (m, 1H, Ar*H*), 4.77 (s, 2H, OCH₂C), 4.15-4.12 (m, 2H, NCH₂CH₂), 4.09-4.05 (m, 2H, NCH₂). **ESI-MS** (m/z): 203.10 [M+H]⁺

Known Compound. Data consistent with the previous report.¹⁴ *3,4-Dihydro-[1,4]thiazino[3,4-b]quinazolin-6(1H)-one (13l)*

colorless oil (0.010 g, 10%). **TLC:** $R_f=0.55$ (DCM/MeOH=20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.29 (d, J = 8.4 Hz, 1H, Ar*H*), 7.79-7.73 (m, 1H, Ar*H*), 7.65 (d, J = 8.0 Hz, 1H, Ar*H*), 7.51-7.46 (m, 1H, Ar*H*), 4.54-4.51 (m, 2H, NCH₂), 3.84 (s, 2H, SCH₂C), 3.13-3.09 (m, 2H, NCH₂CH₂). **ESI-MS** (m/z): 219.10 [M+H]⁺

Known Compound. Data consistent with the previous report.¹⁵

Benzyl 6-oxo-1,3,4,6-tetrahydro-2H-pyrazino[2,1-b]quinazoline-2-carboxylate (13m)

white solid (0.063 g, 38%). **TLC**: $R_f=0.33$ (DCM/MeOH=20/1). ¹**H** NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.0 Hz, 1H, Ar*H*), 7.79-7.71 (m, 1H, Ar*H*), 7.62 (m, 1H, Ar*H*), 7.47 (t, J = 7.6 Hz, 1H, Ar*H*), 7.41-7.32 (m, 5H, Ar*H*), 5.20 (s, 2H, OCH₂), 4.75 (s, 2H, NCH₂C), 4.23 (t, J = 5.6 Hz, 2H, PhCONCH₂), 3.86 (t, J = 6.0 Hz, 2H, PhCONCH₂CH₂). **ESI-MS** (m/z): 336.41 [M+H]⁺

6,11-Dihydro-13H-isoquinolino[3,2-b]quinazolin-13-one (13n)

white solid (0.105 g, 85%). **TLC**: $R_f=0.37$ (DCM/MeOH=20/1). ¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.31 (d, J = 8.4 Hz, 1H, Ar*H*), 7.75 (t, J = 8.4 Hz, 1H, Ar*H*), 7.67 (d, J = 8.4 Hz, 1H, Ar*H*), 7.47 (t, J = 7.8 Hz, 1H, Ar*H*), 7.41-7.31 (m, 4H, Ar*H*), 5.29 (s, 2H, NCH₂), 4.17 (s, 2H, NCCH₂). **ESI-MS** (m/z): 249.16 [M+H]⁺ Known Compound. Data consistent with the previous report.¹⁶

5,6-Dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (130)

white solid (0.107 g, 86%). **TLC**: Rf=0.53 (DCM/MeOH=40/1). ¹**H** NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 7.7 Hz, 1H, ArH), 8.32 (d, J = 7.9 Hz, 1H, ArH), 7.80-7.73 (m, 2H, ArH), 7.51-7.42 (m, 3H, ArH), 7.30 (d, J = 7.4 Hz, 1H, ArH), 4.43 (t, J = 6.5 Hz, 2H, CH₂N), 3.11 (t, J = 6.5 Hz, 2H, CH₂Ph). **HRMS** (ESI) m/z: [M+H]⁺calculated for C₁₆H₁₃N₂O⁺: 249.1022, found: 249.1023.

Known Compound. Data consistent with the previous report.⁹ *Indolo[2,1-b]quinazolin-12(6H)-one (13p)*

light green solid (0.058 g, 50%). **TLC:** Rf=0.45 (DCM/EA=10/1). ¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (m, 1H, Ar*H*), 8.44 (m, 1H, Ar*H*), 7.80-7.74 (m, 2H, Ar*H*), 7.58-7.44 (m, 3H, Ar*H*), 7.34 (m, 1H, Ar*H*), 4.27 (s, 2H, C*H*₂). **ESI-MS** (m/z): 235.1 [M+H]⁺ Known Compound. Data consistent with the previous report.¹⁷

Synthesis of 13q/r

To a flame dried round bottom flask containing **10-Boc** (0.50 mmol, 1.0 eq.) was added DCM (5 mL), $Pd(OAc)_2$ (0.011 g, 0.05 mmol, 0.10 eq.), XantPhos (0.058 g, 0.10 mmol, 0.10 eq.) and TEA (0.20 mL, 1.25 mmol, 2.50 eq.). The reaction was carried out under CO atmosphere (CO balloon, 1 atm.) at 40 °C. After stirring at 40 °C for 1.5 h, the CO balloon was removed and TFA (1 mL, TFA/DCM=20/100) was added to the reaction mixture, which was allowed to stir at 40 °C for another 12 h. Sat. NaHCO₃ aq. (30 mL) was added to quench the reaction. The aqueous phase was extracted with EA (30 mL×3). The combined organic phase was washed with water (100 mL×1) and brine (100 mL×1), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue obtained was purified by silica gel chromatography to afford the desired compound **13**.

3-Methoxy-5,6-dihydro-12H-quinolino[2,1-b]quinazolin-12-one (13q)

light red solid (0.103 g, 74%). **TLC**: $R_f=0.43$ (DCM/MeOH=20/1). ¹**H** NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 8.0 Hz, 1H, Ar*H*), 8.17 (d, J = 9.0 Hz, 1H, Ar*H*), 7.74 (t, J = 7.6 Hz, 1H, Ar*H*), 7.63 (d, J = 8.0 Hz, 1H, Ar*H*), 7.47 (t, J = 7.6 Hz, 1H, Ar*H*), 6.87 (dd, J = 9.0, 2.9 Hz, 1H, Ar*H*), 6.80 (d, J = 2.9 Hz, 1H, Ar*H*), 3.85 (s, 3H, OC*H*₃), 3.09 (m, 2H, C*H*₂Ph), 2.93 (m, 2H, C*H*₂CH₂Ph). ¹³**C** NMR (150 MHz, CDCl₃) δ 161.0, 158.0, 154.8, 146.4, 134.5, 133.7, 127.7, 127.6, 126.8, 126.7, 125.4, 122.1, 113.1, 111.7, 55.6, 33.9, 26.3. HRMS (ESI) m/z: [M+H]⁺calculated for C₁₇H₁₅N₂O₂⁺: 279.1128, found: 279.1130.

3-Nitro-5,6-dihydro-12H-quinolino[2,1-b]quinazolin-12-one (13r)

white solid (0.033 g, 22%). **TLC**: R_f =0.69 (DCM/MeOH=25/1). ¹**H** NMR (600 MHz, CDCl₃) δ 8.44 (d, *J* = 9.0 Hz, 1H, Ar*H*), 8.36 (d, *J* = 7.9 Hz, 1H, Ar*H*), 8.24-8.19 (m, 2H, Ar*H*), 7.81 (t, *J* = 7.6 Hz, 1H, Ar*H*), 7.67 (d, *J* = 8.1 Hz, 1H, Ar*H*), 7.53 (t, *J* = 7.0 Hz, 1H, Ar*H*), 3.15 (m, 2H, CH₂Ph), 3.09 (m, 2H, CH₂CH₂Ph). ¹³C NMR (150 MHz, CDCl₃) δ 160.9, 153.3, 146.1, 145.5, 139.8, 135.4, 133.6, 127.9, 127.5, 127.1, 125.2, 123.0, 122.5, 121.8, 33.3, 26.0. **HRMS** (ESI) m/z: [M+H]⁺calculated for C₁₆H₁₂N₃O₃⁺: 294.0873, found: 294.0875.

Reference

- 1 S. B. Baravkar, M. A. Wagh, D. Paul, M. Santra and G. J. Sanjayan, *Tetrahedron Letters*, 2018, **59**, 3473–3476.
- 2 C. Proulx, É. Picard, D. Boeglin, P. Pohankova, S. Chemtob, H. Ong and W. D. Lubell, *J. Med. Chem.*, 2012, **55**, 6502–6511.
- 3 Y. Cui, M. Zhang, H. Xu, T. Zhang, S. Zhang, X. Zhao, P. Jiang, J. Li, B. Ye, Y. Sun, M. Wang, Y. Deng, Q. Meng, Y. Liu, Q. Fu, J. Lin, L. Wang and Y. Chen, *J. Med. Chem.*, 2022, **65**, 2971–2987.
- 4 M.-C. Tseng and Y.-H. Chu, *Tetrahedron*, 2008, **64**, 9515–9520.
- 5 M.-C. Tseng, H.-Y. Yang and Y.-H. Chu, Org. Biomol. Chem., 2009, 8, 419–427.
- 6 F. Hernández, V. Morales, F. L. Buenadicha, M. Söllhuber and C. Avendaño, *Tetrahedron: Asymmetry*, 2004, **15**, 3045–3058.
- 7 F. Hernández, F. L. Buenadicha, C. Avendaño and M. Söllhuber, *Tetrahedron: Asymmetry*, 2002, 12, 3387–3398.
- 8 A. M. Ghouse and S. M. Akondi, Org. Biomol. Chem., 2023, 21, 5351–5355.
- 9 X. Chen, L. Jin, Y. Wang, H. Yang, Z. Le and Z. Xie, Org. Biomol. Chem., 2023, 21, 3863–3870.
- 10 A. Kamal, N. Markandeya, N. Shankaraiah, C. R. Reddy, S. Prabhakar, C. S. Reddy, M. N. Eberlin and L. Silva Santos, *Chemistry A European Journal*, 2009, **15**, 7215–7224.
- 11 K. C. Jahng, S. I. Kim, D. H. Kim, C. S. Seo, J.-K. Son, S. H. Lee, E. S. Lee and Y. Jahng, *Chemical and Pharmaceutical Bulletin*, 2008, **56**, 607–609.
- 12 A. D. Dunn, K. I. Kinnear and R. Norrie, Zeitschrift für Chemie, 1986, 26, 290–292.
- 13 I. Hermecz, J. Kökösi, B. Podányi and Z. Liko, Tetrahedron, 1996, 52, 7789–7796.
- 14 L. Ôrfi, J. Kökösi, G. Szász, I. Kövesdi, M. Mák, I. Teplán and G. Kéri, *Bioorganic & Medicinal Chemistry*, 1996, **4**, 547–551.
- 15 A. Dunn and R. Norrie, ZEITSCHRIFT FUR CHEMIE, 1990, 30, 211–212.
- 16 L. M. Potikha, Chem Heterocycl Compd, 2007, 43, 759–768.
- 17 C. Tsukano, M. Okuno, H. Nishiguchi and Y. Takemoto, *Advanced Synthesis & Catalysis*, 2014, **356**, 1533–1538.

¹H and ¹³C NMR Spectra of Compounds

¹H NMR spectrum of compound 3a-cy (600 MHz, DMSO-d₆, 95 °C)

 ^{13}C NMR spectrum of compound 3a-cy (150 MHz, DMSO-d_6, 25 °C)

¹³C NMR spectrum of compound 3a-Fmoc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 4a (600 MHz, CDCl₃)

¹³C NMR spectrum of compound 4a (150 MHz, CDCl₃)

¹H NMR spectrum of compound 5a-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 5a-Cy (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 4b (150 MHz, CDCl₃)

¹³C NMR spectrum of compound 5b-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound of 3c-Fmoc (600 MHz, DMSO-d₆)

¹³C NMR spectrum of compound 3c-Fmoc (150 MHz, DMSO-d₆)

¹H NMR spectrum of compound 4c (600 MHz, CDCl₃)2

¹³C NMR spectrum of compound 4c (150 MHz, CDCl₃)

¹H NMR spectrum of compound 5c-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 5d-Boc (400 MHz, CDCl₃)

S-52

¹H NMR spectrum of compound 5e-Boc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 5e-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 5g-Boc (600 MHz, CDCl₃)

¹³C NMR spectrum of compound 5g-Boc (150 MHz, CDCl₃)

¹³C NMR spectrum of compound 3h-Fmoc (150 MHz, CDCl₃)

¹³C NMR spectrum of compound 5h-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 5i-Boc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 5i-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 3j-Fmoc (400 MHz, CDCl₃)

 $^{13}\mathrm{C}$ NMR spectrum of compound 3j-Fmoc (150 MHz, CDCl_3)

¹H NMR spectrum of compound 4j (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 4j (150 MHz, CDCl₃)

¹H NMR spectrum of compound 5j-Boc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 5j-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 4k (400 MHz, CDCl₃)

¹H NMR spectrum of compound 5k-Boc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 5k-Boc (150MHz, CDCl₃)

¹H NMR spectrum of compound 2I-Fmoc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 3I-Fmoc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3I-Fmoc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 4I (400 MHz, CDCl₃)

¹H NMR spectrum of compound 5I-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 5m-Boc (600 MHz, CDCl₃)

¹H NMR spectrum of compound 3n-Fmoc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3n-Fmoc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 4n (400 MHz, CDCl₃)

¹H NMR spectrum of compound 5n-Boc (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 8a (150 MHz, CDCl₃)

¹H NMR spectrum of compound 8b (400 MHz, CDCl₃)

¹H NMR spectrum of compound 8c (400 MHz, CDCl₃)

¹H NMR spectrum of compound 8d (400 MHz, CDCl₃)

¹H NMR spectrum of compound 8e(400 MHz, CDCl₃)

¹H NMR spectrum of compound 8g (400 MHz, CDCl₃)

¹H NMR spectrum of compound 8k (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 8k (150 MHz, CDCl₃)

¹³C NMR spectrum of compound 8I (150 MHz, CDCl₃)

¹H NMR spectrum of compound 8m (400 MHz, DMSO-d₆)

¹³C NMR spectrum of compound 8m (150 MHz, DMSO-d₆)

¹³C NMR spectrum of compound 8n (150 MHz, CDCl₃)

¹H NMR spectrum of compound 9f (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 10a-Boc (150 MHz, CDCl₃)

 $^{\rm 13}{\rm C}$ NMR spectrum of compound 13a (150 MHz, CDCl_3)

¹H NMR spectrum of compound 10c-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 10d-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 13d (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 10e-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 10f-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 10g-Boc (400 MHz, CDCl₃)

S-90

¹³C NMR spectrum of compound 13g (150 MHz, CDCl₃)

198-D

¹H NMR spectrum of compound 10h-Boc (400 MHz, CDCl₃)

-5000

¹³C NMR spectrum of compound 10h-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 13h (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 10i-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 10j-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 10k-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 13k (400 MHz, CDCl₃)

4.5 4.0 3.5 3.0 2.5 f1 (ppm)

2.08

2.03-

5.0

¥₩01

7.5

7.0

6.5

6.0 5.5

0.98≠

8.0

8.5

10000

5000

0.0

1.0 0.5

1.5

2.0

¹³C NMR spectrum of compound 10I-Boc (150 MHz, CDCl₃)

8.5

8.0

¹H NMR spectrum of compound 10m-Boc (600 MHz, CDCl₃)

-1000

0.5

0.0

¹³C NMR spectrum of compound 10m-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 13m (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 10n-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 13n (600 MHz, CDCl₃)

¹H NMR spectrum of compound 10o-Boc (400 MHz, CDCl₃)

¹H NMR spectrum of compound 13o (600 MHz, CDCl₃)

¹H NMR spectrum of compound 10p-Boc (600 MHz, CDCl₃)

¹³C NMR spectrum of compound 10p-Boc (150 MHz, CDCl₃)

¹H NMR spectrum of compound 13p (400 MHz, CDCl₃)

¹H NMR spectrum of compound 10q-Boc (600 MHz, CDCl₃)

¹H NMR spectrum of compound 10s-Boc (400 MHz, CDCl₃)

HPLC Reports

chiral HPLC (comparison to racemic products) chiral column (Chiracel OD-H; 25 cm×0.25 mm) and UV-detection at 254 nm; mobile phase:hexane/2-propanol (9:1) at 1 mL/min. Waters HPLC

Separation of compound 5c-Boc and its enantiomer using HPLC

Separation of compound 8b and its enantiomer using HPLC

Separation of compound 8c and its enantiomer using HPLC

Separation of compound 8d and its enantiomer using HPLC

Separation of compound 8e and its enantiomer using HPLC