Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting information

Asymmetric Total Syntheses of Aspilactonol F, Aspiketolactonol and Synthetic Studies Toward Diplofuranoxin

Sagar B. Khandekar and Rodney A. Fernandes* Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, Maharashtra, India

Email: rfernand@chem.iitb.ac.in

¹H, ¹³C NMR and HRMS spectra of all compounds

S2-S47

¹H NMR (400 MHz, CDCl₃) and ¹³C $\{$ ¹H $\}$ NMR (100 MHz, CDCl₃) of compound **3**

3: HRMS (Q–TOF) *m/z:* [M + H] ⁺ Calcd for C₁₂H₂₅O₃Si 245.1568; Found 245.1578.

1 H NMR (500 MHz, CDCl₃) and $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃) of compound **11**

11: HRMS (Q–TOF) m/z: [M + Na]⁺ Calcd for C₁₂H₁₆O₃Na 231.0992; Found 209.0990.

^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound 4a

4a: HRMS (Q–TOF) *m/z:* [M + H]⁺ Calcd for C₁₂H₁₇O₂ 193.1224; Found 193.1226.

1 H NMR (400 MHz, CDCl₃) and 13 C{ 1 H} NMR (100 MHz, CDCl₃) of compound **4b**

4b: HRMS (Q–TOF) *m/z:* [M + Na]⁺ Calcd for C₁₂H₁₆O₂Na 215.1043; Found 215.1044.

^1H NMR (500 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl₃) of compound **12a**

12a: HRMS (Q–TOF) *m/z:* [M + H]⁺ Calcd for C₂₄H₃₉O₄Si 419.2613; Found 419.2616.

1 H NMR (400 MHz, CDCl₃) and 13 C{ 1 H} NMR (100 MHz, CDCl₃) of compound **12b**

12b: HRMS (Q–TOF) *m/z:* [M + Na] ⁺ Calcd for C₂₄H₃₈O₄SiNa 441.2432; Found 441.2437.

^{1}H NMR (500 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz, CDCl₃) of compound **13**

H-H COSY spectra of compound 13

HSQC spectra of compound 13

13: HRMS (Q–TOF) *m/z:* [M + Na]⁺ Calcd for C₄₄H₆₈O₈Si₂Na 803.4345; Found 803.4348.

1 H NMR (500 MHz, CDCl₃) and 13 C{ 1 H} NMR (125 MHz, CDCl₃) of compound **2a**

H-H COSY spectra of compound 2a

S18

HSQC spectra of compound 2a

2a: HRMS (Q–TOF) *m/z:* [M + H]⁺ Calcd for C₂₂H₃₅O₄Si 391.2300; Found 391.2305.

¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) of compound **2b**

2b: HRMS (Q–TOF) *m/z:* [M + H]⁺ Calcd for C₂₂H₃₅O₄Si 391.2300; Found 391.2297.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **1a'**

H-H COSY spectra of compound 1a'

NOESY spectra of compound 1a'

1a': HRMS (Q–TOF) *m/z:* [M + H]⁺ Calcd for C₉H₁₅O₄ 187.0965; Found 187.0965.

 ^1H NMR (500 MHz, CDCl3) and $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl3) of compound 1a

¹H NMR Comparison data of compound **1a**: Isolated and our work

¹ H NMR (500 MHz, CDCl ₃) Isolated by Yurchenko <i>Mar. Drugs</i> , 2019, 17, 579	¹ H NMR (500 MHz, CDCl₃) Our work	
7.27 (d, J = 1.4 Hz, 1H)	7.27 (s, 1H)	
4.85 (dd, J = 4.4, 1.4 Hz, 1H)	4.86 (d, <i>J</i> = 5.0 Hz, 1H)	
4.08 (m, 1H)	4.11–4.02 (m, 2H)	
4.05 (qd, J = 6.4, 4.4 Hz, 1H)		
2.52 (ddt, J = 15.0, 3.8, 1.4 Hz, 1H)	2.57–2.37 (m, 2H)	
2.45 (ddt, <i>J</i> = 15.0, 7.8, 1.4 Hz, 1H)		
1.31 (d, <i>J</i> = 6.4 Hz, 3H)	1.30 (d, <i>J</i> = 6.7 Hz, 3H)	
1.25 (d, <i>J</i> = 6.3 Hz, 3H)	1.25 (d, <i>J</i> = 6.2 Hz, 3H)	

¹³C NMR Comparison data of compound **1a**: Isolated and our work

¹³ C NMR (125 MHz, CDCl ₃)	¹³ C NMR (125 MHz, CDCl ₃)
	Ourwork
Mar. Drugs, 2019, 17, 579.	
174.2	174.2
147.4	147.4
132.8	132.8
84.9	84.9
67.8	67.8
66.2	66.2
34.9	34.9
23.3	23.3
18.8	18.8

H-H COSY spectra of compound 1a

NOESY spectra of compound 1a

1a: HRMS (Q–TOF) *m/z*: [M + H]⁺ Calcd for C₉H₁₅O₄ 187.0965; Found 187.0962.

1 H NMR (500 MHz, CDCl₃) and 13 C{ 1 H} NMR (125 MHz, CDCl₃) of compound **14a**

14a: HRMS (Q–TOF) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₁O₄ 277.1435; Found 277.1442.

^1H NMR (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of compound 14b

14b: HRMS (Q–TOF) *m/z:* [M + H]⁺ Calcd for C₁₆H₂₁O₄ 277.1435; Found 277.1440.

^1H NMR (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of compound 15a

15a: HRMS (Q–TOF) *m/z:* [M + H]⁺ Calcd for C₁₆H₁₉O₄ 275.1278; Found 275.1278.

^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound 15b

15b: HRMS (Q–TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₉O₄ 275.1278; Found 275.1279.

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **1b'**

H-H COSY spectra of compound **1b'**

NOESY spectra of compound 1b'

1b': HRMS (Q–TOF) *m*/*z*: [M + H]⁺ Calcd for C₉H₁₃O₄ 185.0809; Found 185.0811.

 1 H NMR (500 MHz, CDCl₃) and 13 C{ 1 H} NMR (125 MHz, CDCl₃) of compound **1b**

¹H NMR Comparison data of compound **1b**: Isolated and our work

¹ H NMR (400 MHz, CDCl ₃)	¹ H NMR (500 MHz, CDCl ₃)
Isolated by Cui	Our work
Mar. Drugs, 2014, 12, 3116	
7.43 (q, <i>J</i> = 1.4 Hz, 1H)	7.43 (d, <i>J</i> = 1.1 Hz, 1H)
4.88 (dq, <i>J</i> = 4.7, 1.4 Hz, 1H)	4.88 (dq, <i>J</i> = 3.0, 1.4 Hz, 1H)
4.02 (dq, <i>J</i> = 6.5, 4.7 Hz, 1H)	4.06–3.99 (m, 1H)
3.46 (t, <i>J</i> = 1.4 Hz, 2H)	3.47 (s, 2H)
2.24 (s, 3H)	2.24 (s, 3H)
1.28 (d, <i>J</i> = 6.6 Hz, 3H)	1.28 (d, <i>J</i> = 6.6 Hz, 3H)

¹³C NMR Comparison data of compound **1b**: Isolated and our work

¹³ C NMR (100 MHz, CDCl ₃)	¹³ C NMR (125 MHz, CDCl ₃)
Isolated by Cui	Our work
Mar. Drugs, 2014, 12, 3116	
203.6	203.4
173.5	173.3
149.4	149.2
128.2	128.1
85.5	85.4
67.8	67.7
39.1	39.0
30.3	30.2
18.9	18.7

H-H COSY spectra of compound 1b

NOESY spectra of compound 1b

1b: HRMS (Q–TOF) *m*/*z*: [M + H]⁺ Calcd for C₉H₁₃O₄ 185.0809; Found 185.0812.