Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

> Supporting Information For

Chemodivergent Phosphonylation of Diazocarboxylates: Light-On Vs Light-Off Reaction

Jalaj Kumar Pathak,^{a, b} Ruchir Kant,^c and Namrata Rastogi*, a, b

^{*a*}Medicinal & Process Chemistry Division and ^{*c*}Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India ^{*b*}Academy of Scientific and Innovative Research, Ghaziabad 201002, India

namrataiit@gmail.com; namrata.rastogi@cdri.res.in

Table of Contents

General Information	2
Instrumentation Details	3
General Procedures	3
Details of X-ray Analysis of 3k	4-5
Characterization Data	5-15
References	15
Copies of ¹ H, ¹³ C{H}, ³¹ P{H}, ¹⁹ F{H} NMR Spectra & ESMS of crude $4a$	16-68

1. General Information

Unless mentioned otherwise, all reactions were carried out under nitrogen atmosphere in flame-dried glassware. All reactions were monitored by TLC, visualization was effected with UV and/or by developing in iodine. The NMR Chemical shifts are reported in δ (ppm) relative to TMS as the internal standard for ¹H and ¹³C{H}, TFA as the internal standard for ¹⁹F{H} and phosphoric acid as the external standard for ³¹P{H}. To describe spin multiplicity, standard abbreviations such as s, d, t, q, m, dd referring to singlet, doublet, triplet, quartet, multiplet and doublet of doublet respectively, are used.

The aryldiazoacetates $(1a-1q)^1$ as well as other diazo substrates $(1r-1u)^{2-4}$ were synthesized following reported literature protocols. All the trialkyl phosphites (2a-2d) were commercially available. All other chemicals and catalysts were purchased from commercial sources and used as received. The structure of substrates 1a-1u and 2a-2d have been provided in Table S1 and S2, respectively.

Table S1. Substitutions in diazo substrates 1

	N₂ ↓
EWG ₁ /Ar	`EWG ₂ 1

Compound	Ar/EWG ₁	EWG ₂	Compound	Ar/EWG ₁	EWG ₂
I			· · I · · · ·	1	
1a	Ph	CO ₂ Me	11	2-NO ₂ -Ph	CO ₂ Me
1b	2-OMe-Ph	-do-	1m	1-naphthyl	-do-
1c	4-OMe-Ph	-do-	1n	3,4-(OCH ₂ O)-Ph	CO ₂ Et
1d	4-OCF ₃ -Ph	-do-	10	3-thienyl	-do-
1e	4-Ph-Ph	-do-	1p	Ph	CO ₂ allyl
1f	4-Cl-Ph	-do-	1q	Ph	CO ₂ propargyl
1g	4-Br-Ph	-do-	1r	Ph	COPh
1h	4-F-Ph	-do-	1s	Ph	CF ₃
1i	3-CF ₃ -Ph	-do-	1t	CO ₂ Et	CO ₂ Et
1j	4-CF ₃ -Ph	-do-	1u	COPh	COPh
1k	2-NO ₂ -Ph	-do-			

Table S2. Substitutions in alkyl phosphites 2

Compound	R	Compound	R
2a	Me	2c	ⁱ⁻ propyl
2b	Et	2d	allyl

2. Instrumentation Details

Melting points were recorded on a Precision melting point apparatus and are uncorrected. NMR spectra were recorded on a Bruker Avance spectrometer at 400/500 MHz (¹H), 100/125 MHz (¹³C{H}), 162 MHz (³¹P{H}) and 376 MHz (¹⁹F{H}). The ESI-HRMS spectra were recorded on Agilent 6520-Q-Tof LC/MS system. The reactions were irradiated using high power blue LEDs (make: Original Opulant America, power = 3 W, λ_{max} = 455 nm, luminous flux/radiant flux = 687 mW at 700 mA) fitted in an aluminum block. The block contains 6 holes to hold vials and water inlet-outlet nozzles. The vials placed in holes on the block were irradiated from bottom at a distance of \approx 2 cm. The reaction temperature can be maintained by circulating water through the aluminum block via inlet-outlet nozzles (Figure S1).

Figure S1. (A) Picture of the visible light photoreactor; (B) Experimental set-up

3. General Procedures

3.1. General procedure for thermal phosphonylation

In an oven dried 5 mL snap vial equipped with a magnetic stir bar, diazo compound 1 (0.2 mmol) and trialkyl phosphite 2 (0.6 mmol) were dissolved in anhydrous acetonitrile (2.0 mL). The solution was purged with nitrogen and stirred at room temperature (25-30 °C) for 12 h. Upon completion of the reaction (TLC monitoring), the reaction mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (100-200 mesh) with hexane/ethyl acetate as eluent, furnishing the pure product 3.

3.2. General procedure for photocatalytic phosphonylation

In an oven dried 5 mL snap vial equipped with a magnetic stir bar, diazo compound 1 (0.4 mmol) and trialkyl phosphite (0.2 mmol) were dissolved in dichloromethane (2.0 mL). The resulting reaction mixture was degassed by three "pump-freeze-thaw" cycles via a syringe needle and stirred at room temperature (25-30 °C) under the irradiation of 455 nm, 3W blue LEDs for 6 h. Upon completion of the reaction (TLC monitoring), the reaction mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (100-200 mesh) with hexane/ethyl acetate as eluent, furnishing the pure product **4**.

4. Details of X-ray Analysis of 3k

A good quality single crystal of size 0.39 x 0.15 x 0.15 mm, was selected under a polarizing microscope and mounted on a glass fiber for data collection. Single crystal X-ray data for compound **3k** were collected on the Rigaku XtaLAB Synergy-S single crystal X-ray diffractometer equipped with a HyPix-6000HE Hybrid Photon Counting (HPC) detector, dual Mo and Cu microfocus sealed X-ray source with kappa goiniometer at 294 (2) K. Data collection cell determination, and data reduction was performed using the CrysAlisPro⁵ software. Structure solution and refinement were performed by using SHELX-97.⁶ Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbons were generated with idealized geometries and isotropically refined using a riding model.

Crystallization: Crystals of compound **3k** were grown from the solvent chloroform by slow evaporation method (Figure S2, Table S3).

Figure S2. ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound 3k determined at 294K.

Table S3. Crystal data and structure refinement details for compou	nd	3	k
--	----	---	---

Compound	3k
Empirical formula	$C_{11}H_{14}N_3O_7P$
Formula weight	331.22
Crystal System	Monoclinic
Space group	$P 2_1/c$
<i>a</i> (Å)	9.6313(2)
<i>b</i> (Å)	8.3277(2)
<i>c</i> (Å)	18.8433(3)

α (°)	90.00
eta (°)	95.670(2)
γ (°)	90.00
$V(Å^3)$	1503.96(5)
Ζ	4
D_{c} (g/cm ³)	1.463
F_{000}	688
μ (mm ⁻¹)	2.001
θ_{\max} (°)	77.58
Total reflections	10723
Unique reflections	3050
Reflections $[I > 2\sigma(I)]$	2716
Parameters	203
$R_{ m int}$	0.0372
Goodness-of-fit	1.065
$R [F^2 > 2\sigma(F^2)]$	0.0649
wR (F^2 , all data)	0.1805
CCDC No.	2342436

5. Characterization Data

```
Methyl (E)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-phenylacetate (3a)<sup>7</sup>
```


White solid; isolated yield 78% (45 mg). $R_f 0.50$ (50% EtOAc/hexane); Mp 93-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.54 (m, 3H), 7.26 (d, J = 7.8 Hz, 2H merged with solvent peak), 7.08 (d, ${}^{2}J_{\text{H-P}} = 30.5$ Hz, 1H), 3.87 (d, ${}^{3}J_{\text{H-P}} = 12.2$ Hz, 6H merged with s at 3.84), 3.84 (s, 3H merged with d at 3.87); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.95, 143.66 (d, ${}^{3}J_{\text{C-P}} = 16.9$ Hz), 130.39, 129.70, 128.40, 128.29, 54.42 (d, ${}^{2}J_{\text{C-P}} = 5.9$ Hz), 52.77; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.62; HRMS for C₁₁H₁₆N₂O₅P⁺: calcd. [M+H]⁺: 287.0791, found: 287.0792 Methyl (*E*)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(2-methoxyphenyl)acetate (3b)

White solid; isolated yield 76% (51 mg). R_f 0.50 (60% EtOAc/hexane); Mp 144-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.48 (m, 1H), 7.13 (dd, J = 7.4 Hz, 1.5 Hz, 1H), 7.07 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.91 (d, ² $J_{\text{H-P}} = 30.5$ Hz, 1H), 3.85 (d, ³ $J_{\text{H-P}} = 11.4$ Hz, 6H), 3.82 (s, 3H), 3.80 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 164.06, 156.70, 141.61

(d, ${}^{3}J_{C-P} = 17.4 \text{ Hz}$), 132.08, 129.84, 121.46, 117.08, 111.78, 55.64, 54.28 (d, ${}^{2}J_{C-P} = 5.8 \text{ Hz}$), 52.63; ${}^{31}P{H}$ NMR (162 MHz, CDCl₃) δ 1.81; HRMS for C₁₂H₁₇N₂O₆PNa⁺: calcd. [M+Na]⁺: 339.0722, found: 339.0718

Methyl (*E*)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(4-methoxyphenyl)acetate (3c)⁷

White solid; isolated yield 70% (47 mg). R_f 0.50 (60% EtOAc/hexane); Mp 158-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.22 (m, 2H), 7.13 (d, ² $J_{\text{H-P}}$ = 30.4 Hz, 1H), 7.01-7.04 (m, 2H), 3.86 (s, 3H), 3.85 (d, ³ $J_{\text{H-P}}$ = 11.4 Hz, 6H), 3.83 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 164.21, 160.95, 143.57 (d, ³ $J_{\text{C-P}}$ = 17.2 Hz), 129.88, 120.11, 115.15, 55.43, 54.39 (d, ² $J_{\text{C-P}}$ = 5.9 Hz), 52.74; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.82; HRMS for C₁₂H₁₇N₂O₆PNa⁺: calcd. [M+Na]⁺: 339.0722, found: 339.0719

Methyl (*E*)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(4-(trifluoromethoxy)phenyl)acetate (3d)

White solid; isolated yield 69% (51 mg). $R_f 0.50$ (40% EtOAc/hexane); Mp 135-137 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.2 Hz, 2H), 7.31-7.33 (m, 2H), 7.05 (d, ² $J_{\text{H-P}} = 30.1$ Hz, 1H), 3.86 (d, ³ $J_{\text{H-P}} = 11.5$ Hz, 6H), 3.85 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.71, 150.43, 142.03 (d, ³ $J_{\text{C-P}} = 16.8$ Hz), 130.38, 126.81, 122.00, 120.34 (q, ¹ $J_{\text{C-F}} = 257.2$ Hz), 54.51 (d, ² $J_{\text{C-P}} = 5.9$ Hz), 52.87; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.27; ¹⁹F{H} NMR (376 MHz, CDCl₃) δ -57.70; HRMS for C₁₂H₁₅F₃N₂O₆P⁺: calcd. [M+H]⁺: 371.0614, found: 371.0619

Methyl

(dimethoxyphosphoryl)hydrazineylidene)acetate (3e)

(*E*)-2-([1,1'-biphenyl]-4-yl)-2-(2-

White solid; isolated yield 65% (47 mg). R_f 0.50 (50% EtOAc/hexane); Mp 133-134 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.16 (d, ² $J_{\text{H-P}} = 30.4$ Hz, 1H), 3.87 (d, ³ $J_{\text{H-P}} = 11.4$ Hz, 6H), 3.86 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 164.02, 143.44, 143.43 (d, ³ $J_{\text{C-P}} = 16.9$ Hz), 140.03, 128.98, 128.79, 128.46, 128.04, 127.26, 127.03, 54.46 (d,

6

 ${}^{2}J_{C-P} = 5.9 \text{ Hz}$, 52.83; ${}^{31}P{H}$ NMR (162 MHz, CDCl₃) δ 1.64; HRMS for C₁₇H₂₀N₂O₅P⁺: calcd. [M+H]⁺: 363.1104, found: 363.1109

Methyl (*E*)-2-(4-chlorophenyl)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)acetate (3f)⁷

White solid; isolated yield 75% (51 mg). R_f 0.50 (50% EtOAc/hexane); Mp 160-161 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.52 (m, 2H), 7.20-7.22 (m, 2H), 7.03 (d, ²J_{H-P} = 30.1 Hz, 1H), 3.86 (d, ³J_{H-P} = 11.4 Hz, 6H), 3.84 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.70, 142.31 (d, ³J_{C-P} = 16.9 Hz), 136.67, 130.04, 129.89, 126.66, 54.49 (d, ²J_{C-P} = 6.0 Hz), 52.85; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.33; HRMS for C₁₁H₁₄ClN₂O₅PNa⁺: calcd. [M+Na]⁺: 343.0227, found: 343.0217

Methyl (*E*)-2-(4-bromophenyl)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)acetate (3g)⁷

White solid; isolated yield 70% (54 mg). $R_f 0.50$ (50% EtOAc/hexane); Mp 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.66 (m, 2H), 7.12-7.14 (m, 2H), 7.08 (d, ²J_{H-P} = 31.2 Hz, 1H), 3.84 (d, ³J_{H-P} = 11.4 Hz, 6H merged with s at 3.82), 3.82 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.62, 142.33 (d, ³J_{C-P} = 16.6 Hz), 133.00, 130.06, 127.14, 124.92, 54.50 (d, ²J_{C-P} = 5.9 Hz), 52.85; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.30; HRMS for C₁₁H₁₄BrN₂O₅PNa⁺: calcd. [M+Na]⁺: 386.9721, found: 386.9711

Methyl (*E*)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(4-fluorophenyl)acetate (3h)⁷

White solid; isolated yield 85% (55 mg). $R_f 0.50$ (60% EtOAc/hexane); Mp 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.29 (m, 4H), 7.06 (d, ²J_{H-P} = 30.2 Hz, 1H), 3.86 (d, ³J_{H-P} = 11.4 Hz, 6H), 3.84 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.86, 163.58 (d, ¹J_{C-F} = 250.0 Hz), 142.50, (d, ³J_{C-P} = 16.8 Hz), 130.65 (d, ³J_{C-F} = 8.5 Hz), 124.24 (d, ⁴J_{C-F} = 3.5 Hz), 116.98 (d, ²J_{C-F} = 21.8 Hz), 54.46 (d, ²J_{C-P} = 5.9 Hz), 52.81; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.41; ¹⁹F{H} NMR (376 MHz, CDCl₃) δ -108.96; HRMS for C₁₁H₁₄FN₂O₅PNa⁺: calcd. [M+Na]⁺: 327.0522, found: 327.0528

Methyl (*E*)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(3-(trifluoromethyl)phenyl)acetate (3i)

White solid; isolated yield 62% (44 mg). R_f 0.50 (40% EtOAc/hexane); Mp 159-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.9 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.51 (s, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.12 (d, ² $J_{\text{H-P}} = 29.9$ Hz, 1H), 3.83 (d, ³ $J_{\text{H-P}} = 11.4$ Hz, 6H), 3.82 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.56, 141.67 (d, ³ $J_{\text{C-P}} = 17.0$ Hz), 132.15 (q, ² $J_{\text{C-F}} = 32.8$ Hz), 131.90, 130.19, 129.52, 127.12 (q, $J_{\text{C-F}} = 3.6$ Hz), 125.55 (q, $J_{\text{C-F}} = 3.6$ Hz), 123.49 (q, ¹ $J_{\text{C-F}} = 271.0$ Hz), 54.47 (d, ² $J_{\text{C-P}} = 5.9$ Hz), 52.86; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.09; ¹⁹F{H} NMR (376 MHz, CDCl₃) δ -62.84; HRMS for C₁₂H₁₄F₃N₂O₅PNa⁺: calcd. [M+Na]⁺: 377.0490, found: 377.0487

Methyl(E)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(4-(trifluoromethyl)phenyl)acetate (3j)

White solid; isolated yield 76% (54 mg). $R_f 0.50$ (40% EtOAc/hexane); Mp 156-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.01 (d, ${}^2J_{\text{H-P}} = 29.9$ Hz, 1H), 3.86 (d, ${}^3J_{\text{H-P}} = 11.4$ Hz, 6H), 3.85 (s, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.49, 141.86 (d, ${}^3J_{\text{C-P}} = 16.9$ Hz), 132.41 (q, $J_{\text{C-F}} = 32.5$ Hz), 132.23, 129.11, 126.65 (q, $J_{\text{C-F}} = 3.6$ Hz), 123.52 (q, ${}^1J_{\text{C-F}} = 271.1$ Hz), 54.52 (d, ${}^2J_{\text{C-P}} = 6.0$ Hz), 52.90; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.09; ¹⁹F{H} NMR (376 MHz, CDCl₃) δ -63.18; HRMS for C₁₂H₁₄F₃N₂O₅PNa⁺: calcd. [M+Na]⁺: 377.0490, found: 377.0498

Methyl (E)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(2-nitrophenyl)acetate (3k)

White solid; isolated yield 33% (22 mg). R_f 0.50 (40% EtOAc/hexane); Mp 186-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, J = 8.2 Hz, 1.2 Hz, 1H), 7.78-7.82 (m, 1H), 7.70-7.74 (m, 1H), 7.34 (dd, J = 7.5 Hz, 1.4 Hz, 1H), 7.03 (d, ² $J_{\text{H-P}} = 29.1$ Hz, 1H), 3.86 (d, ³ $J_{\text{H-P}} = 11.3$ Hz, 3H), 3.81 (s, 3H), 3.78 (d, ³ $J_{\text{H-P}} = 11.6$ Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 162.92, 147.66, 140.34 (d, ³ $J_{\text{C-P}} = 17.4$ Hz), 134.85, 131.48, 130.56, 125.75, 125.26, 54.57 (d, ² $J_{\text{C-P}} = 6.0$ Hz), 54.21 (d, ² $J_{\text{C-P}} = 5.7$ Hz), 52.93; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.10; HRMS for C₁₁H₁₄N₃O₇PNa⁺: calcd. [M+Na]⁺: 354.0467, found: 354.0467

Selected X-ray crystallographic data for 3k, $C_{11}H_{14}N_3O_7P$, M = 331.22, Monoclinic, $P_{2_1/c}$, a = 9.6313 (2) Å, b = 8.3277 (2) Å, c = 18.8433 (3) Å, V = 1503.96 (5) Å³, $\alpha = 90.00^{\circ}$, β

= 95.670° (2), γ = 90.00°, Z = 4, D_c = 1.463 g cm⁻³, μ (Mo-K α) = 2.001 mm⁻¹, F(000) = 688, Reflections collected/unique 10723/3050, [R(int) = 0.0372]. Final R indices [$I > 2\sigma$ (I)], $R_1 =$ 0.0649, wR = 0.1805

Methyl (E)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(4-nitrophenyl)acetate (31)

Yellow solid; isolated yield 55% (36 mg). R_f 0.50 (40% EtOAc/hexane); Mp 82-83 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.7 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H), 6.96 (d, ${}^{2}J_{H-P} =$ 29.6 Hz, 1H), 3.87 (d, ${}^{3}J_{H-P} = 11.1$ Hz, 6H merged with s at 3.86), 3.86 (s, 3H); ${}^{13}C{H}$ NMR (100 MHz, CDCl₃) δ 158.49, 144.06, 136.19, 130.29, 125.26, 119.95, 49.87 (d, ²J_{C-P} = 6.1 Hz), 48.26; ${}^{31}P{H}$ NMR (162 MHz, CDCl₃) δ 0.76; HRMS for C₁₁H₁₄N₃O₇PK⁺: calcd. [M+K]⁺: 370.0206, found: 370.0197

(E)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(naphthalen-1-yl)acetate Methyl (3m)

White solid; isolated yield 63% (45 mg). R_f 0.50 (50% EtOAc/hexane); Mp 176-178 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.51-7.61 (m, 4H), 7.38 (dd, J = 7.0 Hz, 1.1 Hz, 1H), 6.75 (d, ${}^{2}J_{H-P} = 30.7$ Hz, 1H), 3.86 (d, ${}^{3}J_{H-P} = 11.4$ Hz, 3H), 3.83 (s, 3H), 3.82 (d, ${}^{3}J_{H-P} = 11.4$ Hz, 3H); ${}^{13}C{H}$ NMR (100 MHz, CDCl₃) δ 164.11, 143.23 (d, ${}^{3}J_{C-P} = 17.2$ Hz), 133.89, 130.86, 129.71, 129.14, 127.65, 127.27, 126.96, 126.23, 125.72, 123.74, 54.47 (d, ${}^{2}J_{C-P} = 6.0 \text{ Hz}$), 54.26 (d, ${}^{2}J_{C-P} = 5.8 \text{ Hz}$), 52.83; ${}^{31}P{H}$ NMR (162) MHz, CDCl₃) δ 1.45; HRMS for C₁₅H₁₇N₂O₅PNa⁺: calcd. [M+Na]⁺: 359.0773, found: 359.0780

Ethvl

(E)-2-(benzo[d][1,3]dioxol-5-yl)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)acetate (3n)

White solid; isolated yield 70% (48 mg). R_f 0.50 (40% EtOAc/hexane); Mp 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, ²J_{H-P} = 30.4 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 6.73 (d appearing as s, 1H, merged with s at 6.70), 6.70 (s, 1H), 6.03 (s, 2H), 4.29 (q, J = 7.0 Hz, 2 H), 3.85 (d, ${}^{3}J_{H-P} = 11.3$ Hz, 6H), 1.31 (t, J = 7.1 Hz, 3H); ${}^{13}C\{H\}$ NMR (100 MHz, CDCl₃) δ 163.51, 149.15, 148.76, 143.33 (d, ${}^{3}J_{C-P} = 16.9 \text{ Hz}$), 122.34, 121.54, 109.40, 108.68, 101.69, 61.83, 54.47 (d, ${}^{2}J_{C-P} = 6.0 \text{ Hz}$), 14.17; ${}^{31}P{H}$ NMR (162 MHz, CDCl₃) δ 1.53; HRMS for C₁₃H₁₈N₂O₇P⁺: calcd. [M+H]⁺: 345.0846, found: 345.0854

Ethyl (E)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-(thiophen-3-yl)acetate (30)

Yellow liquid; isolated yield 55% (34 mg). R_f 0.50 (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.53 (m, 2H), 7.34 (d, ²J_{H-P} = 30.2 Hz, 1H), 7.12 (dd, J = 4.4 Hz, 1.8 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2 H), 3.87 (d, ³J_{H-P} = 11.3 Hz, 6H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.39, 139.38 (d, ³J_{C-P} = 17.1 Hz), 127.95, 127.65, 127.28, 126.91, 61.83, 54.53 (d, ²J_{C-P} = 6.1 Hz), 14.15; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.51; HRMS for C₁₀H₁₆N₂O₅PS⁺: calcd. [M+H]⁺: 307.0512, found: 307.0504

Allyl (*E*)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-phenylacetate (3p)

White solid; isolated yield 63% (39 mg). R_f 0.50 (40% EtOAc/hexane); Mp 44-46 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.54 (m, 3H), 7.25-7.27 (m, 2H), 7.10 (d, ² $J_{\text{H-P}}$ = 30.5 Hz, 1H), 5.90-5.99 (m, 1H), 5.29-5.33 (m, 1H), 5.22-5.25 (m, 1H), 4.72-4.74 (m, 2H), 3.86 (d, ³ $J_{\text{H-P}}$ = 11.3 Hz, 6H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 163.10, 143.56 (d, ³ $J_{\text{C-P}}$ = 16.9 Hz), 131.70, 130.35, 129.67, 128.40, 128.29, 118.44, 66.18, 54.50 (d, ² $J_{\text{C-P}}$ = 6.0 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.33; HRMS for C₁₃H₁₈N₂O₅P⁺: calcd. [M+H]⁺: 313.0948, found: 313.0947

Prop-2-yn-1-yl (E)-2-(2-(dimethoxyphosphoryl)hydrazineylidene)-2-phenylacetate (3q)

White solid; isolated yield 60% (37 mg). R_f 0.50 (40% EtOAc/hexane); Mp 54-56 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.55 (m, 3H), 7.26-7.28 (m, 2H), 7.16 (d, ²*J*_{H-P} = 30.5 Hz, 1H), 4.83 (d, *J* = 2.32 Hz, 2H), 3.87 (d, ³*J*_{H-P} = 11.3 Hz, 6H), 2.48 (s, 1H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 162.71, 142.82 (d, ³*J*_{C-P} = 16.9 Hz), 130.48, 129.71, 128.36, 128.00, 77.30, 75.24, 54.56 (d, ²*J*_{C-P} = 6.0 Hz), 53.00; ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.16; HRMS for C₁₃H₁₅N₂O₅PNa⁺: calcd. [M+Na]⁺: 333.0616, found: 333.0613

White solid; isolated yield 72% (45 mg). R_f 0.50 (40% EtOAc/hexane); Mp 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.54 (m, 3H), 7.23-7.26 (m, 2H), 7.07 (d, ²J_{H-P} = 30.4 Hz, 1H), 4.13-4.28 (m, 4H), 3.83 (s, 3H), 1.39 (td, J = 7.1 Hz, 0.8 Hz, 6H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 164.09, 143.05 (d, ³J_{C-P} = 17.0 Hz), 130.29, 129.67, 128.56, 128.34, 64.13 (d, ²J_{C-P} = 5.8 Hz), 52.67, 16.11 (d, ³J_{C-P} = 6.5 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ -0.93; HRMS for C₁₃H₂₀N₂O₅P⁺: calcd. [M+H]⁺: 315.1104, found: 315.1102

Methyl (E)-2-(2-(diisopropoxyphosphoryl)hydrazineylidene)-2-phenylacetate (3s)⁷

White solid; isolated yield 65% (44 mg). R_f 0.50 (40% EtOAc/hexane); Mp 70-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.53 (m, 3H), 7.23 (d, J = 6.6 Hz, 2H), 7.05 (d, ${}^2J_{\text{H-P}} = 30.4$ Hz, 1H), 4.67-4.75 (m, 2H), 3.83 (s, 3H), 1.39 (d, J = 6.2 Hz, 6H), 1.36 (d, 6.2 Hz, 6H); ¹³C{H} NMR (125 MHz, CDCl₃) δ 164.22, 142.37 (d, ${}^3J_{\text{C-P}} = 17.0$ Hz), 130.17, 129.64, 128.76, 128.36, 73.05 (d, ${}^2J_{\text{C-P}} = 5.8$ Hz), 52.53, 23.77 (d, ${}^3J_{\text{C-P}} = 4.6$ Hz), 23.54 (d, ${}^3J_{\text{C-P}} = 5.0$ Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ -2.94; HRMS for C₁₅H₂₃N₂O₅PNa⁺: calcd. [M+Na]⁺: 365.1237, found: 365.1239

Methyl (E)-2-(2-(bis(allyloxy)phosphoryl)hydrazineylidene)-2-phenylacetate (3t)

White solid; isolated yield 68% (46 mg). R_f 0.50 (40% EtOAc/hexane); Mp 100-102 °C;_¹H NMR (400 MHz, CDCl₃) δ 7.48-7.53 (m, 3H), 7.23 (d, J = 6.4 Hz, 2H), 7.09 (d, ${}^2J_{\text{H-P}} = 30.8$ Hz, 1H), 5.94-6.03 (m, 2H), 5.40 (d, J = 17.0 Hz, 2H), 5.27 (d, J = 10.2 Hz, 2H), 4.62-4.67 (m, 4H), 3.83 (s, 3H); ¹³C{H} NMR (125 MHz, CDCl₃) δ 164.01, 143.29 (d, ${}^3J_{\text{C-P}} = 16.9$ Hz), 132.33 (d, ${}^3J_{\text{C-P}} = 5.6$ Hz), 130.32, 129.65, 128.45, 128.32, 118.60, 68.49 (d, ${}^2J_{\text{C-P}} = 5.7$ Hz), 52.68; ${}^{31}P{H}$ NMR (162 MHz, CDCl₃) δ -0.77; HRMS for C₁₅H₂₀N₂O₅P⁺: calcd. [M+H]⁺: 339.1104, found: 339.1091

Dimethyl (E)-(2-(2-oxo-1,2-diphenylethylidene)hydrazineyl)phosphonate (3u)

White solid; isolated yield 70% (46 mg). R_f 0.50 (50% EtOAc/hexane); Mp 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.4 Hz, 2H), 7.37-7.50 (m, 6H), 7.25 (d, J = 6.8 Hz, 2H), 7.10 (d, ² $J_{\text{H-P}} = 30.5$ Hz, 1H), 3.73 (d, ³ $J_{\text{H-P}} = 11.2$ Hz, 6H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 190.61, 150.25 (d, ³ $J_{\text{C-P}} = 16.5$ Hz), 136.62, 132.68, 130.63, 130.30, 129.69, 128.61, 128.43, 127.99, 54.44 (d, ² $J_{\text{C-P}} = 6.1$ Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.40; HRMS for C₁₆H₁₈N₂O₄P⁺: calcd. [M+H]⁺: 333.0999, found: 333.0999

Dimethyl (E)-(2-(2,2,2-trifluoro-1-phenylethylidene)hydrazineyl)phosphonate (3v)

White solid; isolated yield 65% (51 mg). R_f 0.50 (40% EtOAc/hexane); Mp 90-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (br s, 3H), 7.32 (br s, 2H), 6.93 (d, ²J_{H-P} = 29.4 Hz, 1H), 3.85 (d, ³J_{H-P} = 11.3 Hz, 6H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 140.78 (dd, ²J_{C-F} = 34.9 Hz, ³J_{C-P} = 17.7 Hz), 131.26, 130.03, 128.40, 125.52, 120.38 (q, ¹J_{C-F} = 272.4 Hz), 54.47 (d, ²J_{C-P} = 5.9 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 1.36; ¹⁹F{H} NMR (376 MHz, CDCl₃) δ -68.06; HRMS for C₁₀H₁₃F₃N₂O₃P⁺: calcd. [M+H]⁺: 297.0610, found: 297.0604

Diethyl 2-(2-(dimethoxyphosphoryl)hydrazineylidene)malonate (3w)

Colorless viscous liquid; isolated yield 56% (33 mg). $R_f 0.50$ (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 10.87 (d, ² $J_{\text{H-P}}$ = 34.6 Hz, 1H), 4.31-4.37 (m, 4), 3.86 (d, ³ $J_{\text{H-P}}$ = 11.4 Hz, 6H), 1.35 (t, J = 7.0 Hz, 3H), 1.34 (t, J = 7.0 Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 162.26, 160.43, 130.80 (d, ³ $J_{\text{C-P}}$ = 14.8 Hz), 62.22, 61.93, 54.62 (d, ² $J_{\text{C-P}}$ = 5.9 Hz), 13.99, 13.88; ³¹P{H} NMR (162 MHz, CDCl₃) δ -0.13; HRMS for C₉H₁₈N₂O₇P⁺: calcd. [M+H]⁺: 297.0846, found: 297.0830

Dimethyl (2-(1,3-dioxo-1,3-diphenylpropan-2-ylidene)hydrazineyl)phosphonate (3x)

White solid; isolated yield 80% (57 mg). R_f 0.50 (40% EtOAc/hexane); Mp 102-104 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.03 (d, ² $J_{\text{H-P}}$ = 33.1 Hz, 1H), 8.10-8.12 (m, 2H), 7.72-7.74 (m, 2H), 7.62-7.65 (m, 1H), 7.55-7.59 (m, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.42 (t, J = 7.8 Hz, 2H), 3.83 (d, ³ $J_{\text{H-P}}$ = 11.4 Hz, 6H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 191.42, 190.06, 143.18 (d, ³ $J_{\text{C-P}}$ = 13.8 Hz), 135.93, 135.12, 134.19, 133.65, 130.67, 128.88, 128.69, 128.45, 54.67 (d, ² $J_{\text{C-P}}$ = 5.9 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 0.26; HRMS for C₁₇H₁₈N₂O₅P⁺: calcd. [M+H]⁺: 361.0948, found: 361.0944

Methyl 2-(dimethoxyphosphoryl)-2-phenylacetate (4a)⁸

Colorless viscous liquid; isolated yield 55% (40 mg). $R_f 0.50$ (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.51 (m, 2H), 7.32-7.39 (m, 3H), 4.29 (d, ² $J_{\text{H-P}}$ = 23.5 Hz, 1H), 3.77 (s, 3H), 3.73 (d, ³ $J_{\text{H-P}}$ = 11.0 Hz, 3H), 3.67 (d, ³ $J_{\text{H-P}}$ = 10.9 Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 168.01 (d, ² $J_{\text{C-P}}$ = 3.0 Hz), 130.57 (d, $J_{\text{C-P}}$ = 8.6 Hz), 129.56 (d, $J_{\text{C-P}}$ = 6.2 Hz), 128.71 (d, $J_{\text{C-P}}$ = 2.3 Hz), 128.18 (d, $J_{\text{C-P}}$ = 2.9 Hz), 54.08 (d, ² $J_{\text{C-P}}$ = 6.7 Hz), 53.70 (d, ² $J_{\text{C-P}}$ = 7.1 Hz), 52.95, 51.65 (d, ¹ $J_{\text{C-P}}$ = 135.2 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 21.11; HRMS for C₁₁H₁₆O₅P⁺: calcd. [M+H]⁺: 259.0730, found: 259.0730

Methyl 2-(dimethoxyphosphoryl)-2-(4-methoxyphenyl)acetate (4b)

Colorless viscous liquid; isolated yield 60% (35 mg). $R_f 0.50$ (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.43 (m, 2H), 6.89 (d, J = 8.5 Hz, 2H), 4.23 (d, ² $J_{\text{H-P}} = 23.5$ Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.73 (d, ³ $J_{\text{H-P}} = 11.0$ Hz, 3H), 3.67 (d, ³ $J_{\text{H-P}} = 10.8$ Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 168.23 (d, ² $J_{\text{C-P}} = 2.5$ Hz), 159.51 (d, $J_{\text{C-P}} = 2.7$ Hz), 130.68 ($J_{\text{C-P}} = 6.2$ Hz), 122.38 ($J_{\text{C-P}} = 8.7$ Hz), 114.16 ($J_{\text{C-P}} = 2.2$ Hz), 55.26, 54.08 (d, ² $J_{\text{C-P}} = 6.6$ Hz), 53.69 (d, ² $J_{\text{C-P}} = 7.2$ Hz), 52.91, 50.69 (d, ¹ $J_{\text{C-P}} = 136.3$ Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 21.43; HRMS for C₁₂H₁₈O₆P⁺: calcd. [M+H]⁺: 289.0836, found: 289.0814

Methyl 2-([1,1'-biphenyl]-4-yl)-2-(dimethoxyphosphoryl)acetate (4c)

Colorless viscous liquid; isolated yield 52% (35 mg). R_f 0.50 (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.61 (m, 6H), 7.42-7.46 (m, 2H), 7.33-7.37 (m, 1H), 4.34 (d, ²J_{H-P} = 23.5 Hz, 1H), 3.79 (s, 3H), 3.76 (d, ³J_{H-P} = 11.0 Hz, 3H), 3.72 (d, ³J_{H-P} = 10.9 Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 168.01 (d, ²J_{C-P} = 3.3 Hz), 141.07 (d, J_{C-P} = 2.9 Hz), 140.40, 129.94 (d, J_{C-P} = 6.4 Hz), 129.53 (d, J_{C-P} = 8.7 Hz), 128.81, 127.51, 127.41 (d, J_{C-P} = 2.2 Hz), 127.08, 54.13 (d, ²J_{C-P} = 6.6 Hz), 53.78 (d, ²J_{C-P} = 7.0 Hz), 53.02, 51.32 (d, ¹J_{C-P} = 135.2 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 21.08; HRMS for C₁₇H₂₀O₅P⁺: calcd. [M+H]⁺: 335.1043, found: 335.1029

Methyl 2-(dimethoxyphosphoryl)-2-(4-fluorophenyl)acetate (4d)

Colorless viscous liquid; isolated yield 48% (26 mg). $R_f 0.50$ (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.51 (m, 2H), 7.05 (t, J = 8.5 Hz, 2H), 4.27 (d, ² $J_{H-P} = 23.8$ Hz, 1H), 3.77 (s, 3H), 3.74 (d, ³ $J_{H-P} = 11.0$ Hz, 3H), 3.68 (d, ³ $J_{H-P} = 10.9$ Hz, 3H); ¹³C{H} NMR

(100 MHz, CDCl₃) δ 167.89 (d, ² J_{C-P} = 4.0 Hz), 162.64 (d, ¹ J_{C-F} = 249.2 Hz), 131.30 (dd, ³ J_{C-F} = 7.9 Hz, J_{C-P} = 6.7 Hz), 126.39 (dd, ⁴ J_{C-F} = 3.0 Hz, J_{C-P} = 8.5 Hz), 115.66 (dd, ² J_{C-F} = 21.3 Hz, J_{C-P} = 2.2 Hz), 54.06 (d, ² J_{C-P} = 6.6 Hz), 53.74 (d, ² J_{C-P} = 7.0 Hz), 53.02, 50.75 (d, ¹ J_{C-P} = 135.4 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 20.84 (d, J_{P-F} = 5.0 Hz); ¹⁹F{H} NMR (376 MHz, CDCl₃) δ -113.96 (d, J_{F-P} = 4.4 Hz); HRMS for C₁₁H₁₅FO₅P⁺: calcd. [M+H]⁺: 277.0636, found: 277.0627

Methyl 2-(dimethoxyphosphoryl)-2-(4-nitrophenyl)acetate (4e)⁸

Colorless viscous liquid; isolated yield 45% (27 mg). $R_f 0.50$ (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.6 Hz, 2H), 7.70 (dd, J = 8.9 Hz, 2.2 Hz, 2H), 4.41 (d, ² $J_{\text{H-P}} = 24.1$ Hz, 1H), 3.81 (s, 3H), 3.77 (d, ³ $J_{\text{H-P}} = 11.1$ Hz, 3H), 3.73 (d, ³ $J_{\text{H-P}} = 11.0$ Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 166.98 (d, ² $J_{\text{C-P}} = 4.4$ Hz), 147.73 (d, $J_{\text{C-P}} = 3.2$ Hz), 138.04 ($J_{\text{C-P}} = 8.5$ Hz), 130.62 ($J_{\text{C-P}} = 6.3$ Hz), 123.72 ($J_{\text{C-P}} = 2.2$ Hz), 54.19 (d, ² $J_{\text{C-P}} = 6.6$ Hz), 53.99 (d, ² $J_{\text{C-P}} = 6.9$ Hz), 53.33, 51.44 (d, ¹ $J_{\text{C-P}} = 133.4$ Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 19.43; HRMS for C₁₁H₁₅NO₇P⁺: calcd. [M+H]⁺: 304.0581, found: 304.0576

Methyl 2-(dimethoxyphosphoryl)-2-(naphthalen-1-yl)acetate (4f)

Colorless viscous liquid; isolated yield 50% (31 mg). R_f 0.50 (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 7.1 Hz, 2.5 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.49-7.53 (m, 2H), 5.17 (d, ²J_{H-P} = 24.1 Hz, 1H), 3.74 (s, 3H), 3.73 (d, ³J_{H-P} = 11.0 Hz, 3H), 3.58 (d, ³J_{H-P} = 10.8, Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 168.44 (d, ²J_{C-P} = 2.4 Hz), 134.03, 131.51 (J_{C-P} = 6.8 Hz), 129.10, 128.89 (d, J_{C-P} = 2.9 Hz), 127.95 (J_{C-P} = 6.3 Hz), 126.81, 126.68 (d, J_{C-P} = 7.9 Hz), 125.81, 125.40 (d, J_{C-P} = 3.0 Hz), 122.77, 54.01 (d, ²J_{C-P} = 6.6 Hz), 53.69 (d, ²J_{C-P} = 7.0 Hz), 53.04, 46.25 (d, ¹J_{C-P} = 139.3 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 21.67; HRMS for C₁₅H₁₈O₅P⁺: calcd. [M+H]⁺: 309.0886, found: 309.0889

Ethyl 2-(3-chlorophenyl)-2-(dimethoxyphosphoryl)acetate (4g)

Colorless viscous liquid; isolated yield 45% (28 mg). R_f 0.50 (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.31-7.34 (m, 1H), 7.20-7.21 (m, 2H), 4.08-4.20 (m, 3H), 3.66 (d, ³*J*_{H-P} = 11.0 Hz, 3H), 3.63 (d, ³*J*_{H-P} = 11.0 Hz, 3H), 1.19 (t, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 166.70 (d, ²*J*_{C-P} = 3.6 Hz), 134.09 (d, *J*_{C-P} = 2.7 Hz), 132.45 (d, *J*_{C-P} = 8.5 Hz), 129.55 (*J*_{C-P} = 2.3 Hz), 129.34 (*J*_{C-P} = 6.4 Hz), 128.03 (*J*_{C-P} = 2.8 Hz), 127.59 (*J*_{C-P} = 6.3 Hz), 61.90, 53.79 (d, ²*J*_{C-P} = 6.6 Hz), 53.51 (d, ²*J*_{C-P} = 7.1 Hz), 51.05 (d, ¹*J*_{C-P} = 134.4 Hz),

13.71; ³¹P{H} NMR (162 MHz, CDCl₃) δ 20.59; HRMS for C₁₂H₁₇ClO₅P⁺: calcd. [M+H]⁺: 307.0497, found: 307.0491

Allyl 2-(dimethoxyphosphoryl)-2-phenylacetate (4h)⁸

Colorless viscous liquid; isolated yield 66% (38 mg). R_f 0.50 (50% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.44 (m, 2H), 7.23-7.30 (m, 3H), 5.77-5.87 (m, 1H), 5.24 (dd, J = 17.2 Hz, 1.4 Hz, 1H), 5.15 (dd, J = 10.4 Hz, 1.1 Hz, 1H), 4.53-4.63 (m, 2H), 4.24 (d, ² $J_{\text{H-P}} = 23.5$ Hz, 1H), 3.64 (d, ³ $J_{\text{H-P}} = 11.0$ Hz, 3H), 3.59 (d, ³ $J_{\text{H-P}} = 10.9$ Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 167.18 (d, ² $J_{\text{C-P}} = 3.1$ Hz), 131.41, 130.55 ($J_{\text{C-P}} = 8.6$ Hz), 129.58 ($J_{\text{C-P}} = 6.5$ Hz), 128.68 ($J_{\text{C-P}} = 2.2$ Hz), 128.15 ($J_{\text{C-P}} = 3.0$ Hz), 118.76, 66.38, 54.03 (d, ² $J_{\text{C-P}} = 6.6$ Hz), 53.69 (d, ² $J_{\text{C-P}} = 6.8$ Hz), 51.75 (d, ¹ $J_{\text{C-P}} = 134.9$ Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 21.14; HRMS for C₁₃H₁₈O₅P⁺: calcd. [M+H]⁺: 285.0886 found: 285.0882

Methyl 2-(diethoxyphosphoryl)-2-phenylacetate (4i)⁸

Colorless viscous liquid; isolated yield 60% (35 mg). R_f 0.50 (40% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.46 (m, 2H), 7.24-7.30 (m, 3H), 4.19 (d, ²J_{H-P} = 23.6 Hz, 1H), 3.87-4.06 (m, 4H), 3.69 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 168.16 (d, ²J_{C-P} = 3.4 Hz), 130.86 (d, J_{C-P} = 8.3 Hz), 129.64 (J_{C-P} = 6.5 Hz), 128.56 (J_{C-P} = 2.3 Hz), 128.02 (J_{C-P} = 2.9 Hz), 63.49 (d, ²J_{C-P} = 6.8 Hz), 63.16 (d, ²J_{C-P} = 7.0 Hz), 52.80, 52.13 (d, ¹J_{C-P} = 133.6 Hz), 16.29 (d, ³J_{C-P} = 6.4 Hz), 16.23 (d, ³J_{C-P} = 6.4 Hz); ³¹P{H} NMR (162 MHz, CDCl₃) δ 18.54; HRMS for C₁₃H₂₀O₅P⁺: calcd. [M+H]⁺: 287.1043 found: 287.1043

6. References

- S. Xia, Y. Jian, L. Zhang, C. Zhang, Y. An and Y. Wang, *RSC Adv.*, 2023, 13, 14501-14505.
- S. Zhu, F. Li, C. Empel, S. Jana, C. Pei, and R. M. Koenigs, *Adv. Synth. Catal.*, 2022, 364, 3149-3154.
- 3. X. Lv, Z. Kang, D. Xing, and W. Hu, Org. Lett., 2018, 20, 4843-4847.
- 4. J.-L. Zhu and Y.-T. Tsai, J. Org. Chem., 2021, 86, 813-828.
- 5. CrysAlisPro, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England
- 6. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- H. Jiang, H. Jin, A. Abdukader, A. Lin, Y. Chenga and C. Zhu, Org. Biomol. Chem., 2013, 11, 3612–3615.
- 8. H. E. Bartrum, D. C. Blakemore, C. J. Moody, and C. J. Hayes, *Tetrahedron*, 2013, **69**, 2276-2282.

7. Copies of ¹H, ¹³C{H}, ³¹P{H}, ¹⁹F{H} NMR Spectra & ESMS of crude 4a

Figure S4: ¹³C{H} NMR spectrum of 3a

Figure S10: ¹³C{H} NMR spectrum of 3c

Figure S12: ¹H NMR spectrum of 3d

Figure S14: ³¹P{H} NMR spectrum of 3d

Figure S16: ¹H NMR spectrum of 3e

Figure S20: ¹³C{H} NMR spectrum of 3f

Figure S26: ¹³C{H} NMR spectrum of 3h

Figure S30: ¹³C{H} NMR spectrum of 3i

Figure S34: ¹³C{H} NMR spectrum of 3j

Figure S36: ¹⁹F{H} NMR spectrum of 3j

Figure S40: ¹H NMR spectrum of 31

Figure S44: ¹³C{H} NMR spectrum of 3m

Figure S46: ¹H NMR spectrum of 3n

Figure S48: ³¹P{H} NMR spectrum of 3n

Figure S52: ¹H NMR spectrum of 3p

Figure S56: ¹³C{H} NMR spectrum of 3q

Figure S60: ³¹P{H} NMR spectrum of 3r

Figure S62: ¹³C{H} NMR spectrum of 3s

Figure S68: ¹³C{H} NMR spectrum of 3u

Figure S74: ¹H NMR spectrum of 3w

Figure S78: ¹³C{H} NMR spectrum of 3x

Figure S80: ¹H NMR spectrum of 4a

Figure S82: ³¹P{H} NMR spectrum of 4a

Figure S84: ¹³C{H} NMR spectrum of 4b

Figure S92: ¹⁹F{H} NMR spectrum of 4d

Figure S94: ¹³C{H} NMR spectrum of 4e

Figure S96: ¹H NMR spectrum of 4f

Figure S102: ¹H NMR spectrum of 4h

Figure S104: ³¹P{H} NMR spectrum of 4h

Figure S106: ¹³C{H} NMR spectrum of 4i

Figure S108: ESMS of crude 4a