Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

SUPPLEMENTARY INFORMATION

for

First total synthesis of asperilactone B. Revision of absolute stereochemistry of asperilactones B and C.

Sanja Djokić,^a Goran Benedeković,^a Jelena Kesić,^a Marko V. Rodić,^a Mirjana Popsavin,^a Velimir Popsavin,^{a,b} and Jovana Francuz^{*,a}

jovana.francuz@dh.uns.ac.rs

^aUniversity of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, ^bSerbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Beograd, Serbia

Table of contents

Experimental procedures	2
Selected Spectral Data of Key Intermediates and Final Products	9
Crystal structures analysis	47
Comparison of NMR Spectra of Asperilactones B and C with Reported Data	53

Experimental procedures

General experimental procedures

Melting points were determined on a hot stage microscope Nagema PHMK 05 and were not corrected. Optical rotations were measured on an Autopol IV (Rudolph Research) polarimeter at room temperature. NMR spectra were recorded on a Bruker Avance III instrument or a Bruker Ultrashield Avance III spectrometer, and chemical shifts are expressed in ppm downfield from TMS. IR spectra were recorded with Thermo Nicolet iS20 FTIR spectrophotometer (Thermo-Fisher SCIENTIFIC). High-resolution mass spectra (ESI) were acquired on a Thermo LTQ Orbitrap XL, and the purity of tested compounds was more than 95% (errors were less than 5 ppm). Flash column chromatography was performed using Kieselgel 60 (0.040–0.063, E. Merck). All organic extracts were dried with anhydrous Na₂SO₄. Organic solutions were concentrated in a rotary evaporator under diminished pressure at a bath temperature below 35 °C.

3-O-Benzyl-6-deoxy-1,2-O-isopropylidene-β-L-*ido*-hexofuranose (2) and 3-O-Benzyl-6deoxy-1,2-O-isopropylidene-α-D-*gluco*-hexofuranose (3)

Procedure for preparation of the crude aldehyde 1 is published in our previous article.¹ To a cooled solution (0 °C) of crude aldehyde 1 (1.836 g) in a dry THF (40 mL) was added commercial 3.0 M MeMgBr in diethyl ether (5.0 mL, 15.00 mmol) and LiCl (0.642 g, 15.14 mmol). The reaction mixture was stirred at 0 °C for 4.5 h (nitrogen atmosphere), then quenched with cold 10% NH₄Cl solution (100 mL) and extracted with CH₂Cl₂ (2 × 50 mL). The collected extracts were washed with brine solution (100 mL), the organic layers were dried and evaporated, and the residue was purified by flash column chromatography (3:2 PE/Et₂O). Firstly, the major product **3** (0.823 g, 49%) is isolated as a colourless oil, $[\alpha]_D = -19.4$ (c 1.00, MeOH), lit.² [α]_D = -16.2 (*c* 0.98, MeOH), [α]_D = -72.6 (*c* 4.00, CHCl₃), lit.³ [α]_D = -67.5 (*c* 4.00, CHCl₃), $[\alpha]_D = -74.1$ (*c* 1.30, CHCl₃), lit.⁴ $[\alpha]_D = -64.3$ (*c* 1.30, CHCl₃), R_f = 0.55 (1:1 PE/Et₂O). IR (film): v_{max} 3493 (OH). ¹H NMR spectrum (400 MHz, CDCl₃): δ 1.29 (d, 3 H, J_{5,6}= 6.4 Hz, CH₃, H-6), 1.36 and 1.52 (2 × s, 2 × 3 H, C(CH₃)₂), 2.19 (bs, 1 H, OH), 3.96 (dd, 1 H, J_{4,5}= 7.0, J_{3,4}= 3.4 Hz, H-4), 4.11 (m, 2 H, J_{3,4}= 3.4, J_{5,6}= 6.3 Hz, H-3 and H-5), 4.53 (d, 1 H, J_{gem}= 11.8 Hz, CH₂Ph), 4.67 (d, 1 H, J_{1,2}= 3.9 Hz, H-2), 4.77 (d, 1 H, J_{gem}= 11.8 Hz, CH₂Ph), 6.00 (d, 1 H, J_{1,2}= 3.9 Hz, H-1), 7.33 – 7.43 (m, 5 H, CH₂Ph). ¹³C NMR spectrum (100 MHz, CDCl₃): δ 20.5 (C-6, CH₃), 26.3 and 26.8 (C(CH₃)₂), 65.8 (C-5), 71.9 (CH₂Ph), 82.0 (C-2), 82.0 (C-3), 83.4 (C-4), 105.2 (C-1), 111.6 (C(CH₃)₂), 128.0, 128.4, 128.8 (5 C from CH₂Ph), 136.9 (C_q from CH₂Ph). HRMS (ESI): m/z 317.1349 (M⁺ + Na), calcd for C₁₆H₂₂NaO₅: 317.1359.

Minor product **2** (0.325 g, 19%) was secondly eluted and was isolated as a white powder. After recrystallization from the CH_2Cl_2/n -hexane system, pure product **2** was obtained in the form

of long transparent needles, mp 107–108 °C, $[\alpha]_D = -62.5$ (*c* 1.30, CHCl₃), lit.⁵ $[\alpha]_D = -63.5$ (*c* 1.30, CHCl₃), R_f = 0.33 (1:1 PE/Et₂O). IR (KBr): v_{max} 3462(OH). ¹H NMR spectrum (400 MHz, CDCl₃): δ 1.16 (dd, 3 H, J_{5,6}= 6.4, J_{4,6}= 1.0 Hz, CH₃, H-6), 1.35 and 1.51 (2 × s, 2 × 3 H, C(CH₃)₂), 2.66 (bs, 1 H, OH), 3.95 (bd, 1 H, J_{3,4}= 3.3 Hz, H-3), 3.99 (bdd, 1 H, J_{4,5}= 6.3, J_{3,4}= 3.4 Hz, H-4), 4.15 (pd, 1 H, J_{4,5}= 6.3, J_{5,6}= 6.4, J_{3,5}= 0.7 Hz, H-5), 4.47 (d, 1 H, J_{gem}=11.8 Hz, CH₂Ph), 4.67 (d, 1 H, J_{1,2}= 3.8 Hz, H-2), 4.72 (d, 1 H, J_{gem}=11.8 Hz, CH₂Ph), 5.99 (d, 1 H, J_{1,2}= 3.7 Hz, H-1), 7.30 – 7.40 (m, 5 H, CH₂Ph). ¹³C NMR spectrum (100 MHz, CDCl₃): δ 18.5 (C-6, CH₃), 26.3 and 26.8 (C(CH₃)₂), 66.2 (C-5), 71.9 (CH₂Ph), 82.3 (C-2), 82.4 (C-3), 84.3 (C-4), 105.0 (C-1), 111.8 (C(CH₃)₂), 127.9, 128.2, 128.6 (5 C from CH₂Ph), 136.9 (C_q from CH₂Ph). HRMS (ESI): *m/z* 317.1350 (M⁺ + Na), calcd for C₁₆H₂₂NaO₅: 317.1359.

General procedure for the preparation of compounds 6 and 7

Cooled (0 °C) starting compounds **2** and **3** (1 eq) were dissolved in 90% TFA (0.3 M) and the resulting solutions were stirred at room temperature until the starting materials were consumed (TLC, 1.5 h). The mixture was concentrated by co-distillation with toluene and the residue was purified by flash column chromatography (9:1 $Et_2O/PE \rightarrow Et_2O$) to afford desired lactols **4** (80%) or **5** (85%). To a stirred solution of lactols **4** and **5** (1 eq) in dry DMF (0.3 M) was added Meldrum's acid (3 eq) and dry Et_3N (3 eq). The mixture was stirred at 46–48 °C until the starting materials were consumed (TLC, 72 h). The residue was evaporated and purified by flash column chromatography (7:3 CH₂Cl₂/EtOAc for **6** and 4:1 CH₂Cl₂/EtOAc for **7**).

3,6-Anhydro-5-O-benzyl-2,8-dideoxy-L-glycero-D-ido-octono-1,4-lactone (6)

Yield: 35%. Long colourless needles, mp 118–119 °C (CH₂Cl₂/*n*-hexane), $[α]_D = + 2.8$ (*c* 0.50, CHCl₃), R_f = 0.30 (7:3 CH₂Cl₂/EtOAc). IR (KBr): v_{max} 3484 (OH), 1775 (C=O). ¹H NMR spectrum (400 MHz, CDCl₃ + D₂O): δ 1.17 (d, 3 H, *J*_{7,8} = 6.4 Hz, *CH*₃, H-8), 2.68 (bd, 1 H, *J*_{2a,2b} = 18.3 Hz, H-2a), 2.75 (dd, 1 H, *J*_{2b,3} = 5.6, *J*_{2a,2b} = 18.8 Hz, H-2b), 3.89 (t, 1 H, *J*_{5,6} = 4.9, *J*_{6,7} = 5.0 Hz, H-6), 4.11 (p, 1 H, *J*_{7,8} = 6.3, *J*_{6,7} = 5.9 Hz, H-7), 4.22 (d, 1 H, *J*_{5,6} = 4.4 Hz, H-5), 4.57 and 4.74 (2 × d, 2 × 1 H, *J*_{gem} = 11.7 Hz, *CH*₂Ph), 4.98 (d, 1 H, *J*_{3,4} = 4.6 Hz, H-4), 5.03 (t, 1 H, *J*_{3,4} = 4.5, *J*_{2b,3} = 4.5 Hz, H-3), 7.32 – 7.41 (m, 5 H, CH₂Ph). ¹³C NMR spectrum (100 MHz, CDCl₃): δ 18.6 (C-8, *C*H₃), 36.0 (C-2), 66.6 (C-7), 72.8 (*C*H₂Ph), 77.0 (C-3), 82.2 (C-5), 84.4 (C-6), 85.7 (C-4), 128.0, 128.5, 128.8 (5 C from CH₂Ph), 136.5 (C_q from CH₂Ph), 175.2 (C-1). HRMS (ESI): *m/z* 301.1041 (M⁺ + Na), calcd for C₁₅H₁₈NaO₅: 301.1046.

3,6-Anhydro-5-O-benzyl-2,8-dideoxy-D-glycero-D-ido-octono-1,4-lactone (7)

Yield: 31%. Long colourless prisms, mp 82–85 °C (CH₂Cl₂/*n*-hexane), $[\alpha]_D = -16.0$ (*c* 0.50, CHCl₃), R_f = 0.55 (7:3 CH₂Cl₂/EtOAc). IR (KBr): v_{max} 3490 (OH), 1777 (C=O). ¹H NMR spectrum (400 MHz, CDCl₃): δ 1.27 (d, 3 H, J_{7,8}= 6.4 Hz, H-8, CH₃), 2.24 (bs, 1 H, OH), 2.67 (d, 1 H, J_{2a,2b} = 18.7 Hz, H-2a), 2.75 (m, 1 H, J_{2a,2b} = 18.7, J_{2b,3} = 5.4 Hz, H-2b) 3.82 (dd, 1 H, J_{5,6} = 4.1, J_{6,7} = 7.3 Hz, H-6), 4.07 (p, 1 H, J_{7,8} = 6.4, J_{6,7} = 6.7 Hz, H-7), 4.36 (d, 1 H, J_{5,6} = 4.0 Hz, H-5), 4.63 and 4.77 (2 × d, 2 × 1 H, J_{gem} = 11.7 Hz, CH₂Ph), 4.96 – 4.99 (m, 2 H, H-3 and H-4), 7.34 – 7.44 (m, 5 H, Ph). ¹³C NMR spectrum (100 MHz, CDCl₃): δ 20.5 (C-8), 36.0 (C-2), 65.9 (C-7), 72.9 (CH₂Ph), 76.9 (C-3), 81.7 (C-5), 84.1 (C-6), 85.2 (C-4), 128.1, 128.6, 128.9 (5C from Ph), 136.6 (C_q from Ph), 175.2 (C-1). HRMS (ESI): *m/z* 301.1043 (M⁺ + Na), calcd for C₁₅H₁₈NaO₅: 301.1046.

General procedure for the preparation of asperilactone B (I) and 7-epi-asperilactone B (8)

A solution of **6** or **7** (1 eq) in MeOH (0.04 M) was hydrogenated over 10% Pd/C (0.04–0.06 g; the catalyst contained 50% of water) for 18 h at room temperature. The mixture was filtered and the catalyst was washed with EtOAc. The combined organic solutions were evaporated and the residue was purified by flash column chromatography (9:1 EtOAc/CH₂Cl₂ for **I**, 7:3 EtOAc/CH₂Cl₂ for **B**), to afford pure **I** or **B**.

NOTE: After repeating reactions, it was found that pure products **I** and **8** could be obtained without purification by flash chromatography. After filtration, organic solutions were evaporated and then purified by crystallization (EtOAc/*n*-hexane) to afford pure **I** and **8**.

3,6-Anhydro-2,8-dideoxy-D-glycero-D-ido-octono-1,4-lactone (Asperilactone B, I)

Yield: 99%. Transparent needles, mp 92–94 °C (EtOAc/*n*-hexane), $[\alpha]_D = + 43.6$ (*c* 0.50, Me₂CO), $[\alpha]_D = + 24.0$ (*c* 0.10, MeOH), lit.⁶ $[\alpha]_D = + 22.0$ (*c* 0.10, MeOH), R_f = 0.39 (EtOAc). IR (KBr): v_{max} 3479, 3429 (OH), 1780 (C=O). ¹H NMR spectrum (400 MHz, CD₃COCD₃): δ 1.27 (d, 3 H, $J_{7,8}$ = 6.4 Hz, H-8, CH₃), 2.48 (d, 1 H, $J_{2a,2b}$ = 18.5 Hz, H-2a), 2.87 (dd, 1 H, $J_{2a,2b}$ = 18.5, $J_{2b,3}$ = 6.1 Hz, H-2b), 3.67 (dd, 1 H, $J_{5,6}$ = 3.1, $J_{6,7}$ = 7.0 Hz, H-6), 4.07 (m, 1 H, $J_{7,OH}$ = 5.3, $J_{7,8}$ = 6.4, $J_{6,7}$ = 6.6 Hz, H-7), 4.21 (d, 1 H, $J_{7,OH}$ = 5.2 Hz, C₇-OH), 4.47 (t, $J_{5,OH}$ = 3.5, $J_{5,6}$ = 3.5 Hz, H-5), 4.86 (d,

 $J_{5,OH}$ = 4.3 Hz, C₅-OH), 4.89 (d, 1 H, $J_{3,4}$ = 4.3 Hz, H-4), 4.94 – 4.99 (m, 1 H, $J_{3,4}$ = 4.3, $J_{2b,3}$ = 6.1 Hz, H-3). ¹³C NMR spectrum (100 MHz, CD₃COCD₃): δ 20.0 (C-8), 35.8 (C-2), 65.2 (C-7), 73.8 (C-5), 77.0 (C-3), 84.6 (C-6), 88.0 (C-4), 175.5 (C-1).

¹H NMR spectrum (500 MHz, CD₃OD): δ 1.26 (d, 3 H, $J_{7,8}$ = 6.4 Hz, H-8, CH₃), 2.52 (d, 1 H, $J_{2a,2b}$ = 18.7 Hz, H-2a), 2.86 (dd, 1 H, $J_{2a,2b}$ = 18.7, $J_{2b,3}$ = 6.2 Hz, H-2b), 3.60 (dd, 1 H, $J_{5,6}$ = 2.9, $J_{6,7}$ = 7.8 Hz, H-6), 3.98 (dq, 1 H, $J_{6,7}$ = 7.7, $J_{7,8}$ = 6.4 Hz, H-7), 4.41 (d, 1 H, $J_{5,6}$ = 2.9 Hz, H-5), 4.88 (d, 1 H, $J_{3,4}$ = 4.4 Hz, H-4), 4.92 (dd, 1 H, $J_{2b,3}$ = 6.1, $J_{3,4}$ = 4.4 Hz, H-3). ¹³C NMR spectrum (125 MHz, CD₃OD): δ 19.6 (C-8), 35.5 (C-2), 64.5 (C-7), 73.1 (C-5), 76.9 (C-3), 84.7 (C-6), 88.3 (C-4), 176.8 (C-1). HRMS (ESI): m/z 211.0586 (M⁺ + Na), calcd for C₈H₁₂NaO₅: 211.0577.

3,6-Anhydro-2,8-dideoxy-L-glycero-D-ido-octono-1,4-lactone (8)

Yield: 96%. Colourless needles, mp 128–130 °C (EtOAc/*n*-hexane), $[\alpha]_D = + 38.4$ (*c* 0.50, Me₂CO), $[\alpha]_D = + 16.0$ (*c* 0.10, MeOH), R_f = 0.26 (EtOAc). IR (KBr): v_{max} 3333 (OH), 1789 (C=O). ¹H NMR spectrum (400 MHz, CD₃COCD₃): δ 1.23 (d, 3 H, J_{7,8}= 6.4 Hz, H-8, CH₃), 2.49 (dd, 1 H, J_{2a,2b} = 18.5, J_{2a,5} = 0.3 Hz, H-2a), 2.87 (dd, 1 H, J_{2a,2b} = 18.4, J_{2b,3} = 6.2 Hz, H-2b), 3.75 (dd, 1 H, J_{5,6} = 3.4, J_{6,7} = 5.5 Hz, H-6), 3.86 (d, 1 H, J_{7,OH} = 4.6 Hz, C₇-OH), 4.09 (qdd, 1 H, J_{6,7} = 5.5, J_{7,8} = 6.4, J_{7,OH} = 4.6 Hz, H-7), 4.37 (bt, 1 H, J = 4.0 Hz, H-5), 4.90 (dd, 1 H, J_{3,4}= 4.3, J_{4,5} = 0.8 Hz, H-4), 4.93 (d, 1 H, J_{5,OH} = 4.8 Hz, C₅-OH), 4.99 (dd, 1 H, J_{3,4}= 4.3, J_{2b,3} = 6.2 Hz, H-3). ¹³C NMR spectrum (100 MHz, CD₃COCD₃): δ 19.1 (C-8), 35.7 (C-2), 66.5 (C-7), 74.8 (C-5), 76.8 (C-3), 84.6 (C-6), 88.5 (C-4), 175.3 (C-1).

¹H NMR spectrum (500 MHz, CD₃OD): δ 1.21 (d, 3 H, $J_{7,8}$ = 6.4 Hz, H-8, CH₃), 2.57 (d, 1 H, $J_{2a,2b}$ = 18.6 Hz, H-2a), 2.86 (dd, 1 H, $J_{2a,2b}$ = 18.6, $J_{2b,3}$ = 6.3 Hz, H-2b), 3.68 (dd, 1 H, $J_{5,6}$ = 3.2, $J_{6,7}$ = 7.2 Hz, H-6), 3.99 (pseudo p, 1 H, $J_{6,7}$ = 6.9, $J_{7,8}$ = 6.4 Hz, H-7), 4.28 (d, 1 H, $J_{5,6}$ = 3.0 Hz, H-5), 4.88 (bd, 1 H, $J_{3,4}$ = 4.3 Hz, H-4), 4.97 (dd, 1 H, $J_{2b,3}$ = 6.2, $J_{3,4}$ = 4.4 Hz, H-3). ¹³C NMR spectrum (125 MHz, CD₃OD): δ 18.1 (C-8), 35.5 (C-2), 66.4 (C-7), 73.8 (C-5), 76.8 (C-3), 85.2 (C-6), 88.7 (C-4), 176.8 (C-1). HRMS (ESI): m/z 189.0760 (M⁺ + H⁺), calcd for C₈H₁₃O₅: 189.0758.

Colourless prisms, mp 123–124 °C (EtOAc/n-hexane), $[\alpha]_D = + 63.8$ (*c* 0.50, Me₂CO), $[\alpha]_D = + 54.0$ (*c* 0.50, MeOH). ¹H NMR spectrum (400 MHz, CDCl₃): δ 1.30 (d, 3 H, $J_{7,8}$ = 6.4 Hz, H-8, CH₃), 2.00 (bs, 1 H, OH), 2.53 (d, J = 3.2 Hz, OH), 2.71 (dd, 1 H, $J_{2a,2b}$ = 18.5, $J_{2a,3}$ = 1.4 Hz, H-2a), 2.77 (dd, 1 H, $J_{2a,2b}$ = 18.5, $J_{2b,3}$ = 4.8 Hz, H-2b), 3.64 (t, 1 H, $J_{5,6}$ = 5.7, $J_{6,7}$ = 5.7 Hz, H-6), 3.98 (p, 1 H, $J_{6,7}$ = 6.1, $J_{7,8}$ = 6.2 Hz, H-7), 4.51 (bdd, 1 H, $J_{5,6}$ = 5.4, $J_{4,5}$ = 1.7 Hz, H-5), 4.83 (td, 1 H, $J_{2b,3}$ = 4.7, $J_{2a,3}$ = 1.4, $J_{3,4}$ = 4.6 Hz, H-3), 4.88 (dd, 1 H, $J_{4,5}$ = 1.1, $J_{3,4}$ = 4.5 Hz, H-4). ¹³C NMR spectrum (100 MHz, CDCl₃): δ 19.7 (C-8), 35.9 (C-2), 67.8 (C-7), 77.1 (C-5), 77.4 (C-3), 89.6 (C-6), 90.6 (C-4), 175.0 (C-1).

¹H NMR spectrum (500 MHz, CD₃OD): δ 1.18 (d, 3 H, $J_{7,8}$ = 6.5 Hz, H-8, CH₃), 2.58 (d, 1 H, $J_{2a,2b}$ = 18.4 Hz, H-2a), 2.83 (dd, 1 H, $J_{2a,2b}$ = 18.2, $J_{2b,3}$ = 4.7 Hz, H-2b), 3.62 (t, 1 H, $J_{5,6}$ = 5.0, $J_{6,7}$ = 5.0 Hz, H-6), 3.78 (qd, 1 H, $J_{6,7}$ = 5.3, $J_{7,8}$ = 6.5 Hz, H-7), 4.36 (d, 1 H, $J_{5,6}$ = 4.7 Hz, H-5), 4.79 (overlap, 1 H, $J_{3,4}$ = 4.2, H-3), 4.81 (overlap, 1 H, $J_{3,4}$ = 4.2 Hz, H-4). ¹³C NMR spectrum (125 MHz, CD₃OD): δ 18.0 (C-8), 35.7 (C-2), 66.6 (C-7), 75.3 (C-5), 77.6 (C-3), 90.7 (C-6), 91.2 (C-4), 176.5 (C-1). HRMS (ESI): m/z 211.0583 (M⁺ + Na), calcd for C₈H₁₂NaO₅: 211.0577.

3,6-Anhydro-2,8-dideoxy-D-glycero-L-gluco-octono-1,4-lactone (9)

Thin transparent needles, mp 124–126 °C (EtOAc/n-hexane), $[\alpha]_D$ = + 42.8 (*c* 0.50, Me₂CO), $[\alpha]_D$ = + 29.0 (*c* 0.50, MeOH). ¹H NMR spectrum (500 MHz, CD₃OD): δ 1.22 (d, 3 H, $J_{7,8}$ = 6.5 Hz, H-8, CH₃), 2.63 (d, 1 H, $J_{2a,2b}$ = 18.3 Hz, H-2a), 2.84 (dd, 1 H, $J_{2a,2b}$ = 18.3, $J_{2b,3}$ = 5.6 Hz, H-2b), 3.56 (t, 1 H, $J_{5,6}$ = 5.7, $J_{6,7}$ = 5.7 Hz, H-6), 3.77 (p, 1 H, $J_{7,8}$ = 6.4, $J_{6,7}$ = 6.0 Hz, H-7), 4.15 (d, 1 H, $J_{5,6}$ = 5.8 Hz, H-5), 4.77 (t, 1 H, $J_{3,4}$ = 4.8, $J_{2b,3}$ = 5.1, H-3), 4.81 (dd overlap, 1 H, H-4). ¹³C NMR spectrum (125 MHz, CD₃OD): δ 18.2 (C-8), 35.4 (C-2), 67.0 (C-7), 76.4 (C-5), 77.3 (C-3), 90.2 (C-6), 91.3 (C-4), 176.5 (C-1). HRMS (ESI): *m/z* 211.0583 (M⁺ + Na), calcd for C₈H₁₂NaO₅: 211.0577.

3,6-Anhydro-2,8-dideoxy-L-glycero-L-ido-octono-1,4-lactone (ent-I) and 3,7-anhydro-2,8-

dideoxy-L-glycero-L-galacto-octono-1,4-lactone (10)

To a stirred mixture of L-rhamnose monohydrate (2.028 g, 11.13 mmol) in dry DMF (15.50 mL) were added Meldrum's acid (3.383 g, 23.47 mmol) and *t*-BuNH₂ (1.17 mL, 11.12 mmol). The reaction mixture was stirred at 45–50 °C for 6 days and then evaporated. The residue was purified by flash column chromatography (19:1 CHCl₃/EtOH \rightarrow 9:1 CHCl₃/EtOH) to afford pure *ent*-I (0.588 g, 28%) and **10** (0.550 g, 26%).

Major compound *ent*-I: Transparent plates, mp 92–94 °C (EtOAc/*n*-hexane), $[\alpha]_D = -41.4$ (*c* 0.5, Me₂CO), $[\alpha]_D = -28.0$ (*c* 0.10, MeOH), R_f = 0.44 (9:1 CHCl₃/EtOH). IR (KBr): v_{max} 3417 (OH). ¹H NMR (400 MHz, CD₃COCD₃): δ 1.27 (d, 3 H, $J_{7,8}$ = 6.4 Hz, H-8, CH₃), 2.48 (d, 1 H, $J_{2a,2b}$ = 18.5 Hz, H-2a), 2.87 (dd, 1 H, $J_{2a,2b}$ = 18.5, $J_{2b,3}$ = 6.1 Hz, H-2b), 3.67 (dd, 1 H, $J_{5,6}$ = 3.0, $J_{6,7}$ = 6.9 Hz, H-6), 4.07 (m, 1 H, $J_{7,OH}$ = 5.3, $J_{7,8}$ = 6.4, $J_{6,7}$ = 6.5 Hz, H-7), 4.19 (d, 1 H, $J_{7,OH}$ = 5.2 Hz, C₇-OH), 4.47 (t, $J_{5,OH}$ = 3.5, $J_{5,6}$ = 3.5 Hz, H-5), 4.82 (d, $J_{5,OH}$ = 4.3 Hz, C₅-OH), 4.89 (d, 1 H, $J_{3,4}$ = 4.3 Hz, H-4), 4.96 (dd, 1 H, $J_{3,4}$ = 4.3, $J_{2b,3}$ = 6.1 Hz, H-3). ¹³C NMR (100 MHz, CD₃COCD₃): δ 20.0 (C-8), 35.8 (C-2), 65.2 (C-7), 73.8 (C-5), 77.0 (C-3), 84.6 (C-6), 88.0 (C-4), 175.4 (C-1).

¹H NMR (500 MHz, CD₃OD): δ 1.27 (d, 3 H, $J_{7,8}$ = 6.4 Hz, H-8, CH₃), 2.53 (d, 1 H, $J_{2a,2b}$ = 18.7 Hz, H-2a), 2.86 (dd, 1 H, $J_{2a,2b}$ = 18.7, $J_{2b,3}$ = 6.2 Hz, H-2b), 3.61 (dd, 1 H, $J_{5,6}$ = 3.0, $J_{6,7}$ = 7.8 Hz, H-6), 3.99 (dq, 1 H, $J_{6,7}$ = 7.7, $J_{7,8}$ = 6.4 Hz, H-7), 4.41 (d, 1 H, $J_{5,6}$ = 2.9 Hz, H-5), 4.88 (d, 1 H, $J_{3,4}$ = 4.3 Hz, H-4), 4.93 (dd, 1 H, $J_{2b,3}$ = 5.9, $J_{3,4}$ = 4.7 Hz, H-3). ¹³C NMR (125 MHz, CD₃OD): δ 19.6 (C-8), 35.6 (C-2), 64.6 (C-7), 73.2 (C-5), 76.9 (C-3), 84.7 (C-6), 88.4 (C-4), 176.9 (C-1). HRMS (ESI): m/z 211.0574 (M⁺ + Na), calcd for C₈H₁₂NaO₅: 211.0577.

Compound **10**: Colourless plates, mp 171–173 °C (EtOH), $[\alpha]_D = + 134.2$ (*c* 0.50, H₂O), $[\alpha]_D = + 143.0$ (*c* 0.50, Me₂CO), R_f = 0.19 (9:1 CHCl₃/EtOH). IR (KBr): v_{max} 3488 (OH). ¹H NMR (400 MHz, D₂O): δ 1.30 (d, 3 H, J_{7,8}= 6.1 Hz, H-8, CH₃), 2.60 (d, 1 H, J_{2a,2b} = 17.8 Hz, H-2a), 3.05 (dd, 1 H, J_{2a,2b} = 17.8, J_{2b,3} = 4.1 Hz, H-2b), 3.43 (t, 1 H, J_{5,6} = 9.5, J_{6,7} = 9.5 Hz, H-6), 3.53 (dq, 1 H, J_{7,8}= 6.1, J_{6,7} = 9.5 Hz, H-7), 3.93 (dd, 1 H, J_{5,6} = 9.6, J_{4,5} = 4.1 Hz, H-5), 4.62 (dd, 1 H, J_{2b,3} = 4.1, J_{3,4}= 2.0 Hz, H-3), 4.87 (dd, 1 H, J_{4,5} = 4.1, J_{3,4} = 2.0 Hz, H-4). ¹³C NMR (100 MHz, D₂O): δ 19.4 (C-8), 40.8 (C-2), 73.8 (C-5), 74.4 (C-6), 76.4 (C-3), 77.3 (C-7), 85.5 (C-4), 181.8 (C-1). HRMS (ESI): *m/z* 211.0583 (M⁺ + Na), calcd for C₈H₁₂NaO₆: 211.0577.

References

- 1. V. Popsavin, J. Francuz, B. Srećo Zelenović, G. Benedeković, M. Popsavin, V. Kojić and G. Bogdanović, *Bioorg. Med. Chem. Lett.* 2013, **23**, 5507–5510.
- 2. H. Redlich, J. B. Lenfers and W. Bruns, Liebigs Annalen der Chemie 1985, 8, 1570–1586.
- 3. M. L. Wolfrom and S. Hanessian, J. Org. Chem. 1962, 27, 2107–2109.
- 4. D. E. Kiely, H. Walls Jr and R. L. Black, *Carbohydr. Res.* 1973, **31**, 387–396.
- 5. M. L. Wolfrom and S. Hanessian, J. Org. Chem. 1962, 27, 1800–1804.

- 6. Q. Li, A. Fu, J. Dong, Y. Xiao, B. Dai, M. Wei, Z. Huang, J. Liu, C. Chen, H. Zhu, Y. Lu, D. Li and Y. Zhang, *Fitoterapia* 2024, **173**, 105790.
- 7. J. Francuz, S. Djokić, M. Popsavin, M. V. Rodić, V. Kojić, B. Krüger and V. Popsavin, *Synlett* 2023, **34**, 1699–1703.

Selected Spectral Data of Key Intermediates and Final Products

400 MHz ¹H NMR Spectrum of Compound **2** (CDCl₃)

400 MHz ¹H NMR Spectrum of Compound **3** (CDCl₃)

100 MHz ¹³C NMR Spectrum of Compound **3** (CDCl₃)

Exact mass		Observed mass	Observed ion type	Error (ppm)
	317.13594	317.13489	[M+Na]⁺	3.31

400 MHz ¹H NMR Spectrum of Compound **6** (CDCl₃ + D₂O)

100 MHz ¹³C NMR Spectrum of Compound 6 (CDCl₃)

Exact mass	Observed mass	Observed ion type	Error (ppm)
301.10464	301.10414	[M+Na]⁺	1.60

400 MHz ¹H NMR Spectrum of Compound **7** (CDCl₃)

100 MHz ¹³C NMR Spectrum of Compound 7 (CDCl₃)

SDJ61

Exact mass	Observed mass	Observed ion type	Error (ppm)
301.10464	301.10426	[M+Na]⁺	1.26

400 MHz ¹H NMR Spectrum of Compound I (Asperilactone B) (CD₃COCD₃)

100 MHz ¹³C NMR Spectrum of Compound I (Asperilactone B) (CD₃COCD₃)

500 MHz ¹H NMR Spectrum of Compound I (Asperilactone B) (CD₃OD)

125 MHz ¹³C NMR Spectrum of Compound I (Asperilactone B) (CD₃OD)

HRMS of compound I (Asperilactone B)

Exact mass	Observed mass	Observed ion type	Error (ppm)
211.05769	211.05857	[M+Na]⁺	4.17

400 MHz ¹H NMR Spectrum of Compound **8** (7-*epi*-asperilactone B) (CD₃COCD₃)

100 MHz ¹³C NMR Spectrum of Compound **8** (7-*epi*-asperilactone B) (CD₃COCD₃)

500 MHz ¹H NMR Spectrum of Compound **8** (7-*epi*-asperilactone B) (CD₃OD)

125 MHz ¹³C NMR Spectrum of Compound **8** (7-*epi*-asperilactone B) (CD₃OD)

HRMS of compound 8 (7-epi-asperilactone B)

Exact mass	Observed mass	Observed ion type	Error (ppm)
189.07575	189.07595	[M+H]⁺	1.06

400 MHz ¹H NMR Spectrum of Compound II (Asperilactone C) (CDCl₃)

100 MHz ¹³C NMR Spectrum of Compound II (Asperilactone C) (CDCl₃)

500 MHz ¹H NMR Spectrum of Compound II (Asperilactone C) (CD₃OD)

125 MHz ¹³C NMR Spectrum of Compound II (Asperilactone C) (CD₃OD)

HRMS of compound II (Asperilactone C)

*NMR spectrum of compound II in CD₃COCD₃.⁷

500 MHz ¹H NMR Spectrum of Compound **9** (7-*epi*-asperilactone C) (CD₃OD)

125 MHz ¹³C NMR Spectrum of Compound **9** (7-*epi*-asperilactone C) (CD₃OD)

*NMR spectrum of compound **9** in CD₃COCD₃.⁷

400 MHz ¹H NMR Spectrum of Compound *ent*-I (CD₃COCD₃)

100 MHz ¹³C NMR Spectrum of Compound *ent*-I (CD₃COCD₃)

500 MHz ¹H NMR Spectrum of Compound *ent*-I (CD₃OD)

400 MHz ¹H NMR Spectrum of Compound **10** (D₂O)

100 MHz ¹³C NMR Spectrum of Compound **10** (D₂O)

Exact mass	Observed mass	Observed ion type	Error (ppm)
211.05769	211.05829	[M+Na]⁺	2.84

Crystal structures analysis

The diffraction analysis was conducted utilizing the Oxford Diffraction Gemini S diffractometer, which was outfitted with a Sapphire CCD detector. Data collection took place under standard room temperature conditions. Instrument control and data reduction were facilitated by the *CrysAlisPro*¹ software package. Crystal structures were solved with the utilization of *SHELXT*² followed by refinement procedures using *SHELXL*.³ The *ShelXle*⁴ facilitated these procedures, serving as the graphical user interface. Anisotropic refinement was applied to all non-hydrogen atoms, while hydrogen atoms were positioned in idealized coordinates and refined using a riding model. Water molecule in I and *ent*-I has one hydrogen atom disordered over two positions. Positions of water hydrogen atoms are modeled with the help of distance restraints. All details are included in the CIF files. Pertinent crystallographic and refinement data are listed in Table S1 and S2.

Crystallographic data associated with this publication are deposited with the Cambridge Crystallographic Data Centre under the CCDC Numbers 2333775–2333779. They are available for free at https://www.ccdc.cam.ac.uk/structures.

References

- 1. Rigaku Oxford Diffraction. CrysAlisPro Software System; Rigaku Corporation, Wroclaw, Poland, 2023.
- 2. G. M. Sheldrick, Acta Cryst. A 2015, 71, 3–8.
- 3. G. M. Sheldrick, Acta Cryst. C 2015, 71, 3–8.
- 4. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst. 2011, 44, 1281–1284.

	I	ent-l
Crystal data		
CCDC No.	2333775	2333776
Chemical formula	$C_8H_{12}O_5 \cdot H_2O$	$C_8H_{12}O_5 \cdot H_2O$
Mr	206.19	206.19
Crystal system	Monoclinic	Monoclinic
Space group	C2	C2
a / Å	16.4932 (6)	16.5089 (3)
b / Å	6.85772 (19)	6.85830 (11)
c / Å	8.9304 (3)	8.93440 (19)
α/°	90	90
6 / °	104.860 (3)	104.846 (2)
γ/°	90	90
V / Å ³	976.30 (6)	977.81 (3)
Ζ	4	4
Radiation type	Cu <i>Κα</i>	Cu <i>Κα</i>
μ / mm ⁻¹	1.05	1.04
Crystal size, mm	0.70 × 0.24 × 0.06	$0.77 \times 0.40 \times 0.12$
Data collection		
Absorption correction	Multi-scan	Multi-scan
T _{min}	0.724	0.698
T _{max}	1.000	1.000
No. of measured reflections	6007	4973
No. of independent reflections	1874	1874
No. of observed reflections $(l > 2\sigma(l))$	1769	1847
R _{int}	0.032	0.029
(sin ϑ/λ) _{max} / Å ⁻¹	0.617	0.616
Refinement		
$R[F^2 > \sigma(F^2)]$	0.034	0.035
$wR(F^2)$	0.092	0.092
S	1.05	1.06
No. of reflections	1874	1874
No. of parameters	141	142
No. of restraints	6	6
$\Delta \rho_{\rm max}$ / e Å ⁻³	0.12	0.18
$\Delta \rho_{\rm min}$ / e Å ⁻³	-0.13	-0.14
No. of quotients $[I^+ - I^-]/[I^+ + I^-]$	747	812
Parsons' z	-0.07 (12)	-0.01 (8)

 Table S1. Crystallographic and refinement details for I and ent-I.

	8	9	10
Crystal data	•	-	
CCDC No.	2333777	2333778	2333779
Chemical formula	C8H12O5	C8H12O5	C8H12O5
Mr.	188.18	188.18	188.18
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	P212121	P212121	P21
a / Å	5.37102 (6)	5.48541 (5)	8.5474 (5)
b/Å	12.47818 (12)	10.62294 (8)	5.4514 (3)
c/Å	26.7627 (3)	15.21442 (14)	9.7185 (6)
α/°	90	90	90
β/°	90	90	109.269 (7)
v/°	90	90	90
V/Å ³	1793.65 (3)	886.56 (1)	427.47 (5)
Z	8	4	2
Radiation type	Cu <i>Κα</i>	Cu <i>Κα</i>	Μο Κα
μ / mm^{-1}	1.00	1.01	0.12
Crystal size, mm	$0.62\times0.21\times0.09$	$0.74 \times 0.38 \times 0.17$	$0.80\times0.14\times0.07$
Data collection			
Absorption correction	Multi-scan	Analytical	Multi-scan
Tmin	0.501	0.555	0.916
T _{max}	1.000	0.850	1.000
No. of measured reflections	19203	13317	10436
No. of independent reflections	3176	1726	2091
No. of observed reflections $(I > 2\sigma(I))$	3032	1716	1835
Rint	0.026	0.035	0.039
(sin ϑ/λ) _{max} / Å ⁻¹	0.595	0.617	0.691
Refinement			
$R[F^2 > \sigma(F^2)]$	0.029	0.032	0.036
$WR(F^2)$	0.075	0.087	0.084
S	1.06	1.09	1.07
No. of reflections	3176	1726	2091
No. of parameters	245	128	123
No. of restraints	0	0	1
$\Delta \rho_{\rm max}$ / e Å ⁻³	0.15	0.16	0.19
$\Delta \rho_{\rm min}$ / e Å ⁻³	-0.11	-0.14	-0.16
No. of quotients $[I^+ - I^-]/[I^+ + I^-]$	1195	683	703
Parsons' z	0.02 (6)	0.02 (4)	Meaningless

 Table S2. Crystallographic and refinement details for 8–10.

Figure S1. Molecular structure of I ((+)-Asperilactone B).

Figure S2. Molecular structure of *ent*-I ((–)-Asperilactone B).

Figure S3. Molecular structure of 8.

Figure S4. Molecular structure of 9.

Figure S5. Molecular structure of 10.

Comparison of NMR Spectra of Asperilactones B and C with Reported Data

Table S3. Co	mparison of NM	R spectra As	sperilactone B	(I) with	reported da	ata (CD ₃ OD). ^a
			permate b	(.,	1000100000	

С/Н	Observed δ _H (J)	Reported ^a δ _H (<i>J</i>)	Observed δ_{C}	Reported ^a δ_c
1			176.8	178.2
2a	2.52 d (18.7)	2.53 d (18.6)	25.5	26.0
2b	2.86 dd (18.7, 6.2)	2.86 dd (18.6, 6.2)	55.5	50.9
3	4.92 dd (6.1, 4.4)	4.92 dd (6.2, 4.3)	76.9	78.3
4	4.88 d (4.4)	4.88 d (4.3)	88.3	89.7
5	4.41 d (2.9)	4.41 d (2.9)	73.1	74.5
6	3.60 dd (7.8, 2.9)	3.61 dd (7.8, 2.9)	84.7	86.1
7	3.98 dq (7.7, 6.4)	3.99 dq (7.8, 6.3)	64.5	65.9
8	1.26 d (6.4)	1.27 d (6.3)	19.6	21.0

^a Q. Li, A. Fu, J. Dong, Y. Xiao, B. Dai, M. Wei, Z. Huang, J. Liu, C. Chen, H. Zhu, Y. Lu, D. Li and Y. Zhang, *Fitoterapia* 2024, **173**, 105790.

Table S4. Selected structural parameters relevant for absolute structure assignment and correlation with NMR data have been extracted from the crystallographic model (Asperilactone B, I), after normalizing C–H bonds to distances established by neutron diffraction measurements.

Atoms	Distance, Å	J	Atoms	Torsion angle, °
H3…H4	2.34	4.4	H3–C3–C4–H4	-12
H4…H5	2.74	0	H4-C4-C5-H5	-90
H5…H6	2.39	2.9	H5–C5–C6–H6	-41
H6…H7	3.03	7.8 (7.7)	H6–C6–C7–H7	-179

C/H	Observed δ _H (J)	Reported ^a δ _H (J)	Observed δ_c	Reported ^a δ_c
1	-	-	175.0	176.1
2a	2.71 dd (18.5, 1.4)	2.68 d (18.5)	35.9	26.2
2b	2.77 dd (18.5, 4.8)	2.75 dd (18.5, 4.8)		50.2
3	4.83 td (4.7, 4.6, 1.4)	4.80 t (4.6)	77.4	77.5
4	4.88 dd (4.5, 1.1)	4.85 d (4.3)	90.6	91.2
5	4.51 bdd (5.4, 1.7)	4.46 d (5.4)	77.1	76.0
6	3.64 t (5.7, 5.7)	3.63 t (5.4)	89.6	90.0
7	3.98 p (6.2, 6.1)	3.91 p (6.2)	67.8	67.5
2×OH	2.00 bs, 2.53 d (3.2)	-	-	-
8	1.30 d (6.4)	1.23 d (6.4)	19.7	19.4

Taple 35. Comparison of NIVIR spectra Asperilactorie C (11) with reported da	ble 55	irison of NIVIK spectra Asperijactone		.) with re	eported data	(CDCI3)."
---	--------	---------------------------------------	--	------------	--------------	-----------

^a Q. Li, A. Fu, J. Dong, Y. Xiao, B. Dai, M. Wei, Z. Huang, J. Liu, C. Chen, H. Zhu, Y. Lu, D. Li and Y. Zhang, *Fitoterapia* 2024, **173**, 105790.

Γable S6. Comparison of NMR	spectra Asperilactone C (II) with re	ported data	(CD₃OD).⁵
------------------------------------	---------------------------	----------------------	-------------	-----------

C/H	Observed δ _H (J)	Reported ^a δ _H (J)	Observed δ_c	Reported ^a δ_C
1			176.5	177.9
2a 2b	2.58 d (18.4) 2.83 dd (18.2, 4.7)	2.58 d (18.6) 2.84 dd (18.6, 4.6)	35.7	37.0
3	4.79 overlap (4.2)	4.80 overlap	77.6	79.0
4	4.81 overlap (4.2)	4.81 overlap	91.2	92.5
5	4.36 d (4.7)	4.35 d (4.7)	75.3	76.6
6	3.62 t (5.0, 5.0)	3.62 t (5.0)	90.7	92.0
7	3.78 qd (6.5 <i>,</i> 5.3)	3.78 qd (6.5, 5.2)	66.6	68.0
8	1.18 d (6.5)	1.18 d (6.5)	18.0	19.3

^a Q. Li, A. Fu, J. Dong, Y. Xiao, B. Dai, M. Wei, Z. Huang, J. Liu, C. Chen, H. Zhu, Y. Lu, D. Li and Y. Zhang, *Fitoterapia* 2024, **173**, 105790.