Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Photoredox /Copper-Catalyzed

gem-Difluoroalkylation-Cyanation of 1,3-Enynes

Yachen Wang,^a Shuai Liu^b and Yangen Huang *,^a

 ^a College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China. E-mail: hyg@dhu.edu.cn.
^b National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China. E-mail: shuailiu@jxnu.edu.cn.

Contents

1. General Information	3
2. Preparation of Substrates and Reagents	3
3. Optimization of reaction conditions	4
4. Photoredox/copper-Catalyzed Difluoroalkylation of 1,3-enyne	7
5. Transformation of difluoroalkylated allenes	. 32
6. Mechanistic Studies	.35
7. References	. 37
8. Copies of ¹ H, ¹⁹ F, and ¹³ C NMR Spectra for the Products	.38

1. General Information

¹H NMR (TMS as the internal standard), ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AM400 spectrometer. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The NMR yield was determined by ¹⁹F NMR using trifluorotoluene as an internal standard. IR spectra were recorded on a Thermo Scientific Nicolet iS10 Fourier transform infrared (FT-IR) spectrometer and were reported in terms of wavenumber of absorption (cm⁻¹). Detection of melting point was conducted on the SGW X-4 microscopic melting point meter. HRMS-ESI data was collected by Thermo Fisher Scientific Q Exactive HF Oribitrap-FTMS. LED lights were commercial from Kessil® (KSA 160WE-TB, 40W). Unless otherwise stated, all reactions were carried out under strictly anhydrous conditions and N₂ atmosphere. Unless otherwise noted, all reagents were used as received from commercial sources.

2. Preparation of Substrates and Reagents

Substrates $1a^1$, $1b^1$, $1c^2$, $1d^3$, $1e^4$, $1f^5$, $1g^3$, $1h^2$, $1i^1$, $1j^1$, $1k^6$, $1l^5$, $1m^3$, $1n^7$, $1o^8$, $1p^9$, $1q^5$, $1r^6$, $1s^{10}$, $1t^1$, $1u^1$, $1v^{11}$, $1w^1$, $1x^1$, $1y^7$ were prepared according to the reported literatures.

Reagents $2e^{12}$, $2b^{13}$ were prepared according to the reported literatures.

3. Optimization of reaction conditions

Table 1. Optimization of reaction conditions^[a].

Entry	1a	2e	photocatalyst	Ligand	Cu salt	Solvent	Base	Time	Yield
									(%) ^[b]
1	1	1.5	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ PF ₆	MeCN	K ₂ CO ₃	6 h	51
2	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ PF ₆	MeCN	K ₂ CO ₃	6 h	70
3	1	2	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ PF ₆	MeCN	K ₂ CO ₃	6 h	65
4	2	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ PF ₆	MeCN	K ₂ CO ₃	6 h	74
5	1.5	1	fac-Ir(ppy)3	dtbbpy	(CF3SO3)2Cu	MeCN	K ₂ CO ₃	6 h	32
6	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(OAc) ₂	MeCN	K ₂ CO ₃	6 h	29
7	1.5	1	fac-Ir(ppy)3	dtbbpy	CuI	MeCN	K ₂ CO ₃	6 h	<5
8	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	CuCl	MeCN	K ₂ CO ₃	6 h	39
9	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	K ₂ CO ₃	6 h	83
10	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	K ₃ PO ₄ •3H ₂ O	6 h	39
11	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	MeONa	6 h	32
12	1.5	1	fac-Ir(ppy)3	dtbbpy	Cu(MeCN)4BF4	MeCN	CsF	6 h	53
13	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	90, 88 ^[c]
14	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ PF ₆	MeCN	CH ₃ CO ₂ Na	6 h	77
15	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(OAc) ₂	MeCN	CH ₃ CO ₂ Na	6 h	39
16	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	CuCl	MeCN	CH ₃ CO ₂ Na	6 h	50
17	1	1.5	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN)4BF4	MeCN	CH ₃ CO ₂ Na	6 h	71
18	2	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	86
19	1.5	1	fac-Ir(ppy) ₃	dtbbpy	Cu(MeCN)4BF4	MeCN	CH ₃ CO ₂ Na	3 h	60
20	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	12 h	87

21	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	PhCl	CH ₃ CO ₂ Na	6 h	<5
22	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	DMF	CH ₃ CO ₂ Na	6 h	<5
23	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	DCE	CH ₃ CO ₂ Na	6 h	<5
24	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	THF	CH ₃ CO ₂ Na	6 h	<5
25	1.5	1	fac-Ir(ppy) ₃	dtbbpy	Cu(MeCN)4BF4	EA	CH ₃ CO ₂ Na	6 h	15
26	1.5	1	<i>fac</i> -Ir(ppy) ₃	4,4-d(Me)bpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	62
27	1.5	1	fac-Ir(ppy) ₃	4,4-d(OMe)bpy	Cu(MeCN)4BF4	MeCN	CH ₃ CO ₂ Na	6 h	68
28	1.5	1	<i>fac</i> -Ir(ppy) ₃	bpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	72
29	1.5	1	<i>fac</i> -Ir(ppy) ₃	1,10-Phen	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	60
30	1.5	1	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	<5
31	1.5	1	[Ir(ppy) ₂ (dtbbpy)]PF ₆	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	<5
32	1.5	1	Rhodamine 6G	dtbbpy	Cu(MeCN)4BF4	MeCN	CH ₃ CO ₂ Na	6 h	0
33	1.5	1	Ru(bpy) ₃ Cl ₂ •6H ₂ O	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	0
34	1.5	1	4CzIPN	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	0
35	1.5	1	Thioxanthen-9-one	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	0
36	1.5	1	$Ru(bpy)_3(PF_6)_2$	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	0
37	1.5	1	Solvent Red 43	dtbbpy	Cu(MeCN)4BF4	MeCN	CH ₃ CO ₂ Na	6 h	0
38	1.5	1	Perylene	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	5
39	1.5	1	9-Mesityl-10-methylacridini um Perchlorate	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	7
40	1.5	1	-	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	0
41	1.5	1	<i>fac</i> -Ir(ppy) ₃	-	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	63
42	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	-	MeCN	CH ₃ CO ₂ Na	6 h	0
43	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	-	6 h	36
44 ^[d]	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	0
45 ^[e]	1.5	1	<i>fac</i> -Ir(ppy) ₃	dtbbpy	Cu(MeCN) ₄ BF ₄	MeCN	CH ₃ CO ₂ Na	6 h	<5

^[a] Reaction conditions: **1a** (0.15 mmol), **2e** (0.1 mmol), TMSCN (0.2 mmol), photocatalyst (0.002 mmol), Cu salt (0.01 mmol), ligand (0.015 mmol), base (0.2 mmol), solvent (1 mL), blue LED, under N₂, rt. ^[b] Yields were determined by ¹⁹F NMR spectroscopy with trifluorotoluene as an

internal standard. [c] isolated yield. [d] In the dark. [e] In air.

Scheme 1. Common photocatalysts

Our study commenced with oct-1-en-3-yn-2-ylbenzene (**1a**) as the model substrate, its reactivity with difluoro(phenylthio)methyltriphenylphosphonium triflate (**2e**) and TMSCN under photoredox/copper dual catalytic systems¹⁴ was investigated (Table 1). Gratifyingly, the desired 1,4-difunctionalized product **3a** was formed in 51% yield using a catalytic system consisting of *fac*-Ir(ppy)₃ and Cu(MeCN)₄PF₆/dtbbpy with K₂CO₃ as the base in MeCN under irradiation with blue LEDs (entry 1). None of the 1,2-difunctionalized product could be detected. After a series of explorations, it was found that the equivalent ratio of suitable reactants **1a/2e** is 1.5/1 (entries 1-4, 17-18). Screening of different Cu catalysts revealed that Cu(MeCN)₄BF₄ was optimal, increasing the yield of **3a** to 83% (entries 5–9, 14-16). Subsequently, other bases including NaHCO₃, K₃PO₄, MeONa, CsF and NaOAc were evaluated (entries 10-13), and the best result was achieved when NaOAc as the base (entry 13). Studies of reaction duration found that 6 h was more efficient

(entries 19–20). In addition, switching MeCN to other solvents including PhCl, DMF, DCE, THF and EA proved less effective (entries 21-25). The effects of ligands on the reaction were also studied (entries 26-29). Switching the photocatalyst from fac-Ir(ppy)₃ to Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (entry 30), [Ir(ppy)₂(dtbbpy)]PF₆ (entry 31), Perylene (entry 38) or 9-Mesityl-10-methylacridinium Perchlorate (entry 39) led to lower yields, whereas the employment of Rhodamine 6G, Ru(bpy)₃Cl₂•6H₂O, 4CzIPN, Thioxanthen-9-one, Ru(bpy)₃(PF₆)₂ and Solvent Red 43 as the photocatalyst could not afford any of the desired product (entries 32-37). The control experiments demonstrated that visible light, photocatalyst and Cu catalyst were necessary conditions for the reaction, while ligands and alkalis could promote the reaction (entries 40-45).

4. Photoredox/copper-Catalyzed Difluoroalkylation of 1,3-enyne

An 8 mL screw-cap vial equipped with a magnetic stir bar was charged with *fac*-Ir(ppy)₃ (2.6 mg, 0.004 mmol), 4,4'-di-*tert*-butyl-2,2'-bipyridine (8.0 mg, 0.03 mmol), Ph₃PCF₂SPhOTf (114.0 mg, 0.2 mmol), Cu(MeCN)₄BF₄ (6.3 mg, 0.02 mmol), sodium acetate (32.8 mg, 0.4 mmol) and 1,3- enyne (0.3 mmol, if it is solid). The vial was evacuated and backfilled with nitrogen for three times. Then, MeCN (2.0 mL) and TMSCN (50 μ L, 0.4 mmol) were added via a syringe (1,3- enyne is added via a micro syringe if it is liquid). The reaction mixture was placed at a distance of 10 cm from a 40 W blue LEDs and stirred at room temperature for 6 h. Then, saturated NaCl aqueous solution was added and the reaction mixture was extracted with ethyl acetate. The combined organic layers were then dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the

desired product 3.

2-butyl-6,6-difluoro-4-phenyl-6-(phenylthio)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3a** (65.0 mg, 88%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.57 (m, 2H), 7.46 – 7.35 (m, 6H), 7.34 – 7.31 (m, 2H), 3.36 (t, *J* = 13.7 Hz, 2H), 2.45 – 2.33 (m, 2H), 1.67 – 1.59 (m, 2H), 1.44 – 1.37 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.9, 136.4, 132.9, 131.1, 129.3, 128.9, 128.8, 128.3 (t, *J* = 282.8 Hz), 126.8, 126.5, 114.8, 103.9, 86.3, 36.6 (t, *J* = 30.3 Hz), 31.4, 29.7, 22.0, 13.8; ¹⁹**F NMR** (377 MHz, CDCl₃) δ -70.76 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2959, 2214, 1442, 1259, 1022, 797, 693 cm⁻¹; **MS** (ESI): *m/z* 392 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₂H₂₁NF₂NaS [M+Na]⁺: 392.1260; Found: 392.1257.

2-butyl-6,6-difluoro-6-(phenylthio)-4-(p-tolyl)hexa-2,3-dienenitrile

3b

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3b** (68.2 mg, 89%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.47 – 7.35 (m, 3H), 7.23 – 7.17 (m, 4H), 3.33 (t, *J* = 13.7 Hz, 2H), 2.37 (s, 5H), 1.65 – 1.57 (m, 2H), 1.44 – 1.35 (m, 2H), 0.96 – 0.90 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.8, 138.9, 136.4, 130.2, 129.8, 129.7, 129.3, 128.3 (t, *J* = 282.8 Hz), 126.7, 126.5, 115.0, 103.8, 86.2, 39.6 (t, *J* = 30.3 Hz), 31.5, 29.7, 22.1, 21.3, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.72 (AB-t, *J* = 206.8, 129.7)

15.0 Hz, 2F); **IR** (thin film) v 2961, 2214, 1328, 1259, 1020, 797 cm⁻¹; **MS** (ESI): *m/z* 406 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₃H₂₃NF₂NaS [M+Na]⁺: 406.1417; Found: 406.1421.

2-butyl-6,6-difluoro-6-(phenylthio)-4-(o-tolyl)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3c** (63.6 mg, 83%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 2H), 7.45 – 7.35 (m, 3H), 7.26 – 7.21 (m, 3H), 7.21 – 7.19 (m, 1H), 3.24 (td, *J* = 13.6, 4.3 Hz, 2H), 2.40 (s, 3H), 2.32 – 2.27 (m, 2H), 1.61 – 1.54 (m, 2H), 1.39 – 1.33 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 211.9, 136.3, 136.0, 133.7, 131.0, 130.1, 129.3, 128.6, 128.2, 128.2 (t, *J* = 282.8 Hz), 126.5, 126.4, 115.0, 102.3, 83.7, 42.8 (t, *J* = 30.3 Hz), 31.0, 29.7, 22.0, 20.4, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -71.01 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2925, 2218, 1959, 1446, 1259, 1025, 797 cm⁻¹; **MS** (ESI): *m*/*z* 406 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₃H₂₃NF₂NaS [M+Na]⁺: 406.1417; Found: 406.1418.

2-butyl-6,6-difluoro-6-(phenylthio)-4-(m-tolyl)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3d** (61.3 mg, 80%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.44 – 7.33 (m, 3H), 7.25 – 7.22 (m, 1H), 7.14 – 7.06 (m, 3H), 3.31 (t, *J* = 13.7 Hz, 2H), 2.37 – 2.31 (m, 5H), 1.59 (td, *J* = 7.6, 3.5 Hz, 2H), 1.43 – 1.35 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.9, 138.7, 136.4, 132.9, 130.2, 129.6, 129.3, 128.9, 128.3 (t, *J* = 282.8

Hz), 127.5, 126.6, 123.9, 114.9, 103.9, 86.2, 39.7 (t, J = 30.3 Hz), 31.5, 29.8, 22.1, 21.6, 13.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -70.79 (AB-t, J = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2968, 2210, 1259, 1023, 797, 693 cm⁻¹; **MS** (ESI): m/z 406 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₂₃H₂₃NF₂NaS [M+Na]⁺: 406.1417; Found: 406.1415.

2-butyl-4-(3,5-dimethylphenyl)-6,6-difluoro-6-(phenylthio)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3e** (65.9 mg, 83%) as yellow oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.68 – 7.57 (m, 2H), 7.47 – 7.36 (m, 3H), 7.00 – 6.95 (m, 1H), 6.94 – 6.86 (m, 2H), 3.34 (t, *J* = 13.7 Hz, 2H), 2.41 – 2.36 (m, 2H), 2.34 (s, 6H), 1.64 (td, *J* = 7.5, 4.0 Hz, 2H), 1.47 – 1.38 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 213.9, 138.5, 136.4, 132.7, 130.5, 130.1, 129.2, 128.3 (t, *J* = 282.8 Hz), 126.6, 124.6, 115.0, 103.9, 86.0, 39.6 (t, *J* = 30.3 Hz), 31.4, 29.7, 22.0, 21.4, 13.8; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -70.69 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2961, 2204, 1259, 1020, 797, 694 cm⁻¹; **MS** (ESI): *m/z* 420 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₄H₂₅NF₂NaS [M+Na]⁺: 420.1573; Found: 420.1577.

2-butyl-4-(4-(tert-butyl)phenyl)-6,6-difluoro-6-(phenylthio)hexa-2,3-dienenitrile

3f

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3f** (79.1 mg, 93%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.45 – 7.35 (m, 5H), 7.26 – 7.24 (m, 1H), 7.24 – 7.21 (m, 1H), 3.33 (t, *J* = 13.7 Hz, 2H), 2.38 – 2.31 (m, 2H), 1.65 – 1.57 (m, 2H), 1.43 – 1.37 (m, 2H), 1.32 (s, 9H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 214.0, 152.1, 136.4, 132.2, 130.1, 129.8, 128.6, 128.3 (t, *J* = 282.8 Hz),

126.5, 126.0, 114.9, 103.6, 39.5 (t, J = 30.3 Hz), 34.8, 31.5, 31.3, 29.8, 22.1, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.68 (AB-t, J = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2961, 2218, 1259, 1020, 797 cm⁻¹; **MS** (ESI): m/z 448 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₂₆H₂₉NF₂NaS [M+Na]⁺: 448.1886; Found: 448.1890.

2-butyl-4-(2-chlorophenyl)-6,6-difluoro-6-(phenylthio)hexa-2,3-dienenitrile

3g

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3g** (63.7 mg, 79%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.45 – 7.40 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.27 (m, 3H), 3.30 (t, *J* = 13.6 Hz, 2H), 2.35 – 2.29 (m, 2H), 1.62 – 1.54 (m, 2H), 1.40 – 1.32 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 212.6, 136.4, 133.1, 132.8, 130.5, 130.3, 130.1, 130.0, 129.3, 128.2 (t, *J* = 282.8 Hz), 127.2, 126.4, 114.8, 101.7 (t, *J* = 10.1 Hz), 84.4, 41.9 (t, *J* = 30.3 Hz), 30.9, 29.6, 21.9, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.97 (td, *J* = 13.5, 2.5 Hz, 2F); **IR** (thin film) v 2960, 2221, 1259, 1020, 797 cm⁻¹; **MS** (ESI): *m/z* 426 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₂H₂₀NF₂NaSCl [M+Na]⁺: 426.0871; Found: 426.0874.

4-(2-bromophenyl)-2-butyl-6,6-difluoro-6-(phenylthio)hexa-2,3-dienenitrile

3h

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3h** (59.0 mg, 66%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.52 (m, 3H), 7.46 – 7.29 (m, 5H), 7.24 – 7.18 (m, 1H), 3.28 (t, *J* = 13.6 Hz, 2H), 2.35 – 2.27 (m, 2H), 1.62 – 1.57 (m, 2H), 1.38 – 1.32 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.4, 136.4, 135.3, 133.5, 130.7, 130.2, 129.3, 128.9, 128.2 (t, *J* = 282.8 Hz), 127.8, 126.5, 122.6, 114.8,

103.5, 84.6, 42.2 (t, J = 30.3 Hz), 31.0, 29.6, 22.0, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.93 (td, J = 13.6, 8.8 Hz, 2F); **IR** (thin film) v 2960, 2221, 1259, 1020, 797, 693 cm⁻¹; **MS** (ESI): m/z 470 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₂₂H₂₀NF₂NaSBr [M+Na]⁺: 470.0366; Found: 470.0369.

2-butyl-6,6-difluoro-4-(4-fluorophenyl)-6-(phenylthio)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3j** (53.4 mg, 69%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.51 (m, 2H), 7.47 – 7.34 (m, 3H), 7.30 – 7.26 (m, 2H), 7.10 – 7.01 (m, 2H), 3.31 (t, *J* = 13.6 Hz, 2H), 2.41 – 2.28 (m, 2H), 1.63 – 1.58 (m, 2H), 1.42 – 1.35 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.7, 162.9 (d, *J* = 121.2 Hz), 136.4, 130.2, 129.3, 128.9 (d, *J* = 10.1 Hz), 128.8 (d, *J* = 10.1 Hz), 128.2 (t, *J* = 282.8 Hz), 126.4, 116.1 (d, *J* = 10.1 Hz), 114.7, 103.2 (t, *J* = 10.1 Hz), 86.5, 39.9 (t, *J* = 30.3 Hz), 31.5, 29.7, 22.1, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.84 (AB-t, *J* = 206.8, 15.0 Hz, 2F), -112.47 (ddd, *J* = 13.3, 8.3, 5.0 Hz); **IR** (thin film) v 2960, 1945, 1259, 1019, 797, 693 cm⁻¹; **MS** (ESI): *m*/*z* 410 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₂H₂₀NF₃NaS [M+Na]⁺: 410.1166; Found: 410.1162.

2-butyl-4-(4-chlorophenyl)-6,6-difluoro-6-(phenylthio)hexa-2,3-dienenitrile

3j

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3j** (53.2 mg, 66%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.55 (m, 2H), 7.47 – 7.42 (m, 1H), 7.41 – 7.36 (m, 2H), 7.36 – 7.32 (m, 2H), 7.24 – 7.20 (m, 2H), 3.31 (t, *J* = 13.6 Hz, 2H), 2.40 – 2.30 (m, 2H), 1.59 (dd, *J* = 7.5, 3.8 Hz, 2H), 1.42 – 1.35 (m, 2H), 0.92 (t, *J* = 7.4 Hz,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 213.8, 149.3, 136.4, 134.8, 131.4, 130.3, 129.3, 129.2, 128.2 (t, *J* = 282.8 Hz), 128.1, 114.5, 103.1, 86.7, 39.7 (t, *J* = 30.3 Hz), 31.4, 29.7, 22.1, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ 70.68 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2961, 2210, 1259, 1019, 797 cm⁻¹; **MS** (ESI): *m*/*z* 426 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₂H₂₀NF₂NaSCl [M+Na]⁺: 426.0871; Found: 426.0875.

2-butyl-6,6-difluoro-4-(2-methoxyphenyl)-6-(phenylthio)hexa-2,3-dienenitrile

3k

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3k** (61.4 mg, 77%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 2H), 7.44 – 7.29 (m, 4H), 7.23 – 7.16 (m, 1H), 7.01 – 6.93 (m, 1H), 6.93 – 6.87 (m, 1H), 3.83 (s, 3H), 3.35 (td, *J* = 14.1, 6.1 Hz, 2H), 2.31 (t, *J* = 7.7 Hz, 2H), 1.64 – 1.56 (m, 2H), 1.42 – 1.34 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 213.8, 156.8, 136.3, 130.2, 130.0, 130.0, 129.2, 128.5 (t, *J* = 282.8 Hz), 126.8, 122.8, 120.9, 115.5, 111.3, 101.5 (t, *J* = 10.1 Hz), 83.0, 55.6, 41.0 (t, *J* = 30.3 Hz), 31.3, 29.7, 22.0, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.91 (q, *J* = 14.2 Hz, 2F); IR (thin film) v 2961, 2214, 1259, 1020, 797, 694 cm⁻¹; MS (ESI): *m/z* 422 [M+Na]⁺; HRMS (ESI-TOF): *m/z* Calculated for C₂₃H₂₃NOF₂NaS [M+Na]⁺: 422.1366; Found: 422.1366.

2-butyl-6,6-difluoro-6-(phenylthio)-4-(3-(trifluoromethyl)phenyl)hexa-2,3-dienenitrile

31

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **31** (76.9 mg, 88%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.6 – 7.6 (m, 3H), 7.5 – 7.5 (m, 3H), 7.5 – 7.4 (m, 2H), 7.4 – 7.4 (m, 1H), 3.4 (t, *J* = 13.6 Hz, 2H), 2.4 (t, *J* = 7.6 Hz, 2H), 1.7

- 1.6 (m, 2H), 1.4 – 1.4 (m, 2H), 0.9 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 213.9, 136.4, 134.1, 131.4 (q, J = 30.3 Hz), 130.3, 130.1, 129.6, 129.4, 128.1 (t, J = 282.8 Hz), 126.3, 125.5, 123.4, 122.5, 114.3, 103.1, 87.1, 39.6 (t, J = 30.3 Hz), 31.4, 29.7, 22.0, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.77, -71.02 (AB-t, J = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2961, 2214, 1328, 1259, 1020, 798, 695 cm⁻¹; **MS** (ESI): m/z 460 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₂₃H₂₀NF₅NaS [M+Na]⁺: 460.1134; Found: 460.1136.

4-(5-cyano-1,1-difluoro-1-(phenylthio)nona-3,4-dien-3-yl)benzonitrile

3m

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3m** (44.9 mg, 57%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 7.0 Hz, 2H), 7.46 – 7.36 (m, 3H), 7.03 (d, *J* = 8.6 Hz, 2H), 3.29 (t, *J* = 13.6 Hz, 2H), 2.38 – 2.32 (m, 2H), 1.61 – 1.55 (m, 2H), 1.42 – 1.36 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.8, 138.2, 136.4, 132.6, 130.3, 129.4, 128.5, 128.2 (t, *J* = 282.8 Hz), 126.4, 124.6, 114.3, 113.7, 94.7, 86.8, 39.6 (t, *J* = 20.2 Hz), 31.4, 29.7, 22.1, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.92 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2960, 2214, 1328, 1259, 1020, 798, 697 cm⁻¹; **MS** (ESI): *m/z* 395 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₃H₂₁N₂F₂S [M+H]⁺: 395.1394; Found: 395.1389.

4-([1,1'-biphenyl]-4-yl)-2-butyl-6,6-difluoro-6-(phenylthio)hexa-2,3-dienenitrile

3n

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3n** (60.5 mg, 68%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 5H), 7.50

- 7.42 (m, 4H), 7.41 - 7.36 (m, 5H), 3.38 (t, J = 13.7 Hz, 2H), 2.43 - 2.34 (m, 2H), 1.67 - 1.61 (m, 2H), 1.44 - 1.38 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 214.1, 150.2, 141.6, 140.7, 140.2, 136.4, 131.7, 130.2, 129.3, 129.0, 128.3 (t, J = 282.8 Hz), 127.9, 127.7, 127.1, 114.8, 103.7, 86.5, 39.6 (t, J = 30.3 Hz), 31.5, 29.8, 22.1, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.68 (AB-t, J = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2960, 2221, 1259, 1019, 797, 693 cm⁻¹; **MS** (ESI): m/z 468 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C_{28H25}NF₂NaS [M+Na]⁺: 468.1573; Found: 468.1569.

4-(4-(benzyloxy)phenyl)-2-butyl-6,6-difluoro-6-(phenylthio)hexa-2,3-dienenitrile

30

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **30** (62.7 mg, 66%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 2H), 7.46 – 7.40 (m, 4H), 7.39 – 7.32 (m, 4H), 7.25 – 7.23 (m, 1H), 7.23 – 7.21 (m, 1H), 6.99 – 6.97 (m, 1H), 6.97 – 6.94 (m, 1H), 5.08 (s, 2H), 3.30 (t, *J* = 13.7 Hz, 2H), 2.34 (td, *J* = 7.2, 1.2 Hz, 2H), 1.61 – 1.57 (m, 2H), 1.42 – 1.37 (m, 2H), 1.27 – 1.25 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 213.8, 159.2, 158.5, 150.8, 136.4, 130.1, 129.3, 128.8, 128.3 (t, *J* = 282.8 Hz), 128.2, 128.1, 127.7, 127.5, 125.1, 115.5, 103.5, 86.2, 70.2, 39.7 (t, *J* = 30.3 Hz), 31.5, 22.6, 22.1, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.58 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2958, 2217, 1604, 1510, 1255, 1020, 798, 740, 695 cm⁻¹; **MS** (ESI): *m*/*z* 498 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₉H₂₇NOF₂NaS [M+Na]⁺: 498.1672; Found: 498.1679.

2-butyl-4-(3-chlorophenyl)-6,6-difluoro-5-methyl-6-(phenylthio)hexa-2,3-dienenitrile

3p

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3p** (58.4 mg, 70%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.51 (m, 2H), 7.47 – 7.33 (m, 3H), 7.32 – 7.27 (m, 2H), 7.24 – 7.20 (m, 1H), 7.20 – 7.13 (m, 1H), 3.44 – 3.34 (m, 1H), 2.41 – 2.31 (m, 2H), 1.62 – 1.58 (m, 2H), 1.45 (dd, *J* = 18.4, 7.1 Hz, 3H), 1.42 – 1.36 (m, 2H), 0.92 (td, J = 7.3, 2.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.3 (d, *J* = 20.2 Hz), 136.5 (d, *J* = 20.2 Hz), 135.7 (d, *J* = 20.2 Hz), 135.0, 130.2 (d, *J* = 10.1 Hz), 130.1 (d, *J* = 10.1 Hz), 129.3 (d, *J* = 10.1 Hz), 128.8 (d, *J* = 10.1 Hz), 128.2 (t, *J* = 282.8 Hz), 127.1, 126.3 (d, *J* = 10.1 Hz), 125.3, 114.5 (d, *J* = 20.2 Hz), 110.3 (d, *J* = 40.4 Hz), 88.1 (d, *J* = 40.4 Hz), 43.7 (q, *J* = 20.2 Hz), 31.4 (d, *J* = 40.4 Hz), 29.8 (d, *J* = 10.1 Hz), 22.1 (d, *J* = 10.1 Hz), 15.6, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -74.20 – -78.61 (m, 2F); **IR** (thin film) v 2927, 2217, 1639, 1580, 1466, 793, 749, 692 cm⁻¹; **MS** (ESI): *m*/*z* 440 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₃H₂₂NF₂NaSCI [M+Na]⁺: 440.1027; Found: 440.1023.

2-butyl-6,6-difluoro-6-(phenylthio)-4-(pyridin-3-yl)hexa-2,3-dienenitrile

3q

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3q** (38.5 mg, 52%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.59 – 8.56 (m, 1H), 8.56 – 8.52 (m, 1H), 7.65 – 7.55 (m, 3H), 7.47 – 7.36 (m, 3H), 7.33 – 7.28 (m, 1H), 3.33 (t, *J* = 13.6 Hz, 2H), 2.41 – 2.31 (m, 2H), 1.65 – 1.56 (m, 2H), 1.42 – 1.36 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.6, 149.7, 148.0, 136.4, 134.0, 130.3, 129.4, 129.2, 128.1 (t, *J* = 282.8 Hz), 126.2, 123.7, 114.2, 101.4, 87.1, 39.5 (t, *J* = 30.3 Hz), 31.4, 29.7, 22.0, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -71.21 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2961, 2204,

1259, 1020, 797, 694 cm⁻¹; **MS** (ESI): *m/z* 371 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₁H₂₁N₂F₂S [M+H]⁺: 371.1394; Found: 371.1399.

2-(4,4-difluoro-2-phenyl-4-(phenylthio)but-1-en-1-ylidene)octanenitrile

3r

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3r** (72.3 mg, 91%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.47 – 7.29 (m, 8H), 3.34 (t, *J* = 13.7 Hz, 2H), 2.42 – 2.31 (m, 2H), 1.63 – 1.58 (m, 2H), 1.29 – 1.25 (m, 6H), 0.88 – 0.85 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.9, 136.4, 132.9, 130.2, 129.3, 129.0, 128.8, 128.3 (t, *J* = 282.8 Hz), 126.8, 126.5, 114.8, 103.9, 86.4, 39.6 (t, *J* = 30.3 Hz), 31.8, 31.5, 28.6, 27.6, 22.6, 14.1; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.90 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2960, 1973, 1259, 1020, 797, 694 cm⁻¹; **MS** (ESI): *m/z* 420 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₄H₂₅NF₂NaS [M+Na]⁺: 420.1573; Found: 420.1577.

2-(tert-butyl)-6,6-difluoro-4-phenyl-6-(phenylthio)hexa-2,3-dienenitrile

3s

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3s** (58.3 mg, 79%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.51 (m, 2H), 7.48 – 7.27 (m, 8H), 3.52 – 3.21 (m, 2H), 1.26 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 211.5, 136.4, 133.1, 130.2, 129.3, 129.0, 128.8, 128.3 (t, *J* = 282.8 Hz), 126.6, 126.5, 114.0, 105.0, 97.5, 39.7 (t, *J* = 30.3 Hz), 35.8, 28.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.47 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2961, 2219, 1453, 1258, 1021, 797, 692 cm⁻¹; **MS** (ESI): *m/z* 392 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₂H₂₁NF₂NaS [M+Na]⁺: 392.1260; Found: 392.1267.

2-cyclopropyl-6,6-difluoro-4-phenyl-6-(phenylthio)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3t** (37.4 mg, 53%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.55 (m, 2H), 7.47 – 7.41 (m, 1H), 7.41 – 7.32 (m, 5H), 7.32 – 7.28 (m, 2H), 3.34 (td, *J* = 12.0, 4.0 Hz, 2H), 1.64 – 1.59 (m, 1H), 0.92 – 0.88 (m, 2H), 0.79 – 0.73 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 213.5, 136.5, 133.3, 130.2, 129.3, 129.0, 128.9,128.5, 128.1 (t, *J* = 282.8 Hz), 126.8, 113.9, 105.4, 90.0, 39.6 (t, *J* = 30.3 Hz), 11.6, 6.6, 6.4; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -71.11 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2968, 2210, 1259, 1023, 797, 693 cm⁻¹; **MS** (ESI): *m/z* 376 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₁H₁₇NNaSF₂ [M+Na]⁺: 376.0947; Found: 376.0952.

6,6-difluoro-4-phenyl-6-(phenylthio)-2-(p-tolyl)hexa-2,3-dienenitrile

3u

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3u** (33.9 mg, 42%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.43 – 7.38 (m, 2H), 7.35 – 7.33 (m, 1H), 7.31 – 7.27 (m, 6H), 7.18 – 7.13 (m, 3H), 3.41 (td, *J* = 14.1, 13.7, 3.7 Hz, 2H), 2.30 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 215.0, 139.6, 136.4, 132.4, 130.2, 130.0, 129.3, 129.3, 129.2, 128.2 (t, *J* = 282.8 Hz), 126.9, 126.5, 126.2, 125.9, 113.5, 107.7 (t, *J* = 10.1 Hz), 90.2, 39.7 (t, *J* = 30.3 Hz), 21.4; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.99 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2920, 2224, 1439, 1028, 803, 750, 693 cm⁻¹; **MS** (ESI): *m/z* 426

[M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₅H₁₉NF₂NaS [M+Na]⁺: 426.1104; Found: 426.1100.

2-cyclohexyl-6,6-difluoro-4-phenyl-6-(phenylthio)hexa-2,3-dienenitrile

3v

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3v** (66.4 mg, 84%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.46 – 7.41 (m, 1H), 7.41 – 7.39 (m, 1H), 7.39 – 7.33 (m, 4H), 7.32 – 7.31 (m, 1H), 7.31 – 7.28 (m, 1H), 3.34 (td, *J* = 14.1, 13.7, 3.7 Hz, 2H), 2.34 – 2.27 (m, 1H), 2.02 – 1.94 (m, 2H), 1.83 – 1.76 (m, 2H), 1.71 – 1.66 (m, 1H), 1.63 – 1.57 (m, 1H), 1.34 – 1.31 (m, 2H), 1.28 – 1.25 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.9, 136.4, 133.0, 130.2, 129.3, 129.0, 128.7, 128.3 (t, *J* = 282.8 Hz), 126.6, 126.4, 114.3, 104.6, 92.1, 40.5, 39.7 (t, *J* = 30.3 Hz), 31.6, 25.9, 25.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.36 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2928, 2218, 1442, 1258, 1025, 797, 753, 692 cm⁻¹; **MS** (ESI): *m/z* 418 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₄H₂₃NF₂NaS [M+Na]⁺: 418.1417; Found: 418.1422.

2-(3-chloropropyl)-6,6-difluoro-4-phenyl-6-(phenylthio)hexa-2,3-dienenitrile

3w

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **3w** (31.9 mg, 41%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 2H), 7.47 – 7.42 (m, 1H), 7.42 – 7.34 (m, 5H), 7.32 – 7.28 (m, 2H), 3.58 (t, *J* = 6.2 Hz, 2H), 3.35 (t, *J* = 13.9 Hz, 2H), 2.55 (t, *J* = 7.2 Hz, 2H), 2.14 – 2.05 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 214.1,

136.4, 132.6, 130.3, 129.4, 129.1, 129.1, 128.2 (t, J = 282.8 Hz), 126.9, 126.4, 114.4, 104.7, 85.0, 43.5, 39.7 (t, J = 30.3 Hz), 30.2, 29.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.95 (AB-t, J = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2968, 2210, 1259, 1023, 797, 693 cm⁻¹; **MS** (ESI): m/z 412 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₂₁H₁₈NF₂NaSCl [M+Na]⁺: 412.0714; Found: 412.0714.

2-((1,3-dioxoisoindolin-2-yl)methyl)-6,6-difluoro-4-phenyl-6-(phenylthio)hexa-2,3-dienenitril

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3x** (28.3 mg, 30%) as yellow waxy solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 2H), 7.77 – 7.69 (m, 2H), 7.53 – 7.49 (m, 2H), 7.43 – 7.39 (m, 1H), 7.39 – 7.33 (m, 4H), 7.33 – 7.28 (m, 3H), 4.68 – 4.51 (m, 2H), 3.32 (td, *J* = 13.5, 5.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 214.1, 167.3, 136.4, 134.4, 131.9, 131.6, 130.2, 129.3, 129.3, 129.1, 127.9 (t, *J* = 282.8 Hz), 127.1, 126.3, 123.8, 112.8, 107.7, 83.1, 39.5 (t, *J* = 30.3 Hz), 37.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -70.91 (td, *J* = 13.6, 2.4 Hz); **IR** (thin film) v 2961, 2204, 1690, 1259, 1020, 797, 694 cm⁻¹; **MS** (ESI): *m*/*z* 473 [M+H]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₇H₁₉N₂O₂F₂S [M+H]⁺: 473.1057; Found: 473.1059.

6,6-difluoro-2-(2-hydroxyethyl)-4-phenyl-6-(phenylthio)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **3y** (59.3 mg, 83%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 2H), 7.47 – 7.41 (m, 1H), 7.41 – 7.36 (m, 3H), 7.36 – 7.32 (m, 4H), 3.89 (t, *J* = 6.2 Hz, 2H), 3.37 (t, *J* = 13.4 Hz, 2H), 2.60 (t, *J* = 6.1 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 214.9, 136.4, 132.5, 130.2, 129.3, 129.1, 129.0, 128.3 (t, *J* = 282.8 Hz), 126.9, 126.4, 114.5, 104.3, 83.4, 60.0, 39.6 (t, *J* = 30.3 Hz), 34.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.68 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 3420, 2951, 2220, 1440, 1258, 1031, 797, 753, 693 cm⁻¹; **MS** (ESI): *m/z* 380 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₀H₁₇NOF₂NaS [M+Na]⁺: 380.0897; Found: 380.0899.

2-butyl-6,6-difluoro-4-phenylhexa-2,3-dienenitrile (4a)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4a** (46.5 mg, 89 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 5H), 5.97 (tt, *J* = 55.9, 4.6 Hz, 1H), 3.08 (td, *J* = 15.5, 5.2 Hz, 2H), 2.37 – 2.30 (m, 2H), 1.58 (td, *J* = 7.5, 2.0 Hz, 2H), 1.43 – 1.37 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.4, 132.4, 129.2, 129.1, 126.5, 115.1 (t, *J* = 242.4 Hz), 114.9, 103.1, 86.7, 35.4 (t, *J* = 20.2 Hz), 31.6, 29.7, 22.1, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.87 (dtd, *J* = 56.4, 15.5, 7.0 Hz, 2F); **IR** (thin film) v 2959, 2214, 1449, 1259, 1021, 797, 695 cm⁻¹; **MS** (ESI): *m/z* 284 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₆H₁₇NF₂Na [M+Na]⁺: 284.1227; Found: 284.1231.

2-butyl-6,6-difluoro-4-(p-tolyl)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4b** (48.4 mg, 88 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 4H), 5.96 (tt, *J* = 56.0, 4.6 Hz, 1H), 3.06 (td, *J* = 15.4, 4.3 Hz, 2H), 2.37 (s, 3H), 2.35 – 2.30 (m, 2H), 1.62 – 1.54 (m, 2H), 1.45 – 1.36 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.4, 139.2, 129.9, 129.3, 126.4, 115.2 (t, *J* = 242.4 Hz), 115.0, 104.2 (t, *J* = 10.1 Hz), 86.4, 35.4 (t, *J* = 20.2 Hz), 31.6, 29.7, 22.1, 21.3, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.83 (dtd, *J* = 56.4, 15.6, 8.3 Hz, 2F); **IR** (thin film) v 2960, 2214, 1402, 1259, 1022, 798 cm⁻¹; **MS** (ESI): *m/z* 298 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₇H₁₉NF₂Na [M+Na]⁺: 298.1383; Found: 298.1387.

2-butyl-6,6-difluoro-4-(o-tolyl)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4c** (49.0 mg, 89 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 3H), 7.21 – 7.17 (m, 1H), 5.87 (tt, J = 55.9, 4.6 Hz, 1H), 2.96 (tdd, J = 15.6, 4.6, 2.1 Hz, 2H), 2.38 (s, 3H), 2.29 – 2.23 (m, 2H), 1.60 – 1.51 (m, 2H), 1.40 – 1.33 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.5, 136.0, 133.1, 131.2, 128.8, 127.9, 126.5, 115.0, 114.9 (t, *J* = 242.4 Hz), 102.7 (t, *J* = 10.1 Hz), 83.7, 38.7 (t, *J* = 20.2 Hz), 31.1, 29.7, 21.9, 20.3, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.7 (dt, *J* = 55.9, 15.9 Hz, 2F); **IR** (thin film) v 2961, 2214, 1959, 1259, 1022, 797 cm⁻¹; **MS** (ESI): *m*/*z* 298 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₁₇H₁₉NF₂Na [M+Na]⁺: 298.1383; Found: 298.1381.

2-butyl-6,6-difluoro-4-(m-tolyl)hexa-2,3-dienenitrile

4d

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4d** (50.6 mg, 92 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 1H), 7.21 – 7.13 (m, 1H), 7.13 – 7.08 (m, 2H), 5.95 (tt, J = 56.0, 4.6 Hz, 1H), 3.05 (tdd, J = 15.7, 4.6, 2.0 Hz, 2H), 2.37 (s, 3H), 2.35 – 2.30 (m, 2H), 1.62 – 1.51 (m, 2H), 1.43 – 1.34 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 212.4, 139.0, 132.3, 129.9, 128.7, 127.3, 123.6, 115.1 (t, J = 242.4 Hz), 114.9, 104.3 (t, J = 10.1 Hz), 86.4, 35.5 (t, J = 20.2 Hz), 31.6, 29.7, 22.0, 21.6, 13.8; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -114.89 (td, J = 56.4, 15.7, 8.3 Hz, 2F); **IR** (thin film) v 2959, 2219, 1456, 1259, 1021, 797 cm⁻¹; **MS** (ESI): m/z 298 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₇H₁₉NF₂Na [M+Na]⁺: 298.1383; Found: 298.1387.

2-butyl-4-(3,5-dimethylphenyl)-6,6-difluorohexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4e** (54.4 mg, 94 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.02 – 6.91 (m, 3H), 5.96 (tt, *J* = 56.0, 4.6 Hz, 1H), 3.06 (tdd, *J* = 15.7, 4.6, 2.3 Hz, 2H), 2.36 – 2.32 (m, 8H), 1.59 (dtd, *J* = 13.7, 7.1, 2.8 Hz, 2H), 1.47 – 1.37 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.4, 138.9, 132.2, 130.8, 124.3, 115.2 (t, *J* = 242.4 Hz), 115.0, 104.4 (t, *J* =10.1 Hz), 86.2, 35.5 (t, *J* = 20.2 Hz), 31.6, 29.7, 22.0, 21.4, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.88 (dtd, *J* = 56.4, 15.6, 9.1 Hz, 2F); **IR** (thin film) v 2961, 2221, 1404, 1260, 1024, 800 cm⁻¹; **MS** (ESI): *m*/*z* 312 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₁₈H₂₁NF₂Na [M+Na]⁺: 312.1540; Found: 312.1544.

2-butyl-4-(2-chlorophenyl)-6,6-difluorohexa-2,3-dienenitrile

4g

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4g** (31.9 mg, 54 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 1H), 7.32 – 7.25 (m, 3H), 5.89 (tt, *J* = 55.8, 4.5 Hz, 1H), 3.01 (td, *J* = 15.9, 4.5 Hz, 2H), 2.31 – 2.25 (m, 2H), 1.59 – 1.51 (m, 2H), 1.40 – 1.30 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 211.3, 132.8, 132.8, 130.5, 130.2, 130.1, 127.5, 114.9 (t, *J* = 242.4 Hz), 114.8, 102.0 (t, *J* = 10.1 Hz), 84.7, 37.9 (t, *J* = 20.2 Hz), 31.1, 29.6, 21.9, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.48 (dtd, *J* = 56.4, 15.8, 10.7 Hz, 2F); **IR** (thin film) v 2961, 2214, 1429, 1259, 1041, 797 cm⁻¹; **MS** (ESI): *m*/*z* 318 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₁₆H₁₆NF₂NaCl [M+Na]⁺: 318.0837; Found: 318.0840.

4-(2-bromophenyl)-2-butyl-6,6-difluorohexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4h** (48.1 mg, 71 %) as yellow oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.54 (m, 1H), 7.30 – 7.26 (m, 1H), 7.22 – 7.12 (m, 2H), 5.83 (tt, *J* = 55.8, 4.5 Hz, 1H), 2.93 (td, *J* = 15.9, 4.5 Hz, 2H), 2.24 – 2.17 (m, 2H), 1.53 – 1.44 (m, 2H), 1.29 (dt, *J* = 14.9, 7.4 Hz, 2H), 0.84 (t, *J* = 7.3 Hz, 3H); **¹³C NMR** (101 MHz, CDCl₃) δ 210.8, 134.9, 133.7, 130.3, 130.2, 128.0, 122.5, 114.8 (t, *J* = 242.4 Hz), 114.7, 103.7 (t, *J* = 10.1 Hz), 84.8, 38.2 (t, *J* = 20.2 Hz), 31.0, 29.6, 21.9, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.43 (dtd, *J* = 56.4, 15.9, 8.8 Hz, 2F); **IR** (thin film) v 2961, 2221, 1945, 1259, 1021, 797 cm⁻¹; **MS** (ESI): *m/z* 362 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₆H₁₆NF₂NaBr [M+Na]⁺: 362.0332; Found: 362.0329.

2-butyl-6,6-difluoro-4-(4-fluorophenyl)hexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4i** (48.6 mg, 87 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.13 – 7.06 (m, 2H), 5.96 (tt, *J* = 55.8, 4.5 Hz, 1H), 3.05 (td, *J* = 15.6, 4.5 Hz, 2H), 2.36 – 2.29 (m, 2H), 1.62 – 1.53 (m, 2H), 1.44 – 1.36 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.2, 164.3, 161.8, 128.4, 128.3, 116.2 (d, *J* = 30.3 Hz), 115.0 (t, *J* = 242.4 Hz), 114.7, 103.4 (t, *J* = 10.1 Hz), 86.9, 35.5 (t, *J* = 20.2 Hz), 31.6, 29.7, 22.0, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.98 (ddd, *J* = 13.2, 8.4, 5.0 Hz, 1F), -114.87 (dtd, *J* = 56.4, 15.6, 3.7 Hz, 2F); **IR** (thin film) v 2961, 2221, 1504, 1259, 1020, 797 cm⁻¹; **MS** (ESI): *m/z* 302 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₆H₁₆NF₃Na [M+Na]⁺: 302.1133; Found: 302.1127.

2-butyl-4-(4-chlorophenyl)-6,6-difluorohexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4j** (31.9 mg, 54 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.28 – 7.26 (m, 1H), 7.26 – 7.23 (m, 1H), 5.96 (tt, *J* = 55.8, 4.5 Hz, 1H), 3.05 (td, *J* = 15.6, 4.5 Hz, 2H), 2.39 – 2.25 (m, 2H), 1.59 – 1.54 (m, 2H), 1.43 – 1.36 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.3, 135.1, 131.0, 129.4, 127.8, 114.9 (t, *J* = 242.4 Hz), 114.6, 103.5, 87.1, 35.3 (t, *J* = 20.2 Hz), 31.6, 29.7, 22.0, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.88 (dtd, *J* = 56.4, 15.5, 4.0 Hz, 2F); **IR** (thin film) v 2960, 2217, 1259, 1398, 1020, 797 cm⁻¹; **MS** (ESI): *m/z*

318 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₆H₁₆NF₂NaCl [M+Na]⁺: 318.0837; Found: 318.0832.

2-butyl-6,6-difluoro-4-(2-methoxyphenyl)hexa-2,3-dienenitrile

4k

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4k** (42.5 mg, 73 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.30 (m, 1H), 7.20 – 7.09 (m, 1H), 7.03 – 6.85 (m, 2H), 5.90 (tt, *J* = 56.2, 4.6 Hz, 1H), 3.86 (s, 3H), 3.04 (ddt, *J* = 16.8, 15.3, 4.9 Hz, 2H), 2.32 – 2.21 (m, 2H), 1.63 – 1.52 (m, 2H), 1.42 – 1.32 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.8, 156.9, 130.4, 129.5, 122.1, 121.0, 115.6, 115.5 (t, *J* = 242.4 Hz), 111.4, 101.5 (t, *J* = 10.1 Hz), 83.1, 55.7, 37.0 (t, *J* = 20.2 Hz), 31.4, 29.7, 22.0, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.21 (ddd, *J* = 56.4, 33.8, 18.8 Hz, 2F); **IR** (thin film) v 2961, 2221, 1969, 1258, 1021, 797 cm⁻¹; **MS** (ESI): *m*/*z* 314 [M+Na]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₁₇H₁₉NOF₂Na [M+Na]⁺: 314.1332; Found: 314.1335.

2-butyl-6,6-difluoro-4-(3-(trifluoromethyl)phenyl)hexa-2,3-dienenitrile

41

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4I** (59.2 mg, 90 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.60 (m, 1H), 7.57 – 7.47 (m, 3H), 5.99 (tt, *J* = 55.7, 4.4 Hz, 1H), 3.10 (td, *J* = 15.6, 4.4 Hz, 2H), 2.36 (t, *J* = 7.6 Hz, 2H), 1.63 – 1.54 (m, 2H), 1.46 – 1.36 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.4, 133.7, 131.9, 131.6, 129.8 (d, *J* = 10.1 Hz), 125.8, 123.8 (q, *J* = 272.7 Hz), 123.2 (d, *J* = 10.1 Hz), 114.8 (t, *J* = 242.4 Hz), 114.4, 103.4 (t, *J* = 10.1 Hz), 87.6, 35.3 (t, *J* = 20.2 Hz),

31.6, 29.6, 22.0, 13.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.85 (s, 3F), -115.01 (dtd, 56.4, 15.0, 3.8, 2F); **IR** (thin film) v 2961, 2221, 1328, 1259, 1020, 797, 697 cm⁻¹; **MS** (ESI): *m/z* 352 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₇H₁₆NF₅Na [M+Na]⁺: 352.1203; Found: 352.1201.

4-(5-cyano-1,1-difluoronona-3,4-dien-3-yl)benzonitrile

4m

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4m** (34.9 mg, 61 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 5.99 (tt, *J* = 55.5, 4.4 Hz, 1H), 3.09 (td, *J* = 15.7, 4.3 Hz, 2H), 2.36 (t, *J* = 7.6 Hz, 2H), 1.63 – 1.55 (m, 2H), 1.44 – 1.34 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.0, 137.5, 132.9, 127.2, 118.3, 114.7 (t, *J* = 242.4 Hz), 114.0, 112.7, 103.2 (t, *J* = 10.1 Hz), 87.9, 35.1 (t, *J* = 30.3 Hz), 31.5, 29.6, 22.0, 13.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.89 (dtd, *J* = 56.4, 15.6, 4.2 Hz, 2F); **IR** (thin film) v 2960, 2221, 1969, 1259, 1019, 797, 695 cm⁻¹; **MS** (ESI): *m/z* 309 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₇H₁₆N₂F₂Na [M+Na]⁺: 309.1282; Found: 309.1287.

2-butyl-4-(3-chlorophenyl)-6,6-difluoro-5-methylhexa-2,3-dienenitrile

4p

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4p** (53.2 g, 86 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 3H), 7.24 – 7.17 (m, 1H), 5.76 (tdd, *J* = 56.1, 10.0, 3.9 Hz, 1H), 3.26 – 3.08 (m, 1H), 2.33 (td, *J* = 7.8, 3.8 Hz, 2H), 1.64 – 1.53 (m, 2H), 1.45 – 1.35 (m, 2H), 1.29 (dd, *J* = 10.0, 7.0 Hz, 3H), 0.93 (td, *J* = 7.3,

3.2 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 212.1 (d, J = 10.1 Hz), 135.2, 134.9 (d, J = 10.1 Hz), 130.4, 129.0, 127.1, 125.2, 116.7 (td, J = 242.4, 10.1 Hz), 114.6, 110.2 (dt, J = 20.2, 4.0 Hz), 88.0 (d, J = 10.1 Hz), 39.2 (td, J = 20.2, 4.0 Hz), 31.5 (d, J = 20.2 Hz), 29.7 (d, J = 10.1 Hz), 22.0, 13.7, 13.0 - 12.8 (m, 1C); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -118.8 - -124.6 (m, 2F). **IR** (thin film) v 2955, 2217, 1580, 1460, 1259, 1073, 795, 691 cm⁻¹; **MS** (ESI): m/z 332 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₇H₁₈NF₂NaCl [M+Na]⁺: 332.0994; Found: 332.1002.

2-butyl-6,6-difluoro-4-(pyridin-3-yl)hexa-2,3-dienenitrile

4q

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4q** (32.0 mg, 61 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 – 8.52 (m, 2H), 7.66 – 7.58 (m, 1H), 7.37 – 7.30 (m, 1H), 5.99 (tt, *J* = 55.7, 4.4 Hz, 1H), 3.08 (td, *J* = 15.7, 4.4 Hz, 2H), 2.38 – 2.27 (m, 2H), 1.62 – 1.52 (m, 2H), 1.43 – 1.34 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.1, 150.0, 147.8, 133.8, 128.8, 123.9, 114.8 (t, *J* = 242.4 Hz), 114.3, 101.7 (t, *J* = 10.1 Hz), 87.5, 35.1 (t, *J* = 20.2 Hz), 31.5, 29.6, 22.0, 13.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.01 (dtd, *J* = 55.6, 15.7, 2.9 Hz, 2F); **IR** (thin film) v 2962, 2217, 1259, 1085, 1016, 797 cm⁻¹; **MS** (ESI): *m*/*z* 263 [M+H]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₁₅H₁₇N₂F₂ [M+H]⁺: 263.1360; Found: 263.1365.

2-(4,4-difluoro-2-phenylbut-1-en-1-ylidene)octanenitrile

4r

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4r** (43.4 g, 75 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.27 (m, 5H), 5.97 (tt, J = 55.9, 4.6 Hz, 1H), 3.17 – 2.98 (m, 2H), 2.33 (t, J = 7.6 Hz, 2H), 1.68 – 1.53 (m, 2H), 1.36 (t, J

= 5.4 Hz, 2H), 1.29 – 1.24 (m, 4H), 0.91 – 0.84 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 212.4, 132.4, 129.2, 129.0, 126.6, 115.1 (t, *J* = 242.4 Hz), 114.8, 104.2 (t, *J* = 10.1 Hz), 86.6, 35.4 (t, *J* = 20.2 Hz), 31.9, 31.5, 28.6, 27.6, 22.6, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.86 (dtd, *J* = 55.7, 15.6, 6.7 Hz, 2F); **IR** (thin film) v 2959, 2217, 1952, 1259, 1019, 797, 694 cm⁻¹; **MS** (ESI): *m/z* 312 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₈H₂₁NF₂Na [M+Na]⁺: 312.1540; Found: 312.1534.

2-(tert-butyl)-6,6-difluoro-4-phenylhexa-2,3-dienenitrile

4s

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4s** (44.4 g, 85 %) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.39 – 7.29 (m, 3H), 5.99 (tt, *J* = 55.8, 4.6 Hz, 1H), 3.16 – 3.04 (m, 2H), 1.26 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 210.0, 132.5, 129.2, 129.0, 126.3, 115.1 (t, *J* = 242.4 Hz), 113.9, 105.2, 97.7, 35.7, 35.4 (t, *J* = 20.2 Hz), 28.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.37 (dtd, *J* = 56.4, 15.4, 2.9 Hz, 2F). IR (thin film) v 2961, 2217, 1401, 1259, 1020, 798 cm⁻¹; MS (ESI): *m/z* 284 [M+Na]⁺; HRMS (ESI-TOF): *m/z* Calculated for C₁₆H₁₇NF₂Na [M+Na]⁺: 284.1227; Found: 284.1226.

2-cyclopropyl-6,6-difluoro-4-phenylhexa-2,3-dienenitrile

4t

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4t** (44.4 g, 50 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.38 – 7.30 (m, 3H), 5.96 (tt, J = 55.9, 4.6 Hz, 1H), 3.20 – 2.93 (m, 2H), 1.56 (td, J = 8.2, 4.9 Hz, 1H), 0.94 – 0.87 (m, 2H), 0.78 – 0.68 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 211.8, 132.4, 129.2, 129.2, 126.6, 115.1 (t, J = 242.4 Hz), 113.8, 105.8, 90.3, 35.5 (t, J = 20.2 Hz), 11.7, 6.7, 6.6;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.94 (dtd, J = 56.0, 15.4, 3.0 Hz). **IR** (thin film) v 2963, 2215, 1411, 1261, 1018, 797 cm⁻¹; **MS** (ESI): m/z 268 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₅H₁₃NF₂Na [M+Na]⁺: 268.1017; Found: 268.1016.

2-cyclohexyl-6,6-difluoro-4-phenylhexa-2,3-dienenitrile

4v

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4v** (47.7 g, 83 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.37 (m, 2H), 7.37 – 7.29 (m, 3H), 5.98 (tt, *J* = 55.9, 4.6 Hz, 1H), 3.08 (tt, *J* = 15.2, 4.2 Hz, 2H), 2.32 – 2.23 (m, 1H), 2.02 – 1.93 (m, 2H), 1.84 – 1.75 (m, 2H), 1.73 – 1.66 (m, 1H), 1.61 – 1.56 (m, 1H), 1.33 – 1.25 (m, 4H); ¹³**C NMR** (101 MHz, CDCl₃) δ 211.4, 132.5, 129.2, 129.0, 126.4, 115.2 (t, *J* = 242.4 Hz), 114.3, 105.1 (t, *J* = 10.1 Hz), 92.4, 40.5, 35.4 (t, *J* = 20.2 Hz), 31.6, 25.9, 25.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.50 (dq, *J* = 56.1, 16.1 Hz, 2F); **IR** (thin film) v 2929, 2214, 1942, 1448, 1056, 762, 693 cm⁻¹; **MS** (ESI): *m/z* 310 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₈H₁₉NF₂Na [M+Na]⁺: 310.1383; Found: 310.1387.

2-(3-chloropropyl)-6,6-difluoro-4-phenylhexa-2,3-dienenitrile

4w

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4w** (49.5 g, 88 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.30 (m, 5H), 5.99 (tt, *J* = 55.8, 4.5 Hz, 1H), 3.60 (t, *J* = 6.2 Hz, 2H), 3.19 – 3.01 (m, 2H), 2.58 – 2.49 (m, 2H), 2.12 – 2.02 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.6, 132.1, 129.3, 128.5, 126.6, 115.0 (t, *J* = 242.4 Hz), 114.4, 105.1, 85.2, 43.5, 35.4 (t, *J* = 20.2 Hz), 30.0, 29.1; ¹⁹**F NMR** (376 MHz, CDCl₃)

δ -114.91 (dtd, J = 55.7, 15.7, 7.1 Hz, 2F); **IR** (thin film) v 2958, 2228, 1259, 1024, 797, 698 cm⁻¹; **MS** (ESI): m/z 304 [M+Na]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₅H₁₄NF₂NaCl [M+Na]⁺: 304.0681; Found: 304.0685.

2-((1,3-dioxoisoindolin-2-yl)methyl)-6,6-difluoro-4-phenylhexa-2,3-dienenitrile

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4x** (24.0 mg, 33 %) as yellow waxy solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.77 – 7.67 (m, 3H), 7.42 – 7.33 (m, 3H), 7.29 – 7.27 (m, 1H), 5.94 (tt, *J* = 55.8, 4.6 Hz, 1H), 4.57 (s, 2H), 3.04 (td, *J* = 15.5, 15.0, 5.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 212.5, 167.3, 134.6, 131.8, 131.1, 129.6, 129.2, 126.8, 123.8, 114.8 (t, *J* = 242.4 Hz), 112.4, 108.2, 83.4, 37.7, 35.3 (t, *J* = 20.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -115.09 (dt, *J* = 56.4, 15.4 Hz, 2F); **IR** (thin film) v 2958, 2228, 1679, 1259, 1024, 797, 698 cm⁻¹; **MS** (ESI): *m*/*z* 365 [M+H]⁺; **HRMS** (ESI-TOF): *m*/*z* Calculated for C₂₁H₁₅N₂O₂F₂ [M+H]⁺: 365.1023; Found: 365.1025.

6,6-difluoro-2-(2-hydroxyethyl)-4-phenylhexa-2,3-dienenitrile

4y

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to afford **4y** (35.4 mg, 71 %) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.32 (m, 5H), 6.04 (tt, *J* = 55.9, 4.5 Hz, 1H), 3.88 (t, *J* = 5.9 Hz, 2H), 3.09 (td, *J* = 15.6, 15.1, 4.6 Hz, 2H), 2.56 (t, *J* = 6.0 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 212.3, 131.0, 128.1, 128.1, 125.5, 114.0 (t, *J* = 242.4 Hz), 113.4, 103.5 (t, *J* = 10.1 Hz), 82.6, 58.7, 34.1(t, *J* = 20.2 Hz), 33.8; ¹⁹**F NMR** (376 MHz,

CDCl₃) δ -115.04 (dtd, J = 55.7, 15.7, 3.8 Hz, 2F); **IR** (thin film) v 2960, 2214, 1259, 1020, 797, 695 cm⁻¹; **MS** (ESI): m/z 250 [M+H]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₄H₁₄NOF₂ [M+H]⁺: 250.1043; Found: 250.1040.

5. Transformation of difluoroalkylated allenes

In an 8 mL screw-cap vial was charged with allene (**3a**, 52.2 mg, 0.2 mmol), NIS (67.5 mg, 0.3 mmol) and CH₃CN (2.0 mL). The resulting suspension was stirred at 80 °C for 24 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 30:1) to afford **5** (50.3 mg, 65%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.36 (m, 5H), 6.31 (tdd, J = 54.8, 11.6, 7.0 Hz, 1H), 6.07 (td, J = 8.4, 6.7 Hz, 1H), 2.67 – 2.54 (m, 1H), 2.26 – 2.17 (m, 1H), 1.78 – 1.65 (m, 1H), 1.52 – 1.44 (m, 1H), 1.02 (t, J = 7.3 Hz, 2H), 0.85 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.5 (d, J = 20.2 Hz), 133.6, 130.6, 130.3, 129.4, 129.2, 127.0, 126.6, 121.3, 119.5, 112.0 (t, J = 242.4 Hz), 38.9, 33.7, 29.6 (d, J = 50.5 Hz), 22.2, 13.8 (d, J = 30.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.05 (ddd, J = 54.7, 15.3, 8.1 Hz, 2F); IR (thin film) v 2960, 2214, 1259, 1083, 1020, 797, 696 cm⁻¹; MS (ESI): m/z 388 [M+H]⁺; HRMS (ESI-TOF): m/z Calculated for C₁₆H₁₇NF₂I [M+H]⁺: 388.0374; Found: 388.0370.

In an 8 mL screw-cap vial was charged with allene (**3y**, 71.4 mg, 0.2 mmol), NBS (53.4 mg, 0.3 mmol) and CH₃CN (2.0 mL). The resulting suspension was stirred at 35 °C for 24 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **6a** (39.2 mg, 45%) as yellow oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.66 – 7.57 (m, 2H), 7.49 – 7.36 (m, 8H), 4.12 (q, J = 7.2 Hz, 1H), 3.84 (ddd, J = 12.0, 6.0, 2.0 Hz, 1H), 3.48 (ddd, J = 12.0, 10.4, 3.7 Hz, 1H), 3.23 – 3.17 (m, 1H), 2.81 (ddd, J = 16.7, 10.4, 6.0 Hz, 1H), 2.30 (ddd, J = 17.0, 3.8, 2.0 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 139.8, 139.4, 136.7, 130.1, 129.2, 129.1, 128.8, 127.7 (t, *J* = 282.8 Hz), 127.5, 117.0, 116.0, 81.0, 58.2, 53.6, 47.3 (t, *J* = 20.2 Hz), 30.0; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -68.10 (AB-t, *J* = 206.8, 15.0 Hz, 2F); **IR** (thin film) v 2960, 2214, 1956, 1259, 1020, 797, 695 cm⁻¹; **MS** (ESI): *m/z* 458 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₀H₁₆NOF₂SNaBr [M+Na]⁺: 458.0104; Found: 458.0107.

In an 8 mL screw-cap vial was charged with allene (**4y**, 49.8 mg, 0.2 mmol), NBS (53.4 mg, 0.3 mmol) and CH₃CN (2.0 mL). The resulting suspension was stirred at 35 °C for 24 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **6b** (40.6 mg, 62%) as yellow oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.44 – 7.36 (m, 3H), 6.07 (tt, *J* = 56.0, 4.7 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 1H), 3.80 (ddd, *J* = 12.1, 6.0, 2.4 Hz, 1H), 3.53 (ddd, *J* = 12.1, 10.0, 4.0 Hz, 1H), 2.86 (dd, *J* = 4.5, 2.1 Hz, 1H), 2.71 (ddd, *J* = 17.3, 10.0, 6.0 Hz, 1H), 2.36 (ddd, *J* = 17.3, 4.0, 2.4 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 139.9, 138.9, 129.3, 128.9, 127.5, 116.9, 116.4, 115.0 (t, *J* = 242.4 Hz), 80.5 (t, *J* = 10.1 Hz), 58.1, 43.5 (t, *J* = 20.2 Hz), 30.2; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -113.36 (ddt, *J* = 56.4, 15.0, 3.8 Hz, 2F); **IR** (thin film) v 2922, 2214, 1463, 1259, 1084, 1020, 797 cm⁻¹; **MS** (ESI): *m/z* 350 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₄H₁₂NOF₂NaBr [M+Na]⁺: 349.9968; Found: 349.9962.

In an 8 mL screw-cap vial was charged with allene (**3a**, 52.2 mg, 0.2 mmol), *m*-CPBA (103.5 mg, 0.6 mmol) and DCM (2.0 mL). The resulting suspension was stirred at room temperature for 24 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **7** (52.1 mg, 65%) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 – 8.00 (m, 2H), 7.80 – 7.77 (m, 1H), 7.66 - 7.62 (m, 2H), 7.42 – 7.34 (m, 5H), 3.62 (t, *J* = 16.0 Hz, 2H), 2.32 (t, *J* = 7.3 Hz, 2H), 1.61 – 1.52 (m, 2H), 1.40 – 1.34 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 213.6, 135.8, 132.4, 131.7, 131.0, 129.6, 129.1, 129.1, 126.8, 122.8 (t, *J* = 282.8 Hz), 114.5, 101.6, 86.7, 31.5, 30.4 (t, *J* = 20.2 Hz), 29.6, 22.0, 13.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -102.85 (t, *J* = 17.9 Hz, 2F); **IR** (thin film) v 2960, 2214, 1259, 1086, 1019, 797, 690 cm⁻¹; **MS** (ESI): *m/z* 424 [M+Na]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₂H₂₁NO₂F₂SNa [M+Na]⁺: 424.1159; Found: 424.1156.

6. Mechanistic Studies

Radical Inhibition Experiment

An 8 mL screw-cap vial equipped with a magnetic stir bar was charged with *fac*-Ir(ppy)₃ (2.6 mg, 0.004 mmol), 4,4'-di-tert-butyl-2,2'-bipyridine (8.0 mg, 0.03 mmol), Ph₃PCF₂SPhOTf (114.0 mg, 0.2 mmol), Cu(MeCN)₄BF₄ (6.3 mg, 0.02 mmol) and sodium acetate (32.8 mg, 0.4 mmol). The vial was evacuated and backfilled with nitrogen for three times. Then, MeCN (2.0 mL), TMSCN (50 μ L, 0.4 mmol) and **8** (44.0 mg, 0.2 mmol) were added via a syringe. The reaction mixture was placed at a distance of 10 cm from a 40 W blue LEDs and stirred at room temperature for 6h. Then, saturated NaCl aqueous solution was added and the reaction mixture was extracted with ethyl acetate. The combined organic layers were then dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column

chromatography to give the desired product **9a** (68.9 mg, 85%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.34 – 7.28 (m, 2H), 7.27 – 7.12 (m, 9H), 6.96 – 6.91 (m, 2H), 5.70 (t, *J* = 7.4 Hz, 1H), 3.73 (t, *J* = 7.1 Hz, 1H), 3.12 (t, *J* = 14.2 Hz, 2H), 2.53 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 136.9 (t, *J* = 10.1 Hz), 136.2, 135.0, 129.8, 129.1, 129.0, 128.5, 128.4, 128.3, 128.3 (t, *J* = 282.8 Hz), 127.5, 127.0, 120.4, 48.1 (t, *J* = 20.2 Hz), 37.4, 35.2, 29.8, 14.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -69.89 (t, *J* = 14.2 Hz, 2F); IR (thin film) v 2961, 2214, 1259, 1021, 1019, 797, 697 cm⁻¹; MS (ESI): *m*/*z* 428 [M+Na]⁺; HRMS (ESI-TOF): *m*/*z* Calculated for C₂₅H₂₁NF₂NaS [M+Na]⁺: 428.1260; Found: 428.1264.

9b (49.9 mg, 84%), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.21 (m, 6H), 7.16 – 7.12 (m, 2H), 6.91 – 6.83 (m, 2H), 5.62 (t, J = 7.4 Hz, 1H), 5.56 (t, J = 4.9 Hz, 1H), 3.72 (t, J = 7.1 Hz, 1H), 2.79 (td, J = 16.3, 4.9 Hz, 2H), 2.48 (t, J = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 137.5 (t, J = 10.1 Hz), 135.0, 129.1, 128.7, 128.3, 128.1, 127.8, 127.5, 126.5, 120.4, 115.5 (t, J = 242.4 Hz), 44.2 (t, J = 20.2 Hz), 37.4, 35.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.98 (dt, J = 56.4, 16.3 Hz, 2F); IR (thin film) v 2922, 2214, 1259, 1021, 797, 699 cm⁻¹; MS (ESI): m/z 320 [M+Na]⁺; HRMS (ESI-TOF): m/z Calculated for C₁₉H₁₇NF₂Na [M+Na]⁺: 320.1227; Found: 320.1228.
7. References

- 1. Y. L. Song, C. L. Fu and S. M. Ma, ACS Catal., 2021, 11, 10007-10013.
- 2. L. H. Wang, R. Y. Ma, J. Q. Sun, G. F. Zheng and Q. Zhang, Chem. Sci., 2022, 13, 3169-3175.
- 3. H. Y. Chen, J. Zhang and D. Z. Wang, Org. Lett., 2015, 17, 2098-2101.
- M. Taj Muhammad, Y. H. Jiao, C. Q. Ye, M. F. Chiou, M. Israr, X. T. Zhu, Y. J. Li, Z. H. Wen, A. Studer and H. L. Bao, *Nat. Commun.*, 2020, 11, 8.
- 5. S. Liu, Y. G. Huang, F. L. Qing and X. H. Xu, Eur. J. Org. Chem., 2023, 26, 5.
- 6. H. Y. Chen, X. R. Shao, H. F. Wang and H. B. Zhai, Org. Chem. Front., 2017, 4, 409-412.
- X. Y. Dong, T. Y. Zhan, S. P. Jiang, X. D. Liu, L. Ye, Z. L. Li, Q. S. Gu and X. Y. Liu, *Angew. Chem. Int. Ed.*, 2021, 60, 2160-2164.
- 8. F. L. Sun, J. Ni, G. J. Cheng and X. J. Fang, Chem. Eur. J., 2020, 26, 5956-5960.
- Q. Zhang, M. T. Muhammad, M. F. Chiou, Y. H. Jiao, H. L. Bao and Y. J. Li, *Org. Lett.*, 2020, 22, 5261-5265.
- L. Chen, C. Lin, S. M. Zhang, X. J. Zhang, J. M. Zhang, L. J. Xing, Y. G. Guo, J. Feng, J. Gao and D. Du, ACS Catal., 2021, 11, 13363-13373.
- X. T. Zhu, W. L. Deng, M. F. Chiou, C. Q. Ye, W. J. Jian, Y. H. Zeng, Y. H. Jiao, L. Ge, Y. J. Li, X. H. Zhang and H. L. Bao, *J. Am. Chem. Soc.*, 2019, 141, 548-559.
- (a)Y. Y. Zhu, S. Liu, Y. E. Huang, F. L. Qing and X. H. Xu, *J. Fluor. Chem.*, 2022, 257, 10;
 (b)A. L. Trifonov, L. I. Panferova, V. V. Levin, A. D. Volodin, A. A. Korlyukov and A. D. Dilman, *J. Fluor. Chem.*, 2019, 220, 78-82.
- 13. N. B. Heine and A. Studer, Org. Lett., 2017, 19, 4150-4153.
- 14. T. Besset, P. Jubault, X. Pannecoucke and T. Poisson, Org. Chem. Front., 2016, 3, 1004-1010.

8. Copies of ¹H, ¹⁹F, and ¹³C NMR Spectra for the Products

-69.85 -69.89 -69.91 -69.91 -70.39 -70.45 -70.95 -70.95 -70.95 -70.95 -71.03 -71.53 -71.58

-69.90 -69.93 -69.97 -69.97 -69.97 -69.97 -70.45 -70.48 -71.05 -71.05 -71.09 -71.09 -71.09 -71.60 -71.61

¹³C NMR (101 MHz, CDCl₃)

-69.92 -69.95 -69.99 -70.46 -70.50 -70.53 -70.53 -71.04 -71.04 -71.08 -71.08 -71.08 -71.55 -71.55 -71.55

¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-62.77 -70.16 -70.19 -70.19 -70.23 -70.71 -71.27 -71.27 -71.30 -71.32 -71.32 -71.32 -71.32

zo io o -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-69.95 -69.95 -69.99 -70.46 -70.50 -71.04 -71.00 -71.08 -71.08 -71.08 -71.08 -71.08

¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

74.28 74.74 74.74 774.72 774.72 774.85 774.85 774.85 774.85 775.25 775.25 775.25 775.26 777.96 777.96 777.96 777.96 777.96 777.96 777.78 776.77 776.77 776.77 776.77 776.77 776.77 776.77 776.77 776.77 776.77 776.77 776.77 776.77 776.77 777.75 777.77 777.75 77777.75 7777.75 777.75 777.75 777.75 777.75 777.75 777.75 777.75 777.75 77

¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

-69.52 -69.56 -69.59 -70.07 -70.11 -70.14 -70.14 -71.00 -71.04 -71.01 -71.51 -71.55 -71.55

¹**H NMR** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 180 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 5 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹**H NMR** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹**H NMR** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹**H NMR** (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (377 MHz, CDCl₃)

4m

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹**H NMR** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) CDC13 $\begin{array}{c} 7.42\\ 7.74\\ 7.44\\ 7.42\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.72\\ 6.11\\ 7.33\\ 7.72\\ 6.11\\ 7.33\\ 7.12\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\$ CF₂H CN 4v 1.11-2.00H $2.02_{3.00^{\frac{3}{4}}}$ $2.01^{\rm H}_{1.15}$ $2.01^{\rm H}_{1.15}$ $1.15^{\rm H}_{1.08}$ $4.12^{\rm H}$ 1.02 9.5 9.0 8.5 8.0 7.0 6.0 4.5 4.0 f1 (ppm) 0.5 0.0 -0.5 7.5 6.5 5.5 5.0 3.0 2.5 2.0 1.5 1.0 -1.0 3. 5

¹**H NMR** (400 MHz, CDCl₃)

¹**H NMR** (400 MHz, CDCl₃)

10.0 9.5 9.0 8.5 8.0 7.5 6.5 6.0 4.5 f1 (ppm) 3, 5 2.5 2.0 1.5 1.0 0.5 0, 0 -0.5 -1.0 5.5 3.0 5.0 4.0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-67.30 -67.35 -67.35 -67.90 -67.90 -67.90 -67.90 -67.94 -68.23 -68.23 -68.83 -68.83 -68.88 -67.39 -67.39 -67.39 -67.39 -67.39 -67.39 -67.30 -68.30 -69.30 -6

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

