Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

A Highly Diastereoselective One-Pot Ugi/Radical Spirocyclization/Aza-Michael Addition Sequence

Salman Khan, Abhradeep Chatterjee, Akshay M. Nair, and Chandra M. R. Volla*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India

E-mail: chandra.volla@chem.iitb.ac.in

Experimental Section

General Experimental

¹H and ¹³C spectra were recorded on Bruker Avance 400 and 500 MHz spectrophotometers. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to internal chloroform. High resolution mass measurements were carried out using Micromass Q-ToF ESI instrument using direct inlet mode. Analytical thin-layer chromatography (TLC) was performed on pre-coated 0.2 mm thick Merck 60 F₂₄₅ silica plates and various combinations of diethyl ether and Petroleum ether were used as eluent. Visualization of the spots were accomplished by exposure to UV or iodine vapors. All compounds were purified using silica gel (100-200 mesh) column chromatography and gave spectroscopic data consistent with being \geq 95% the assigned structure. Thiols and Thiophenols were purchased from either Sigma-Aldrich and TCI and were used as such without further purification. Aryl diazonium salts¹ and DABSO² were prepared as per the previous reports.

Note: A few compounds were found to trap ethyl acetate which could not be removed by prolonged evaporation and azeotropic evaporation. This could be because of the compounds existing as solvates resulting in extra peaks corresponding to ethyl acetate in the NMR spectra.

OMe	+	-сно +	СООН	1) DCE, rt, or 2) 4-CI-PhSH, Ca solvent, LEDs 3) conc. H_2SO_4 , s	vernight at. (5 mol %) , air, 12h olvent, 80 °C	
1	2		3 4		CI 5a	>
_	No.	Solvent	Light Source	Catalyst	Results ^a	
	1	ACN	Blue LEDs	Eosin Y	77% (73%)	
	2	ACN	Blue LEDs	Eosin B	35%	
	3	ACN	Blue LEDs	Rhodamin B	27%	
	4	ACN	Blue LEDs	Rose Bengal	42%	
	5	Toluene	Blue LEDs	Eosin Y	51%	
	6	DCM	Blue LEDs	Eosin Y	-	
	7	1, 2-DCE	Blue LEDs	Eosin Y	82% (77%)	
	8	EtOAc	Blue LEDs	Eosin Y	-	
	9	DMF	Blue LEDs	Eosin Y	39%	
	10	DMSO	Blue LEDs	Eosin Y	27%	
	11	1,2-DCE	Green LEDs	Eosin Y	63%	
	12	1,2-DCE	White LEDs	Eosin Y	-	
	13 ^b	1,2-DCE	-	Eosin Y	-	
	14 ^c	1,2-DCE	Blue LEDs	-	-	
	15	1,2-DCE	Purple LEDs	-	-	

^aReaction conditions: **1** (0.2 mmol), **2** (0.2 mmol), **3** (0.2 mmol), **4** (0.2 mmol), DCE (2 mL), rt overnight. **5a** (0.4 mmol), solvent 2 mL, LED's, rt, 12 h. conc. H₂SO₄ (1.0 mmol), 80 °C. ^bwithout light. ^cWithout photocatalyst.

Procedure for the one-pot Ugi-sulfenylative spirocyclization and aza-Michael addition reaction cascade.

In a reaction tube equipped with a magnetic stirring bar was added benzaldehyde **2a** (21 μ L, 0.2 mmol, 1.0 equiv) and *p*-anisidine **1a** (24.6 mg, 0.2 mmol, 1.0 equiv) in DCE (2mL) and stirred at rt for 5 mins. Phenylpropiolic acid **3a** (30 mg, 0.2 mmol, 1.0 equiv) and *tert*-butyl isocyanide **4** (22 μ L, 0.2 mmol, 1.0 equiv) were added all at once and resulting solution was stirred at room temperature for 12 hrs. After completion of the reaction (TLC control), 4-chlorobenzene thiol **5a** (58 mg, 0.4 mmol, 2.0 equiv) and eosin Y (6.4 mg, 0.01 mmol, 5 mol%) were added, the contents were irradiated under blue LED's at room temperature in air for 12 hrs. To this reaction mixture was added conc. H₂SO₄ (54 μ L, 1 mmol, 5.0 equiv) and the contents were heated at 80 °C for 8 h. The reaction was then quenched with sat. NaHCO₃ solution, extracted with DCM (3 x 5 mL). Combined organics were dried over Na₂SO₄ and concentrated under reduced pressure. Residue was purified by column chromatography with EtOAc in petroleum ether to furnish the desired tricyclic compound **5a** in 77% yield (79 mg) as a pale-yellow solid.

(5R,7aR,11aR)-2-((4-chlorophenyl)thio)-1,5-diphenyl-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (5a) Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.53 (s, 1H), 7.35-7.20 (m, 12H), 7.17 (d, *J* = 7.2 Hz, 2H), 6.41 (dd, *J* = 10.1, 2.1 Hz, 1H), 6.11 (d, *J* = 10.2 Hz, 1H), 5.59 (s, 1H), 4.44 (s, 1H), 2.37 (d, *J* = 17.2 Hz, 1H), 1.55 (dd, *J* = 17.2, 3.7 Hz, 1H).

¹³C NMR (126 MHz, DMSO-d6) δ 193.9, 166.4, 165.6, 157.9, 143.8, 137.8, 132.1, 131.7, 131.6, 131.1, 129.7, 129.6, 128.9, 128.53, 128.48, 128.4, 128.3, 64.0, 56.3, 53.7, 39.2.

HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₂ClN₂O₃S 536.0937, found 536.0933.

(5R,7aR,11aR)-1,5-diphenyl-2-(phenylselanyl)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5b)

Physical appearance: Pale yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.57 (s, 1H), 7.40-7.32 (m, 10H), 7.22-7.18 (m, 5H), 6.42 (dd, *J* = 10.2, 2.0 Hz, 1H), 6.15 (d, *J* = 10.2 Hz, 1H), 5.67 (s, 1H), 4.45 (s, 1H), 2.42 (d, *J* = 16.6 Hz, 1H), 1.59 (dd, *J* = 17.3, 3.8 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.8, 166.8, 166.4, 159.2, 144.0, 137.9, 132.4, 132.0, 131.8, 129.4, 129.2, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.2, 65.0, 56.3, 53.8, 39.2.
HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₂N₂NaO₃S 501.1249, found 501.1244.

(5R,7aR,11aR)-2-((4-bromophenyl)thio)-1,5-diphenyl-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (5c)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.60 (s, 1H), 7.42-7.32 (m, 10H), 7.26-7.22 (m, 4H), 6.46 (dd, J = 10.1, 1.7 Hz, 1H), 6.17 (d, J = 10.1 Hz, 1H), 5.66 (s, 1H), 4.50 (br. s, 1H), 2.44 (d, J = 16.6 Hz, 1H), 1.61 (dd, J = 17.3, 3.6 Hz, 1H).

¹³C NMR (126 MHz, DMSO-*d6*) δ 193.7, 166.4, 165.5, 158.1, 143.7, 137.7, 132.1, 131.8, 131.6, 131.3, 129.6, 129.5, 128.5, 128.45, 128.40, 128.2, 127.8, 120.0, 64.0, 56.2, 53.8, 39.1.

HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₁BrN₂NaO₃S 579.0354, found 579.0361.

2-((4-fluorophenyl)thio)-1,5-diphenyl-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5d)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.58 (s, 1H), 7.39-7.33 (m, 11H), 7.21 (d, *J* = 7.3 Hz, 2H), 7.07 (t, *J* = 7.5 Hz, 2H), 6.46 (d, *J* = 9.9 Hz, 1H), 6.17 (d, *J* = 9.9 Hz, 1H), 5.65 (s, 1H), 4.48 (s, 1H), 2.42 (d, *J* = 17.2 Hz, 1H), 1.60 (dd, *J* = 17.2, 3.0 Hz, 1H).

¹³C NMR (126 MHz, DMSO-*d6*) δ 193.8, 166.4, 165.7, 156.3, 143.9, 137.8, 132.6, 132.5, 132.0, 131.6, 130.4, 129.4, 128.5, 128.4, 128.3, 128.1, 127.8, 127.7, 126.9, 116.1, 115.9, 64.0, 56.2, 53.8, 39.1.

¹⁹F NMR (470 MHz, CDCl₃): δ -112.5.

HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₁FN₂NaO₃S 519.1155, found 519.1157.

(5R,7aR,11aR)-1,5-diphenyl-2-(p-tolylthio)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5e)

Physical appearance: Brown solid

Rf: 0.5 (1:1 EtOAc: Petroleum ether boiling range 60-80 °C).

¹H NMR (500 MHz, DMSO-*d6*): δ 8.56 (s, 1H), 7.40-7.33 (m, 8H), 7.22 (d, J = 7.5 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 7.05 (d, J = 7.9 Hz, 2H), 6.44 (d, J = 10.0 Hz, 1H), 6.16 (d, J = 10.0 Hz, 1H), 5.64 (s, 1H), 4.46 (s, 1H), 2.42 (d, J = 17.2 Hz, 1H), 2.24 (s, 3H), 1.61 (dd, J = 17.0, 3.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 193.8, 166.4, 165.7, 157.0, 143.9, 137.8, 136.5, 132.0, 131.7, 130.4, 129.8, 129.6, 129.3, 128.5, 128.4, 128.3, 128.2, 127.8, 63.9, 56.2, 53.8, 39.1, 20.5. HRMS (ESI, M+Na⁺) m/z calcd. for C₃₀H₂₄N₂NaO₃S 515.1405, found 515.1400.

(5R,7aR,11aR)-2-((4-methoxyphenyl)thio)-1,5-diphenyl-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (5f)

Physical appearance: Pale yellow solid solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.58 (s, 1H), 7.40-7.35 (m, 8H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 7.5 Hz, 2H), 6.78 (d, *J* = 8.2 Hz, 2H), 6.42 (d, *J* = 10.2 Hz, 1H), 6.14 (d, *J* = 9.6 Hz, 1H), 5.64 (s, 1H), 4.44 (s, 1H), 3.72 (s, 3H), 2.40 (d, *J* = 16.8 Hz, 1H), 1.59 (dd, *J* = 17.3, 3.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.8, 166.4, 165.9, 159.0, 154.8, 144.1, 137.9, 133.0, 132.0, 131.7, 131.3, 129.2, 128.6, 128.5, 128.4, 128.3, 127.8, 121.0, 114.6, 63.8, 56.2, 55.2, 53.8, 39.1.
HRMS (ESI, M+Na⁺) m/z calcd. for C₃₀H₂₄N₂NaO₄S 531.1354, found 531.1362.

(7aR,11aR)-2-((3-fluorophenyl)thio)-1,5-diphenyl-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (5g)

Physical appearance: Pale yellow solid solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.58 (s, 1H), 7.39-7.21 (m, 11H), 7.14 (d, *J* = 9.0 Hz, 1H), 7.10 (d, *J* = 8.7 Hz, 1H), 7.01 (d, *J* = 8.7 Hz, 1H), 6.49 (dd, *J* = 10.1, 2.0 Hz, 1H), 6.16 (d, *J* = 10.1 Hz, 1H), 5.64 (s, 1H), 4.50 (s, 1H), 3.72 (s, 3H), 2.40 (d, *J* = 17.2 Hz, 1H), 1.58 (dd, *J* = 17.3, 3.8 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d6*) δ 194.3, 166.8, 166.0, 162.5 (d, J¹ = 243.5 Hz), 159.2, 144.3, 138.3, 135.3, 135.2, 132.6, 132.1, 131.2, (d, J³ = 8.6 Hz), 130.1, 129.6, 129.0, 128.93, 128.87, 128.7, 128.3, 125.3 (d, J⁴ = 3.0 Hz), 116.2, 116.0, 114.2, 114.0, 64.6, 56.7, 54.2, 39.6.
¹⁹F NMR (470 MHz, CDCl₃): δ -111.7.

HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₁FN₂NaO₃S 519.1155, found 519.1163.

(5R,7aR,11aR)-1,5-diphenyl-2-(p-tolylthio)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5h)

Physical appearance: Brown solid

R_f: 0.5 (1:1 EtOAc: Petroleum ether boiling range 60-80 °C).

¹H NMR (500 MHz, DMSO-*d6*): δ 8.56 (s, 1H), 7.40-7.33 (m, 8H), 7.22 (d, J = 7.5 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 7.05 (d, J = 7.9 Hz, 2H), 6.44 (d, J = 10.0 Hz, 1H), 6.16 (d, J = 10.0 Hz, 1H), 5.64 (s, 1H), 4.46 (s, 1H), 2.42 (d, J = 17.2 Hz, 1H), 2.24 (s, 3H), 1.61 (dd, J = 17.0, 3.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 193.8, 166.4, 165.7, 157.0, 143.9, 137.8, 136.5, 132.0, 131.7, 130.4, 129.8, 129.6, 129.3, 128.5, 128.4, 128.3, 128.2, 127.8, 63.9, 56.2, 53.8, 39.1, 20.5. HRMS (ESI, M+Na⁺) m/z calcd. for C₃₀H₂₄N₂NaO₃S 515.1405, found 515.1411.

(5R,7aR,11aR)-1,5-diphenyl-2-(4-chlorophenylthio)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5i)

Physical appearance: Brown solid

R_f: 0.5 (1:1 EtOAc: Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.61 (s, 1H), 7.43-7.33 (m, 10H), 7.26-7.23 (m, 4H), 6.47 (dd, *J* = 10.2, 2.2 Hz, 1H), 6.19 (d, *J* = 10.3 Hz, 1H), 5.67 (s, 1H), 4.54 (br s, 1H), 2.44 (d, *J* = 17.2 Hz, 1H), 1.61 (dd, *J* = 17.4, 3.9 Hz, 1H) ppm.

¹³C NMR (126 MHz, DMSO-*d6*) δ 194.2, 166.8, 165.9, 159.8, 144.1, 138.2, 132.7, 132.2, 132.1, 131.9, 130.8, 130.2, 130.0, 129.2, 129.0, 128.94, 128.90, 128.6, 128.5, 128.4, 138.3, 64.6, 56.7, 54.2, 39.6 ppm.

HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₁ClN₂NaO₃S 535.0859, found 535.0859.

(5R,7aR,11aR)-5-(4-chlorophenyl)-2-((4-chlorophenyl)thio)-1-phenyl-7a,8-dihydro-3Hpyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5j)

Physical appearance: Yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.62 (s, 1H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.40-7.35 (m, 5H), 7.31-7.25 (m, 4H), 7.20 (d, *J* = 6.5 Hz, 2H), 6.50 (dd, *J* = 9.9, 1.1 Hz, 1H), 6.18 (d, *J* = 9.9 Hz, 1H), 5.64 (s, 1H), 4.47 (s, 1H), 3.72 (s, 3H), 2.41 (d, *J* = 16.8 Hz, 1H), 1.59 (dd, *J* = 17.1, 3.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.7, 166.0, 165.6, 158.0, 143.6, 136.7, 132.6, 132.3, 131.7, 131.6, 131.11, 131.06, 130.3, 129.7, 129.6, 128.9, 128.5, 128.4, 128.2, 64.0, 55.5, 53.7, 39.1.
HRMS (ESI, M+Na⁺) m/z calcd. for C₃₀H₂₃ClN₂NaO₃S 549.1016, found 549.1019.

(5R,7aR,11aR)-5-(4-chlorophenyl)-2-((4-chlorophenyl)thio)-1-phenyl-7a,8-dihydro-3Hpyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5k)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.62 (s, 1H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.40-7.35 (m, 5H), 7.31-7.25 (m, 4H), 7.20 (d, *J* = 6.5 Hz, 2H), 6.50 (dd, *J* = 9.9, 1.1 Hz, 1H), 6.18 (d, *J* = 9.9 Hz,

1H), 5.64 (s, 1H), 4.47 (s, 1H), 3.72 (s, 3H), 2.41 (d, *J* = 16.8 Hz, 1H), 1.59 (dd, *J* = 17.1, 3.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.7, 166.0, 165.6, 158.0, 143.6, 136.7, 132.6, 132.3, 131.7, 131.6, 131.11, 131.06, 130.3, 129.7, 129.6, 128.9, 128.5, 128.4, 128.2, 64.0, 55.5, 53.7, 39.1.
HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₀Cl₂N₂NaO₃S 569.0469, found 569.0478.

(5R,7aR,11aR)-2-((4-chlorophenyl)thio)-5-(4-methoxyphenyl)-1-phenyl-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5l)

Physical appearance: Yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.53 (s, 1H), 7.39-7.19 (m, 12H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.40 (dd, *J* = 10.0, 1.7 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 5.57 (s, 1H), 4.45 (s, 1H), 3.74 (s, 3H), 2.39 (d, *J* = 16.8 Hz, 1H), 1.56 (dd, *J* = 17.3, 3.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.9, 166.6, 165.4, 158.7, 157.8, 143.9, 132.0, 131.66, 131.60, 131.2, 131.1, 129.85, 129.79, 129.7, 129.6, 128.9, 128.5, 128.3, 113.8, 63.9, 55.6, 55.1, 53.8, 39.2.

HRMS (ESI, M+Na⁺) m/z calcd. for C₃₀H₂₃ClN₂NaO₄S 565.0965, found 565.0972.

(5R,7aR,11aR)-2-((4-chlorophenyl)thio)-5-(4-nitrophenyl)-1-phenyl-7a,8-dihydro-3Hpyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5m)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR** (**400 MHz**, **DMSO-***d6*): δ 8.76 (s, 1H), 8.30 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.47-7.20 (m, 12H), 6.60 (d, *J* = 10.0 Hz, 1H), 6.63 (d, *J* = 10.0 Hz, 1H), 5.83 (s, 1H), 4.56 (s, 1H), 2.47 (d, *J* = 16.8 Hz, 1H), 1.67 (dd, *J* = 17.1, 3.4 Hz, 1H) ppm.

¹³C NMR (100 MHz, DMSO-*d6*) δ 194.0, 166.4, 165.9, 158.6, 147.5, 143.7, 133.1, 132.2, 132.0, 131.6, 131.5, 130.2, 130.1, 129.4, 129.0, 128.9, 128.74, 128.69, 124.1, 64.7, 56.2, 54.1, 39.5 ppm. HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₀ClN₃NaO₅S 580.0710, found 580.0707.

(5R,7aR,11aR)-2-((4-chlorophenyl)thio)-5-(2-nitrophenyl)-1-phenyl-7a,8-dihydro-3Hpyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5n)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.61 (s, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.7 Hz, 1H), 7.34-7.23 (m, 7H), 6.59 (s, 1H), 6.35 (d, *J* = 10.2 Hz, 1H), 4.61 (s, 1H), 2.41 (d, *J* = 17.5 Hz, 1H), 1.71 (dd, *J* = 17.9, 3.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.8, 167.6, 165.4, 159.4, 150.7, 143.9, 133.5, 133.3, 132.4, 132.1, 131.6, 131.5, 131.4, 130.7, 130.0, 129.4, 129.3, 129.0, 128.8, 128.7, 125.2, 66.1, 53.8, 53.6, 39.4 ppm.

HRMS (ESI, M+Na⁺) m/z calcd. for C₂₉H₂₀ClN₃NaO₅S 580.0710, found 580.0717.

(7aR,11aR)-2-((4-chlorophenyl)thio)-5,5-dimethyl-1-phenyl-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (50)

Physical appearance: Yellow solid.

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.25 (s, 1H), 7.41-7.17 (m, 9H), 6.84 (dd, *J* = 10.0, 2.2 Hz, 1H), 6.30 (d, *J* = 10.0 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 4.46 (d, *J* = 2.2 Hz, 1H), 2.36 (d, *J* = 16.2 Hz, 1H), 1.76 (s, 3H), 1.57 (dd, *J* = 17.7, 3.4 Hz, 1H), 1.53 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.7, 172.1, 165.2, 156.3, 145.0, 132.8, 132.2, 132.0, 131.8, 131.2, 129.4, 129.0, 128.6, 128.2, 66.3, 58.6, 52.1, 39.1, 25.6, 23.9.

HRMS (**ESI**, **M**+**H**⁺) m/z calcd. for C₂₅H₂₂ClN₂O₃S 465.1040, found 465.1049.

(7a'R,11a'R)-2'-((4-chlorophenyl)thio)-1'-phenyl-7a',8'-dihydro-3'H,6'H-spiro[cyclopentane-1,5'-pyrrolo[1,2-d]quinoxaline]-3',6',9'(7'H)-trione (5p)

Physical appearance: Yellow solid.

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.19 (s, 1H), 7.42-7.35 (m, 3H), 7.29 (s, 4H), 7.23-7.16 (m, 2H), 6.85 (d, *J* = 10.3 Hz, 1H), 6.32 (d, *J* = 10.0 Hz, 1H), 4.45 (s, 1H), 2.82-2.77 (m, 1H), 2.38 (d, *J* = 10.1 Hz, 1H), 4.45 (s, 1H), 2.82-2.77 (m, 1H), 2.38 (d, *J* = 10.1 Hz, 1H), 4.45 (s, 1H), 2.82-2.77 (m, 1H), 2.38 (d, *J* = 10.1 Hz, 1H), 4.45 (s, 1H), 2.82-2.77 (m, 1H), 2.38 (d, *J* = 10.1 Hz, 1H), 4.45 (s, 1H)

J = 17.0 Hz, 1H), 2.21 (t, *J* = 2.2 Hz, 1H), 2.04-1.98 (m, 1H), 1.94-1.89 (m, 3H), 1.82-1.72 (m, 2H), 1.56 (dd, *J* = 17.7, 3.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.7, 174.0, 164.5, 156.2, 144.7, 132.8, 132.0, 131.6, 131.4, 131.0, 129.4, 128.9, 128.6, 128.1, 66.9, 66.3, 52.2, 4.13, 41.2, 37.2, 28.1, 26.3.

HRMS (ESI, M+Na⁺) m/z calcd. for C₂₇H₂₃ClN₂NaO₃S 513.1016, found 513.1016.

(5R,7aR,11aR)-2-((4-chlorophenyl)thio)-5-phenyl-1-(p-tolyl)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5q)

Physical appearance: Yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.44-7.4 (m, 3H), 7.38-7.32 (m, 3H), 7.22-7.19 (m, 2H), 7.16-7.12 (m, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.1 Hz, 2H), 6.16 (d, *J* = 10.0 Hz, 1H), 6.04 (s, 1H), 5.99 (dd, *J* = 10.2, 1.8 Hz, 1H), 4.15 (s, 1H), 2.35 (s, 3H), 2.29 (br s, 1H), 1.93 (dd, *J* = 17.2, 3.7 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 193.2, 168.2, 166.0, 154.0, 142.9, 140.5, 137.0, 134.3, 133.2, 132.9, 132.3, 129.8, 129.23, 129.20, 129.0, 128.9, 128.6, 128.2, 128.1, 77.4, 63.9, 55.9, 40.5, 21.5 ppm.

HRMS (ESI, M+H⁺) m/z calcd. for C₃₀H₂₃ClN₂O₃S 527.1198, found 527.1198.

(5R,7aR,11aR)-2-((4-fluorophenyl)thio)-5-phenyl-1-(p-tolyl)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5r)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, CDCl₃):** δ 7.65 (s, 1H), 7.42-7.38 (m, 3H), 7.37-7.31 (m, 3H), 7.30-7.26 (m, 3H), 7.09 (d, *J* = 7.8 Hz, 2H), 6.99-6.84 (m, 4H), 6.14 (d, *J* = 10.1 Hz, 1H), 6.03 (s, 1H), 5.98 (dd, *J* = 10.2, 1.9 Hz, 1H), 4.14 (s, 1H), 2.34 (s, 3H), 2.30 (br s, 1H), 1.90 (dd, *J* = 17.4, 3.5 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 193.3, 168.4, 166.2, 162.7 (d, J^{l} = 244.8 Hz), 153.2, 143.0, 140.3, 137.1, 134.6 (d, J^{3} = 8.2 Hz), 132.89, 132.86, 129.7, 129.0, 128.8, 128.5, 128.2, 128.1, 125.6 (d, J^{4} = 3.2 Hz), 116.2 (d, J^{2} = 22.4 Hz), 77.36, 63.7, 55.8, 40.4, 21.4 ppm.

¹⁹F NMR (470 MHz, CDCl₃): δ -112.8 ppm.

HRMS (ESI, M+H⁺) m/z calcd. for $C_{30}H_{23}FN_2O_3S$ 511.1498, found 511.1499.

(5R,7aR,11aR)-2-((4-methoxyphenyl)thio)-5-phenyl-1-(p-tolyl)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5s)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.43-7.41 (m, 2H), 7.37-7.31 (m, 3H), 7.25 (d, *J* = 8.8 Hz, 2H), 7.06 (d, *J* = 7.7 Hz, 2H), 6.88 (d, *J* = 8.1 Hz, 2H), 6.69 (d, *J* = 9.1 Hz, 2H), 6.12 (d, *J* = 10.2 Hz, 2H), 6.04 (s, 1H), 5.97 (dd, *J* = 10.2, 2.4 Hz, 1H), 4.14 (s, 1H), 3.77 (s, 3H), 2.33 (s, 3H), 2.27 (d, *J* = 17.3 Hz, 1H), 1.92 (dd, *J* = 17.3, 3.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ193.2, 168.0, 166.3, 159.3, 151.6, 143.3, 139.8, 137.0, 134.9, 133.7, 132.5, 129.5, 128.9, 128.7, 128.4, 128.3, 128.2, 120.3, 114.5, 77.2, 63.5, 55.8, 55.3, 40.5, 21.3 ppm.

HRMS (**ESI**, **M**+**H**⁺) m/z calcd. for C₃₁H₂₆N₂O₄S 545.1511, found 545.1511.

(5R,7aR,11aR)-2-((2-chlorophenyl)thio)-5-phenyl-1-(p-tolyl)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5t)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, CDCl₃):** δ 7.70 (s, 1H), 7.41-7.39 (m, 2H), 7.35-7.30 (m, 3H), 7.26-7.24 (m, 2H), 7.12 (td, *J* = 7.5, 1.5 Hz, 1H), 7.06-7.03 (m, 3H), 6.93 (d, *J* = 8.1 Hz, 2H), 6.12 (d, *J* = 10.3 Hz, 1H), 6.02 (s, 1H), 5.96 (dd, *J* = 10.8, 1.8 Hz, 1H), 4.14 (s, 1H), 2.33 (d, *J* = 17.7 Hz, 1H), 2.28 (s, 3H), 1.89 (dd, *J* = 17.4, 3.7 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) 193.3, 168.3, 165.7, 153.7, 142.9, 140.2, 137.0, 135.7, 133.1, 132.8, 131.2, 130.0, 129.6, 129.0, 128.8, 128.7, 128.4, 128.0, 127.8, 127.0, 63.7, 56.1, 55.8, 40.3, 21.3 ppm.

HRMS (ESI, M+H⁺) m/z calcd. for C₃₀H₂₃ClN₂O₃S 527.1202, found 527.1202.

(5R,7aR,11aR)-1-([1,1'-biphenyl]-4-yl)-5-phenyl-2-(phenylthio)-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (5u)

Physical appearance: Brown solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO):** δ 8.59 (s, 1H), 7.67 (d, *J* = 7.1 Hz, 4H), 7.45 (t, *J* = 7.5 Hz, 3H), 7.37 (t, *J* = 3.5 Hz, 3H), 7.35-7.32 (m, 3H), 7.30 (d, *J* = 5.4 Hz, 2H), 7.28 (d, *J* = 3.2 Hz, 2H), 6.49 (dd, *J* = 10.1, 1.9 Hz, 1H), 6.19 (d, *J* = 10.2 Hz, 1H), 5.64 (s, 1H), 4.52 (s, 1H), 1.73 (dd, *J* = 17.2 Hz, 3.5 Hz, 1H) ppm

¹³C NMR (101 MHz, DMSO): 194.1, 166.9, 166.6, 158.5, 144.2, 140.9, 139.1, 138.1, 132.2, 131.6, 130.1, 129.3, 129.2, 129.0, 128.7, 128.6, 128.5, 128.1, 128.0, 127.3, 126.9, 126.7, 126.6, 65.2, 56.4, 56.2, 54.0.

(5R,7aR,11aR)-1-(3-chlorophenyl)-2-((4-chlorophenyl)thio)-5-phenyl-7a,8-dihydro-3Hpyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5v)

Physical appearance: Brown solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO):** δ 8.61 (s, 1H), 7.95 (d, *J* = 8.5 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 6.8 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.28 (d, *J* = 8.7 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 1H), 6.47 (dd, *J* = 10.2, 2.2 Hz, 1H), 6.17 (d, *J* = 10.1 Hz, 1H), 5.64 (s, 1H), 4.51 (s, 1H), 1.67 (dd, *J* = 17.4, 3.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 193.8, 166.5, 166.4, 165.5, 155.6, 143.9, 137.9, 137.7, 134.5, 132.0, 132.2, 131.7, 131.2, 130.7, 130.5, 130.3, 129.7, 128.9, 128.8, 128.7, 128.6, 128.5, 64.1, 56.3, 53.7.

(5R,7aS,11aR)-7a-chloro-2-((4-chlorophenyl)thio)-10-methoxy-1,5-diphenyl-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (5w)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, CDCl₃):** δ 7.40-7.35 (m, 3H), 7.33-7.29 (m, 5H), 7.17 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 7.1 Hz, 2H), 6.46 (s, 1H), 6.15 (s, 1H), 5.51 (s, 1H), 4.35 (d, *J* = 3.2 Hz, 1H), 3.91 (d, *J* = 3.2 Hz, 1H), 2.96 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ185.0, 166.3, 166.1, 165.7, 152.0, 135.7, 134.3, 133.4, 133.1, 130.4, 130.3, 129.5, 129.1, 128.8, 128.5, 128.4, 128.3, 127.5, 105.4, 65.4, 60.7, 59.4, 56.1, 56.0 ppm.

HRMS (**ESI**, **M**+**H**⁺) m/z calcd. for C₃₀H₂₂Cl₂N₂O₄S 599.0580, found 599.0580.

Procedure for the one-pot Ugi-selenylative spirocyclization and aza-Michael addition reaction cascade.

In a reaction tube equipped with a magnetic stirring bar was added benzaldehyde 2a (21 μ L, 0.2 mmol, 1.0 equiv) and *p*-anisidine 1a (24.6 mg, 0.2 mmol, 1.0 equiv) in DCE (2mL) and stirred at rt for 5 mins. Phenylpropiolic acid 3a (30 mg, 0.2 mmol, 1.0 equiv) and *tert*-butyl isocyanide 4 (22 μ L, 0.2 mmol, 1.0 equiv) were added all at once and resulting solution was stirred at room

temperature for 12 hrs. After completion of the reaction (TLC control), solvent was removed and diphenyl diselenide (124 mg, 0.4 mmol, 2.0 equiv) was added, the contents were dissolved in MeCN (2 mL) and irradiated under blue LED's at room temperature under O₂ atmosphere for 24 hrs. Then again solvent was evaporated and the residue was diluted with DCE (2 mL). To this reaction mixture was added conc. H₂SO₄ (54 μ L, 1 mmol, 5.0 equiv) and the contents were heated at 80 °C for 8 h. The reaction was then quenched with sat. NaHCO₃ solution, extracted with DCM (3 x 5 mL). Combined organics were dried over Na₂SO₄ and concentrated under reduced pressure. Residue was purified by column chromatography with EtOAc in petroleum ether to furnish the desired tricyclic compound **6a** in 72% yield (79 mg) as a pale-yellow solid.

(5R,7aR,11aR)-1,5-diphenyl-2-(phenylselanyl)-7a,8-dihydro-3H-pyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (6a)

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.57 (s, 1H), 7.40-7.32 (m, 10H), 7.22-7.18 (m, 5H), 6.42 (dd, *J* = 10.2, 2.0 Hz, 1H), 6.15 (d, *J* = 10.2 Hz, 1H), 5.67 (s, 1H), 4.45 (s, 1H), 2.42 (d, *J* = 16.6 Hz, 1H), 1.59 (dd, *J* = 17.3, 3.8 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.8, 166.8, 166.4, 159.2, 144.0, 137.9, 132.4, 132.0, 131.8, 129.4, 129.2, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.2, 65.0, 56.3, 53.8, 39.2.

⁷⁷Se NMR (95 MHz, DMSO-*d6*) δ 286.6.

HRMS (**ESI**, **M**+**H**⁺) m/z calcd. for C₂₉H₂₃N₂O₃Se 527.0866, found 527.0866.

(5R,7aR,11aR) - 1 - phenyl-2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - 2 - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - (phenylselanyl) - 5 - (p-tolyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - (phenylselanyl) - 5 - (phenylselanyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - (phenylselanyl) - (phenylselanyl) - 5 - (phenylselanyl) - 7a, 8 - dihydro - 3H - pyrrolo [1,2 - 2] - (phenylselanylsel

d]quinoxaline-3,6,9(5H,7H)-trione (6b)

Physical appearance: Yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (500 MHz, DMSO-***d6***):** δ 8.54 (s, 1H), 7.39-7.32 (m, 5H), 7.24-7.16 (m, 9H), 6.40 (dd, J = 10.4, 2.0 Hz, 1H), 6.14 (d, J = 10.1 Hz, 1H), 5.62 (s, 1H), 4.44 (s, 1H), 2.40 (d, J = 16.9 Hz, 1H), 2.30 (s, 3H), 1.59 (dd, J = 17.2, 3.8 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.8, 166.5, 159.2, 144.0, 137.0, 135.0, 132.4, 131.9, 131.7, 129.4, 129.2, 128.9, 128.4, 128.3, 128.2, 128.0, 127.9, 127.2, 64.9, 55.9, 53.8, 39.2, 20.7.

⁷⁷Se NMR (95 MHz, DMSO-*d6*) δ 284.7.

HRMS (ESI, M+Na⁺) m/z calcd. for C₃₀H₂₄N₂NaO₃Se 563.0850, found 563.0855.

(5R,7aR,11aR)-2-((phenyl)selanyl)-5-(4-methoxyphenyl)-1-phenyl-7a,8-dihydro-3Hpyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (6c) Physical appearance: Yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.53 (s, 1H), 7.39-7.19 (m, 12H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.40 (dd, *J* = 10.0, 1.7 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 5.57 (s, 1H), 4.45 (s, 1H), 3.74 (s, 3H), 2.39 (d, *J* = 16.8 Hz, 1H), 1.56 (dd, *J* = 17.3, 3.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.9, 166.6, 165.4, 158.7, 157.8, 143.9, 132.0, 131.66, 131.60, 131.2, 131.1, 129.85, 129.79, 129.7, 129.6, 128.9, 128.5, 128.3, 113.8, 63.9, 55.6, 55.1, 53.8, 39.2.

⁷⁷Se NMR (95 MHz, DMSO-*d6*) δ 289.7.

HRMS (ESI, M+Na⁺) m/z calcd. for $C_{30}H_{24}N_2NaO_4Se$ 579.0799, found 579.0793.

(5R,7aR,11aR)-2-((phenyl)selanyl)-5-(4-nitrophenyl)-1-phenyl-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (6d)

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.66 (s, 1H), 8.24 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.36-7.30 (m, 5H), 7.19-7.14 (m, 6H), 6.55 (dd, *J* = 10.2, 2.1 Hz, 1H), 6.17 (d, *J* = 10.2 Hz, 1H), 5.76 (s, 1H), 4.45 (s, 1H), 2.39 (d, *J* = 16.5 Hz, 1H), 1.58 (dd, *J* = 17.4, 3.7 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d6) δ 193.7, 167.2, 165.6, 159.4, 147.0, 144.9, 143.5, 132.5, 132.4, 131.9, 131.8, 129.8, 129.5, 129.2, 128.4, 128.2, 128.0, 127.8, 127.3, 123.6, 65.2, 55.8, 53.7, 39.1.
⁷⁷Se NMR (95 MHz, DMSO-d6) δ 287.1.

HRMS (**ESI**, **M**+**Na**⁺) m/z calcd. for C₂₉H₂₁N₃NaO₅Se 595.0544, found 595.0539.

(5R,7aR,11aR)-2-((phenyl)selanyl)-5-(4-methoxyphenyl)-1-phenyl-7a,8-dihydro-3Hpyrrolo[1,2-d]quinoxaline-3,6,9(5H,7H)-trione (6e)

Physical appearance: Yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.53 (s, 1H), 7.39-7.19 (m, 12H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.40 (dd, *J* = 10.0, 1.7 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 5.57 (s, 1H), 4.45 (s, 1H), 3.74 (s, 3H), 2.39 (d, *J* = 16.8 Hz, 1H), 1.56 (dd, *J* = 17.3, 3.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.9, 166.6, 165.4, 158.7, 157.8, 143.9, 132.0, 131.66, 131.60, 131.2, 131.1, 129.85, 129.79, 129.7, 129.6, 128.9, 128.5, 128.3, 113.8, 63.9, 55.6, 55.1, 53.8, 39.2.

⁷⁷Se NMR (95 MHz, DMSO-*d6*) δ 289.7.

HRMS (ESI, M+Na⁺) m/z calcd. for C₃₇H₂₆N₂NaO₃Se 649.1006, found 649.1002.

(7a'R,11a'R)-1'-phenyl-2'-(phenylselanyl)-7a',8'-dihydro-3'H,6'H-spiro[cyclopentane-1,5'pyrrolo[1,2-d]quinoxaline]-3',6',9'(7'H)-trione (6f) Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc: Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, DMSO-***d6***):** δ 8.25 (s, 1H), 7.41-7.17 (m, 9H), 6.84 (dd, *J* = 10.0, 2.2 Hz, 1H), 6.30 (d, *J* = 10.0 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 4.46 (d, *J* = 2.2 Hz, 1H), 2.36 (d, *J* = 16.2 Hz, 1H), 1.76 (s, 3H), 1.57 (dd, *J* = 17.7, 3.4 Hz, 1H), 1.53 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 193.7, 172.1, 165.2, 156.3, 145.0, 132.8, 132.2, 132.0, 131.8, 131.2, 129.4, 129.0, 128.6, 128.2, 66.3, 58.6, 52.1, 39.1, 25.6, 23.9.

⁷⁷Se NMR (95 MHz, DMSO-*d6*) δ 289.9.

HRMS (**ESI**, **M**+**H**⁺) m/z calcd. for C₂₇H₂₅N₂O₃Se 505.1030, found 505.1030.

(5R,7aR,11aR)-5-phenyl-2-(phenylselanyl)-1-(p-tolyl)-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (6g)

Physical appearance: Yellow solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.41 (d, J = 7.6 Hz, 2H), 7.35-7.30 (m, 5H), 7.21-7.17 (m, 2H), 7.11-7.08 (m, 2H), 7.00 (d, J = 8.1 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 6.10 (d, J = 10.1 Hz, 1H), 6.04 (s, 1H), 5.95 (dd, J = 10.2, 1.9 Hz, 1H), 4.12 (br s, 1H), 2.29 (s, 3H), 1.88 (dd, J = 17.4, 3.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ193.2, 168.1, 167.2, 155.9, 143.1, 139.9, 137.1, 134.2, 132.6, 130.2, 129.5, 129.0, 128.90, 128.88, 128.7, 128.4, 128.0, 127.8, 126.6, 64.8, 56.3, 55.7, 40.5, 21.3 ppm.

⁷⁷Se NMR (76 MHz, CDCl₃) δ 308.7.

HRMS (**ESI**, **M**+**Na**⁺) m/z calcd. for C₃₀H₂₄N₂O₃Se 541.1037, found 541.1037.

(5R,7aR,11aR)-1-(3-chlorophenyl)-5-phenyl-2-(phenylthio)-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (6h)

Physical appearance: Brown solid

Rf: 0.5 (1:1 EtOAc:Petroleum ether boiling range 60-80 °C).

¹**H NMR (400 MHz, CDCl₃):** δ 7.61 (s, 1H), 7.40 (d, J = 6.4 Hz, 2H), 7.31 (d, J = 19.1 Hz, 2H), 7.29 (d, J = 18.6 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 8.3 Hz, 2H), 7.07 (J = d, 7.6 Hz, 2H), 6.82 (d, J = 8.2 Hz, 2H), 6.04 (s, 1H) 6.10 (d, J = 10.2 Hz, 1H). 5.93 (d, J = 10.1 Hz, 1H), 4.12 (br. s, 1H), 2.32 (d, J = 17.3 Hz, 1H), 1.82 (dd, J = 17.4 Hz, 3.2 Hz, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ 192.8, 168.5, 167.0, 153.0, 142.9, 137.0, 135.9, 134.9, 132.7, 132.0, 130.1, 129.5, 129.22, 129.2, 129.0, 128.8, 128.5, 128.4, 125.7, 64.9, 56.4, 55.5, 40.4
⁷⁷Se NMR (95 MHz, DMSO-*d6*): δ 323.56

HRMS (**ESI**, **M**+**H**⁺) m/z calcd. for C₂₉H₂₁ClN₂O₃Se 561.0479, found 561.0487.

(7aR,11aS)-2-((R)-(4-chlorophenyl)sulfinyl)-1,5-diphenyl-7a,8-dihydro-3H-pyrrolo[1,2d]quinoxaline-3,6,9(5H,7H)-trione (7)

In a reaction tube equipped with a magnetic stirring bar was dissolved sulfide **5a** (100 mg, 0.20 mmol) in DCM (4 mL) followed by addition of *m*-CPBA 60% suspension in water (60 mg, 0.21 mmol, 1.05 equiv.) at 0 °C and the resulting solution was allowed to stir at room temperature for

4 hrs. The reaction was then quenched with careful addition of saturated aqueous sodium bicarbonate solution further extraction with DCM (4 x 10 mL), drying over sodium sulfate and concentration under reduced pressure gave the crude product. The crude material on column chromatography with ethyl acetate in petroleum ether yielded the corresponding sulfoxide **7** in 89% yield (94 mg).

Physical appearance: Yellow solid

R_f: 0.5 (1:1 EtOAc: Petroleum ether boiling range 60-80 °C).

¹H NMR (400 MHz, DMSO-*d6*): δ 8.60 (s, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 7.58-7.51 (m, 3H), 7.43-7.28 (m, 7H), 6.43 (dd, J = 10.1, 2.0 Hz, 1H), 6.23 (d, J = 10.1 Hz, 1H), 5.58 (s, 1H), 4.55 (s, 1H), 2.43 (d, J = 17.6 Hz, 1H), 1.59 (dd, J = 17.0, 4.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d6*) δ 194.0, 166.6, 163.5, 162.4, 143.0, 140.8, 137.9, 137.7, 136.4, 133.2, 130.7, 130.1, 129.7, 129.6, 129.0, 128.9, 128.8, 128.4, 127.3, 64.6, 56.5, 53.5, 39.4. HRMS (ESI, M+H⁺) m/z calcd. for C₂₉H₂₂ClN₂O₄S 529.0989, found 529.0989.

Crystal data and structure refinement

Single crystal of suitable for structural studies was obtained by slow evaporation of a mixture of ethyl acetate and hexanes. Crystals of suitable size were tested for single crystallinity using Leica DM-EP polarizing microscope. X-ray data collection was performed with Bruker AXS (Kappa Apex 2) CCD Diffractometer equipped with graphite monochromated Mo (K α) ($\lambda = 0.7107$ Å) radiation. Crystal fixed at the tip of the glass fibre was mounted on the goniometer head and was optically centered. The automatic cell determination routine, with 32 frames (frame width 0.5°) at three different orientaions of the detector was employed to collect reflections and the program APEX- SAINT was used for finding the unit cell parameters. Four–fold redundancy per reflection was utilized for achieving good absorption correction using multi-scan procedure. Besides absorption, Lorentz polarization and decay correction were applied during data reduction. The program SADABS was used for absorption correction using multi-scan procedure.

The structure was solved using SHELXS-97 and refined by full-matrix least square techniques using SHELXL-97. All hydrogens were fixed at chemically meaningful positions and riding model refinement was applied.

Crystal data and structure refinement for compound 5c CCDC: 2298650

Table 1 Crystal data and structure refinement for cmrv-sk-969_mo.								
Identification code	cmrv-sk-969_mo							
Empirical formula	C ₁₁₆ H ₈₄ Br ₄ N ₈ O ₁₂ S ₄							
Formula weight	2229.79							
Temperature/K	150.0							
Crystal system	triclinic							
Space group	P-1							
a/Å	13.7999(4)							
b/Å	15.4016(4)							
c/Å	27.5518(8)							
α/°	87.085(2)							
β/°	81.887(2)							
γ/°	82.628(2)							
Volume/ų	5746.1(3)							
Z	2							
ρ _{calc} g/cm ³	1.289							
µ/mm⁻¹	1.534							
F(000)	2272.0							
Crystal size/mm ³	0.201 × 0.109 × 0.062							
Radiation	ΜοΚα (λ = 0.71073)							
20 range for data collection/°	3.004 to 50							
Index ranges	-16 ≤ h ≤ 16, -18 ≤ k ≤ 18, -32 ≤ l ≤ 32							
Reflections collected	110890							
Independent reflections	20233 [R _{int} = 0.0958, R _{sigma} = 0.0742]							
Data/restraints/parameters	20233/0/1297							
Goodness-of-fit on F ²	1.031							
Final R indexes [I>=2σ (I)]	$R_1 = 0.0701$, $wR_2 = 0.1801$							
Final R indexes [all data]	R ₁ = 0.1060, wR ₂ = 0.2101							
Largest diff. peak/hole / e Å ⁻³	3.34/-0.86							

Light on/off experiment

To study the necessity of continuous irradiation with visible light for the progress of the reaction, a reaction was carried out with succesive irradiation and blank periods. The following standard reaction procedure was followed: In a reaction tube equipped with a magnetic stirring bar was added benzaldehyde **2a** (21 μ L, 0.2 mmol, 1.0 equiv) and *p*-anisidine **1a** (24.6 mg, 0.2 mmol, 1.0 equiv) in DCE (2mL) and stirred at rt for 5 mins. Phenylpropiolic acid **3a** (30 mg, 0.2 mmol, 1.0 equiv) and *tert*-butyl isocyanide **4** (22 μ L, 0.2 mmol, 1.0 equiv) were added all at once and resulting solution was stirred at room temperature for 12 hrs. After completion of the reaction (TLC control), 4-chlorothiophenol **5a** (58 mg, 0.4 mmol, 2.0 equiv) and eosin Y (6.4 mg, 0.01 mmol, 5 mol%) were added, the contents were irradiated under blue LED's at room temperature in air for corresponding intervals. Then ¹H NMR of the sample was taken to determine the yields of the corresponding spirocyclized product with 1,3,5-trimethoxybenzene as an internal standard. The grey boxes represent the periods in which the reaction tube was covered (dark period). These findings highlighted the importance of blue LEDs irradiation is required for effective product formation.

Quantum Yield measurement for Ugi/Radical Spirocyclization/Aza-Michael product Determination of the photon flux

The photon flux of a single blue LED (40 W, λ_{max} = 454 nm) was determined by ferrioxalate actinometry following a literature procedure. For this purpose, the following two solutions were prepared:

Solution A:

Potassium ferrioxalate hydrate (737 mg, 1.50 mmol) was dissolved in aq. H_2SO_4 (0.05 M, 10 mL) to afford a 0.15 M ferrioxalate solution.

Solution B:

1,10-Phenanthroline monohydrate (20 mg, 0.10 mmol), and NaOAc (2.71 g, 41.3 mmol) were dissolved in aq. H_2SO_4 (0.5 M, 20 mL).

Notice: Solution A was prepared in the dark and both solutions were stored in the dark to avoid external irradiation prior to the actinometry. The following procedure was performed in a darkened lab.

First, the photon flux of the 454 nm LED was determined. For this, solution A (1.0 mL) was filled in a reaction tube and irradiated for 60 s, at $\lambda_{max} = 454$ nm. After irradiation, solution B (175 µL) was added to the same reaction tube, and the mixture was stirred in the dark for 1 h to ensure coordination of Fe(II)- ions by phenanthroline. The solution was poured into a quartz cuvette and the absorption of the solution was measured at 510 nm. Sample preparation and measurement were repeated two more times. In a similar way a non-irradiated control sample was prepared, measured for absorbance at 510 nm, which was repeated twice. The average of the absorption of the both irradiated and radiated samples were calculated and were used to calculate the conversion factor *n* applying eq. 1.

$$n(\mathsf{F}\mathsf{e}^{+2}) = \frac{V\Delta A(510nm)}{l.\varepsilon} \tag{1}$$

V refers to the total volume (0.001175 L) of the solution (after addition of solution B), ΔA is the average difference in absorption of irradiated and non-irradiated samples between at 510 nm, *l* is the path length (1.0 cm) of the cuvette, and ε is the molar extinction coefficient of the ferrioxalate actinometer at 510 nm (11,100 L mol-1 cm-1). The photon flux (Φ_q) is calculated using eq. 2.

$$\Phi q = \frac{n(Fe^{+2})}{\Phi_F t.f} \tag{2}$$

 $\Phi_{\rm F}$ refers to the quantum yield for the ferrioxalate actinometer (0.92 at $\lambda_{\rm ex}$ = 468 nm), *t* is the irradiation time for solution A (60 s), and *f* is the fraction of light absorbed at $\lambda_{\rm ex}$ = 454 nm by the ferrioxalate actinometer. This value is calculated using eq. 3, where A(454 nm) is the absorption of the ferrioxalate solution at 454 nm. A measured absorbance value of 1.00753 at 454 nm indicates the fraction of absorbed light (*f*) to be around 0.9.

$$f = 1 - 10^{-A(454nm)} \tag{3}$$

Thus, the average photon flux was calculated to be 2.73×10^{-9} Einsteins s⁻¹.

To an oven-dried reaction tube was added *p*-anisidine **1a** (24.63 mg, 0.2 mmol, 1.0 equiv.), benzaldehyde **2a** (21.22 mg, 0.2 mmol, 1 equiv.), 3-phenylpropiolic acid **3a** (29.22 mg, 0.2 mmol, 1 equiv.), tert-butyl isocyanide **4a** (16.26 mg, 0.2 mmol, 1 equiv.), 4-chlorothiophenol **5a** (57.66 mg, 0.4 mmol, 2 equiv.), Eosin Y (6.91 mg, 0.01 mmol, 5 mol%) and DCE (2 mL). The tube was sealed and placed 2 cm away from the blue LED. After irradiation for 4 hours, the yield of the product was determined by ¹H NMR using *1,3,5-trimethoxybenzene* as the internal standard. Thus, the average yield was calculated to be 15% (0.03 mmol). The quantum yield (Φ) of the reaction was determined using eq. 4, where the photon flux (Φ_q) is 2.73×10^{-9} Einsteins s⁻¹ (see above), *t* is the reaction time (4 h = 14400 s) and *f*_R is the fraction of light absorbed by the reaction mixture (indicated in eq. 3; A_{Rct} (454 nm) = 0.97) determined using eq. 4.

$$\Phi = \frac{n(product)}{\Phi q.t.f_R} \tag{4}$$

Thus, the quantum yield (Φ) of the product was determined to be: $\Phi = 0.85$, suggesting that a photo-induced reaction has occurred.

CMRV-SK-968-DEPT

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 ppm

 													•••••		
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

	'										'		
240	220	200	180	160	140	120	100	80	60	40	20	0	ppm

240	220	200	180	160	140	120	100	80	60	40	20	0	ppm

240	220	200	180	160	140	120	100	80	60	40	20	ò	ppm

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 pp

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	pp

CMRV-AC-506-1H

CMRV-AC-525-1H

CMRV-AC-524-1H

CMRV-AC-598A-13C

170	160	150	140	130	120	110	100	90	80	70	<mark>60</mark>	50	40	30	20	10	0	ppn
CMRV	-SK-99	4-77Se	Э			283	2											
						- 284	1))											
											``````````````````````````````````````							
									S		, NH							
									$\langle \rangle$		€°							
										6b	$\mathbf{y}^{\parallel}$							
											Me	)						
						I												
	anti-lahunan Ang ang ang	dama ili ila a			in the second	Market and a	alabbe also to the	tales e la casa	ulaid and lide on	hatik and sould be did		Anna an at ait and an	. th. black the set		i an at int i dala	h h da an	e de la statstatt i te	
											а-разласа (		Marine and Maria			Marine		
	8	00	60	00	40	0	200		Ó		-200		-400	-	600	-8	00	ppm

T

CMRV-SK-1015-1H







____287.085



				1						
المتأملين أوأم أوحالا والانتقا	and the section of the sector	والمتعادية فالمعاولة فالمعاد فأفاده والمعاد	والمحافظ والمعود المتعاط والمتعاط	ويروقه والمترار والمتار والمتروية	ada biliyaa ad talkada u maratuu k	autoreau caratra a				t. i. ii
1	ىمايىدىغا بىلەر بىيەلىرى _{مە}	l in and an		erha printernalli kutafa pidatena	مهركل والطويوني والمتارين	a a fa a su fa cara fa	onengan dan dan dan dar	ta da faranta a da faran da fara a a An di faranta a da faranta da fara An di faranta da faranta	and in the second s Second second	
	800	600	400	200	0	-200	-400	-600	-800	ppm









40	220	200	180	160	140	120	100	80	60	40	20	ò	р
CMRV-S	SK-996-77	/Se		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000.007 								
					I		Q						
								мн					
							ef v						
					1		01						
	al ann a Ba le chait le ga a cant th Fageacht ga ga an th ga an an th	and and an a subsection of any	l), and the off postations of September 1976 (1977)	a para tina a sa tabi a sa ila a da Pangan ing ng sa pana apangi			hte different here alle en de server al an de s na an antige partie de la partie de server	Notes and the set of the set formed the set of projections	et from her in a set of the production period provide the set	e laste on the second secon	t a contra a trade da tra a trade da trade La contra da contra da tradecimiento da contra da tradecimiento da contra da contra da contra da contra da contr La contra da contra d	ta Linear an el anterior Referenza en el anterior Referenza en el anterior	<b>i</b> n
	800	60	0	400	200	0	-2	00	-400	-600	-800	ppr	m













	ng an ann an taon an an Ann an Ann an An Lobberton Mar Charles an Anna an		n blenn sen efter her her her her sen efter bestere sen efter bestere sen efter bestere sen efter bestere sen e For an		na na stali dala di anta ana shara kalenda Na na shara kalenda na sh	्रास्त के भोजन के साथ के स साथ कुछ के पूर्व स्थान करना के साथ के साथ साथ कुछ के साथ के सा	માર્થ નિર્વેદ્વે પ્રાજ્ય પ્રાર્થ સ્થિતિમાર્થ કરતાં છે. તેમ કારણે પ્રાપ્ય કારણ કરતાં છે. પ્રાપ્ય પ્રાપ્ય કુલ્લ કરવા ને પ્રાપ્ય કુલ્લ કરતાં છે. તેમ કુલ કરતાં છે. તેમ કુલ કુલ કરવા કરતાં છે.	
2500	2000	1500	1000	500	0	-500	-1000	ppm









323.56

	lad ja minuja sila h hitaba eretti siya	n da da juta ya na Maring Igiza ya ya ya	lasterensky a ki egeneliger jege	an a shekiri tini. An ing a shekiri tini ti	nde Cistorija Ne Cistorija			in have the lister lister Malay and the lister lister is a second s		antin Atlanti Antipenanting		ka k	ntikoglativeljalj pripilozpostar po				ulu nin derind Malanger
800	700	600	500	400	300	200	100	0	-100	-200	-300	-400	-500	-600	-700	-800	ppm

CMRV-AC-599B-77Se



