Iron-Catalyzed Synthesis of Substituted 3-Arylquinolin-2(1*H*)-ones *via* an Intramolecular Dehydrogenative Coupling of Amido-Alcohols.

Léo Bettoni,^a Nicolas Joly,^{a,b} Inès Mendas,^a Matteo Maria Moscogiuri,^a Jean-François Lohier,^a Sylvain Gaillard,^a Albert Poater^{b*} and Jean-Luc Renaud^{a,c*}

^aNormandie Univ, LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.

^bDepartament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/ M^a Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.

°Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France.

Supporting Information

Table of contents

2
5
20
45
46
69
92

Part 1: Optimization of the condensation of amido-alcohol 1a.

31 %

Entry	Ru	Base (equiv.)	Solvent	Temp (°C)	1a/2a/3/4 ^b
1	Ru1	NaO ^t Bu (2.0)	DMF	100	-/38/31/31
2	Ru1	NaOH (2.0)	DMF	100	75/25/-/-
3	Ru1	Cs ₂ CO ₃ (2.0)	DMF	100	28/72/-/-
4	Ru1	K ₂ CO ₃ (2.0)	DMF	100	3/65/17/15
5	Ru1	Na ₂ CO ₃ (2.0)	DMF	100	1/96/3/-
6	Ru1	NaHCO₃ (2.0)	DMF	100	24/37/39/-

^a General Conditions: Amido-alcohol **1a** (0.5 mmol), **Ru** (2 mol %), Me₃NO (4 mol %), base (2 equiv.), DMF (1 M) for 24 h. ^b Conversions and selectivity were determined by ¹H-NMR analysis of the crude mixture.

	OH N O	n Fe (2 mol %), Me ₃ NO (4 mol Base, solvent (1 M), Temp, 4	%) 10 h	Ph + H ₂ + H ₂ O	
	H C 1a	$ \begin{array}{c} \begin{array}{c} & Ph \\ & & \\ N \end{array} \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	2a TMS OC ^T Fe CO Fe Fe3	Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Fe4	
Entry	Fe	Base (equiv.)	Solvent	Temp (°C)	1a/2a ^b
1	Fe1	NaO ^t Bu (1.0)	toluene	90	-/-
2	Fe1	NaO ^t Bu (1.0)	CPME	90	-/-
3	Fe1	NaO ^t Bu (1.0)	MeOH	90	-/17
4	Fe1	NaO ^t Bu (1.0)	ⁱ PrOH	90	-/21
5	Fe1	NaO ^t Bu (1.0)	DMF	90	-/29
6	Fe1	Na ₂ CO ₃ (1.0)	DMF	90	65/35
7 ^d	Fe2	Na ₂ CO ₃ (1.0)	DMF	90	72/28
8	Fe3	Na ₂ CO ₃ (1.0)	DMF	90	22/78
9	Fe4	Na ₂ CO ₃ (1.0)	DMF	90	41/59
10	Fe3	Na ₂ CO ₃ (1.0)	toluene	100	-/-
11	Fe3	Na ₂ CO ₃ (0.1)	DMF	100	82/18
12	Fe3	Na ₂ CO ₃ (0.5)	DMF	100	63/37
13	Fe3	Na ₂ CO ₃ (1.0)	DMF	100	14/86
14	Fe3	Na ₂ CO ₃ (1.0)	DMF	110	-/77 (48) ^c
15	Fe3	Na ₂ CO ₃ (2.0)	DMF	100	8/92 (78)°
16	Fe3	K ₂ CO ₃ (2.0)	DMF	100	26/74
17	Fe3	K ₃ PO ₄ (2.0)	DMF	100	28/72
18	Fe3	K ₂ HPO ₄ (2.0)	DMF	100	41/59
19	Fe3	Cs ₂ CO ₃ (2.0)	DMF	100	28/72
20	Fe3	NaHCO₃ (2.0)	DMF	100	63/37
21	Fe3	NaOH (2.0)	DMF	100	-/25

Table S2: Optimization of the reaction conditions with Iron^a

^a General Conditions: Amido-alcohol **1a** (0.5 mmol), **Fe** or **Ru** (2 mol %), Me₃NO (4 mol %), base (x equiv.), solvent (1 M) for 40 h. ^b Conversions and selectivity **1a/2a** were determined by ¹H-NMR analysis of the crude mixture. ^cIsolated yield. ^d Without Me₃NO.

Part 2: Experimental Part.

General Considerations: All air- and moisture-sensitive manipulations were carried out using standard vacuum line Schlenk tubes techniques. Toluene was dried using a solvent purification system from Innovative Technologies, by passage through towers containing activated alumina. Xylene was purchased from Carlo Erba and was distillated over sodium and stocked over 4Å molecular sieves. Both were degazed prior to use by bubbling argon gas directly in the solvent. Other solvents and chemicals were purchased from different suppliers and used as received. Neutral alumina was purchased from Alfa Aesar (Brockmann Grade I, 58 Angstroms, -60 Mesh Powder, S.A. 150 m²/g) and silica from Carlo Erba (60Å 40-63µ). Deuterated solvents for NMR spectroscopy were purchased from Sigma Aldrich and used as received. NMR spectra were recorded on a 500 MHz Brücker spectrometer. Proton (¹H) NMR information is given in the following format: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; qui, quintet; sept, septet; m, multiplet), coupling constant(s) (J) in Hertz (Hz), number of protons. The prefix app is occasionally applied when the true signal multiplicity was unresolved and br indicates the signal in question broadened. Carbon ${}^{13}C{}^{1}H$ NMR spectra are reported in ppm (δ) relative to CDCl₃ unless noted otherwise. Infrared spectra were recorded over a PerkinElmer Spectrum 100 FT-IR Spectrometer using neat conditions. HRMS analyses were performed by Laboratoire de Chimie Moléculaire et Thioorganique analytical Facilities.

Synthesis of amido-alcohols

<u>General Procedure A</u>: Step 1: In a round bottomed flask, the desired phenylacetic acid (10 mmol) was dissolved in thionyl chloride (2.18 mL, 3 equiv.). The mixture was stirred under reflux for 1 hour. After cooling to room temperature, the solvent was evaporated in vacuo to give the desired phenylacetyl chloride, which was directly used for the next step.

Step 2: To a stirred solution of 2-aminobenzyl alcohol (10 mmol, 1 equiv.) in dry THF (15 mL) was added 5 mL of pyridine. A solution of the desired phenylacetyl chloride (10 mmol, 1 equiv.) in dry THF (10 mL) was added dropwise at 0 °C under argon. The mixture was warmed to room temperature and stirred overnight. Solvent was evaporated, water and chloroform were added and the organic phase was washed with aqueous HCl (5 %), brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Depending on the purity of the crude, the product was purified by silica gel chromatography using pentane:ethyl acetate as eluent.

N-[2-(hydroxymethyl)phenyl]-2-phenylacetamide (**1a**). According to general procedure A, **1a** was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and phenylacetyl chloride (10 mmol, 1 equiv.), as a white solid (2.19 g, 91 %) without further purification. ¹H-NMR (CDCl₃, 500 MHz): δ 8.37 (br. s, 1H), 8.04 (d, *J* = 8.1 Hz, 1H), 7.43-7.36 (m, 3H), 7.36-7.29 (m, 3H), 7.13 (d, *J* = 6.4 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 4.46 (s, 2H), 3.78 (s, 2H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 169.9, 137.4, 134.8, 129.8, 129.5, 129.2, 129.2, 128.9, 127.6, 124.5, 122.5, 64.3, 45.2. IR (neat): v 3254, 1652, 1585, 1525, 1451, 1394, 1066, 1028, 968, 754, 699 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₅NO₂Na 264.1000; found 264.1001.

N-(2-(hydroxymethyl)phenyl)-N-methyl-2-phenylacetamide (**1b**). According to general procedure A, **1b** was obtained from (2-(methylamino)phenyl)methanol (10 mmol, 1 equiv.) and phenylacetyl chloride (10 mmol, 1 equiv.), after purification by flash column chromatography on silica gel (pentane/ethyl acetate 3:1). Brown solid (1.22 g, 48 %). ¹H-NMR (CDCl₃, 500 MHz): δ 7.52 (d, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.38-7.35 (m, 2H), 7.20-7.18 (m, 3H), 7.11 (d, *J* = 7.5 Hz, 1H), 6.94-6.93 (m, 2H), 4.38 (d, *J* = 13.2 Hz, 1H), 4.20 (d, *J* = 13.2 Hz, 1H), 3.43 (s, 2H), 3.18 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 171.2, 141.3, 138.8, 135.1, 129.2, 129.2, 129.1, 129.1, 128.6, 128.5, 126.8, 60.7, 41.7, 37.3. IR (neat): v 2909, 1709, 1584, 1495, 1453, 1231, 1162, 926, 748, 696, 607 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₈NO₂ 256.1338; found 256.1338.

N-(2-(hydroxymethyl)phenyl)-2-(p-tolyl)acetamide (**1c**). According to general procedure A, **1c** was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(p-tolyl)acetic acid (10 mmol, 1 equiv.) as a white solid (2.20 g, 86 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (br. s, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.32-7.29 (m, 1H), 7.26-7.25 (m, 2H), 7.19 (app. d, *J* = 7.9 Hz, 2H), 7.15-7.14 (m, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 4.47 (s, 2H), 3.73 (s, 2H), 2.36 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 170.3, 137.4, 137.4, 131.7, 129.9, 129.8, 129.7, 129.3, 129.1, 124.6, 122.6, 64.3, 44.8, 21.3. IR (neat): v 3254, 1652, 1587, 1527, 1455, 1341, 1245, 1188, 1035, 763, 702, 493 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₇NO₂Na 278.1157; found 278.1160. *N*-(*2*-(hydroxymethyl)phenyl)-*2*-(*o*-tolyl)acetamide (**1d**). According to general procedure A, **1d** was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(o-tolyl)acetic acid (10 mmol, 1 equiv.) as a white solid (1.97 g, 77 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (br. s, 1H), 8.03 (dd, *J* = 3.8; 8.1 Hz, 1H), 7.32-7.29 (m, 2H), 7.26-7.24 (m, 2H), 7.10 (app. d, *J* =

7.5 Hz, 2H), 7.03 (t, J = 7.4 Hz, 1H), 4.39 (s, 2H), 3.76 (d, J = 7.5 Hz, 2H), 2.37 (d, J = 2.6 Hz, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 169.8, 137.7, 137.3, 133.3, 131.0, 130.9, 129.5, 129.3, 129.0, 128.1, 126.9, 124.5, 122.4, 64.3, 43.2, 19.7. IR (neat): v 3251, 3047, 1660, 1526, 1489, 1345, 1203, 1032, 967, 757, 745, 661, 501 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₇NO₂Na 278.1157; found 278.1159.

2-(2-bromophenyl)-N-(2-(hydroxymethyl)phenyl)acetamide (1e). According to general procedure A, 1e was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(2bromophenyl)acetic acid (10 mmol, 1 equiv.) as a white solid (1.18 g, 37 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.40 (br. s, 1H), 8.04 (d, *J* = 8.1 Hz, 1H), 7.64 (dd, *J* = 1.0; 8.1 Hz, 1H), 7.44 (dd, *J* = 1.5; 7.5 Hz, 1H), 7.34 (td, J = 1.1; 7.5 Hz, 1H), 7.33-7.30 (m, 1H), 7.19 (td, J = 1.7; 7.8 Hz, 1H), 7.14 $(dd, J = 1.0; 7.4 Hz, 1H), 7.05 (td, J = 1.0; 7.4 Hz, 1H), 4.54 (s, 2H), 3.93 (s, 2H). {}^{13}C{}^{1}H}NMR$ (CDCl₃, 125 MHz): δ 168.4, 137.4, 134.7, 133.4, 132.2, 129.8, 129.5, 129.3, 129.0, 128.3, 125.5, 124.7, 122.8, 64.5, 45.4. IR (neat): v 3249, 1662, 1532, 1499, 1362, 1253, 1054, 922, 762, 674, 503 cm⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₄NO₂BrNa 342.0106; found 342.0111. *N*-(2-(*hydroxymethyl*)*phenyl*)-2-(2-*methoxyphenyl*)*acetamide* (1f). According to general procedure A, 1f was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(2methoxyphenyl)acetic acid (10 mmol, 1 equiv.) as a white solid (1.49 g, 55 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.43 (br. s, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.33-7.27 (m, 3H), 7.14 (d, J = 7.4 Hz, 1H), 7.03 (d, J = 7.4 Hz, 1H), 6.96 (d, J = 7.4 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 4.45 (s, 2H), 3.88 (s, 3H), 3.75 (s, 2H), 1.94 (br. s, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 170.4, 157.6, 137.3, 131.6, 130.4, 129.2, 129.1, 129.1, 124.6, 123.4, 122.9, 121.2, 110.8, 64.0, 55.6, 40.0. IR (neat): v 3243, 1653, 1586, 1522, 1453, 1239, 1043, 970, 747, 686, 589, 509 cm⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₇NO₃Na 294.1106; found 294.1110.

N-(2-(hydroxymethyl)phenyl)-2-(3-methoxyphenyl)acetamide (**1g**).According to general procedure A, **1g** was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(3-methoxyphenyl)acetic acid (10 mmol, 1 equiv.) as a white solid (1.67 g, 61 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.42 (br. s, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.29 (t, *J* = 7.9 Hz, 2H), 7.14-7.12 (m, 1H), 7.04 (t, *J* = 7.3 Hz, 1H), 6.94 (d, *J* = 7.4 Hz, 1H), 6.90 (s, 1H), 6.88-6.86 (m, 1H), 4.47 (s, 2H), 3.82 (s, 3H), 3.73 (s, 2H), 1.79 (br. s, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 169.8, 160.3, 137.4, 136.2,

130.3, 129.7, 129.3, 129.0, 124.6, 122.6, 122.1, 115.2, 113.4, 64.4, 55.4, 45.3. IR (neat): v 3257, 1655, 1585, 1525, 1491, 1463, 1345, 1263, 1158, 1037, 970, 759, 706, 587 cm $^{-1}$. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₇NO₃Na 294.1106; found 294.1109.

N-(2-(hydroxymethyl)phenyl)-2-(4-methoxyphenyl)acetamide (**1h**).According to general procedure A, **1h** was obtained from2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(3-methoxyphenyl)acetic acid (10 mmol, 1 equiv.) as a white solid (1.55 g, 57 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.38 (br. s, 1H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.32-7.29 (m, 1H), 7.27 (d, *J* = 8.6 Hz, 2H), 7.14-7.13 (dd, *J* = 1.0; 7.4 Hz, 1H), 7.07-7.04 (td, *J* = 1.0; 7.4 Hz, 1H), 6.91 (d, *J* = 8.6 Hz, 1H), 4.48 (s, 2H), 3.81 (s, 3H), 3.70 (s, 2H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 170.5, 159.2, 137.4, 130.9, 129.7, 129.3, 129.0, 126.7, 124.6, 122.6, 114.6, 64.3, 55.5, 44.31. IR (neat): v 3259, 1657, 1585, 1512, 1409, 1302, 1243, 1175, 1034, 971, 772, 711, 574, 514, 437 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₇NO₃Na 294.1106; found 294.1107.

N-(2-(hydroxymethyl)phenyl)-2-(naphthalen-1-yl)acetamide (**1i**). According to general procedure A, **1i** was obtained from2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(naphthalen-1-yl)acetic acid (10 mmol, 1 equiv.) as a light yellow solid (2.36 g, 81 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.30 (br. s, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.90 (dd, *J* = 2.2; 7.1 Hz, 1H), 7.86 (dd, *J* = 2.2; 7.1 Hz, 1H), 7.57-7.49 (m, 4H), 7.28-7.25 (m, 1H), 6.99-6.97 (m, 2H), 4.21 (s, 2H), 4.02 (s, 2H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 169.9, 137.2, 134.0, 132.4, 131.0, 129.5, 129.1, 129.0, 128.9, 128.9, 128.7, 127.1, 126.5, 126.0, 124.5, 124.0, 122.5, 64.0, 43.2. IR (neat): v 3237, 1650, 1534, 1456, 1399, 1205, 1090, 1045, 886, 779, 529 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₉H₁₇NO₂Na 314.1157; found 314.1160.

2-(4-fluorophenyl)-N-(2-(hydroxymethyl)phenyl)acetamide (**1**j). According to general procedure A, **1**j was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(4-fluorophenyl)acetic acid (10 mmol, 1 equiv.) as a light yellow solid (1.84 g, 71 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (500 MHz, CDCl₃): δ 8.49 (br. s, 1H), 8.04 (d, *J* = 8.1 Hz, 1H), 7.34-7.30 (m, 3H), 7.12 (d, *J* = 7.4 Hz, 1H), 7.08-7.04 (m, 3H), 4.51 (s, 2H), 3.72 (s, 2H). ¹⁹F NMR (CDCl₃, 500 MHz): δ - 114.8. ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 169.7, 161.5 (d, *J* = 244.5 Hz), 137.4, 131.3 (d, *J* = 8.0 Hz), 130.4 (d, *J* = 3.3 Hz), 129.5, 129.3, 128.9, 116.0 (d, *J* = 21.3 Hz), 64.5, 44.3. IR (neat): v 3211,

1656, 1588, 1530, 1507, 1354, 1286, 1220, 1157, 1019, 842, 752, 512, 471 cm⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₄NO₂FNa 282.0906; found 282.0906.

N-(2-(hydroxymethyl)phenyl)-2-(4-(trifluoromethyl)phenyl)acetamide (**1k**). According to general procedure A, **1k** was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(4-(trifluoromethyl)phenyl)acetic acid (10 mmol, 1 equiv.) as a white solid (1.92 g, 62 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (500 MHz, CDCl₃): δ 8.56 (br. s, 1H), 8.06 (d, *J* = 8.1 Hz, 1H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.34-7.30 (m, 1H), 7.13 (d, *J* = 7.4 Hz, 1H), 7.05 (t, *J* = 7.4 Hz, 1H), 4.56 (s, 2H), 3.81 (s, 2H). ¹⁹F NMR (CDCl₃, 500 MHz): δ - 62.5. ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 168.7, 138.8, 137.5, 130.0, 129.4, 129.3, 128.9, 128.0 (d, *J* = 65.3 Hz) 126.0 (q, *J* = 3.7 Hz), 124.6, 124.2 (d, *J* = 270 Hz), 122.4, 64.7, 44.9. IR (neat): v 3219, 1663, 1585, 1525, 1486, 1309, 1237, 1198, 1095, 1002, 944, 714, 569 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₄NO₂F₃Na 332.0874; found 332.0874.

N-(2-(hydroxymethyl)phenyl)-2-(thiophen-2-yl)acetamide (**1**I). According to general procedure A, **1**I was obtained from 2-aminobenzyl alcohol (10 mmol, 1 equiv.) and 2-(thiophen-2-yl)acetic acid (10 mmol, 1 equiv.) as a white solid (2.13 g, 86 %) after purification by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.63 (br. s, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.33-7.29 (m, 2H), 7.13 (d, *J* = 7.4 Hz, 1H), 7.08-7.03 (m, 3H), 4.52 (s, 2H), 3.96 (s, 3H), 3.75 (s, 2H), 1.94 (br. s, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 168.8, 137.2, 135.9, 129.7, 129.3, 129.0, 128.1, 127.7, 126.1, 124.7, 122.5, 64.4, 38.8. IR (neat): v 3250, 1654, 1587, 1532, 1454, 1342, 1248, 1039, 967, 765, 697, 533 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₃H₁₃NO₂SNa 270.0565; found 270.0566.

<u>General Procedure B</u>: Step 1: In a round bottomed flask, the desired aniline (15 mmol, 1 equiv.) was dissolved in dichloromethane (24 mL) and triethylamine (2.3 mL, 1.1 equiv.) was added. The mixture was cooled to 0 °C and pivaloyl chloride (1.84 mL, 1 equiv.) was added dropwise. The mixture was stirred at room temperature overnight and then poured into water. The water phase was then washed with dichloromethane and the organic layers were combined. The organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure, giving the N-pivaloyl aniline which was directly used for the next step.

Step 2: Under argon, *N*-pivaloyl aniline (1 equiv.) was dissolved in dry diethyl ether (0.25 M) and TMEDA (2.25 equiv.) was added. The mixture was cooled to -5° C. A solution of *n*-butyllithium (2.5 M in hexane, 2.2 equiv.) was added dropwise. The mixture was allowed to

warm to room temperature, stirred for 2 hours, and cooled down again to -5°C. DMF (3 equiv.) was added dropwise and the mixture was stirred for 1 hour. Water was added, the water layer was extracted with additional Et_2O and the organic extracts were combined, dried over Na_2SO_4 , filtered and concentrated under reduced pressure.

Step 3: The crude *N*-pivaloyl aniline-benzaldehyde (1 equiv.) was dissolved in methanol (0.5 M). Then, sodium borohydride (1.5 equiv.) was added portion wise at 0 °C, the mixture was warmed at room temperature, stirred for 2 hours and quenched with water. The product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure.

Step 4: The crude amido-alcohol (1 equiv.) was dissolved in methanol (0.38 M) and sodium hydroxide (5 equiv.) was added. The mixture was stirred and refluxed overnight. After cooling down to room temperature, water was added and the product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure.

Step 5: To a stirred solution of 2-aminobenzyl alcohol (1 equiv.) in 15 mL of dry THF was added 5 mL of pyridine. A solution of phenylacetyl chloride (1 equiv.) in 10 mL of dry THF was added dropwise at 0°C under argon. The mixture was warmed to room temperature and stirred overnight. Solvent was evaporated, water and chloroform were added and the organic phase was washed with aqueous HCl (5 %), brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Depending on the purity of the crude, the product was purified on silica gel chromatography using pentane:ethyl acetate as eluent.

N-(2-(hydroxymethyl)-3-methoxyphenyl)-2-phenylacetamide (**1m**). According to the general procedure B, **1m** was obtained over 5 steps from 3-methoxyaniline (15 mmol, 1.85 g) as a white solid (1.052 g, 26 % overall yield) by flash column chromatography on silica gel (pentane/ethyl acetate 1:1). ¹H NMR (CDCl₃, 500 MHz): δ 8.23 (br. s, 1H), 7.50 (d, *J* = 8.2 Hz, 1H), 7.41-7.36 (m, 4H), 7.34-7.31 (m, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 6.66 (d, *J* = 8.2 Hz, 1H), 4.58 (s, 2H), 3.79 (s, 3H), 3.76 (s, 2H), 1.82 (br. s, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 170.2, 157.4, 138.3, 134.8, 129.8, 129.4, 129.3, 127.7, 119.3, 115.6, 107.5, 56.2, 55.9, 45.2. IR (neat): v 3241, 1655, 1579, 1533, 1476, 1394, 1196, 1039, 968, 744, 576 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₀NO₂ 318.1494; found 318.1495.

N-(3-(hydroxymethyl)-[1,1'-biphenyl]-2-yl)-2-phenylacetamide (**1n**). According to the general procedure B, **1n** was obtained over 5 steps from [1,1'-biphenyl]-2-amine (15 mmol, 2.54 g) as

a white solid (1.57 g, 33 % overall yield) by flash column chromatography on silica gel (pentane/ethyl acetate 1:1). ¹H NMR (CDCl₃, 500 MHz): δ 7.49 (dd, *J* = 1.4; 7.6 Hz, 1H), 7.40-7.38 (m, 3H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.27-7.23 (m, 4H), 7.18-7.17 (m, 2H), 7.01-6.99 (m, 2H), 6.73 (br. s, 1H), 4.50 (s, 2H), 3.61 (s, 2H), 3.51 (br. s, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 172.0, 139.2, 139.2, 138.1, 134.0, 131.9, 130.3, 130.2, 129.6, 129.3, 128.9, 128.8, 127.9, 127.8, 127.7, 62.7, 43.9. IR (neat): v 3383, 3220, 1662, 1596, 1525, 1435, 1351, 1239, 1096, 1044, 992, 787, 698, 642, 512 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₇NO₃Na 294.1106; found 294.1106.

N-(2-(hydroxymethyl)-4-(trifluoromethyl)phenyl)-2-phenylacetamide (**1o**). According to the general procedure B, **1o** was obtained over 5 steps from 4-(trifluoromethyl)aniline (15 mmol, 2.42 g) as a white solid (1.62 g, 35 % overall yield) by flash column chromatography on silica gel (pentane/ethyl acetate 1:1). ¹H NMR (500 MHz, CDCl₃): δ 8.68 (br. s, 1H), 8.31 (d, *J* = 8.5 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.42-7.40 (m, 2H), 7.37-7.35 (m, 4H), 4.50 (s, 2H), 3.78 (s, 2H). ¹⁹F NMR (CDCl₃, 500 MHz): δ -62.2. ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 170.0, 134.4, 129.9, 129.3, 128.8, 127.8, 126.8 (d, *J* = 132 Hz), 126.4 (q, *J* = 3.7 Hz) 125.7 (q, *J* = 3.7 Hz), 124.1 (d, *J* = 270 Hz), 121.8, 64.2, 45.4. IR (neat): v 3256, 1660, 1524, 1408, 1330, 1274, 1166, 1079, 904, 834, 703, 571 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₅NO₂F₃ 310.1055; found 310.1059.

N-(3-(hydroxymethyl)naphthalen-2-yl)-2-phenylacetamide (**1p**). *Step 1:* to a suspension of LiAlH₄ (20 mmol, 0.76 g, 2 equiv.) in dry THF (40 mL) under argon at 0°C a solution of 3-amino-2-naphthoic acid (10 mmol, 1.87 g, 1 equiv.) in dry THF (25 mL) was added dropwise. After addition, the reaction was heated to reflux for 16 h. After cooling to room temperature, the reaction was quenched with saturated Na₂SO₄ solution and filtered over celite. The filtrate was then washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to afford pure (3-aminonaphthalen-2-yl)methanol as a light brown solid (1.54 g, 89 %).

Step 2: To a stirred solution of (3-aminonaphthalen-2-yl)methanol (1.54 g, 8.9 mmol) in dry THF (15 mL) was added 5 mL of pyridine. A solution of phenylacetyl chloride (1.18 mL, 1 equiv.) in dry THF (10 mL) was added dropwise at 0 °C under argon. The mixture was warmed to room temperature and stirred overnight. Solvent was evaporated, water and chloroform were added and the organic phase was washed with aqueous HCl (5 %), brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Crude product was then purified by flash column chromatography on silica gel (pentane/ethyl acetate 1:1) to afford **1p** as a light brown solid

(1.99 g, 77 %). ¹H NMR (500 MHz, CDCl₃): δ 8.65 (br. s, 1H), 8.61 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.37-7.33 (m, 1H), 4.60 (s, 2H), 3.81 (s, 2H).¹³C{¹H}NMR (125 MHz, CDCl₃): δ 170.1, 134.8, 133.9, 130.2, 129.9, 129.3, 129.0, 128.9, 128.1, 127.9, 127.7, 127.5, 126.8, 125.5, 119.3, 64.8, 45.4. IR (neat): v 3304, 1737, 1645, 1600, 1527, 1496, 1451, 1359, 1166, 1031, 974, 884, 747, 699, 477 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₉H₁₇NO₂Na 314.1157; found 314.1164.

<u>General Procedure C</u>: Step 1: In a two necks flask, a minimum of diethyl ether was added to small pieces of magnesium (20 mmol, 486 mg, 2 equiv.) and a small amount of iodine. A first part of the halogen derivative (7 mmol, 0.67 equiv.) was added. The mixture was heated until the reaction started. A second part of the halogen derivative (13 mmol, 1.33 equiv.) was added and the reaction mixture was heated at reflux for 30 minutes. After cooling down to room temperature, 2-nitrobenzaldehyde (10 mmol, 1 equiv.) was added dropwise at 0 °C and the mixture was stirred at room temperature overnight. The reaction was quenched with saturated aqueous NH₄Cl solution and the product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure.

Step 2: To a stirred solution of the crude nitro-alcohol (1 equiv.) and nickel (II) chloride hexahydrate (1 equiv.) in ethanol (0.33 M) was added portion wise sodium borohydride (10 equiv.) at 0 °C. The mixture was stirred for 2 hours at 0 °C and quenched with a minimum of water, filtered on celite and poured into water. Water phase was then extracted twice with ethyl acetate. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure.

Step 3: To a stirred solution of the crude 2-aminobenzyl alcohol (1 equiv.) in 15 mL of dry THF was added 5 mL of pyridine. A solution of phenylacetyl chloride (1 equiv.) in 10 mL of dry THF was added dropwise at 0 °C under argon. The mixture was warmed to room temperature and stirred overnight. Solvent was evaporated, water and chloroform were added and the organic phase was washed with aqueous HCl (5 %), brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Depending on the purity of the crude, the product was purified on silica gel chromatography using pentane:ethyl acetate as eluent.

N-(2-(hydroxy(phenyl)methyl)phenyl)-2-phenylacetamide (**1q**). According to the general procedure C, **1q** was obtained from bromobenzene (10 mmol, 1.56 g) as a light yellow solid (1.49 g, 47 %) by flash column chromatography on silica gel (pentane/ethyl acetate 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 8.48 (br. s, 1H), 8.07 (d, *J* = 8.1 Hz, 1H), 7.34-7.26 (m, 7H), 7.19-7.15

(m, 4H), 7.02 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 5.68 (s, 1H), 3.64-3.55 (m, 2H), 2.48 (br. s, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 169.7, 141.3, 136.8, 134.6, 132.0, 129.9, 129.1, 129.0, 128.9, 128.8, 128.7, 128.0, 127.5, 126.6, 124.5, 123.3, 45.2. IR (neat): v 3340, 1664, 1589, 1520, 1446, 1310, 1019, 868, 755, 722, 695, 543, 495 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₉NO₂Na 340.1313; found 340.1313.

N-(2-((4-fluorophenyl)(hydroxy)methyl)phenyl)-2-phenylacetamide (**1r**). According to the general procedure C, **1r** was obtained from 1-bromo-4-fluorobenzene (10 mmol, 1.74 g) as a light yellow solid (1.78 g, 53 %) by flash column chromatography on silica gel (pentane/ethyl acetate 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 8.46 (br. s, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.33-7.26 (m, 4H), 7.17-7.15 (m, 2H), 7.09-7.04 (m, 3H), 6.99-6.95 (m, 3H), 5.65 (s, 1H), 3.63-3.53 (m, 2H), 2.79 (br. s, 1H). ¹⁹F NMR (CDCl₃, 500 MHz): δ -114.5. ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 169.8, 162.4 (d, *J* = 245.0 Hz), 137.0 (d, *J* = 3.1 Hz), 136.6, 134.6, 132.0, 129.8, 129.1, 129.0, 128.8, 128.2 (d, *J* = 8.1 Hz), 127.6, 124.6, 123.4, 115.3 (d, *J* = 21.3 Hz), 74.8, 45.1. IR (neat): v 3314, 1664, 1588, 1524, 1503, 1449, 1329, 1215, 1152, 1018, 585, 755, 727, 695, 572, 493 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₈NO₂FNa 358.1219; found 359.1221.

N-(2-(hydroxy(3-(trifluoromethyl)phenyl)methyl)phenyl)-2-phenylacetamide (**1s**). According to the general procedure C, **1s** was obtained from 1-bromo-3-(trifluoromethyl)benzene (10 mmol, 2.24 g) as a light yellow solid (2.12 g, 55 %) by flash column chromatography on silica gel (pentane/ethyl acetate 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 8.26 (br. s, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.52 (s, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 1H), 7.26-7.20 (m, 4H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 6.8 Hz, 2H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 5.65 (s, 1H), 3.56-3.45 (m, 2H). ¹⁹F NMR (CDCl₃, 500 MHz): δ -62.4. ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 170.0, 142.5, 136.6, 134.3, 132.0, 129.8, 129.4, 129.2, 129.1 (d, *J* = 89.7 Hz), 129.0, 127.7, 126.4 (d, *J* = 256.7 Hz), 124.9, 124.6 (q, *J* = 3.7 Hz), 123.8, 123.2 (q, *J* = 3.7 Hz), 115.3 (d, *J* = 21.3 Hz), 74.7, 45.0. IR (neat): v 3273, 1664, 1589, 1529, 1445, 1323, 1160, 1109, 1070, 1032, 797, 755, 699, 547 cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₂H₁₉NO₂F₃ 386.1368; found 386.1365.

N-(2-(1-hydroxyethyl)phenyl)-2-phenylacetamide (**1t**). *Step 1*: 2-aminoacetophenone (10 mmol, 1.35 g, 1 equiv.) was dissolved in methanol (0.5 M). Sodium borohydride (1.5 equiv.) was added portion wise at 0 °C, the mixture was stirred at room temperature for 2 hours and quenched with water. The product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afforded pure 1-(2-aminophenyl)ethan-1-ol as a light brown oil (1.27 g, 93 %).

Step 2: To a stirred solution of 1-(2-aminophenyl)ethan-1-ol (1.27 g, 9.3 mmol, 1 equiv.) in dry THF (15 mL) was added 5 mL of pyridine. A solution of phenylacetyl chloride (1.23 mL, 1 equiv.) in dry THF (10 mL) was added dropwise at 0 °C under argon. The mixture was warmed to room temperature and stirred overnight. Solvent was evaporated, water and chloroform were added and the organic phase was washed with aqueous HCl (5 %), brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Crude product was then purified by flash column chromatography on silica gel (pentane/ethyl acetate 1:1) to afford **1t** as a brown solid (1.80 g, 76 %). ¹H NMR (CDCl₃, 500 MHz): δ 8.95 (br. s, 1H), 8.13 (d, *J* = 8.2 Hz, 1H), 7.40-7.30 (m, 5H), 7.27-7.24 (m, 1H), 7.08-7.01 (m, 2H), 4.72 (q, *J* = 6.6 Hz, 1H), 3.70 (d, *J* = 2.8 Hz, 2H), 1.31 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 169.7, 136.6, 134.7, 132.8, 129.9, 129.1, 128.5, 1239, 1187, 1074, 925, 750, 699, 603, 479 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₆H₁₇NO₂Na 278.1157; found 278.1159.

Synthesis of 3-Arylquinolin-2(1H)-ones

<u>General Procedure D</u>: In a 15 mL flame-dried Schlenk tube equipped with a stirring bar, the desired amido-alcohol (0.5 mmol, 1 equiv.), Me₃NO (2.22 mg, 0.02 mmol, 4 mol%), iron complex **Fe3** (4.21 mg, 0.01 mmol, 2 mol %), and Na₂CO₃ (106 mg, 1 mmol, 2 equiv.) were added to a solution of dry DMF (0.5 mL) under an argon atmosphere. The mixture was then placed into a pre-heated oil bath and stirred at 100 °C for 40 h. The mixture was cooled down to room temperature, filtered over a pad of Celite with diethyl ether, and concentrated under reduced pressure. The conversion was determined by ¹H NMR spectroscopy and the residue was purified by flash chromatography on silica gel using dichloromethane:diethyl ether as the eluent to afford the desired product.

3-phenylquinolin-2(1H)-one (**2a**).¹ According to the general procedure D, **2a** was obtained from amido-alcohol **1a** (0.5 mmol, 120 mg) as a white solid (86 mg, 78 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 11.78 (br. s, 1H), 7.93 (s, 1H), 7.83-7.81 (m, 2H), 7.60 (dd, *J* = 1.0; 8.0 Hz, 1H), 7.51-7.48 (m, 3H), 7.44-7.40 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.24-7.21 (m, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 163.2, 138.6, 138.1, 136.3, 132.6, 130.4, 129.1, 128.4, 128.3, 128.0, 122.8, 120.5, 115.6. Scale up for **2a**. In a 30 mL flame-dried Schlenk tube equipped with a stirring bar, amido-alcohol **1a** (5 mmol, 1.2 g), iron complex **Fe3** (42.1 mg, 2 mol %), Me₃NO (22.2 mg, 4 mol %),

Na₂CO₃ (1.06 g, 2 equiv.) were added to a solution of dry DMF (5 mL) under an argon

atmosphere. The mixture was rapidly stirred at room temperature for 2 min and then placed into a pre-heated oil bath at 100 °C and stirred over 40 hours. The mixture was cooled-down to room temperature, filtrated over a pad of Celite with diethyl ether. The conversion was determined by ¹H-NMR spectroscopy and the residue was purified by flash chromatography on silica gel using dichloromethane:diethyl ether (3:1) as eluent to afford the pure product **2a** as a white solid (829 mg, 75 %). ¹H-NMR data were comparable with the previous NMR data. *1-methyl-3-phenylquinolin-2(1H)-one* (**2b**).² According to the general procedure D, **2b** was obtained from amido-alcohol **1b** (0.5 mmol, 128 mg) as a yellow solid (105 mg, 89 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (s, 1H), 7.73-7.71 (m, 2H), 7.61 (dd, *J* = 1.4; 7.7 Hz, 1H), 7.56 (ddd, *J* = 1.4; 7.3; 8.7 Hz, 1H), 7.45-7.42 (m, 2H), 7.39-7.36 (m, 2H), 7.27-7.24 (m, 1H), 3.81 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 161.7, 139.8, 136.9, 132.7, 130.4, 129.1, 129.0, 128.3, 128.2, 122.3, 120.9, 114.1, 30.1.

3-(p-tolyl)quinolin-2(1H)-one (**2c**).¹ According to the general procedure D, **2c** was obtained from amido-alcohol **1c** (0.5 mmol, 128 mg) as a white solid (86 mg, 73 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 11.60 (br. s, 1H), 7.90 (s, 1H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.59 (dd, *J* = 1.1; 7.8 Hz, 1H), 7.46 (ddd, *J* = 1.1; 7.3; 8.1 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.23-7.0 (m, 1H), 2.43 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 163.2, 138.6, 138.1, 136.3, 132.6, 130.4, 129.1, 128.4, 128.3, 128.0, 122.8, 120.5, 115.6, 21.5.

3-(o-tolyl)quinolin-2(1H)-one (**2d**).³ According to the general procedure D, **2d** was obtained from amido-alcohol **1d** (0.5 mmol, 128 mg) as a white solid (91 mg, 77 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 12.45 (br. s, 1H), 7.76 (s, 1H), 7.56 (dd, *J* = 1.1; 7.8 Hz, 1H), 7.45-7.42 (m, 1H), 7.36-7.30 (m, 5H), 7.22-7.20 (m, 1H), 2.36 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 163.2, 140.0, 138.5, 137.4, 136.6, 134.2, 130.4, 130.2, 130.2, 128.3, 127.7, 125.9, 122.7, 120.1, 116.2, 20.3.

3-(2-bromophenyl)quinolin-2(1H)-one (2e). According to the general procedure D, 2e was obtained from amido-alcohol 1e (0.5 mmol, 160 mg) as a white solid (103 mg, 69 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 11.74 (br. s, 1H), 7.80 (s, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.57 (dd, *J* = 1.0; 7.8 Hz, 1H), 7.51-7.48 (m, 1H), 7.45-7.40 (m, 2H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.31-7.27 (m, 1H), 7.24-7.21 (m, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 162.4, 140.6, 138.6, 137.5, 133.30, 133.1, 131.8, 130.8,

129.8, 128.1, 127.5, 124.2, 122.8, 119.8, 116.1. IR (neat): v 2842, 1651, 1568, 1497, 1431, 1230, 1055, 1026, 904, 829, 754, 739, 596, 560, 470 cm $^{-1}$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₁NOBr 300.0024; found 300.0028.

3-(2-methoxyphenyl)quinolin-2(1H)-one (**2f**).⁴ According to the general procedure D, **2f** was obtained from amido-alcohol **1f** (0.5 mmol, 136 mg) as a white solid (68 mg, 54 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 11.80 (br. s, 1H), 7.83 (s, 1H), 7.64 (dd, *J* = 1.0; 7.8 Hz, 1H), 7.49-7.46 (m, 1H), 7.37-7.33 (m, 1H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.25 (dd, *J* = 1.7; 7.4 Hz, 1H), 7.18-7.14 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.99-6.96 (m, 1H), 3.71 (s, 3H). ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 160.8, 157.1, 138.7, 138.5, 130.9, 130.0, 129.2, 127.8, 125.8, 121.7, 120.0, 119.2, 114.7, 111.3, 55.5. *3-(3-methoxyphenyl)quinolin-2(1H)-one* (**2g**).³ According to the general procedure D, **2g** was obtained from amido-alcohol **1g** (0.5 mmol, 136 mg) as a white solid (77 mg, 61 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 12.48 (br. s, 1H), 7.94 (s, 1H), 7.60 (dd, *J* = 1.0; 7.9 Hz, 1H), 7.50-7.46 (m, 1H), 7.44-7.38 (m, 4H), 7.24-7.21 (m, 1H), 6.99-6.97 (m, 1H), 3.90 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 163.4, 159.6, 138.7, 138.2, 137.7, 132.3, 130.4, 129.4, 127.9, 122.8, 121.5, 120.4, 115.9, 114.6, 114.2, 55.5.

3-(4-methoxyphenyl)quinolin-2(1H)-one (**2h**).¹ According to the general procedure D, **2h** was obtained from amido-alcohol **1h** (0.5 mmol, 136 mg) as a white solid (104 mg, 83 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 11.90 (br. s, 1H), 8.04 (s, 1H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 7.4 Hz, 1H), 7.48-7.45 (m, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.19-7.15 (m, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H). ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 161.2, 159.1, 138.1, 136.4, 131.0, 129.9, 129.9, 128.5, 127.9, 121.8, 119.7, 114.6, 113.4, 55.2.

3-(*naphthalen-1-yl*)*quinolin-2(1H*)-*one* (**2i**). ³ According to the general procedure D, **2i** was obtained from amido-alcohol **1i** (0.5 mmol, 146 mg) as a white solid (80 mg, 59 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 12.01 (br. s, 1H), 8.00 (s, 1H), 7.95 (dd, *J* = 4.1; 8.0 Hz, 2H), 7.71 (d, *J* = 7.4 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.57-7.50 (m, 3H), 7.46-7.42 (m, 2H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H). ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 161.3, 139.8, 138.8, 135.0, 133.1, 132.6, 131.6, 130.3, 128.1, 128.1, 128.1, 127.4, 126.0, 125.9, 125.8, 125.4, 121.9, 119.3, 114.9.

3-(4-fluorophenyl)quinolin-2(1H)-one (**2j**).³ According to the general procedure D, **2j** was obtained from amido-alcohol **1j** (0.5 mmol, 130 mg) as a white solid (74 mg, 62 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 11.98 (br. s, 1H), 8.12 (s, 1H), 7.84-7.82 (m, 2H), 7.72 (dd, *J* = 1.0; 7.8 Hz, 1H), 7.52-7.50 (m, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.28-7.25 (m, 2H), 7.22-7.19 (m, 1H). ¹⁹F NMR (DMSO-d₆, 500 MHz): δ -114.1. ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 161.8 (d, *J* = 243.5 Hz), 161.0, 138.3, 137.5 (d, *J* = 5.8 Hz), 132.5 (d, *J* = 3.2 Hz), 130.7 (d, *J* = 7.9 Hz), 130.3, 130.2, 128.1, 121.9, 119.5, 114.8, 114.7 (d, *J* = 1.9 Hz).

3-(4-(trifluoromethyl)phenyl)quinolin-2(1H)-one (**2k**).³ According to the general procedure D, **2k** was obtained from amido-alcohol **1k** (0.5 mmol, 155 mg) as a white solid (94 mg, 65 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 12.06 (br. s, 1H), 8.24 (s, 1H), 7.99 (d, *J* = 8.1 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 7.4 Hz, 1H), 7.55-7.51 (m, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.23-7.0 (m, 1H). ¹⁹F NMR (DMSO-d₆, 500 MHz): δ -60.9. ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 160.7, 140.3, 138.8 (d, *J* = 21.6 Hz), 130.7, 129.9, 129.4, 128.4, 128.0 (d, *J* = 31.7 Hz), 124.7 (q, *J* = 3.7 Hz), 122.0, 121.5 (q, *J* = 267.6 Hz), 119.3, 114.8.

3-(thiophen-2-yl)quinolin-2(1H)-one (2I).¹ According to the general procedure D, 2I was obtained from amido-alcohol 1I (0.5 mmol, 124 mg) as a white solid (54 mg, 48 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 12.30 (br. s, 1H), 8.27 (s, 1H), 7.84 (dd, *J* = 1.0; 3.7 Hz, 1H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.55 (ddd, *J* = 1.2; 7.2; 8.2 Hz, 1H), 7.50 (d, *J* = 8.2 Hz, 1H), 7.46 (dd, *J* = 1.0; 5.1 Hz, 1H), 7.33-7.30 (m, 1H), 7.16 (dd, *J* = 3.7; 5.1 Hz, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 161.5, 136.8, 136.7, 135.2, 130.8, 128.0, 127.9, 127.2, 126.3, 125.0, 123.8, 120.7, 116.2.

5-methoxy-3-phenylquinolin-2(1H)-one (**2m**). According to the general procedure D, **2m** was obtained from amido-alcohol **1m** (0.5 mmol, 136 mg) as a light yellow solid (85 mg, 68 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 11.42 (br. s, 1H), 8.34 (s, 1H), 7.84-7.82 (m, 2H), 7.48-7.46 (m, 2H), 7.41-7.38 (m, 2H), 6.93 (d, J = 8.1 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 3.96 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 163.1, 156.3, 139.3, 136.7, 133.3, 131.2, 130.9, 129.1, 128.3, 128.1, 111.4, 108.1, 102.8, 55.9. IR (neat): v 2851, 1656, 1563, 1522, 1499, 1412, 1352, 1254, 1049, 912, 833, 752, 598, 471 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₄NO₂ 252.1025; found 252.1027.

3,8-diphenylquinolin-2(1H)-one (**2n**). According to the general procedure D, **2n** was obtained from amido-alcohol **1n** (0.5 mmol, 159 mg) as a white solid (83 mg, 56 %) by flash column chromatography on silica gel (pentane/ethyl acetate 6:4). ¹H NMR (CDCl₃, 500 MHz): δ 8.89 (br. s, 1H), 7.93 (s, 1H), 7.76-7.74 (m, 2H), 7.61 (dd, *J* = 1.3; 7.9 Hz, 1H), 7.57-7.54 (m, 2H), 7.51-7.48 (m, 1H), 7.47-7.44 (m, 4H), 7.42 (dd, *J* = 1.3; 7.4 Hz, 1H), 7.38 (ddd, *J* = 1.3; 3.9; 7.4 Hz, 1H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 161.6, 138.5, 136.1, 136.0, 135.0, 133.0, 131.1, 129.8, 129.3, 128.8, 128.8, 128.5, 128.4, 128.3, 127.6, 122.6, 120.6. IR (neat): v 2853, 1736, 1654, 1559, 1492, 1456, 1315, 1222, 1193, 1057, 907, 824, 766, 597 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₆NO 298.1232; found 298.1237.

3-phenyl-6-(trifluoromethyl)quinolin-2(1H)-one (**2o**).¹ According to the general procedure D, **2o** was obtained from amido-alcohol **1o** (0.5 mmol, 155 mg) as a white solid (103 mg, 71 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 11.80 (br. s, 1H), 7.83 (s, 1H), 7.64 (dd, *J* = 1.0; 7.8 Hz, 1H), 7.49-7.46 (m, 1H), 7.37-7.33 (m, 1H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.25 (dd, *J* = 1.7; 7.4 Hz, 1H), 7.18-7.14 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.99-6.96 (m, 1H), 3.71 (s, 3H). ¹⁹F NMR (DMSO-d₆, 500 MHz): δ -60.1. ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 161.1, 140.7, 137.1, 135.7, 133.0, 128.7, 128.1, 128.0, 126.1 (q, *J* = 3.4 Hz), 125.5 (q, *J* = 4.2 Hz), 124.4 (d, *J* = 269.8 Hz), 121.8 (q, *J* = 32.2 Hz), 119.1, 115.6.

3-phenylbenzo[g]quinolin-2(1H)-one (**2p**). According to the general procedure D, **2p** was obtained from amido-alcohol **1p** (0.5 mmol, 146 mg) as a light yellow solid (80 mg, 59 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 11.93 (br. s, 1H), 8.32 (s, 1H), 8.20 (s, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.76-7.74 (m, 2H), 7.67 (s, 1H), 7.52-7.48 (m, 1H), 7.44-7.37 (m, 4H). ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 161.4, 137.4, 136.1, 135.8, 133.6, 132.3, 128.9, 128.7, 128.3, 128.0, 128.0, 127.8, 127.4, 126.8, 124.4, 120.6, 109.6. IR (neat): v 3029, 1662, 1568, 1497, 1431, 1230, 1055, 1026, 904, 829, 754, 739, 596, 560, 470 cm ⁻¹. IR (neat): v 2851, 1663, 1557, 1530, 1446, 1334, 1232, 1031, 888, 742, 693, 589, 570, 474 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₉H₁₄NO 272.1075; found 272.1078.

3,4-diphenylquinolin-2(1H)-one (**2q**).⁴ According to the general procedure D, **2q** was obtained from amido-alcohol **1q** (0.5 mmol, 159 mg) as a white solid (114 mg, 77 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 12.07 (br. s, 1H), 8.32 (s, 1H), 8.20 (s, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.3 Hz,

1H), 7.76-7.74 (m, 2H), 7.67 (s, 1H), 7.52-7.48 (m, 1H), 7.44-7.37 (m, 4H). ¹³C{¹H}NMR (DMSOd₆, 125 MHz): δ 161.1, 148.0, 138.2, 136.1, 135.7, 131.9, 130.6, 130.1, 129.4, 127.9, 127.4, 127.0, 126.8, 126.5, 121.7, 119.9, 115.1.

4-(4-fluorophenyl)-3-phenylquinolin-2(1H)-one (**2r**). According to the general procedure D, **2r** was obtained from amido-alcohol **1r** (0.5 mmol, 168 mg) as a light yellow solid (124 mg, 79 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (CDCl₃, 500 MHz): δ 12.37 (br. s, 1H), 7.40-7.37 (m, 1H), 7.30 (d, *J* = 7.7 Hz, 1H), 7.22-7.17 (m, 4H), 7.16-7.12 (m, 2H), 7.07-7.03 (m, 3H), 6.97-6.93 (m, 2H). ¹⁹F NMR (CDCl₃, 500 MHz): δ - 113.8. ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 163.4, 162.2 (d, *J* = 246.0 Hz), 148.9, 138.1, 135.3, 132.4, 132.3, 131.6 (d, *J* = 8.0 Hz), 131.0, 130.5, 127.8, 127.2 (d, *J* = 8.8 Hz), 122.5, 120.9, 116.4, 115.2 (d, *J* = 21.4 Hz). IR (neat): v 2848, 1640, 1598, 1496, 1430, 1376, 1219, 1154, 1013, 904, 754, 702, 690, 641, 560, 510, 462 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₅NOF 316.1138; found 316.1142.

3-phenyl-4-(3-(trifluoromethyl)phenyl)quinolin-2(1H)-one (**2s**). According to the general procedure D, **2s** was obtained from amido-alcohol **1s** (0.5 mmol, 192 mg) as a light yellow solid (135 mg, 74 %) by flash column chromatography on silica gel (dichloromethane/diethyl ether 3:1). ¹H NMR (DMSO-d₆, 500 MHz): δ 12.14 (br. s, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.55-7.49 (m, 3H), 7.48 (s, 1H), 7.41 (d, *J* = 8.2 Hz, 1H), 7.14-7.08 (m, 4H), 7.07-7.05 (m, 2H), 6.94 (d, *J* = 8.2 Hz, 1H). ¹⁹F NMR (DMSO-d₆, 500 MHz): δ -61.2. ¹³C{¹H}NMR (DMSO-d₆, 125 MHz): δ 161.0, 146.6, 138.4, 137.2, 135.4, 133.7, 132.7, 130.6, 130.4, 129.1, 128.8 (q, *J* = 31.6 Hz), 127.2, 126.7 (d, *J* = 45.8 Hz), 126.4 (q, *J* = 3.9 Hz), 124.3 (q, *J* = 3.2 Hz), 123.9 (q, *J* = 270.8 Hz), 122.0, 119.5, 115.3. IR (neat): v 2849, 1644, 1598, 1443, 1327, 1290, 1164, 1123, 1074, 907, 759, 697, 683, 604, 559, 509, 463 cm ⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₂H₁₅NOF₃ 366.1106; found 366.1106.

4-methyl-3-phenylquinolin-2(1H)-one (**2t**).⁵ According to the general procedure D, **2t** was obtained from amido-alcohol **1t** (0.5 mmol, 128 mg) as a white solid (68 mg, 58 %) by flash column chromatography on silica gel (pentane/ethyl acetate 1:1). ¹H NMR (CDCl₃, 500 MHz): δ 11.34 (br. s, 1H), 7.74 (dd, *J* = 1.0; 8.1 Hz, 1H), 7.50-7.44 (m, 3H), 7.42-7.39 (m, 1H), 7.35-7.33 (m, 2H), 7.26-7.22 (m, 1H), 2.36 (s, 3H). ¹³C{¹H}NMR (CDCl₃, 125 MHz): δ 163.0, 144.9, 137.5, 136.1, 132.4, 130.5, 130.2, 128.4, 127.7, 125.1, 122.5, 121.0, 116.2, 17.1.

Part 3: Computational Details.

All calculations were conducted at the DFT level with the Gaussian16 set of programs,⁶ using the BP86 functional.⁷ The electronic configuration of the molecular systems was described with the standard split-valence basis set with a polarization function of Ahlrichs and coworkers for H, C, N, O and F (SVP keyword in Gaussian).⁸ For Fe, the quasi-relativistic Stuttgart/Dresden effective core potential⁹ with an associated valence basis set (standard SDD keyword in Gaussian16) was used. Geometry optimizations were carried out without symmetry constraints and normal mode analysis were computed to confirm minima and transition states on the potential energy surface. These frequencies were used to calculate unscaled zero-point energies (ZPEs) as well as thermal corrections and entropy effects at 298 K and 1 atm by using the standard statistical mechanics relationships for an ideal gas. Accurate electronic energies were obtained via single-point calculation using the M06 functional of Zhao and Truhlar,¹⁰ on the BP86-optimized geometries. In these calculations, the cc-pVTZ basis set was used for the description of H, C, N, O and F,¹¹ whereas for Fe the SDD basis set (and pseudopotential) has been employed, together with the solvent effects of ethanol estimated with the polarizable continuous solvation model (PCM).¹²⁻¹³ On top of the M06/ccpVTZ~SDD(PCM-EtOH) electronic energies, we added the thermal and entropy corrections obtained at the BP86/SVP~SDD level in gas phase.

	E _{gas}	G_{gas}	E _{solv}	G _{solv}
H ₂ O	-76.3597377	-76.356792	-76.4233898	-76.4204441
H ₂	-1.1724038	-1.174212	-1.1708874	-1.1726956
Me₃NO	-249.4270678	-249.335358	-249.5457603	-249.4540505
Me₃N	-174.3373394	-174.248791	-174.3931084	-174.30456
СО	-113.2244893	-113.238737	-113.2934742	-113.3077219
CO ₂	-188.4544418	-188.463802	-188.5706702	-188.5800304
Na ₂ CO3	-588.2045568	-588.218274	-588.5477194	-588.5614366
NaHCO3	-426.5207693	-426.521557	-426.7827288	-426.7835165
NaOH	-238.0061853	-238.018488	-238.1666436	-238.1789463
	-1704.901903	-1704.576623	-1705.108639	-1704.783359
1-11	-1954.330686	-1953.890193	-1954.646042	-1954.205549
П	-1591.605583	-1591.287388	-1591.750328	-1591.432133
III-IV	-2538.608355	-2538.06457	-2539.087564	-2538.543779
III	-2538.619207	-2538.080748	-2539.09577	-2538.557311
IV	-1754.521928	-1754.19628	-1754.744869	-1754.419221
V	-1592.821039	-1592.482368	-1592.967452	-1592.628781
V-VI	-1669.179175	-1668.823811	-1669.364454	-1669.009091
VI	-1592.806229	-1592.47115	-1592.950907	-1592.615827
VI-VII	-1592.777729	-1592.451602	-1592.923643	-1592.597516
SUBSTa	-785.2680352	-785.052357	-785.5406224	-785.3249442
SUBSTaNa	-946.9585255	-946.754551	-947.2960429	-947.0920684
SUBSTaNa	-946.9585255	-946.754551	-947.2960429	-947.0920684
SUBST1a	-784.0690802	-783.876427	-784.336141	-784.1434878
SUBST1-2a	-783.9700273	-783.779417	-784.2228356	-784.0322253
SUBST2a	-784.085488	-783.886354	-784.3558985	-784.1567645

Table S1 Absolute energies	(in a u `) of all com	nuted species
Table JL. Absolute chergies	(iii a.u.	<i>j</i> 01 all colli	puteu species.

SUBST2-3a	-784.0161714	-783.823138	-784.2693354	-784.076302
PRODa	-707.7279766	-707.552291	-707.937133	-707.7614474
SUBST1Na	-945.7408377	-945.560781	-946.0860568	-945.9060001
SUBST1aNaISOMER	-945.7621523	-945.576491	-946.1105473	-945.924886
SUBST1-2aNa	-945.7426428	-945.55996	-946.1134261	-945.9307433
SUBST2aNa	-945.7621522	-945.576483	-946.1105147	-945.9248455
SUBST2aNaISOMER	-945.7507321	-945.566061	-946.1087403	-945.9240692
SUBST2-3aNa	-945.711679	-945.531001	-946.0573998	-945.8767218

Table S3. Xyz coordinates and absolute energies in gas phase (in a.u.) of all computed species.

2

H2 SCF Done: -1.17240382647 A.U.

Н 0.000000 0.000000 0.383727

Н 0.000000 0.000000 -0.383727

Table S4. Xyz coordinates and absolute energies (in a.u.) of all computed species.

3 CO2 SCF Done: -188.454441841 A.U. 0.000000 0.000000 0.000000 С 0 0.000000 0.000000 1.175258 0 0.000000 0.000000 -1.175258 2 CO SCF Done: -113.224489253 A.U. С 0.000000 0.000000 -0.652873 0 0.000000 0.000000 0.489655 3 H2O SCF Done: -76.3597377176 A.U. -0.000000 0.000000 0.122683 0 -0.000000 Н 0.759080 -0.490731 -0.000000 -0.759080 -0.490731 Н 82 KNO-III-IVpost1 SCF Done: -2538.61868854 A.U. Fe -2.110026 -0.151448 -0.623218 С -3.182213 0.641496 1.274597 0 -3.060717 0.334860 2.507954 С -2.380361 1.638673 0.533320 C -2.946994 1.752923 -0.807138 С -2.671061 2.785447 -1.874955 H -1.582319 2.968183 -1.977010 H -3.117381 3.756278 -1.550873 C -4.890136 0.694990 -2.163825

H-4.687820-0.221823-2.75669C-3.9823520.761484-0.94892C-4.046686-0.0247960.27221Si-1.1922752.8333621.43723C-2.2640084.1133142.38763H-2.8756134.7225171.68931H-1.6329394.8086152.98141H-2.9570533.5935983.08133C0.0022733.7533760.24765H-0.5342144.444491-0.43431H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726H-3.2084383.221427-3.94387H-5.2196241.752557-4.04483	Н	-5.941741	0.598719	-1.816631
C -3.982352 0.761484 -0.94892 C -4.046686 -0.024796 0.27221 Si -1.192275 2.833362 1.43723 C -2.264008 4.113314 2.38763 H -2.875613 4.722517 1.68931 H -1.632939 4.808615 2.98141 H -2.957053 3.593598 3.08133 C 0.002273 3.753376 0.24765 H -0.534214 4.444491 -0.43431 H 0.594056 3.049111 -0.37309 H 0.719410 4.363230 0.83828 C -0.104258 1.899864 2.72711 H 0.510300 1.100407 2.25914 H -0.734601 1.465976 3.53136 H -0.607385 2.604622 3.20793 Si -5.205760 -1.461439 0.76263 C -6.686240 -0.743943 1.75723 H -7.288177 -0.044002 1.14007 H -6.458795 -3.292199 <td< td=""><td>Н</td><td>-4.687820</td><td>-0.221823</td><td>-2.756653</td></td<>	Н	-4.687820	-0.221823	-2.756653
C -4.046686 -0.024796 0.27221 Si -1.192275 2.833362 1.43723 C -2.264008 4.113314 2.38763 H -2.875613 4.722517 1.68931 H -2.875613 4.722517 1.68931 H -2.957053 3.593598 3.08133 C 0.002273 3.753376 0.24765 H -0.534214 4.444491 -0.43431 H 0.594056 3.049111 -0.37309 H 0.719410 4.363230 0.83828 C -0.104258 1.899864 2.72711 H 0.510300 1.100407 2.25914 H -0.734601 1.465976 3.53136 H 0.607385 2.604622 3.20793 Si -5.205760 -1.461439 0.76263 C -6.686240 -0.743943 1.75723 H -7.288177 -0.044002 1.14001 H -6.458795 -3.292199 -0.44168 H -5.037804 -2.783159 <td< td=""><td>С</td><td>-3.982352</td><td>0.761484</td><td>-0.948922</td></td<>	С	-3.982352	0.761484	-0.948922
Si-1.1922752.8333621.43723C-2.2640084.1133142.38763H-2.8756134.7225171.68931H-1.6329394.8086152.98141H-2.9570533.5935983.08133C0.0022733.7533760.24765H-0.5342144.444491-0.43431H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40360C-4.261664-2.7093221.88150H-3.60926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-3.60325H-3.2084383.221427-3.94387H-5.3173452.790583-2.60325	С	-4.046686	-0.024796	0.272218
C-2.2640084.1133142.38763H-2.8756134.7225171.68931H-1.6329394.8086152.98141H-2.9570533.5935983.08133C0.0022733.7533760.24765H-0.5342144.444491-0.43431H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-2.497626-2.176218-2.68704C-2.497626-2.176218-2.68704C-2.497626-2.176218-3.05743H-3.2084383.221427-3.94387H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C3.438707-2.141073-0.502	Si	-1.192275	2.833362	1.437233
H-2.8756134.7225171.68931H-1.6329394.8086152.98141H-2.9570533.5935983.08133C0.0022733.7533760.24765H-0.5342144.444491-0.43431H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2084383.221427-3.94387H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.7615	С	-2.264008	4.113314	2.387636
H-1.6329394.8086152.98141H-2.9570533.5935983.08133C0.0022733.7533760.24765H-0.5342144.444491-0.43431H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2084383.221427-3.94387H-2.6939551.536947-3.60325H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.41	Н	-2.875613	4.722517	1.689310
H-2.9570533.5935983.08133C0.0022733.7533760.24765H-0.5342144.444491-0.43431H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.528464-1.785231-1.40360H-5.037804-2.783159-1.40972H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.7905832.6	Н	-1.632939	4.808615	2.981418
C 0.002273 3.753376 0.24765 H -0.534214 4.444491 -0.43431 H 0.594056 3.049111 -0.37309 H 0.719410 4.363230 0.83828 C -0.104258 1.899864 2.72711 H 0.510300 1.100407 2.25914 H -0.734601 1.465976 3.53136 H 0.607385 2.604622 3.20793 Si -5.205760 -1.461439 0.76263 C -6.686240 -0.743943 1.75723 H -7.288177 -0.044002 1.14001 H -6.317364 -0.185143 2.64233 C -5.866132 -2.411864 -0.77144 H -6.528464 -1.785231 -1.40360 C -4.261664 -2.709322 1.88150 H -3.360926 -3.101387 1.36236 C -0.453866 0.128740 -1.03529 O 0.695527 0.275379 -1.26989 C -2.345969 -1.363256	Н	-2.957053	3.593598	3.081337
H-0.5342144.444491-0.43431H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2084383.221427-3.94387H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C2.487248-2.5292550.49612C2.311743-3.9007410.81057C3.092698-4.8820760.1	С	0.002273	3.753376	0.247657
H0.5940563.049111-0.37309H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C2.311743-3.9007410.81057C3.092698-4.8820760.	Н	-0.534214	4.444491	-0.434314
H0.7194104.3632300.83828C-0.1042581.8998642.72711H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40972H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C2.487248-2.5292550.49612C2.487248-2.529255	Н	0.594056	3.049111	-0.373094
C -0.104258 1.899864 2.72711 H 0.510300 1.100407 2.25914 H -0.734601 1.465976 3.53136 H 0.607385 2.604622 3.20793 Si -5.205760 -1.461439 0.76263 C -6.686240 -0.743943 1.75723 H -7.363338 -1.549692 2.11335 H -7.288177 -0.044002 1.14001 H -6.317364 -0.185143 2.64233 C -5.866132 -2.411864 -0.77144 H -6.458795 -3.292199 -0.44168 H -6.528464 -1.785231 -1.40360 C -4.261664 -2.709322 1.88150 H -3.953799 -2.208899 2.82300 H -3.360926 -3.101387 1.36236 C -0.453866 0.128740 -1.03529 O 0.695527 0.275379 -1.26989 C -3.283219 2.376288 -3.22722 H -3.208438 3.221427	Н	0.719410	4.363230	0.838282
H0.5103001.1004072.25914H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	С	-0.104258	1.899864	2.727113
H-0.7346011.4659763.53136H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40360C-4.261664-2.7093221.88150H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C3.438707-2.141073-0.50272C2.487248-2.529250.49612C3.092698-4.8820760.19914	Н	0.510300	1.100407	2.259146
H0.6073852.6046223.20793Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C3.438707-2.141073-0.50272C2.487248-2.529250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-0.734601	1.465976	3.531363
Si-5.205760-1.4614390.76263C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.529250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	0.607385	2.604622	3.207939
C-6.686240-0.7439431.75723H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-6.528464-1.785231-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.529250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Si	-5.205760	-1.461439	0.762639
H-7.363338-1.5496922.11335H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	С	-6.686240	-0.743943	1.757235
H-7.288177-0.0440021.14001H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-7.363338	-1.549692	2.113351
H-6.317364-0.1851432.64233C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-7.288177	-0.044002	1.140012
C-5.866132-2.411864-0.77144H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-6.317364	-0.185143	2.642335
H-6.458795-3.292199-0.44168H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	С	-5.866132	-2.411864	-0.771441
H-5.037804-2.783159-1.40971H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-6.458795	-3.292199	-0.441689
H-6.528464-1.785231-1.40360C-4.261664-2.7093221.88150H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C3.092698-4.8820760.19914	Н	-5.037804	-2.783159	-1.409713
C -4.261664 -2.709322 1.88150 H -4.905188 -3.575634 2.14539 H -3.953799 -2.208899 2.82300 H -3.360926 -3.101387 1.36236 C -0.453866 0.128740 -1.03529 O 0.695527 0.275379 -1.26989 C -2.345969 -1.363256 -1.85726 O -2.497626 -2.176218 -2.68704 C -3.283219 2.376288 -3.22722 H -3.208438 3.221427 -3.94387 H -2.693955 1.536947 -3.66031 C -4.749662 1.946228 -3.05743 H -5.317345 2.790583 -2.60325 H -5.219624 1.752557 -4.04483 Na -1.266486 -0.925838 2.4101 C 4.052442 -4.496424 -0.76150 C 4.215436 -3.151468 -1.11887 C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 </td <td>Н</td> <td>-6.528464</td> <td>-1.785231</td> <td>-1.403604</td>	Н	-6.528464	-1.785231	-1.403604
H-4.905188-3.5756342.14539H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C3.092698-4.8820760.19914	С	-4.261664	-2.709322	1.881501
H-3.953799-2.2088992.82300H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-4.905188	-3.575634	2.145399
H-3.360926-3.1013871.36236C-0.4538660.128740-1.03529O0.6955270.275379-1.26989C-2.345969-1.363256-1.85726O-2.497626-2.176218-2.68704C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-3.953799	-2.208899	2.823000
C -0.453866 0.128740 -1.03529 O 0.695527 0.275379 -1.26989 C -2.345969 -1.363256 -1.85726 O -2.497626 -2.176218 -2.68704 C -3.283219 2.376288 -3.22722 H -3.208438 3.221427 -3.94387 H -2.693955 1.536947 -3.66031 C -4.749662 1.946228 -3.05743 H -5.317345 2.790583 -2.60325 H -5.219624 1.752557 -4.04483 Na -1.266486 -0.925838 2.4101 C 4.052442 -4.496424 -0.76150 C 4.215436 -3.151468 -1.11887 C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 0.49612 C 2.311743 -3.900741 0.81057 C 3.092698 -4.882076 0.19914	Н	-3.360926	-3.101387	1.362363
O 0.695527 0.275379 -1.26989 C -2.345969 -1.363256 -1.85726 O -2.497626 -2.176218 -2.68704 C -3.283219 2.376288 -3.22722 H -3.208438 3.221427 -3.94387 H -2.693955 1.536947 -3.66031 C -4.749662 1.946228 -3.05743 H -5.317345 2.790583 -2.60325 H -5.219624 1.752557 -4.04483 Na -1.266486 -0.925838 2.4101 C 4.052442 -4.496424 -0.76150 C 4.215436 -3.151468 -1.11887 C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 0.49612 C 3.092698 -4.882076 0.19914	С	-0.453866	0.128740	-1.035290
C -2.345969 -1.363256 -1.85726 O -2.497626 -2.176218 -2.68704 C -3.283219 2.376288 -3.22722 H -3.208438 3.221427 -3.94387 H -2.693955 1.536947 -3.66031 C -4.749662 1.946228 -3.05743 H -5.317345 2.790583 -2.60325 H -5.219624 1.752557 -4.04483 Na -1.266486 -0.925838 2.4101 C 4.052442 -4.496424 -0.76150 C 4.215436 -3.151468 -1.11887 C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 0.49612 C 2.311743 -3.900741 0.81057 C 3.092698 -4.882076 0.19914	0	0.695527	0.275379	-1.269897
O -2.497626 -2.176218 -2.68704 C -3.283219 2.376288 -3.22722 H -3.208438 3.221427 -3.94387 H -2.693955 1.536947 -3.66031 C -4.749662 1.946228 -3.05743 H -5.317345 2.790583 -2.60325 H -5.219624 1.752557 -4.04483 Na -1.266486 -0.925838 2.4101 C 4.052442 -4.496424 -0.76150 C 4.215436 -3.151468 -1.11887 C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 0.49612 C 3.092698 -4.882076 0.19914	С	-2.345969	-1.363256	-1.857269
C-3.2832192.376288-3.22722H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C3.092698-4.8820760.19914	0	-2.497626	-2.176218	-2.687046
H-3.2084383.221427-3.94387H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C3.092698-4.8820760.19914	С	-3.283219	2.376288	-3.227227
H-2.6939551.536947-3.66031C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C3.092698-4.8820760.19914	Н	-3.208438	3.221427	-3.943878
C-4.7496621.946228-3.05743H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C3.092698-4.8820760.19914	Н	-2.693955	1.536947	-3.660319
H-5.3173452.790583-2.60325H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	С	-4.749662	1.946228	-3.057433
H-5.2196241.752557-4.04483Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-5.317345	2.790583	-2.603255
Na-1.266486-0.9258382.4101C4.052442-4.496424-0.76150C4.215436-3.151468-1.11887C3.438707-2.141073-0.50272C2.487248-2.5292250.49612C2.311743-3.9007410.81057C3.092698-4.8820760.19914	Н	-5.219624	1.752557	-4.044833
C 4.052442 -4.496424 -0.76150 C 4.215436 -3.151468 -1.11887 C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 0.49612 C 2.311743 -3.900741 0.81057 C 3.092698 -4.882076 0.19914	Na	-1.266486	-0.925838	2.410116
C 4.215436 -3.151468 -1.11887 C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 0.49612 C 2.311743 -3.900741 0.81057 C 3.092698 -4.882076 0.19914	С	4.052442	-4.496424	-0.761500
C 3.438707 -2.141073 -0.50272 C 2.487248 -2.529225 0.49612 C 2.311743 -3.900741 0.81057 C 3.092698 -4.882076 0.19914	С	4.215436	-3.151468	-1.118878
C 2.487248 -2.529225 0.49612 C 2.311743 -3.900741 0.81057 C 3.092698 -4.882076 0.19914	С	3.438707	-2.141073	-0.502727
C 2.311743 -3.900741 0.81057 C 3.092698 -4.882076 0.19914	С	2.487248	-2.529225	0.496124
C 3.092698 -4.882076 0.19914	С	2.311743	-3.900741	0.810576
	С	3.092698	-4.882076	0.199143

Н	4.663107	-5.262441	-1.265549
Н	1.556934	-4.157021	1.570113
Н	2.959341	-5.943884	0.456125
С	1.728065	-1.522315	1.248027
Н	2.047739	-0.457293	1.102818
н	-1.645939	-1.280150	0.283827
0	0.798727	-1.783894	2.024801
Ν	3.531337	-0.795478	-0.899281
С	4.645578	-0.010758	-1.227021
0	4.474950	1.100092	-1.712222
С	6.045650	-0.565569	-0.912397
н	5.987791	-1.451348	-0.250135
н	6.467823	-0.918011	-1.880915
С	6.969397	0.475491	-0.304062
С	7.411099	0.338395	1.028860
С	7.400050	1.594992	-1.049690
С	8.266846	1.292726	1.606542
Н	7.083241	-0.531079	1.623279
С	8.253079	2.549809	-0.472707
Н	7.048306	1.722383	-2.084231
С	8.690399	2.402419	0.856064
Н	8.603432	1.166624	2.648076
Н	8.579654	3.418023	-1.067315
н	9.361729	3.151664	1.305155
Н	2.641761	-0.288263	-1.041507
Н	4.913753	-2.880717	-1.923470

KNO-III-IVpost2 SCF Done: -2538.61856594 A.U.

Fe	-2.047188	-0.296998	-0.592521
С	-2.942297	0.749736	1.275246
0	-2.674487	0.643485	2.519069
С	-2.272993	1.642289	0.304895
С	-2.986901	1.530148	-0.963424
С	-2.876914	2.391716	-2.199653
Н	-1.815419	2.588978	-2.451718
Н	-3.331018	3.387333	-1.977636
С	-5.014172	0.217244	-1.913523
Н	-6.016648	0.146158	-1.438380
Н	-4.835136	-0.774456	-2.379933
С	-3.983927	0.498492	-0.834394
С	-3.877980	-0.090126	0.491041
Si	-1.048296	2.993475	0.878169
С	-2.063855	4.368530	1.754758
Н	-2.780185	4.847426	1.054477
Н	-1.403082	5.163849	2.161131
Н	-2.646906	3.937307	2.594823

С	-0.041453	3.761442	-0.565844
Н	-0.684379	4.326184	-1.271706
Н	0.509399	2.990846	-1.144000
Н	0.707844	4.474282	-0.159091
С	0.220897	2.293198	2.149374
Н	0.807241	1.446423	1.731435
Н	-0.292535	1.970904	3.079333
Н	0.955299	3.077777	2.430902
Si	-4.909393	-1.464474	1.324174
С	-6.307309	-0.642870	2.356816
Н	-6.902926	-1.401575	2.908265
Н	-7.004763	-0.068908	1.710814
Н	-5.872512	0.060935	3.096654
С	-5.682993	-2.666810	0.040400
Н	-6.194498	-3.500891	0.567340
Н	-4.910451	-3.109761	-0.621670
Н	-6.438067	-2.169649	-0.602720
С	-3.794432	-2.491334	2.509269
Н	-4.364119	-3.326897	2.969253
Н	-3.416459	-1.841690	3.325803
Н	-2.934026	-2.930337	1.960005
С	-0.466243	-0.033783	-1.243579
0	0.637994	0.110285	-1.639949
С	-2.362372	-1.696553	-1.586695
0	-2.568131	-2.635244	-2.256797
С	-3.611637	1.758830	-3.395657
Н	-3.654265	2.483687	-4.236023
Н	-3.034138	0.879874	-3.760628
С	-5.029426	1.317556	-2.996560
Н	-5.583415	2.205348	-2.613934
Н	-5.593857	0.958668	-3.883109
Na	-0.857855	-0.581960	2.419744
С	4.296713	-4.364497	-0.803243
С	4.342584	-3.071710	-1.342368
С	3.579613	-2.025011	-0.772532
С	2.758799	-2.320073	0.362306
С	2.697041	-3.644175	0.865573
С	3.467100	-4.661234	0.299816
Н	4.892446	-5.163531	-1.272748
Н	2.039684	-3.832602	1.728557
Н	3.422918	-5.685029	0.701427
С	2.017781	-1.254843	1.050425
Н	2.255041	-0.207767	0.726822
Н	-1.423376	-1.250374	0.414878
0	1.188494	-1.449306	1.949919
Ν	3.555861	-0.739313	-1.347410
С	4.601682	0.062022	-1.819784

0	4.348088	1.065956	-2.476327
С	6.035392	-0.271047	-1.385661
Н	6.153263	-1.323759	-1.069198
Н	6.669996	-0.111006	-2.282616
С	6.492672	0.646895	-0.255291
С	6.911961	0.106325	0.978697
С	6.507062	2.049716	-0.423273
С	7.343663	0.945191	2.021622
Н	6.906471	-0.986917	1.123780
С	6.935882	2.887123	0.619227
Н	6.161803	2.475971	-1.378106
С	7.357162	2.338923	1.844635
Н	7.671260	0.504888	2.977086
Н	6.942216	3.979155	0.472450
Н	7.695935	2.997909	2.659894
Н	2.625794	-0.320922	-1.518204
Н	4.933208	-2.874400	-2.249299

KNO-III-IVpre SCF Done: -2538.60922469 A.U.

Fe	1.350210	0.556381	-0.626217
С	1.410029	-1.168057	0.922850
0	0.531381	-1.651876	1.702758
С	1.649516	-1.564896	-0.482521
С	2.840728	-0.861492	-0.933421
С	3.661658	-1.083144	-2.181557
Н	3.009852	-1.205903	-3.069484
Н	4.206500	-2.050560	-2.066871
С	4.546281	0.850534	0.017116
Н	5.073267	0.781174	0.993485
Н	4.331869	1.930258	-0.129434
С	3.255053	0.057417	0.099541
С	2.314946	-0.024895	1.202145
Si	0.850165	-3.129996	-1.251001
С	1.761708	-4.630185	-0.460784
Н	2.847179	-4.616991	-0.694794
Н	1.346622	-5.591571	-0.832384
Н	1.653170	-4.611807	0.643758
С	1.055841	-3.212611	-3.160675
Н	2.111958	-3.344012	-3.473251
Н	0.656706	-2.304735	-3.658604
Н	0.484476	-4.082571	-3.550191
С	-1.016092	-3.265940	-0.857862
Н	-1.615208	-2.484369	-1.369666
Н	-1.187544	-3.192778	0.234523
Н	-1.402065	-4.249376	-1.203010
Si	2.498985	0.812805	2.916475

С	3.836460	-0.172395	3.891735
Н	3.972063	0.246544	4.912017
Н	4.823772	-0.145449	3.384369
Н	3.542087	-1.237869	3.996520
С	3.056093	2.645126	2.769613
Н	3.134854	3.093290	3.783426
Н	2.327962	3.247518	2.188923
Н	4.046197	2.751561	2.281484
С	0.866203	0.777695	3.924140
Н	0.975004	1.389040	4.845634
Н	0.625634	-0.260714	4.235977
Н	0.027809	1.190302	3.323454
С	0.757973	0.563707	-2.268655
0	0.354622	0.558069	-3.370856
С	1.651413	2.281731	-0.609385
0	1.889554	3.426916	-0.623968
С	4.683169	0.047616	-2.402445
Н	5.377575	-0.231541	-3.222735
Н	4.152478	0.968087	-2.734832
С	5.465981	0.339832	-1.112116
Н	5.973837	-0.595474	-0.782539
Н	6.271284	1.081066	-1.299340
Na	-1.406570	-1.037991	2.472868
С	-2.813618	4.419872	-1.862364
С	-3.016230	3.139120	-2.398836
С	-2.583734	1.994511	-1.696386
С	-1.930740	2.133458	-0.445955
С	-1.767908	3.424592	0.095669
С	-2.194270	4.561006	-0.605833
Н	-3.149692	5.307980	-2.420484
Н	-1.294836	3.507341	1.086716
Н	-2.043520	5.563347	-0.174396
С	-1.461920	0.931431	0.360410
Н	-1.740798	-0.037772	-0.133543
Н	-0.157620	0.848079	-0.034014
0	-1.528030	1.004445	1.644936
Ν	-2.800866	0.698318	-2.274744
С	-3.678082	-0.287492	-1.871705
0	-3.659662	-1.407756	-2.387551
С	-4.696295	0.066142	-0.772740
Н	-4.725938	1.154611	-0.572318
Н	-5.682116	-0.220782	-1.200790
С	-4.484962	-0.697190	0.530465
С	-4.518200	-0.017916	1.768409
С	-4.264005	-2.095106	0.533961
С	-4.339692	-0.711464	2.980550
Н	-4.671842	1.072174	1.786717

С	-4.065788	-2.788141	1.741450
Н	-4.232243	-2.625303	-0.430096
С	-4.105558	-2.101262	2.973471
Н	-4.384914	-0.160342	3.933966
Н	-3.894343	-3.876296	1.721609
Н	-3.984875	-2.651489	3.921602
Н	-2.157617	0.396894	-3.018510
Н	-3.520856	3.004901	-3.368489

KNO	-III-IV SCF Do	one: -2538.6	0835491 A.U.
Fe	-1.363045	-0.504178	-0.686482
С	-1.465618	1.052355	1.025787
0	-0.600921	1.493299	1.852179
С	-1.733153	1.580848	-0.328428
С	-2.906085	0.886849	-0.843627
С	-3.740855	1.202841	-2.062502
Н	-3.097970	1.432782	-2.935623
Н	-4.320079	2.134331	-1.855002
С	-4.542343	-0.971105	-0.063404
Н	-5.067521	-1.015002	0.915653
Н	-4.292013	-2.023438	-0.315529
С	-3.279056	-0.143717	0.090924
С	-2.332052	-0.138006	1.194753
Si	-0.982858	3.232436	-0.942676
С	-1.916532	4.630790	-0.004555
Н	-3.003604	4.616425	-0.231025
Н	-1.525183	5.632587	-0.283750
Н	-1.798003	4.506978	1.092161
С	-1.203207	3.499404	-2.834023
Н	-2.264782	3.630607	-3.127725
Н	-0.782754	2.655718	-3.419646
Н	-0.658786	4.419206	-3.138481
С	0.885125	3.374425	-0.551223
Н	1.495346	2.665349	-1.148417
Н	1.065028	3.187153	0.526190
Н	1.245762	4.397925	-0.791310
Si	-2.484994	-1.141870	2.815744
С	-3.855418	-0.314401	3.887555
Н	-3.970787	-0.837987	4.860960
Н	-4.842708	-0.329684	3.379652
Н	-3.603559	0.746492	4.097416
C	-2.962320	-2.974608	2.496849
н	-3.020019	-3.522264	3.462066
н	-2.211661	-3.485153	1.859564
H	-3.948034	-3.0/3955	1.998382
С	-0.858730	-1.139712	3.841559

Н	-0.960896	-1.820476	4.713910
Н	-0.650762	-0.122059	4.234942
Н	-0.001640	-1.491010	3.229816
С	-0.728033	-0.327733	-2.295336
0	-0.267357	-0.204087	-3.370757
С	-1.565972	-2.232368	-0.824486
0	-1.711996	-3.389817	-0.930393
С	-4.721696	0.062390	-2.391596
Н	-5.431043	0.394368	-3.178983
Н	-4.158355	-0.800481	-2.812894
С	-5.485917	-0.384417	-1.134667
Н	-6.023919	0.495334	-0.712610
Н	-6.266259	-1.131234	-1.392902
Na	1.311512	0.840744	2.600052
С	2.849860	-4.129388	-2.321794
С	3.001016	-2.794718	-2.731002
С	2.631989	-1.739999	-1.872108
С	2.088946	-2.029693	-0.592599
С	1.976437	-3.374959	-0.182073
С	2.345768	-4.419591	-1.039291
Н	3.136547	-4.945835	-3.003230
Н	1.577633	-3.572101	0.825092
Н	2.235771	-5.465729	-0.713044
С	1.679963	-0.935985	0.348531
Н	1.797210	0.096838	-0.063255
Н	0.091654	-0.768838	-0.156723
0	1.657028	-1.126167	1.594192
Ν	2.787139	-0.386722	-2.316355
С	3.664568	0.580084	-1.864920
0	3.593220	1.742095	-2.269617
С	4.744684	0.158380	-0.852841
Н	4.859015	-0.942208	-0.802186
Н	5.690745	0.573890	-1.264054
С	4.523906	0.723435	0.547497
С	4.707523	-0.094161	1.684136
С	4.133938	2.069720	0.741250
С	4.500405	0.409412	2.981098
Н	5.000978	-1.147943	1.553488
С	3.912238	2.573358	2.035918
Н	3.992684	2.711714	-0.141641
С	4.094342	1.746025	3.164751
Н	4.656170	-0.247604	3.851711
Н	3.612451	3.626079	2.164226
Н	3.954359	2.151319	4.181009
Н	2.103451	-0.038961	-3.003013
Н	3.415906	-2.550619	-3.721310

KNO	-I-II SCF Don	ne: -1954.330)68579 A.U.
Fe	0.349519	0.011392	-1.036369
C	0.063783	0.009626	1.357807
0	-0.816897	-0.347526	2.165464
C C	1 162226	-0 833934	0 762752
C C	2 096750	0.067537	0.123785
C C	2.050750	-0 101702	-0 207835
с ц	2 620976	1 166566	-0.297833
П	3.020870	-1.100500	-0.810085
	4.150941		0.054472
	2.281043	2.597952	-0.427260
н	2.103053	3.445904	0.268249
H	1.892445	2.934053	-1.412231
C	1.508884	1.385631	0.062820
C	0.200782	1.338895	0.689801
Si	1.510336	-2.630764	1.338686
С	2.591620	-2.494141	2.926542
Н	3.558433	-1.986299	2.725749
Н	2.818948	-3.500507	3.339256
Н	2.060301	-1.915230	3.710669
С	2.455297	-3.655770	0.014619
Н	3.496649	-3.305102	-0.138447
Н	1.935590	-3.627190	-0.965569
Н	2.509238	-4.718536	0.335022
С	-0.110734	-3.549759	1.780040
Н	-0.676183	-3.810930	0.862535
Н	-0.741392	-2.896501	2.415644
Н	0.113402	-4.489549	2.328335
Si	-0.832485	2.858903	1.236476
С	-0.045807	3.464484	2.886430
Н	-0.602138	4.334372	3.296914
Н	1.012100	3.773655	2.751030
Н	-0.067617	2.653472	3.643917
С	-0.806329	4.296140	-0.040762
Н	-1.473849	5.111802	0.312112
н	-1.173930	3.965463	-1.033772
Н	0.203093	4.733291	-0.180902
C	-2.658192	2.391523	1.548742
Н	-3.220726	3,244642	1.983920
н	-2 705041	1 524817	2 237894
н	-3 123605	2 106787	0 585034
C I	1 245/22	-0 770010	-7 320012
	1 845070	-1 270271	-3 100056
c C	-0 301100	1 102/02	_2 111122
	-U 82445E	1 000720	
c C	-0.034433 1 002000	T.322720	-2.021/13
с ц	4.033000 5 100330	0.931030	-1 J0E3J1
LI LI	2 6E1776	0.012374	2 170170
п	2.021/20	0.90000/	-2.1/21/0

С	3.795731	2.318525	-0.523926
Н	4.240954	2.343299	0.497142
Н	4.288484	3.132495	-1.096592
С	-1.017518	-1.264198	-1.088667
0	-1.269302	-2.409211	-1.246349
0	-2.683025	-0.304021	-0.831590
Ν	-3.813417	-1.033351	-0.406906
С	-3.490454	-1.792726	0.857666
Н	-2.827482	-2.633460	0.596207
Н	-2.937927	-1.099926	1.522228
Н	-4.427357	-2.166218	1.315666
С	-4.272387	-1.962647	-1.500515
Н	-4.496986	-1.342989	-2.387128
Н	-3.444115	-2.655201	-1.723445
Н	-5.173888	-2.515590	-1.169079
С	-4.892190	-0.029000	-0.125422
Н	-5.832658	-0.552706	0.138944
Н	-4.548777	0.610402	0.705490
Н	-5.022234	0.580752	-1.037059

KNO-III SCF Done: -2538.61920670 A.U.				
Fe	-2.646830	-0.408107	-1.091617	
С	-2.148760	0.410886	1.017752	
0	-1.038415	0.607073	1.624337	
С	-2.832212	1.352264	0.108697	
С	-4.129343	0.772447	-0.227157	
С	-5.314161	1.416055	-0.909492	
Н	-4.992370	2.015974	-1.784505	
Н	-5.778139	2.138384	-0.195956	
С	-5.450860	-1.404276	0.275057	
Н	-5.629839	-1.838094	1.282836	
Н	-5.314717	-2.272588	-0.404091	
С	-4.191418	-0.557851	0.319368	
С	-2.927438	-0.843635	0.987176	
Si	-2.136556	3.103879	-0.183349	
С	-2.250596	4.095181	1.459412	
Н	-3.307685	4.244386	1.765251	
Н	-1.779888	5.097293	1.365709	
Н	-1.738104	3.540189	2.272170	
С	-3.071249	4.061442	-1.562625	
Н	-4.130496	4.255227	-1.295075	
Н	-3.052953	3.514550	-2.528112	
Н	-2.585019	5.047578	-1.725338	
С	-0.284149	3.011542	-0.713164	
Н	-0.151376	2.317353	-1.570719	
Н	0.354619	2.683658	0.133925	

н	0.084854	4.009250	-1.034000
Si	-2.377095	-2.376698	1.978567
С	-2.589538	-2.014052	3.854651
Н	-2.212086	-2.852585	4.478361
Н	-3.656881	-1.851971	4.114914
Н	-2.031432	-1.094999	4.129338
С	-3.375011	-3.952607	1.516371
Н	-2.957942	-4.830979	2.054637
Н	-3.320157	-4.165452	0.428799
Н	-4.445795	-3.871608	1.794978
С	-0.518164	-2.751845	1.638221
Н	-0.205568	-3.697750	2.130168
Н	0.116581	-1.935733	2.041707
Н	-0.328964	-2.860077	0.548749
С	-2.692235	0.354803	-2.659038
0	-2.717985	0.877630	-3.708349
С	-2.819740	-2.020047	-1.732808
0	-2.940874	-3.106414	-2.158002
С	-6.364904	0.369860	-1.324188
Н	-7.288451	0.882098	-1.668456
Н	-5.982423	-0.215326	-2.190520
С	-6.682685	-0.580784	-0.158398
Н	-7.044472	0.024322	0.704596
Н	-7.514146	-1.266961	-0.426018
		0 000000	
Na	0.467876	0.032863	0.135951
Na C	0.467876 6.760435	0.032863	0.135951 -2.148388
Na C C	0.467876 6.760435 7.084910	0.032863 -2.791003 -1.447315	0.135951 -2.148388 -1.904675
Na C C C	0.467876 6.760435 7.084910 6.099816	0.032863 -2.791003 -1.447315 -0.544997	0.135951 -2.148388 -1.904675 -1.451396
Na C C C C	0.467876 6.760435 7.084910 6.099816 4.760145	0.032863 -2.791003 -1.447315 -0.544997 -1.004878	0.135951 -2.148388 -1.904675 -1.451396 -1.284561
Na C C C C C	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817
Na C C C C C C	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847
Na C C C C C H	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605
Na C C C C C H H	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679
Na C C C C C C H H H	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672
Na C C C C C C C H H C	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463
Na C C C C C C H H H C H	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209
Na C C C C C C C H H C H H H C H	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760
Na C C C C C C C H H H C H H O	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760 -0.794815
Na C C C C C C C C C C H H H C H H O N	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760 -0.794815 -1.185773
Na C C C C C C C C C H H H C H H O N C	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248 6.531924	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440 1.469269	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760 -0.794815 -1.185773 0.044551
Na C C C C C C C C C C C C C C C C C C C	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248 6.531924 6.872555	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440 1.469269 2.646094	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.052209 -1.052209 -1.252760 -0.794815 -1.185773 0.044551 0.086283
Na CCCCCHHHCHHONCOC	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248 6.531924 6.872555 6.206712	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440 1.469269 2.646094 0.662722	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760 -0.794815 -1.185773 0.044551 0.086283 1.305526
Na C C C C C H H H C H H O N C O C H	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248 6.531924 6.872555 6.206712 6.459244	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440 1.469269 2.646094 0.662722 -0.408918	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760 -0.794815 -1.185773 0.044551 0.086283 1.305526 1.171769
Na CCCCCHHHCHHONCOCHH	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248 6.531924 6.872555 6.206712 6.459244 6.887392	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440 1.469269 2.646094 0.662722 -0.408918 1.073462	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760 -0.794815 -1.185773 0.044551 0.086283 1.305526 1.171769 2.081705
Na CCCCCHHHCHHONCOCHHC	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248 6.531924 6.872555 6.206712 6.459244 6.887392 4.762950	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440 1.469269 2.646094 0.662722 -0.408918 1.073462 0.794821	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.007463 -1.052209 -1.252760 -0.794815 -1.185773 0.044551 0.086283 1.305526 1.171769 2.081705 1.778663
Na CCCCCHHHCHHONCOCHHCC	0.467876 6.760435 7.084910 6.099816 4.760145 4.458801 5.449079 7.542924 3.417099 5.203830 3.655849 3.919471 -1.132212 2.492309 6.449248 6.531924 6.872555 6.206712 6.459244 6.887392 4.762950 4.080682	0.032863 -2.791003 -1.447315 -0.544997 -1.004878 -2.371380 -3.261247 -3.483221 -2.698190 -4.319438 -0.059842 1.027664 -0.556341 -0.411162 0.808440 1.469269 2.646094 0.662722 -0.408918 1.073462 0.794821 -0.327906	0.135951 -2.148388 -1.904675 -1.451396 -1.284561 -1.502817 -1.929847 -2.497605 -1.358679 -2.108672 -1.052209 -1.252760 -0.794815 -1.185773 0.044551 0.086283 1.305526 1.171769 2.081705 1.778663 2.294546

С	2.750678	-0.219998	2.736863
Н	4.595884	-1.301416	2.344987
С	2.756169	2.141623	2.165862
Н	4.622333	2.924890	1.355721
С	2.074851	1.013122	2.663785
Н	2.235785	-1.106964	3.139348
Н	2.243297	3.115515	2.121009
Н	1.021873	1.090455	2.978767
Н	6.857078	1.356938	-1.952277
Н	8.116129	-1.086244	-2.042036
49			
KNO	-II SCF Done	: -1591.6055	8316 A.U.
Fe	-0.007047	0.385896	1.028341
С	-0.003617	-1.332773	-0.294892
0	-0.009279	-2.487040	0.196540
С	-1.202469	-0.465581	-0.483265
С	-0.723427	0.825801	-0.893349
С	-1.506478	2.031232	-1.347945
Н	-2.416506	2.163344	-0.729551
Н	-1.871295	1.819567	-2.381031
С	1.545766	2.006727	-1.376196
Н	2.352033	1.646564	-2.049430
Н	2.070218	2.467210	-0.511746
С	0.737999	0.815512	-0.905691
С	1.203221	-0.472627	-0.476570
Si	-2.964050	-1.219037	-0.313967
С	-3.135829	-2.526303	-1.708655
Н	-3.046520	-2.065287	-2.714793
Н	-4.121318	-3.036063	-1.654210
Н	-2.342656	-3.295647	-1.609604
С	-4.333080	0.114516	-0.510775
Н	-4.302512	0.614290	-1.501107
Н	-4.270522	0.894550	0.276457

Н	-2.342656	-3.295647	-1.609604
С	-4.333080	0.114516	-0.510775
Н	-4.302512	0.614290	-1.501107
Н	-4.270522	0.894550	0.276457
Н	-5.329466	-0.368428	-0.415670
С	-3.140941	-2.059295	1.397530
Н	-3.077607	-1.320839	2.223805
Н	-2.332583	-2.805446	1.534487
Н	-4.120696	-2.576415	1.479431
Si	2.964904	-1.218184	-0.274618
С	3.203373	-2.479107	-1.701841
Н	4.193343	-2.977659	-1.628352
Н	3.143051	-1.988211	-2.695937
Н	2.418841	-3.262336	-1.656201
С	4.322311	0.138158	-0.372400
Н	5.315222	-0.324423	-0.185204
Н	4.175863	0.926349	0.394942

Н	4.370349	0.627328	-1.367233
С	3.087530	-2.108037	1.416196
Н	4.068207	-2.619983	1.517338
Н	2.279793	-2.862118	1.503470
Н	2.989518	-1.393853	2.260336
С	-1.295575	1.218846	1.898461
0	-2.148456	1.828019	2.412765
С	1.268139	1.225459	1.913992
0	2.109549	1.845482	2.434569
С	-0.648940	3.309499	-1.365912
Н	-1.214755	4.129796	-1.854809
Н	-0.450694	3.640509	-0.321717
С	0.681258	3.063512	-2.094609
Н	0.464550	2.722972	-3.132850
Н	1.257440	4.007122	-2.192976

KNO-IV SCF Done: -1754.52192835 A.U.

Fe	-0.004834	0.473455	1.033745
С	-0.003136	-1.175750	-0.623225
0	-0.009809	-2.454423	-0.571663
С	-1.182439	-0.289051	-0.587433
С	-0.709707	1.069854	-0.831261
С	-1.505429	2.309629	-1.166792
Н	-2.403478	2.393273	-0.521755
Н	-1.886191	2.204267	-2.210629
С	1.557487	2.280184	-1.202972
Н	2.344137	1.977888	-1.927917
Н	2.102075	2.665141	-0.314736
С	0.731591	1.059944	-0.837948
С	1.185279	-0.300614	-0.577829
Si	-2.940597	-1.031325	-0.559559
С	-3.268382	-1.920397	-2.229265
Н	-3.267724	-1.200082	-3.074349
Н	-4.249809	-2.441012	-2.227717
Н	-2.473281	-2.670383	-2.420188
С	-4.304498	0.284104	-0.250651
Н	-4.368542	1.019202	-1.079458
Н	-4.134348	0.842311	0.693064
Н	-5.294677	-0.214531	-0.173772
С	-3.063829	-2.340267	0.857716
Н	-2.737224	-1.905492	1.828078
Н	-2.455048	-3.236212	0.609153
Н	-4.110962	-2.685977	0.991692
Si	2.941858	-1.044016	-0.513466
С	3.325699	-1.901459	-2.188014
Н	4.309855	-2.416404	-2.165553

Н	3.346399	-1.166810	-3.020393
Н	2.542311	-2.653112	-2.417435
С	4.285261	0.273346	-0.132239
Н	5.275228	-0.219473	-0.023171
Н	4.071511	0.816175	0.811419
Н	4.377108	1.023959	-0.944081
С	3.024384	-2.378603	0.882221
Н	4.065537	-2.736658	1.029620
Н	2.410524	-3.263031	0.606943
Н	2.684621	-1.955946	1.853533
С	-1.288659	1.232516	1.941829
0	-2.154806	1.739815	2.545577
С	1.260548	1.244304	1.957086
0	2.112033	1.769668	2.566550
Н	-0.007248	-0.659834	2.078106
С	-0.641450	3.580495	-1.069112
Н	-1.201669	4.446604	-1.480625
Н	-0.440494	3.810675	0.001353
С	0.689112	3.398789	-1.818043
Н	0.467417	3.151165	-2.881523
Н	1.263489	4.349122	-1.834369
Na	-0.022894	-2.684774	1.571961

51 KNO-I SCF Done: -1704.90190276 A.U. Fe -0.010988 0.451910 1.032879 С 0.000950 -1.301601 -0.681756 0 -0.001195 -2.531503 -0.778484 С -1.186644 -0.382819 -0.560896 С -0.715129 0.949551 -0.876193 С -1.505636 2.165227 -1.299709Н -2.415982 2.286235 -0.679011 1.975152 Н -1.870623 -2.336448 С 1.555128 2.140469 -1.326769 Н 2.344287 1.784742 -2.023116 Н 2.099974 2.585676 -0.468033 С 0.737211 0.941925 -0.880034 С 1.193223 -0.388871 -0.545657 Si -2.957925 -1.133966 -0.575635 С -3.213995 -1.885535 -2.324117 Н -3.166461 -1.109178 -3.116585 Н -4.203410 -2.385300 -2.398080 -2.427211 -2.639750 -2.530498 Н С -4.314446 0.184693 -0.239336 Н 0.939751 -4.383651 -1.049627Н -4.152194 0.719182 0.719482 Н -5.303657 -0.317485 -0.173580

С	-3.061688	-2.507730	0.751001
Н	-2.984494	-2.093174	1.777529
Н	-2.236996	-3.234246	0.604672
Н	-4.027670	-3.050890	0.676595
Si	2.968050	-1.130650	-0.524457
С	3.300889	-1.798545	-2.294503
Н	4.296944	-2.287244	-2.351196
Н	3.278046	-0.988042	-3.053143
Н	2.531123	-2.549109	-2.568234
С	4.290640	0.185976	-0.068607
Н	5.287566	-0.300902	-0.005853
Н	4.088822	0.654566	0.916630
Н	4.366911	0.995718	-0.823144
С	3.031611	-2.564027	0.739454
Н	4.003112	-3.098560	0.675332
Н	2.215900	-3.285150	0.530040
Н	2.914680	-2.197730	1.780402
С	-1.307759	1.380021	1.808886
0	-2.158690	1.989974	2.316815
С	1.256450	1.398071	1.836192
0	2.084524	2.027329	2.358457
С	-0.647139	3.442870	-1.290116
Н	-1.210024	4.272936	-1.765806
Н	-0.453076	3.756281	-0.239527
С	0.686300	3.212187	-2.019888
Н	0.469863	2.892812	-3.064720
Н	1.260195	4.159026	-2.098973
С	-0.011808	-0.958506	2.144227
0	-0.013014	-1.837111	2.900494
14			

Me3NO SCF Done: -249.427067795 A.U.

0	0.000007	0.000071	1.439458
Ν	-0.000003	0.000006	0.104909
С	0.135108	-1.418759	-0.424127
Н	1.076496	-1.814587	-0.002697
Н	-0.713965	-1.985223	-0.001327
Н	0.138762	-1.467298	-1.534136
С	1.161192	0.826329	-0.424239
Н	1.033237	1.839535	-0.002813
Н	2.076240	0.374316	-0.001292
Н	1.201048	0.853881	-1.534240
С	-1.296256	0.592364	-0.424185
Н	-1.340561	0.612378	-1.534198
Н	-2.109643	-0.024485	-0.001779
Н	-1.361915	1.611272	-0.002239

```
Me3N SCF Done: -174.337339352 A.U.

N -0.000038 -0.000045 -0.354187

C 1.047782 -0.919136 0.056777

H 0.845455 -1.934593 -0.344827

H 2.028318 -0.585511 -0.344028
```

Н 1.153529 -1.012568 1.174675 C -1.319951 -0.447741 0.056752 Н -2.097991 0.235759 -0.344351 Н -1.521767 -1.463435 -0.344486 Н -1.453657 -0.493151 1.174686 С 0.272203 1.366880 0.056762 Н 0.299879 1.505202 1.174674 Н 1.253011 1.699129 -0.344552 H -0.506709 2.049471 -0.344231

6

Na2CO3 SCF Done: -588.204556841 A.U. C 0.000028 0.568173 0.000566 O 1.136052 1.168183 0.000043 O -0.000046 -0.804218 0.001446 Na 2.163054 -0.712159 -0.000659 O -1.135936 1.168281 -0.000261 Na -2.163120 -0.712114 -0.000543

6

NaHCO3 SCF Done: -426.520769269 A.U.

С	0.563439	0.043807	0.000147
0	1.934961	0.097739	-0.000051
0	0.025652	-1.117835	0.000346
Н	2.210477	-0.842050	0.000016
0	-0.049787	1.150988	0.000078
Na	-1.897975	-0.042538	-0.000354

28

PRODa SCF Done: -707.727976592 A.U.

С	4.629468	-0.209016	0.016520
С	3.735767	0.857240	-0.127627
С	2.342758	0.614608	-0.080553
С	1.847854	-0.712656	0.111572
С	2.782126	-1.771363	0.258499
С	4.156645	-1.527972	0.211079
Н	5.712864	-0.014388	-0.021730
Н	2.400650	-2.794166	0.409667
Н	4.870651	-2.357914	0.324665
С	0.421664	-0.899902	0.148269
Н	0.051055	-1.924579	0.317696
Ν	1.415278	1.629064	-0.208356
С	0.013596	1.519749	-0.162331
0	-0.671890	2.540286	-0.262659
---	-----------	-----------	-----------
С	-0.491423	0.128876	0.005959
С	-1.954512	-0.124708	0.003629
С	-2.464520	-1.345292	-0.509283
С	-2.878990	0.817489	0.523230
С	-3.838402	-1.625525	-0.484943
Н	-1.774344	-2.074709	-0.962373
С	-4.253056	0.531583	0.549055
Н	-2.506832	1.779323	0.899086
С	-4.740873	-0.688227	0.049136
Н	-4.208300	-2.577460	-0.898467
Н	-4.951787	1.275569	0.964196
Н	-5.821037	-0.904504	0.065511
Н	1.740985	2.593363	-0.334900
Н	4.105650	1.884415	-0.276859

SUBST1-2aNa SCF Done: -945.742642759 A.U.

С	4.514382	-0.182779	1.104390
С	3.631317	0.898909	0.975828
С	2.437335	0.760053	0.223661
С	2.211133	-0.483615	-0.460170
С	3.083121	-1.578211	-0.270810
С	4.237184	-1.433678	0.509519
Н	5.429397	-0.056657	1.705756
Н	2.857338	-2.521024	-0.794090
Н	4.931094	-2.277523	0.643289
С	1.124027	-0.506068	-1.440828
Н	0.925296	0.516038	-1.875404
0	0.512672	-1.497507	-1.891451
Ν	1.494602	1.768211	0.126983
С	0.034975	1.624035	0.015695
0	-0.557637	2.443176	-0.725333
С	-0.528213	0.531871	0.734021
Н	0.135605	-0.064837	1.377170
С	-1.925124	0.154508	0.721244
С	-2.956612	0.902947	0.047039
С	-2.339731	-1.068570	1.350133
С	-4.284453	0.437026	0.003529
Н	-2.677321	1.873610	-0.392597
С	-3.666336	-1.511217	1.304714
Н	-1.583690	-1.666877	1.885462
С	-4.656741	-0.770479	0.622753
Н	-5.046897	1.048267	-0.508471
Н	-3.936811	-2.454374	1.807795
Н	-5.698947	-1.123743	0.589038
Н	1.806284	2.735266	0.251769

H 3.837471 1.850317 1.492055 Na -1.507172 -0.404516 -1.707335

31

SUBST1-2a SCF Done: -783.970027272 A.U. 4.520141 -0.143948 С 0.692560 С 3.626725 0.937412 0.605181 2.347895 С 0.745184 0.041834 1.998688 -0.538173 С -0.461626 С 2.875568 -1.628175 -0.306642 С 4.145151 -1.430739 0.258955 Н 5.517633 0.018233 1.131019 Н 2.547265 -2.614047 -0.671600 Н 4.844747 -2.274603 0.359879 С 0.711889 -0.680779 -1.178514 Н 0.525558 0.124968 -1.938838 0 0.084257 -1.833290 -1.301788 Ν 1.396434 1.772216 -0.018964 С -0.011141 1.658595 0.040381 0 -0.693506 2.663743 -0.138245 С -0.540199 0.283264 0.337463 Н -0.505224 -0.950528 -0.541632 Н -0.027806 -0.169555 1.209658 С -2.002289 0.027496 0.310184 С -2.884802 0.699010 -0.579940 С -2.538632 -0.993161 1.142011 С -4.248408 0.376930 -0.605369 Н -2.493544 1.495558 -1.227662 С -3.903510 -1.312726 1.107247 Н -1.867783 -1.531644 1.831729 С -4.766698 -0.627187 0.234580 Н -4.918569 0.918385 -1.292230 -4.295676 -2.102021 1.768199 Н Н -5.839439 -0.875604 0.206173 Н 1.719101 2.744631 -0.004155 Н 3.910421 1.929076 0.992639

31

SUBST1aNaISOMER SCF Done: -945.762152279 A.U.

С	4.735601	0.348802	-0.246949
С	3.961491	-0.823451	-0.178195
С	2.570590	-0.728111	0.029911
С	1.954324	0.537934	0.189124
С	2.737336	1.695480	0.093144
С	4.125795	1.610235	-0.124499
Н	5.822641	0.270383	-0.409434
Н	2.212230	2.657379	0.207307
Н	4.734313	2.526192	-0.194607

С	0.456148	0.605147	0.509355
Н	0.364022	0.137899	1.549352
0	-0.105392	1.817529	0.410661
Ν	1.756460	-1.878455	0.093416
С	0.376921	-1.901833	-0.054443
0	-0.266888	-2.938491	0.109266
С	-0.213185	-0.544940	-0.436904
Н	0.124739	-0.300210	-1.469425
С	-1.705797	-0.463751	-0.368499
С	-2.426114	0.226344	-1.376046
С	-2.421206	-0.891925	0.779324
С	-3.799881	0.512733	-1.231884
Н	-1.891270	0.552538	-2.282900
С	-3.790146	-0.605848	0.928337
Н	-1.889722	-1.454272	1.561331
С	-4.487582	0.108267	-0.069810
Н	-4.336412	1.043159	-2.035907
Н	-4.323183	-0.949252	1.829812
Н	-5.562134	0.322257	0.045444
Н	2.188989	-2.793503	0.251430
Н	4.433653	-1.813232	-0.295125
Na	-2.149147	2.164276	0.525235

SUBST1aNa SCF Done: -945.740837685 A.U.

С	-2.915970	-2.402968	0.628796
С	-1.890694	-1.451508	0.637263
С	-2.130909	-0.114174	0.216873
С	-3.456926	0.222338	-0.224408
С	-4.477903	-0.758598	-0.198556
С	-4.222920	-2.067264	0.212949
Н	-2.695261	-3.426123	0.974832
Н	-5.476092	-0.439329	-0.539049
Н	-5.023179	-2.823180	0.215994
С	-3.806198	1.555860	-0.766379
Н	-2.940978	2.272803	-0.902552
0	-4.936356	1.902603	-1.092411
Ν	-1.150457	0.869285	0.286305
С	0.274079	0.858044	0.261935
0	0.789034	1.968818	0.665976
С	0.996591	-0.277395	-0.164913
Н	0.444486	-1.197553	-0.397734
С	2.434645	-0.340331	-0.360992
С	3.284823	0.805392	-0.559376
С	3.095638	-1.613455	-0.386728
С	4.679247	0.674397	-0.712301
Н	2.809911	1.794590	-0.673321

С	4.479701	-1.731210	-0.546813
Н	2.483300	-2.523643	-0.272893
С	5.296504	-0.588291	-0.692731
Н	5.285667	1.579876	-0.885413
Н	4.936935	-2.734620	-0.555102
Н	6.386256	-0.686200	-0.814292
Н	-1.470537	1.836565	0.382820
Н	-0.896533	-1.723373	1.016667
Na	2.504504	1.308073	1.799062

SUBST1a SCF Done: -784.069080204 A.U.				
С	2.966251	-2.317514	-0.068996	
С	1.937005	-1.612199	0.570870	
С	1.894033	-0.198669	0.524589	
С	2.928420	0.496857	-0.172982	
С	3.973880	-0.235847	-0.781745	
С	3.995884	-1.632826	-0.745198	
Н	2.977851	-3.417787	-0.014143	
Н	4.753918	0.345199	-1.299247	
Н	4.809651	-2.192120	-1.231906	
С	2.933925	1.977659	-0.331853	
Н	2.025525	2.517671	0.066992	
0	3.832563	2.603343	-0.876525	
Ν	0.884913	0.521045	1.202064	
С	-0.492223	0.307042	1.332223	
0	-1.137663	1.030140	2.082013	
С	-1.136757	-0.809715	0.496030	
Н	-0.469500	-1.119910	-0.331999	
Н	-1.235867	-1.691158	1.169833	
С	-2.501928	-0.428144	-0.047522	
С	-2.689127	-0.252352	-1.434685	
С	-3.603787	-0.238526	0.815122	
С	-3.947698	0.100017	-1.952970	
Н	-1.837325	-0.396014	-2.120529	
С	-4.860898	0.115052	0.298695	
Н	-3.467263	-0.356291	1.900552	
С	-5.038054	0.284761	-1.086383	
Н	-4.074816	0.230331	-3.039602	
Н	-5.710710	0.259800	0.984922	
Н	-6.025822	0.559984	-1.489267	
Н	1.167815	1.369792	1.703987	
Н	1.179394	-2.158258	1.150887	
31				

SUBST2-3a SCF Done: -784.016171447 A.U.

С	4.534672	0.064063	0.641424
С	3.676171	-0.973662	0.264667

С	2.306556	-0.707243	0.013388
С	1.818800	0.627149	0.137188
С	2.707665	1.655437	0.531970
С	4.056241	1.385510	0.786010
Н	5.595822	-0.159545	0.835197
Н	2.317743	2.681670	0.630656
Н	4.737850	2.193219	1.092276
С	0.405792	0.889934	-0.162494
Н	-0.002928	1.803920	0.300439
0	0.269189	1.411488	-1.852825
Ν	1.420845	-1.710896	-0.324308
С	0.005057	-1.616473	-0.373711
0	-0.634791	-2.663769	-0.488014
С	-0.541947	-0.242850	-0.337321
Н	1.137364	1.229618	-2.281738
Н	-0.331044	0.307556	-1.633283
С	-1.990040	0.003186	-0.014005
С	-2.836957	-1.003130	0.513542
С	-2.550085	1.290772	-0.224014
С	-4.173462	-0.720473	0.839481
Н	-2.437513	-2.016609	0.650346
С	-3.885868	1.569100	0.105743
Н	-1.941304	2.085706	-0.684548
С	-4.707902	0.564806	0.644949
Н	-4.805784	-1.522671	1.253774
Н	-4.289007	2.579049	-0.073548
Н	-5.757772	0.779538	0.900424
Н	1.754486	-2.678932	-0.364168
Н	4.052836	-2.004757	0.170139
31			
SUB	ST2aNa SCF	Done: -945.7	62152155 A.U.

С	4.735475	-0.349458	0.247578
С	3.961674	0.823004	0.178629
С	2.570809	0.727957	-0.029766
С	1.954329	-0.538001	-0.189095
С	2.736989	-1.695755	-0.092889
С	4.125426	-1.610767	0.125134
Н	5.822504	-0.271326	0.410279
Н	2.211702	-2.657529	-0.207218
Н	4.733812	-2.526799	0.195445
С	0.456269	-0.604784	-0.510278
Н	0.364832	-0.136519	-1.549894
0	-0.105678	-1.816959	-0.412935
Ν	1.756768	1.878306	-0.093424
С	0.377106	1.901930	0.054076
0	-0.266396	2.938675	-0.110007

С	-0.213108	0.545135	0.436736
Н	0.125261	0.300298	1.469070
С	-1.705618	0.463814	0.368918
С	-2.422083	0.893279	-0.777722
С	-2.424880	-0.228166	1.376011
С	-3.791057	0.606723	-0.926054
Н	-1.891529	1.456997	-1.559358
С	-3.798601	-0.514950	1.232556
Н	-1.889147	-0.555469	2.281930
С	-4.487420	-0.109124	0.071555
Н	-4.324862	0.951216	-1.826664
Н	-4.334188	-1.046851	2.036227
Н	-5.561974	-0.323373	-0.043172
Н	2.189230	2.793326	-0.251856
Н	4.434024	1.812686	0.295626
Na	-2.150210	-2.162141	-0.527749

SUB	SUBST2a SCF Done: -784.085488044 A.U.				
С	-4.624832	-0.047555	-0.124859		
С	-3.704460	1.011647	-0.177660		
С	-2.327302	0.755573	-0.012114		
С	-1.871528	-0.567353	0.217638		
С	-2.807184	-1.613678	0.261053		
С	-4.180632	-1.364291	0.086924		
Н	-5.698163	0.161799	-0.256603		
Н	-2.435539	-2.632860	0.450207		
Н	-4.902117	-2.195001	0.125199		
С	-0.385028	-0.791435	0.465738		
Н	-0.167099	-0.569424	1.537793		
0	0.010118	-2.139461	0.293524		
Ν	-1.385753	1.797179	-0.056258		
С	-0.010922	1.654699	-0.201862		
0	0.728771	2.630202	-0.218635		
С	0.458094	0.196172	-0.400179		
Н	-0.148135	-2.370539	-0.643988		
Н	0.206719	-0.034467	-1.465061		
С	1.951236	0.016239	-0.210486		
С	2.600770	0.482253	0.953024		
С	2.711626	-0.678212	-1.172844		
С	3.972492	0.255389	1.147128		
Н	2.031842	1.043273	1.711020		
С	4.085100	-0.907764	-0.982466		
Н	2.220967	-1.042062	-2.091413		
С	4.719814	-0.441759	0.180813		
Н	4.463805	0.631095	2.058899		
Н	4.661182	-1.451355	-1.748296		

```
H5.796668-0.6172260.333454H-1.7143612.767809-0.041095H-4.0500762.043229-0.354504
```

SUBSTaNa SCF Done: -946.958525523 A.U.

С	4.099135	-1.142221	-1.138305
С	3.125427	-1.517705	-0.196011
С	2.308667	-0.540938	0.400105
С	2.445081	0.834217	0.082464
С	3.428662	1.183987	-0.864918
С	4.248737	0.214977	-1.471104
Н	4.737437	-1.907216	-1.608166
Н	3.547605	2.248823	-1.130045
Н	5.007112	0.521174	-2.210108
С	1.540668	1.890020	0.746060
Н	1.877812	1.926883	1.834837
Н	1.876158	2.889021	0.337618
0	0.204212	1.649841	0.588653
Ν	1.324320	-0.942048	1.378896
С	-0.027465	-0.907402	1.134333
0	-0.852807	-0.804466	2.066177
С	-0.475479	-1.230193	-0.301833
Н	0.273545	-0.850349	-1.021401
Н	-0.469303	-2.341265	-0.380407
С	-1.857010	-0.699266	-0.619323
С	-2.013868	0.576033	-1.213706
С	-3.015387	-1.432445	-0.277335
С	-3.298717	1.098653	-1.458212
Н	-1.109851	1.171642	-1.422542
С	-4.298588	-0.911747	-0.524288
Н	-2.907982	-2.423274	0.192605
С	-4.445242	0.356481	-1.115266
Н	-3.402571	2.090634	-1.927576
Н	-5.189536	-1.501163	-0.254077
Н	-5.450017	0.762976	-1.313527
Н	1.528411	-0.668244	2.348762
Н	2.988947	-2.572019	0.092970
Na	-1.634270	1.259001	1.497653

33

SUBSTa SCF Done: -785.268035244 A.U.C4.187921-0.575195-0.972710C3.158916-1.341769-0.405906C2.098500-0.7246490.292786C2.0776590.6869810.442528C3.1037291.444033-0.160762C4.1512380.825606-0.860286

Н	5.008255	-1.071495	-1.514809
н	3.060809	2.539804	-0.068313
Н	4.943541	1.439489	-1.317217
С	1.016176	1.394567	1.261359
Н	0.103491	0.764071	1.345441
Н	1.408098	1.519887	2.303739
0	0.732952	2.658710	0.666418
Н	0.106377	3.121346	1.253489
Ν	1.076839	-1.550966	0.864712
С	-0.222244	-1.778477	0.423327
0	-0.930428	-2.613624	0.978874
С	-0.704115	-0.972082	-0.795067
Н	0.053702	-0.235315	-1.123940
Н	-0.795712	-1.720954	-1.613446
С	-2.046314	-0.294995	-0.575720
С	-2.143007	1.113613	-0.538861
С	-3.220514	-1.061476	-0.401449
С	-3.387114	1.741219	-0.343589
Н	-1.232708	1.727370	-0.649362
С	-4.460677	-0.433067	-0.202864
Н	-3.148465	-2.159470	-0.405330
С	-4.550234	0.970631	-0.177353
Н	-3.446460	2.841771	-0.324853
Н	-5.366863	-1.045783	-0.069285
Н	-5.525279	1.461805	-0.028555
Н	1.359189	-2.217561	1.592683
Н	3.154449	-2.438523	-0.508166

Part 4: References.

1) A. Charoenpol, J. Meesin, O. Khaikate, V. Reutrakul, M. Pohmakotr, P. Leowanawat, D. Soorukram, and C. Kuhakarn, *Org. Biomol. Chem.* 2018, **16**, 7050-705.

2) A. Nakatani, K. Hirano, T. Satoh, and M. Miura, J. Org. Chem. 2014, 79, 1377-1385.

3) J.-L. Liu, R.-R. Xu, W. Wang, X. Qi, and X.-F. Wu, Org. Biomol. Chem. 2021, 19, 3584-3589.

4) A. Modak, S. Rana, and D. Maiti, J. Org. Chem. 2015, 80, 296-303.

5) A. Doléans-Jordheim, J.-B. Veron, O. Fendrich, E. Bergeron, A. Montagut-Romans, Y.-S. Wong,

B. Furdui, J. Freney, C. Dumontet, and A. Boumendjel, *ChemMedChem* 2013, **8**, 652-657.

6) Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

7) (a) A. Becke, *Phys. Rev. A: At., Mol., Opt. Phys.* 1988, **38**, 3098-3100. (b) J. P. Perdew, *Phys. Rev. B* 1986, **33**, 8822-8824.

8) A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.

9) (a) W. Küchle, M. Dolg, H. Stoll, and H. Preuss, *J. Chem. Phys.* 1994, **100**, 7535-7542. (b) T. Leininger, A. Nicklass, H. Stoll, M. Dolg, and P. Schwerdtfeger, *J. Chem. Phys.* 1996, **105**, 1052-1059.

10) Y. Zhao, and D. G. Truhlar, *Theor. Chem. Acc.* 2008, **120**, 215-241.

11) F. Weigend, and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297-3305.

12) V. Barone, and M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.

13) J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027-2094.

Part 5: NMR spectra of the amido-alcohols.

Figure S2: $^{13}C{^1H}$ NMR (125 MHz) in CDCI₃ of 1a.

Figure S6: ${}^{13}C{}^{1}H$ NMR (125 MHz) in CDCI₃ of 1c.

Figure S8: $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz) in CDCI_3 of 1d.

Figure S10: $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz) in CDCI3 of 1e.

Figure S12: $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz) in CDCl₃ of 1f.

Figure S14: $^{13}C\{^{1}H\}$ NMR (125 MHz) in CDCI₃ of 1g.

Figure S16: $^{13}C\{^{1}H\}$ NMR (125 MHz) in CDCI₃ of 1h.

Figure S18: $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz) in CDCl3 of 1i.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24(f1(ppm)

Figure S20: $^{19}\text{F-NMR}$ (500 MHz) in CDCl3 of 1j.

Figure S22: ¹H-NMR (500 MHz) in CDCI₃ of 1k.

Figure S24: ¹³C{¹H} NMR (125 MHz) in CDCl₃ of 1k.

Figure S26: $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz) in CDCl3 of 1I.

Figure S28: $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz) in CDCl3 of 1m.

Figure S30: $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz) in CDCI₃ of 1n.

Figure S31: ¹H-NMR (500 MHz) in CDCI₃ of 1o.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24(f1 (ppm)

Figure S32: $^{19}\text{F-NMR}$ (500 MHz) in CDCl3 of 10.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

Figure S33: $^{13}C\{^{1}H\}$ NMR (125 MHz) in CDCI₃ of 10.

Figure S34: ¹H-NMR (500 MHz) in CDCl₃ of 1p.

Figure S36: ¹H-NMR (500 MHz) in CDCl₃ of 1q.

Figure S38: ¹H-NMR (500 MHz) in CDCI₃ of 1r.

Figure S40: $^{13}C\{^{1}H\}$ NMR (125 MHz) in CDCl₃ of 1r.

Figure S42: $^{19}\text{F-NMR}$ (500 MHz) in CDCl3 of 1s.

Figure S44: ¹H-NMR (500 MHz) in CDCI₃ of 1t.

Figure S45: $^{13}C{^{1}H}$ NMR (125 MHz) in CDCl₃ of 1t.

Part 6: NMR spectra of the quinolinones.

Figure S47: ${}^{13}C{}^{1}H$ NMR (125 MHz) in CDCI₃ of 2a.

Figure S49: ${}^{13}C{}^{1}H$ NMR (125 MHz) in CDCI₃ of 2b.

Figure S51: $^{13}C{^1H}$ NMR (125 MHz) in CDCI₃ of 2c.

Figure S53: $^{13}C{^1H}$ NMR (125 MHz) in CDCI₃ of 2d.

Figure S55: $^{13}C{^1H}$ NMR (125 MHz) in CDCI₃ of 2e.

Figure S57: $^{13}C{^1H}$ NMR (125 MHz) in DMSO-d₆ of 2f.

Figure S59: $^{13}C{^1H}$ NMR (125 MHz) in CDCI₃ of 2g.

Figure S61: ${}^{13}C{}^{1}H$ NMR (125 MHz) in DMSO-d₆ of 2h.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24(f1 (ppm)

Figure S67: ¹H-NMR (500 MHz) in DMSO-d₆ of 2k.

Figure S69: ${}^{13}C{}^{1}H$ NMR (125 MHz) in DMSO-d₆ of 2k.

Figure S71: $^{13}C{}^{1}H$ NMR (125 MHz) in CDCl₃ of 2I.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S73: $^{13}C{^{1}H}$ NMR (125 MHz) in CDCl₃ of 2m.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

Figure S75: $^{13}C{^{1}H}$ NMR (125 MHz) in CDCI₃ of 2n.

^{60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210} f1 (ppm)

Figure S77: $^{19}\text{F-NMR}$ (500 MHz) in DMSO-d₆ of 20.

Figure S79: ¹H-NMR (500 MHz) in DMSO-d₆ of 2p.

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Figure S83: ¹H-NMR (500 MHz) in CDCI₃ of 2r.

Figure S85: $^{13}C{^{1}H}$ NMR (125 MHz) in CDCI₃ of 2r.

Figure S86: ¹H-NMR (500 MHz) in DMSO-d₆ of 2s.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24(f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

Figure S88: $^{13}C{^{1}H}$ NMR (125 MHz) in DMSO-d₆ of 2s.

Figure S89: ¹H-NMR (500 MHz) in CDCI₃ of 2t.

Figure S90: $^{13}C{^{1}H}$ NMR (125 MHz) in CDCl₃ of 2t.

Part 7: X-Ray data.

• X-Ray data of compound 2a.

Single crystals suitable for X-Ray crystallographic analysis were obtained by slow evaporation of a methanol solution of **2a**.

Crystal data

Chemical formula	$C_{15}H_{11}NO$
<i>M</i> _r	221.25
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	150
a, b, c (Å)	17.8048 (14), 5.7547 (5), 21.5754 (16)
β (°)	105.736 (3)
V (ų)	2127.8 (3)
Ζ	8
Radiation type	Μο Κα
µ (mm⁻¹)	0.09
Crystal size (mm)	$0.18 \times 0.09 \times 0.08$
Data collection	
Diffractometer	Bruker D8 OUEST
Absorption correction	Multi-scan SADABS 2016/2
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32875, 6340, 4220
R _{int}	0.057
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.895
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.164, 1.03
No. of reflections	6340
No. of parameters	158
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δho_{max} , Δho_{min} (e Å ⁻³)	0.55, -0.27

• X-Ray data of compound 2j.

Single crystals suitable for X-Ray crystallographic analysis were obtained by slow evaporation of a methanol solution of **2j**.

Crystal data	
Chemical formula	$C_{15}H_{10}FNO$
<i>M</i> _r	239.24
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	170
a, b, c (Å)	17.5169 (8), 5.7876 (3), 22.1074 (11)
β (°)	102.879 (2)
V (ų)	2184.88 (19)
Ζ	8
Radiation type	Μο Κα
μ (mm ⁻¹)	0.10
Crystal size (mm)	0.25 × 0.07 × 0.06
Data collection	
Diffractometer	Bruker D8 QUEST
Absorption correction	Multi-scan
No. of management independent and	SADABS 2016/2
observed $[I > 2\sigma(I)]$ reflections	13357, 2714, 2322
R _{int}	0.029
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	0.667
Refinement	

 $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment

 $\Delta \rho_{\text{max}}$, $\Delta \rho_{\text{min}}$ (e Å⁻³)

2714 167 H atoms treated by a mixture of independent and constrained refinement 0.38, -0.26

0.043, 0.116, 1.03