Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Visible Light Driven via Photoredox/Nickel-Catalyzed stereoselective Synthesis of Z- or E-Vinyl Thioethers from Thiosilane and Terminal Alkynes

Hongqiang Liu,^{*a} Wenjing Li, Xia Xu, Meidin Yang, Deman Han,^{*a} and Xiujuan Yang ^{*b} ^aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China. ^bGansu University of Chinese medicine, China.

E-mail: liuzhanghongqiang@163.com; hdm@tzc.edu.cn, yangxiujuants@163.com

Supplementary Information

Table of Contents

1.General information	1
2.Preparation of substrates	1
3.Determination of the optimal reaction conditions	2
4.References	3
5.Mechanistic studies	3
6.Characterization of Products	5
7.Spectral Data	14

1. General information

Commercial reagents were purchased from Aldrich, TCI, J&K chemical, and were used as received. All experiments were carried out under a nitrogen atmosphere, all solvents and reagents were purchased from commercial sources and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz Spectrometer (1H 400 MHz, 13C 101 MHz). All chemical shifts in ¹H NMR spectra are reported in parts per million (ppm) relative to residual CDCl₃ (7.26 ppm) as internal standards. ¹³C NMR chemical shifts are reported in ppm relative to the central peak of CDCl₃ (77.00 ppm) as internal standards. ¹⁹F NMR chemical shifts were externally referenced to CCl₃F (0 ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, br = broad, qd = quadruple doublet, dt = double triplet, and m = multiplet. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. All reactions were monitored by thin-layer chromatography (TLC) on gel F254 plates using UV light as the visualizing agent, and the products were purified by flash column chromatography on silica gel (200-300 meshes) from the Qingdao Marine Chemical Factory in China. All allylic carbonates were prepared using standard literature procedures or the preparation procedures descried in this supporting information. All vinyl triflates were prepared using standard literature procedures.

2. Preparation of substrates

General Procedure for Preparation of trimethylsilyl thioethers

$$R-SH \xrightarrow{H}{} R-S-Si-$$

$$R = alkyl,aryl \xrightarrow{R-S-Si-} 2 h, -78 °C$$

The compounds substrates were synthesized by a literature procedure. To a 100 mL round bottom flask equipped with a magnetic stir bar, the solution of thiol (20 mmol) in diethyl ether (21 mL) was added slowly 1.6 M n-butyl lithium in hexane (22 mmol) dropwise at -78 °C. Chlorotrimethylsilane (22 mmol) was added dropwise to the reaction mixture at -78 °C. Then, the reaction mixture was stirred at room temperature for 4 h, then was added hexane (13 mL). The mixture was evaporated and the precipitated solid was filtered off. The organic layer was evaporated and the residue was purified by distillation under reduced pressure to give the corresponding product.

Compounds prepared according to literature.^{a.b}

3. Determination of the optimal reaction conditions

Table S1. The effect of different ligand.^a

	Ir(ppy) ₂ (dtbpy)PF ₆ (1)	mmol%) $Ru(bpy)_3(PF_6)_2$ (1mmol%)		
NiCl ₂ •6HO ₂ (10mol		NiCl ₂ ·6HO ₂ (10mol)	`	
Í	L 1 (10mol%)		~~~s	$\langle \rangle$
\checkmark	DMF, rt, 6 h, Blue LE	ED DMF, rt, 6 h, Blue LED		
	z ų	1a 2a	E	
<		$(\) \qquad \qquad$	(N
	e N		⊆ _N	
	L 1 = 2-(4,5-Dihydro-2- L 2 = Py oxazolyl)quinoline	L 3 = 1,10-phen L 4 = terpyridine L 5 = dtbbpy	L 6 = 2,2'-b	ipyridine
Entry	photocotalyst	nhoonhino	Viold %	E/7
Entry photocatalyst		phosphille	i leiu 70	E/Z
1	$\mathbf{D}_{\mathbf{u}}(\mathbf{b}_{\mathbf{D}\mathbf{v}})$ (DE)	2 (1 5 Dibudro 2 avazalul) quinalina	06	00/10
1	$Ku(0py)_3(FT_6)_2$	2-(4,3-Dillyd10-2-0xa201y1)quilloillie	90	90/10
2	Du(hav) (DE)	Dev	40	59/17
Z	$Ku(Opy)_3(PF_6)_2$	Fy	40	36/42
2	Du(hav) (DE6)	1.10 mbon	10	60/40
3	$Ru(opy)_3(PFO)_2$	1,10-phen	48	60/40
4	Der (harren) (DEC)	4	55	59/42
4	$Ru(bpy)_3(PF6)_2$	terpyridine	55	58/42
5	$\mathbf{D}_{\rm res}(1,\dots,n)$ ($\mathbf{D}_{\rm res}(1)$	141-1	40	(0/40
3	$Ru(bpy)_3(PF6)_2$	атвору	48	60/40
(Der (harren) (DEC)	2.22 1 :	72	(5/25
0	$Ku(opy)_3(PF6)_2$		12	03/33
7	In(mary) (dtamy)DE	2 (15 Dibydro 2 avezalvi) avia alian	02	00/10
/	$Ir(ppy)_2(dtppy)PF_6$	2-(4,3-Dinyaro-2-oxazoiyi)quinoime	92	88/12

Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), photocatalyst (1 mol), NiCl₂·6H₂O (10 mol%), L 1 (10 mol%), in dry solvent [0.1M] at room temperature with the irradiation of a blue LED for 6 h 90 W blue LEDs. Isolated yields. The Z/E ratios were determined by ¹H NMR spectroscopy.

Table S2. The effect of different solvent

S	photocatalyst (1mmol%) NiCl ₂ · 6HO ₂ (10mol) L 1 (10mol%) solvent, rt, 6 h, Blue LED	photocatalyst (1 NiCl ₂ ·6HO ₂ (10 + S ^I +	mmol%) Omol) Blue LED	S S
z	1a	2a		E
Entry	photocatalysts	solvent	Yield %	E/Z
1	$Ru(bpy)_3(PF_6)_2$	NMP	15	50/50
2	$Ru(bpy)_3(PF_6)_2$	2-Methyltetrahydrofuran	36	52/48
3	Ru(bpy) ₃ (PF ₆) ₂	THF	24	60/40
4	Ru(bpy) ₃ (PF ₆) ₂	EtOH	18	52/48
5	Ir(ppy) ₂ (dtbpy)PF ₆	NMP	40	53/47
6	Ir(ppy) ₂ (dtbpy)PF ₆	2-Methyltetrahydrofuran	35	60/40
7	Ir(ppy) ₂ (dtbpy)PF ₆	THF	42	62/38
8	Ir(ppy) ₂ (dtbpy)PF ₆	EtOH	20	70/30

Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), photocatalyst (1 mol), NiCl₂·6H₂O (10 mol%), L 1 (10 mol%),

in dry solvent [0.01M] at room temperature with the irradiation of a blue LED for 6 h 90 W blue LEDs. Isolated yields. The Z/E ratios were determined by ¹H NMR spectroscopy.

$Ir(ppy)_2(dtbpy)PF_6 (1mmol%) NiCl_2 \cdot 6HO_2(10mol) S Z 1a 2a Ru(bpy)_3(PF_6)_2 (1mmol%) NiCl_2 \cdot 6HO_2(10mol) NiCl_2 \cdot 6HO_2(10mol) NiCl_2 \cdot 6HO_2(10mol) DMF, rt, 6 h, Blue LED E$					
Entry	Light source	Yield %	E/Z		
1	90 W blue LED	96	90/10		
2	10 W 460-465 nm LED	36	45/55		
3	10 W 365-367 nm LED	24	40/60		
5	5 W CFL	18	50/50		
6	Sun light	trace			

Table S3. The effect of light sources

Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), photocatalyst (1 mol), NiCl₂·6H₂O (10 mol%), L 1 (10 mol%), in dry solvent [0.01M] at room temperature with the irradiation of a blue LED for 6 h 90 W blue LEDs. Isolated yields. The Z/E ratios were determined by ¹H NMR spectroscopy.

Supplementary Figure 1. The effect of light sources

4. Reference

- (a) J. R. Combs, Y.C. Lai, and D. L. V. Vranken, Org. Lett. 2021, 23, 284.
- (b) M. Mesgar, J. N. Le, and O, Daugulis, J. Am. Chem. Soc. 2018, 140, 13703.

5. Mechanistic Studies

a) BHT-capture experiment

The reaction was conducted under the optimized standard conditions in the presence of 2.0 equiv of BHT as a radical scavenger. Under such conditions, the corresponding product Z-3 was not observed.

b) **TEMPO** Trapping Experiment

The reaction was conducted under the optimized reaction conditions in the presence of 2.0 equivalents of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) as a radical scavenger. Under such conditions, the corresponding product Z-3 was not observed, while the TEMPO-trapping product was found by HRMS (ESI), which suggests a radical pathway.

HRMS (ESI+): m/z: [M + H] + Calc. for C₁₆H₂₆NOS⁺ 280.1730; Found 280.1745.

c) light on/off experiment

Five standard reaction mixtures of a flame-dried 8 mL reaction vial were charged with $Ru(bpy)_3(PF_6)_2$ (1 mol%), $NiCl_2 \cdot 6H_2O$ (10 mol%), L 1 (10 mol%), and a magnetic stir bar. DMF (0.1 M) was added. The reaction mixture was degassed by nitrogen sparging for 30 min, followed by the addition of thiosilane (0.1 mmol, 1.0 equiv) and alkynes (0.15 mmol, 1.5 equiv). The reaction flask was placed in a 90 W blue LED constant low temperature water bath set at 25 °C. After 1 hour, the lamps were turned off, and one vial was removed from the irradiation setup for analysis. The remaining four vials were stirred in the absence of light for an additional 30 min. Then, one vial was removed for analysis, and the lamps were turned back on to irradiate the remaining three reaction mixtures. After an additional 2 hours of irradiation, the lamps were turned off, and one vial was removed for analysis. The remaining two vials were stirred in the absence of light for an additional 30 min.

30 min. Then, a vial was removed for analysis, and the lamps were turned back on to irradiate the remaining one reaction mixture. After 3 hours, the lamps were turned off, and the last vial was removed for analysis, where yields were determined by n-octane as an internal standard.

6. Characterization of Products

(**Z**)-styryl(p-tolyl)sulfane (**Z**-3). 20.7 mg, 92 %, Z/E = 88:12. yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.5 Hz, 2H), 7.37 (dd, J = 12.9, 7.8 Hz, 4H), 7.31 (dd, J = 12.1, 7.2 Hz, 1H), 7.23 (dd, J = 12.8, 5.3 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 6.87 (s, 0.12H), 6.66 (s, 0.12H), 6.53 (d, J = 10.8 Hz, 0.88H), 6.45 (d, J = 10.8 Hz, 0.88H), 2.33 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.36, 137.23, 136.61, 136.53, 132.64, 131.10, 130.56, 130.48, 129.93, 129.90, 128.68, 128.61, 128.26, 127.34, 127.02, 126.97, 126.45, 125.87, 124.41, 77.32, 77.00, 76.68, 21.05. HR-MS (ESI) m/z calcd for C₁₅H₁₅S [M + H] + 227.0889; found: 227.0887.

(Z)-(4-methylstyryl)(p-tolyl)sulfane (4). 21.0 mg, 89 %, Z/E = 95:5. white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 15.4 Hz,0.05H), 6.65 (d, *J* = 15.5 Hz, 0.05H), 6.51 (d, *J* = 10.7 Hz, 0.97H), 6.39 (d, *J* = 10.7 Hz, 0.95H), 2.34 (d, *J* = 6.9 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 137.23, 136.83, 133.75, 132.80, 131.03, 130.39, 130.27, 129.86, 129.32, 128.96, 128.64, 126.56, 125.84, 125.80, 122.87, 77.32, 77.00, 76.68, 21.24, 21.04. HR-MS (ESI) m/z calcd for C₁₆H₁₇S [M + H] + 241.1045; found: 241.1047.

(Z)-(4-ethylstyryl)(p-tolyl)sulfane (5). 23.0 mg, 92%, Z/E > 99:1. white oil.¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.19 – 7.12 (m, 2H), 7.07 (d, J = 7.9 Hz, 2H), 6.45 (d, J = 10.7 Hz, 1H), 6.32 (d, J = 10.7 Hz, 1H), 2.58 (q, J = 7.6 Hz, 2H), 2.26 (s, 3H), 1.17 (t, J = 7.6 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 143.22, 137.24, 134.00, 132.82, 130.40, 129.87, 128.72, 127.78, 126.59, 125.82, 77.32, 77.00, 76.68, 28.64, 21.05, 15.50. HR-MS (ESI) m/z calcd for C₁₇H₁₉S [M + H] + 255.1202; found 255.1203.

(**Z**)-(4-butylstyryl)(p-tolyl)sulfane (6). 25.0 mg, 90%, Z/E > 93:7. yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.15 (dd, *J* = 14.1, 7.9 Hz, 2H), 6.81 (d, *J* = 15.4 Hz, 0.07H), 6.68 (d, *J* = 15.4 Hz, 0.07H), 6.54 (d, *J* = 10.7 Hz, 0.93H), 6.41 (d, *J* = 10.7 Hz, 0.93H), 2.63 (t, *J* = 7.7 Hz, 2H), 2.36 (s, 3H), 1.67 – 1.57 (m, 2H), 1.38 (dd, *J* = 14.9, 7.4 Hz, 2H), 0.95 (t, *J* = 7.3 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 141.91, 137.25, 133.96, 132.84, 131.19, 130.41, 130.24, 129.87, 128.70, 128.65, 128.35, 126.61, 125.86, 125.76, 122.85, 77.32, 77.00, 76.68, 35.42, 33.53, 22.33, 21.06, 13.94. HR-MS (ESI) m/z calcd for C₁₉H₂₃S [M + H]⁺ 283.1515; found 283.1513.

(Z)-(2-methoxystyryl)(p-tolyl)sulfane (7). 24.0 mg, 95%, Z/E > 99:1. yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.5 Hz, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.15 (t, J = 7.8 Hz, 1H), 7.03 (d, J = 8.0 Hz, 2H), 6.91 (t, J = 7.5 Hz, 1H), 6.77 (dd, J = 9.5, 5.2 Hz, 2H), 6.39 (d, J = 10.8 Hz, 1H), 3.73 (s, 3H), 2.22 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 156.50, 137.02, 132.79, 130.24, 129.87, 129.77, 129.16, 128.49, 126.59, 125.32, 121.62, 120.07, 110.28, 77.32, 77.00, 76.68, 55.37, 20.97. HR-MS (ESI) m/z calcd for C₁₆H₁₇OS [M + H] + 257.0995; found 257.0997.

(Z)-(3-methoxystyryl)(p-tolyl)sulfane (8). 24.5 mg, 96%, Z/E = 83:17. light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.00 (m, 7H), 6.86 – 6.68 (m, 2H), 6.53 (d, *J* = 15.5 Hz, 0.17H), 6.44 (d, *J* = 10.8 Hz, 0.83H), 6.39 (d, *J* = 10.8 Hz, 0.83H), 3.77 (s, 2H), 3.72 (s, 1H), 2.28 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 159.50, 137.89, 137.46, 132.61, 130.68, 130.57, 130.16, 129.96, 129.92, 129.60, 129.25, 127.53, 126.24, 124.94, 121.38, 118.57, 113.72, 113.03, 112.97, 111.15, 77.32, 77.00, 76.68, 55.24, 21.07. HR-MS (ESI) m/z calcd for C₁₆H₁₇OS [M + H] ⁺ 257.0995; found 257.0997.

(Z)-(4-ethoxystyryl)(p-tolyl)sulfane (9). 26.6 mg, 93%, Z/E = 96:4. white solid.¹H NMR (400

MHz, CDCl₃) δ 7.50 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 6.97 – 6.89 (m, 2H), 6.85 (s, 0.04H), 6.71 (s, 0.04H), 6.53 (d, J = 10.7 Hz, 0.96H), 6.35 (dd, J = 10.7, 2.8 Hz, 0.96H), 4.07 (q, J = 6.9 Hz, 2H), 2.37 (s, 3H), 1.44 (td, J = 6.9, 1.8 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 158.54, 157.90, 137.11, 136.77, 132.83, 131.87, 131.48, 130.25, 130.05, 129.91, 129.84, 129.29, 129.22, 127.19, 126.42, 124.03, 120.89, 114.58, 114.21, 77.32, 77.00, 76.68, 63.38, 21.02, 14.79. HR-MS (ESI) calcd for C₁₇H₁₉OS [M + H] + 271.1151; found 271.1157.

methyl (Z)-3-(2-(p-tolylthio)vinyl)benzoate (10). 21.8 mg, 23.1%, Z/E = 96:4. white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 9.4 Hz, 0.04H), 6.58 (s, 0.04H), 6.54 (d, *J* = 11.2 Hz, 1.92H), 3.94 (s, 3H), 3.91 (s, 1H), 2.36 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 167.03, 137.64, 136.83, 132.74, 132.25, 131.24, 130.65, 130.22, 129.97, 129.88, 128.74, 128.38, 127.92, 125.30, 77.32, 77.00, 76.68, 52.19, 21.08; HR-MS (ESI) m/z calcd for C₁₇H₁₇O₂S [M+H]⁺ 285.0944, found 285.0948.

(Z)-(4-chlorostyryl)(p-tolyl)sulfane (11). 22.1 mg, 85%, Z/E = 94:6. white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.6 Hz, 2H), 7.33 – 7.22 (m, 4H), 7.21 – 7.12 (m, 1H), 7.08 (d, *J* = 7.9 Hz, 2H), 6.76 (d, *J* = 15.5 Hz, 0.06H), 6.48 (s, 0.06H), 6.43 – 6.35 (m, 1.88H), 2.27 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.62, 135.02, 132.53, 132.22, 130.96, 130.59, 130.02, 129.98, 129.90, 128.76, 128.42, 127.98, 126.98, 125.67, 125.10, 77.32, 77.00, 76.68, 21.07. HR-MS (ESI) m/z calcd for C₁₅H₁₄ClS [M + H] ⁺ 261.0499; found 261.0496.

- s_-ci

(**Z**)-(3-chlorostyryl)(p-tolyl)sulfane (12). 21.8 mg, 84%, Z/E = 95:5. light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 7.50 (t, J = 1.8 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.20 (d, J = 8.0 Hz, 1H), 7.15 (t, J = 6.1 Hz, 3H), 6.89 (s, 0.09H), 6.51 (d, J = 10.8 Hz, 1.09H), 6.45 (d, J = 5.8 Hz, 0.96H), 2.34 (d, J = 3.9 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 138.47, 138.29, 137.74, 137.67, 134.54, 134.16, 132.12, 131.18, 130.63, 130.21, 130.05, 129.98, 129.79, 129.75, 129.47, 129.09, 128.50, 128.47, 127.75, 127.04, 126.96, 126.88, 126.71, 125.61, 124.78, 123.95, 77.32, 77.00, 76.68, 21.06. HR-MS (ESI) m/z calcd for C₁₅H₁₄ClS [M+H] ⁺ 261.0499; found 261.0494.

(Z)-p-tolyl(3-(trifluoromethyl)styryl)sulfane (13). 26.4 mg, 90%, Z/E = 90:10. white solid.¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.59 (m, 3H), 7.55 (d, J = 8.2 Hz, 1H), 7.39 (t, J = 5.9 Hz, 3H), 7.20 (t, J = 6.8 Hz, 2H), 7.03 (s, 0.1H), 6.63 (d, J = 10.9 Hz, 0.9H), 6.55 (dd, J = 13.2, 6.5 Hz, 0.90H), 2.38 (s, 3H).¹³C NMR (101 MHz, CDCl3) δ 140.06, 138.02, 131.46, 130.75, 130.46, 130.12, 129.85, 129.76, 128.72, 128.64, 128.50, 127.17, 125.78, 125.54, 125.21, 124.62, 77.32,

77.00, 76.68, 21.08. HR-MS (ESI) m/z calcd for C₁₆H₁₄F₃SH [M+H] ⁺ 295.0763; found 295.0765.

(Z)-(4-bromostyryl)(p-tolyl)sulfane (14). 26.1 mg, 86%, Z/E = 66:33. white solid.¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.5 Hz, 1H), 7.42 – 7.30 (m, 4H), 7.16 (dd, J = 8.2, 2.9 Hz, 3H), 6.85 (d, J = 15.5 Hz, 0.33H), 6.52 (d, J = 8.5 Hz, 0.33H), 6.49 (d, J = 3.8 Hz, 0.66H), 6.44 (d, J = 10.8 Hz, 0.66H), 2.35 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.65, 135.60, 135.45, 132.20, 131.70, 131.38, 131.02, 130.61, 130.46, 130.20, 130.03, 129.98, 128.36, 128.21, 127.29, 125.91, 125.12, 120.93, 120.72, 77.32, 77.00, 76.68, 21.10, 21.07. HR-MS (ESI) m/z calcd for C₁₅H₁₄BrS [M+H]⁺ 304.9994; found 304.9997.

S-s

(Z)-Styryl(m-tolyl)sulfane (15). 20.0 mg, 88%, Z/E > 99:1. white oil.¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.28 – 7.18 (m, 4H), 7.06 (d, J = 7.3 Hz, 1H), 6.56 (d, J = 10.8 Hz, 1H), 6.49 (d, J = 10.8 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.97, 136.45, 135.88, 130.62, 128.94, 128.69, 128.24, 128.00, 127.05, 127.01, 126.93, 126.19, 77.32, 77.00, 76.68, 21.26. HR-MS (ESI) calcd for C₁₅H₁₅OS [M + H] + 227.0889; found 227.0889.

0-{______

(Z)-(4-methoxyphenyl)(styryl)sulfane (16). 20.8 mg, 86%, Z/E > 99:1.white solid.¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.4 Hz, 2H), 7.45 – 7.36 (m, 4H), 7.25 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 6.49 (d, J = 10.8 Hz, 1H), 6.40 (d, J = 10.8 Hz, 1H), 3.81 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 159.47, 136.60, 132.92, 128.65, 128.33, 128.28, 126.91, 126.78, 125.71, 114.77, 77.32, 77.00, 76.68, 55.37. HR-MS (ESI) calcd for C₁₅H₁₅OS [M + H] + 243.0838; found:243.0839.

(Z)-(2-methoxyphenyl)(styryl)sulfane (17). 19.8 mg, 82%, Z/E > 99:1. pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.6 Hz, 2H), 7.28 (dd, J = 15.0, 7.6 Hz, 3H), 7.14 (dd, J = 12.6, 5.3 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.52 (d, J = 10.8 Hz, 1H), 6.36 (dd, J = 10.8, 2.3 Hz, 1H), 3.78 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 157.13, 136.41, 130.83, 128.79, 128.42, 128.17, 127.60, 126.94, 125.22, 124.07, 121.24, 110.81, 77.32, 77.00, 76.68, 55.80. HR-MS (ESI) calc for C₁₅H₁₅OS [M + H] + 243.0838; found: 243.0836

(**Z**)-propyl(styryl)sulfane (18). 16.0 mg, 90%, Z/E = 96:4. colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.9 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 3.6 Hz, 1H), 7.23 – 7.14 (m, 1H), 6.76 (d, *J* = 15.6 Hz, 0.04H), 6.56 (d, *J* = 15.4 Hz, 0.04H), 6.42 (d, *J* = 11.0 Hz, 0.96H), 6.32 (d, *J* = 11.0 Hz, 0.96H), 2.87 (tt, *J* = 10.6, 3.7 Hz, 1H), 2.05 (dd, *J* = 9.5, 3.3 Hz, 2H), 1.84 – 1.74 (m, 2H), 1.62 (dd, *J* = 11.3, 4.3 Hz, 1H), 1.51 – 1.41 (m, 2H), 1.40 – 1.23 (m, 3H).¹³C NMR (101

MHz, CDCl₃) δ 136.99, 128.51, 128.12, 127.62, 126.46, 125.36, 125.14, 77.32, 77.00, 76.68, 37.81, 23.48, 13.11. HR-MS (ESI) m/z calcd for C₁₁H₁₅S [M + H]⁺179.0889, found: 179.0884.

(Z)-butyl(styryl)sulfane (19). 17.7 mg, 92%, Z/E = 95:5. yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 4.3 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 6.70 (s, 0.05H), 6.47 (s, 0.05H), 6.42 (d, J = 11.0 Hz, 0.95H), 6.23 (d, *J* = 10.9 Hz, 0.95H), 2.82 – 2.73 (m, 2H), 1.66 (dt, *J* = 15.0, 7.4 Hz, 2H), 1.43 (dq, *J* = 14.5, 7.3 Hz, 2H), 0.97 – 0.85 (m, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.00, 128.53, 128.14, 127.65, 126.54, 126.48, 125.37, 125.14, 77.32, 77.00, 76.68, 35.53, 32.24, 21.63, 13.59. HR-MS (ESI) m/z calcd for C₁₂H₁₇S [M + H] + 193.1051; found: 193.1054

(Z)-hexyl(styryl)sulfane (20). 19.8.0 mg, 90%, Z/E = 94:6. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.4 Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.27 (d, J = 4.3 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 6.70 (s, 0.06H), 6.47 (s, 0.06H), 6.42 (d, J = 10.9 Hz, 0.94H), 6.23 (d, J = 10.9 Hz, 0.94H), 2.77 (dd, J = 15.2, 7.8 Hz, 2H), 1.72 – 1.63 (m, 2H), 1.40 (dt, J = 14.6, 7.2 Hz, 2H), 1.35 – 1.24 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 136.99, 128.51, 128.11, 127.63, 126.48, 126.44, 125.34, 125.10, 77.32, 77.00, 76.68, 35.83, 31.31, 30.13, 28.19, 22.46, 13.96. HR-MS (ESI) m/z calcd for C₁₄H₂₁S [M + H] + 221.1364; found: 221.1373.

(Z) -heptyl(styryl)sulfane (21). 20.0 mg, 92%, Z/E = 94:6. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.7 Hz, 2H), 7.35 (dd, *J* = 19.2, 11.5 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 6.74 (d, *J* = 15.6 Hz, 0.06H), 6.50 (s, 0.06H), 6.44 (d, *J* = 10.9 Hz, 0.94H), 6.26 (d, *J* = 10.9 Hz, 0.94H), 2.79 (t, *J* = 7.4 Hz, 2H), 1.75 – 1.66 (m, 2H), 1.42 (dd, *J* = 14.1, 6.6 Hz, 2H), 1.37 – 1.24 (m, 6H), 0.90 (t, *J* = 5.8 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.02, 128.55, 128.16, 127.67, 126.50, 125.16, 77.32, 77.00, 76.68, 35.88, 31.67, 30.22, 28.83, 28.52, 22.57, 14.05. HR-MS (ESI) m/z calcd for C₁₄H₂₃S [M + H] + 235.1515; found 235.1513.

(Z)-octyl(styryl)sulfanea (22). 23.8 mg, 96%, Z/E = 94:6. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.9 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 2H), 7.28 (d, *J* = 4.2 Hz, 1H), 7.21 (dt, *J* = 13.7, 6.8 Hz, 1H), 6.72 (d, *J* = 15.6 Hz, 0.06H), 6.47 (s, 0.06H), 6.42 (dd, *J* = 10.6, 5.9 Hz, 0.94H), 6.23 (dd, *J* = 10.8, 5.5 Hz, 0.94H), 2.77 (t, *J* = 7.2 Hz, 2H), 1.74 – 1.61 (m, 2H), 1.47 – 1.35 (m, 2H), 1.28 (s, 9H), 0.88 (t, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.02, 128.55, 128.16, 127.67, 126.50, 125.39, 125.16, 77.32, 77.00, 76.68, 35.88, 31.77, 30.21, 29.13, 28.56, 22.61, 14.16, 14.06. HR-MS (ESI) m/z calcd for C₁₆H₂₅S [M + H] + 249.1671; found 249.1673.

≻-s_∽

(Z)-isopropyl(styryl)sulfane (23). 16.7 mg, 94%, Z/E = 96:4. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 6.76 (d, *J* = 15.6 Hz, 0.04H), 6.55 (s, 0.04H), 6.45 (d, *J* = 11.0 Hz, 0.94H), 6.33 (d, *J* = 11.0 Hz, 0.94H), 3.15 (dt, *J* = 13.5, 6.8 Hz, 1H), 1.38 (d, *J* = 6.8 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 137.06, 128.61, 128.17, 126.54, 125.85, 125.22, 77.32, 77.00, 76.68, 39.18, 23.50. HR-MS (ESI) m/z calcd for C₁₁H₁₅S [M + H] + 179.0889; found 179.0889.

-s

(Z)-cyclohexyl(styryl)sulfane (24). 19.6 mg, 90%, Z/E = 98:2. light yellow liquid.¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.9 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 3.6 Hz, 1H), 7.18 (t, J = 7.3 Hz, 1H), 6.76 (d, J = 15.6 Hz, 1H), 6.54 (s, 1H), 6.42 (d, J = 11.0 Hz, 1H), 6.32 (d, J = 11.0 Hz, 1H), 2.86 (ddd, J = 10.6, 7.3, 3.8 Hz, 1H), 2.05 (dd, J = 9.5, 3.3 Hz, 2H), 1.79 (dd, J = 8.9, 3.9 Hz, 2H), 1.62 (dd, J = 11.3, 4.3 Hz, 1H), 1.46 (dd, J = 22.4, 11.7 Hz, 2H), 1.31 (dt, J = 34.0, 11.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.09, 128.55, 128.10, 126.40, 125.85, 125.50, 124.92, 77.32, 77.00, 76.68, 47.68, 33.60, 25.91, 25.54. HR-MS (ESI) m/z calcd for C₁₄H₁₉S [M + H] + 219.1202; found 219.1206.

≻-{**>**-s_

(Z)-(4-(tert-butyl)phenyl)(styryl)sulfane (25). 23.0 mg, 86%, Z/E > 99:1. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.5 Hz, 2H), 7.42 – 7.33 (m, 6H), 7.23 (t, J = 7.4 Hz, 1H), 6.50 (q, J = 10.8 Hz, 2H), 1.31 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 150.54, 136.54, 132.68, 130.19, 128.68, 128.26, 126.94, 126.90, 126.43, 126.19, 77.32, 77.00, 76.68, 34.51, 31.22.HR-MS (ESI) m/z calcd for C₁₈H₂₁S [M + H]⁺ 269.1358; found: 269.1339.

(Z)-benzyl(styryl)sulfane (26). 20.5 mg, 91%, Z/E = 97:3. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.7 Hz, 2H), 7.38 – 7.17 (m, 9H), 6.71 (d, J = 15.5 Hz, 1H), 6.50 (s, 1H), 6.41 (d, J = 10.9 Hz, 1H), 6.24 (d, J = 10.9 Hz, 1H), 3.99 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 137.35, 136.82, 128.96, 128.67, 128.64, 128.20, 127.38, 126.70, 125.96, 125.84, 77.32, 77.00, 76.68, 39.49. HR-MS (ESI) m/z calcd for C₁₅H₁₅S [M + H]⁺227.0889; found: 227.0888.

(Z)-phenethyl(styryl)sulfane (27). 21.3 mg, 89%, Z/E > 99:1. yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.5 Hz, 2H), 7.38 – 7.32 (m, 2H), 7.30 (d, J = 7.2 Hz, 2H), 7.26 – 7.19 (m, 4H), 6.46 (d, J = 10.9 Hz, 1H), 6.25 (d, J = 10.9 Hz, 1H), 3.01 (td, J = 7.0, 2.5 Hz, 4H).¹³C NMR (101 MHz, CDCl₃) δ 139.83, 136.87, 128.63, 128.57, 128.54, 128.21, 126.97, 126.68, 126.51, 125.91, 77.32, 77.00, 76.68, 37.13, 36.79. HR-MS (ESI) m/z calcd for C₁₆H₁₇S [M + H] + 241.1045;

found: 241.1043.

(Z)-(4-fluorophenyl)(4-fluorostyryl)sulfane (28). 19.3 mg, 78%, Z/E = 83:17. yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.39 (m, 4H), 7.31 – 7.25 (m, 1H), 7.10 – 6.97 (m, 4H), 6.70 (s, 0.17H), 6.61 (s, 0.17H), 6.52 (d, *J* = 10.7 Hz, 0.83H), 6.37 (d, *J* = 10.7 Hz, 0.83H). ¹³C NMR (101 MHz, CDCl₃) δ 163.59, 163.55, 163.48, 162.91, 161.13, 161.02, 160.45, 132.69, 132.64, 132.61, 132.55, 132.52, 132.49, 131.04, 131.00, 130.43, 130.35, 129.95, 129.65, 127.52, 127.44, 126.12, 125.99, 123.61, 116.47, 116.45, 116.23, 115.74, 115.52, 115.37, 115.16, 77.32, 77.00, 76.68.HR-MS (ESI) m/z calcd for C₁₄H₁₁F₂S [M + H]⁺ 259.0544; found: 259.0547.

(E)-(4-methoxystyryl)(p-tolyl)sulfane (29). 24.3 mg, 95%, Z/E = 83:17. white solid.¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.7 Hz, 1H), 7.27 (d, J = 8.1 Hz, 1H), 7.20 (dd, J = 15.1, 8.4 Hz, 3H), 7.05 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 8.7 Hz, 0.83H), 6.75 (d, J = 8.7 Hz, 0.83H), 6.64 – 6.54 (m, 2H), 6.40 (s, 0.17H), 6.25 (d, J = 10.7 Hz, 0.17H), 3.72 (d, J = 10.0 Hz, 3H), 2.25 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 159.15, 158.52, 137.15, 136.82, 132.79, 131.81, 131.32, 130.28, 130.06, 129.97, 129.84, 129.46, 129.39, 127.19, 126.36, 124.23, 121.11, 114.05, 113.67, 77.32, 77.00, 76.68, 55.25, 21.02. HR-MS (ESI) m/z calcd for C₁₆H₁₇OS [M + H]+ 257.0995; found 257.0997.

(E)-(4-methylstyryl)(p-tolyl)sulfane (30). 22.8 mg, 92%, Z/E = 90:10. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.1 Hz, 1H), 7.33 (dd, J = 16.7, 8.2 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.12 (dd, J = 15.2, 8.0 Hz, 4H), 6.79 (d, J = 15.4 Hz, 0.90H), 6.65 (d, J = 15.4 Hz, 0.90H), 6.52 (d, J = 10.7 Hz, 0.10H), 6.39 (d, J = 10.7 Hz, 0.10H), 2.33 (d, J = 7.4 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 137.31, 137.04, 136.86, 133.88, 132.83, 131.50, 131.05, 130.42, 130.29, 129.89, 129.33, 128.97, 128.65, 126.99, 126.59, 125.86, 125.82, 122.89, 77.32, 77.00, 76.68, 21.18, 21.06. HR-MS (ESI) m/z calcd for C₁₆H₁₇S [M + H] + 241.1045; found: 241.1047

(E)-(4-(tert-butyl)styryl)(p-tolyl)sulfane (31). 25.3 mg, 90%, Z/E = 88:12.white solid.¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.37 (m, 1H), 7.37 – 7.27 (m, 6H), 7.16 (d, *J* = 7.9 Hz, 2H), 6.83 (d, *J* = 15.4 Hz, 0.88H), 6.70 (d, *J* = 15.4 Hz, 0.88H), 6.55 (d, *J* = 10.7 Hz, 0.12H), 6.44 (s, 0.12H), 2.36 (s, 3H), 1.34 (d, *J* = 9.5 Hz, 10H).¹³C NMR (101 MHz, CDCl₃) δ 150.61, 136.99, 133.87, 131.58, 131.11, 130.41, 130.20, 129.88, 128.48, 126.49, 125.95, 125.69, 125.56, 125.20, 123.06, 77.32, 77.00, 76.68, 34.56, 31.24, 21.05.HR-MS (ESI) m/z calcd for C₁₉H₂₃S [M + H]⁺ 283.1515.; found: 283.1519.

(E)-(4-chlorostyryl)(p-tolyl)sulfane (32). 21.3 mg, 82%, Z/E = 91:9. yellow oil.¹H NMR (400

MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 2H), 7.34 (dd, J = 10.9, 7.0 Hz, 4H), 7.29 – 7.11 (m, 2H), 6.83 (d, J = 15.5 Hz, 0.91H), 6.58 – 6.45 (m, 1.01H), 2.35 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 137.60, 135.17, 132.84, 130.97, 130.60, 130.56, 130.02, 129.99, 129.91, 128.77, 128.46, 127.98, 126.99, 125.68, 125.12, 77.32, 77.00, 76.68, 21.10. HR-MS (ESI) m/z calcd for C₁₅H₁₄ClS [M + H] ⁺ 261.0499; found 261.0496.

(E)-(4-(tert-butyl)styryl)(4-fluorophenyl)sulfane (33). 23.2 mg, 81%, Z/E = 93:7. yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.32 (m, 4H), 7.30 – 7.23 (m, 2H), 7.04 (t, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 15.4 Hz, 0.93H), 6.67 (d, *J* = 15.4 Hz, 0.93H), 6.54 (s, 0.7H), 6.34 (d, *J* = 10.7 Hz, 0.7H), 1.32 (d, *J* = 9.6 Hz, 9H).¹³C NMR (101 MHz, CDCl₃) δ 163.38, 160.93, 150.90, 133.63, 132.52, 132.44, 132.22, 132.14, 131.84, 130.29, 130.25, 128.51, 125.77, 125.62, 125.26, 122.51, 116.37, 116.15, 77.32, 77.00, 76.68, 34.60, 31.24. HR-MS (ESI) m/z calcd for C₁₈H₂₀FS [M + H] ⁺ 287.1264; found: 287.1267.

(E)-(2-([1,1'-biphenyl]-4-yl)vinyl)(4 fluoropheny l) sulfane (34). 26.0 mg, 85%, Z/E =82:18. yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 5H), 7.49 – 7.33 (m, 8H), 7.07 (t, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 15.4 Hz, 0.82H), 6.68 (d, *J* = 15.4 Hz, 0.82H), 6.59 (s, 0.18H), 6.42 (s, 0.18H).¹³C NMR (101 MHz, CDCl₃) δ 140.52, 140.32, 135.43, 132.71, 132.62, 130.63, 129.16, 128.80, 127.36, 127.00, 126.88, 126.72, 126.61, 126.38, 124.02, 116.48, 116.45, 116.26, 77.32, 77.00, 76.68. HR-MS (ESI) m/z calcd for C₂₀H₁₆FS [M + H] + 307.0951; found: 307.0956.

F C C

(E)-(4-chlorostyryl)(4-fluorophenyl)sulfane(35). 20.0 mg, 76%, Z/E = 90:10. yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.33 (m, 3H), 7.24 (q, J = 8.6 Hz, 4H), 7.06 (t, J = 8.6 Hz, 2H), 6.79 (d, J = 15.4 Hz,1.8H), 6.52 (dd, J = 16.5, 13.2 Hz, 0.1H), 6.42 (d, J = 10.7 Hz, 0.1H).¹³C NMR (101 MHz, CDCl₃) δ 163.67, 161.21, 134.92, 133.11, 133.05, 132.97, 132.77, 132.68, 129.92, 129.28, 129.25, 129.14, 128.84, 128.49, 127.46, 127.07, 125.71, 125.09, 116.54, 116.50, 116.33, 116.28, 77.32, 77.00, 76.68. HR-MS (ESI) m/z calcd for C₁₄H₁₁CIFS [M + H] + 265.0249; found: 265.0246.

F CF3

(E)-(4-fluorophenyl)(4-(trifluoromethyl)styryl)sulfane (36). 21.5 mg, 72%, Z/E > 99:1.
white solid.¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.48
7.42 (m, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.08 (dd, J = 11.9, 5.3 Hz, 2H), 6.94 (d, J = 15.5 Hz, 1H), 6.54 (d, J = 15.4 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 163.90, 161.43, 139.81, 133.66, 133.57, 133.00, 132.91, 129.92, 129.21, 128.88, 128.76, 128.54, 128.06, 127.80, 125.89, 125.70, 125.66,

125.62, 125.58, 125.48, 125.22, 122.78, 116.68, 116.59, 116.46, 116.37, 77.32, 77.00, 76.68. HR-MS (ESI) m/z calcd for $C_{15}H_{11}F_4S$ [M + H] ⁺ 299.0512; found: 299.0516.

(E)-(3-fluorophenyl)(4-methylstyryl)sulfane (37). 19.0 mg, 72.0 mg, 78%, Z/E = 90:10. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 1H), 7.28 – 7.21 (m, 3H), 7.14 (dd, J = 24.0, 7.7 Hz, 3H), 7.06 (d, J = 9.1 Hz, 1H), 6.93 – 6.84 (m, 1H), 6.84 – 6.70 (m, 1.82H), 6.62 (d, J = 10.6 Hz, 0.1H), 6.38 (d, J = 10.6 Hz, 0.1H), 2.33 (d, J = 7.3 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.12, 161.65, 138.44, 137.97, 134.49, 133.37, 130.29, 130.20, 129.40, 128.99, 128.74, 126.13, 124.18, 124.15, 122.89, 119.86, 115.55, 115.31, 113.42, 113.21, 77.32, 77.00, 76.68, 21.18. HR-MS (ESI) m/z calcd for C₁₅H₁₄FS [M + H] + 245.0795; found 245.0793.

(E)-(2-fluorophenyl)(4-methylstyryl)sulfane (38). 20.0 mg, 83%, Z/E = 90:10. colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.41 (dt, J = 15.0, 7.1 Hz, 1H), 7.29 – 7.17 (m, 3H), 7.16 – 7.03 (m, 4H), 6.79 – 6.66 (m,1.8H), 6.60 (d, J = 10.6 Hz, 0.1H), 6.31 (d, J = 10.6 Hz, 0.1H), 2.33 (d, J = 12.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 161.78, 159.34, 137.74, 137.17, 133.50, 133.32, 132.95, 132.17, 131.61, 131.60, 129.35, 129.17, 129.09, 129.00, 128.75, 128.67, 128.54, 128.28, 126.76, 126.03, 124.68, 124.65, 123.25, 123.14, 122.65, 122.48, 119.89, 119.88, 115.95, 115.84, 115.73, 115.63, 77.32, 77.00, 76.68, 21.24, 21.17. HR-MS (ESI) m/z calcd for C₁₅H₁₄FS [M + H] + 245.0795; found 245.0797.

CI S

(E)-(4-chlorophenyl)(styryl)sulfane (39). 19.7 mg, 80%, Z/E = 92:8. yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.5 Hz, 1H), 7.41 – 7.26 (m, 9H), 7.26 – 7.20 (m, 1H), 6.81 (d, J = 15.4 Hz, 0.92H), 6.73 (d, J = 15.4 Hz, 0.92H), 6.61 (d, J = 10.7 Hz, 0.08H), 6.42 (s, 0.08H).¹³C NMR (101 MHz, CDCl₃) δ 136.23, 133.82, 132.94, 132.72, 131.21, 130.92, 129.26, 128.74, 128.70, 128.32, 128.01, 127.80, 127.31, 126.07, 125.12, 122.46, 77.32, 77.00, 76.68; HR-MS (ESI) m/z calcd for C₁₄H₁₂ClS [M + H]⁺247.0343; found: 247.0345.

7. Spectral Data

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 fl (ppm)

₹77.32 ₹77.00 76.68

-21.07

90 80 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

F

90 80 fl (ppm) .70

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

fl (ppm)