Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

# **Supporting Information**

| Visible    | Light-in | duced  | Reduct | ive  | Aza-6π     |
|------------|----------|--------|--------|------|------------|
| Electrocyc | lization | Access | to     | 6-Sı | ubstituted |
| Phenanth   | ridines  |        |        |      |            |

Er-Bin Wang,<sup>a,†</sup> Qingtian Fan,<sup>a,†</sup> Xuelian Lu,<sup>b</sup> Bing Sun,<sup>\*a</sup> and Fang-Lin Zhang<sup>\*a</sup>

<sup>†</sup>School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology, Wuhan 430070, P. R. China. <sup>§</sup>Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518057, P. R. China

\*E-mail: <u>bing.sun@whut.edu.cn</u> \*E-mail: <u>fanglinzhang@whut.edu.cn</u>

### **Table of Contents**

| 1. | General information ·····2                                          |
|----|---------------------------------------------------------------------|
| 2. | Experimental section of phenanthridines construction                |
|    | 2.1 Optimization of conditions ···································· |
|    | 2.2 General procedures and characterization                         |
| 3. | Modification of celecoxib ······18                                  |
| 4. | Reference ······21                                                  |
| 5. | NMR spectra of products······ 23                                    |

### **1.** General information

General Methods. <sup>1</sup>H NMR spectra were recorded on 500 MHz spectrophotometers. Chemical shifts ( $\delta$ ) are reported in ppm from the resonance of tetramethyl silane as the internal standard (TMS: 0.00 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. All NMR spectra were recorded on a Bruker spectrometer at 500 MHz (<sup>1</sup>H NMR), 125 MHz (<sup>13</sup>C NMR) and 500 MHz (19F NMR). HRMS was recorded on Bruker micrOTOF II ESI-TOF. All air- and moisture-sensitive reactions were performed under an atmosphere of Nitrogen in fire dried glassware. Flash column chromatography was performed using 200-300 mesh silica gel. The heat source used in all heating reactions are oil bath. Unless otherwise noted, all reagents and solvents were obtained from commercial sources. Phenanthridine 3aa<sup>1</sup>, 3ab<sup>2</sup>, 3ac<sup>3</sup>, 3ad<sup>4</sup>, 3ae<sup>5</sup>, 3af<sup>3</sup>, 3ag<sup>6</sup>, 3ai<sup>6</sup>, 3aj<sup>3</sup>, 3ak<sup>7</sup>, 3an<sup>1</sup>, 3ao<sup>8</sup>, 3ap<sup>9</sup>, 3aq<sup>10</sup>, 3ar<sup>5</sup>, 3as<sup>11</sup>, 3ba<sup>12</sup>, 3da<sup>13</sup>, were known compounds, and their spectral data matched literature values. The wavelength of purple LEDs chosen in the manuscript is 385 nm

### 2. Experimental section of phenanthridines construction

### 2.1 Optimization of reaction conditions

 Table S1. Screening of solvents<sup>a</sup>

| NO <sub>2</sub><br>1a | + CHO -            | B <sub>2</sub> nep <sub>2</sub> (3.6 eq)<br>2 × 10 W purple LEDs<br>solvent, rt, 24 h<br>3aa |
|-----------------------|--------------------|----------------------------------------------------------------------------------------------|
| Entry                 | solvent            | Yield of <b>3aa</b> (%) <sup>b</sup>                                                         |
| 1                     | EtOH               | 52                                                                                           |
| 2                     | CH <sub>3</sub> CN | 43                                                                                           |
| 3                     | THF                | N.R.                                                                                         |
| 4                     | Toluene            | 63                                                                                           |
| 5                     | DCE                | 26                                                                                           |
| 6                     | PhCl               | 40                                                                                           |
| 7                     | EA                 | 41                                                                                           |
| 8                     | HFIP               | trace                                                                                        |
| 9                     | Dioxane            | N.R.                                                                                         |
| 10                    | $H_2O$             | trace                                                                                        |
| 11                    | IPA                | 49                                                                                           |

<sup>*a*</sup>A mixture of **1a** (1.0 eq, 0.2 mmol, 39.8 mg), **2a** (1.2 eq, 0.24 mmol, 28.8 mg) and B1 (3.6 eq, 0.72 mmol, 162.8 mg) were added in solvent (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of  $2 \times 10$  W LEDs. <sup>*b*</sup> isolted yields.

Table S2. Screening of reductants<sup>a</sup>



<sup>a</sup>A mixture of 1a (1.0 eq, 0.2 mmol, 39.8 mg), 2a (1.2 eq, 0.24 mmol, 28.8 mg) and reductive

(3.6 eq, 0.72 mmol, 162.8 mg) were added in Toluene (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of  $2 \times 10$  W LEDs. <sup>*b*</sup> isolted yields.

| NO <sub>2</sub> | +2               | CHO -            | B1 (3.6 eq)<br>2 × 10 W purple LED<br>Toluene, rt, 24 h | s N Me                                  |
|-----------------|------------------|------------------|---------------------------------------------------------|-----------------------------------------|
| Entry           | <b>1a</b> (x eq) | <b>2a</b> (y eq) | B1 (z eq)                                               | Yield of <b>3aa</b><br>(%) <sup>b</sup> |
| 1               | 1                | 1                | 3.6                                                     | 56                                      |
| 2               | 1                | 1.2              | 3.6                                                     | 63                                      |
| 3               | 1                | 1.5              | 3.6                                                     | 71                                      |
| 4               | 1                | 2.0              | 3.6                                                     | 71                                      |
| 5               | 1                | 1.5              | 2                                                       | 52                                      |
| 6               | 1                | 1.5              | 3                                                       | 78                                      |

Table S3. Screening of aldehyde and nitroarenes ratios and equivalent of B1<sup>a</sup>

<sup>*a*</sup>A mixture of **1a** (1.0 eq, 0.2 mmol, 39.8 mg), **2a** (1.2 eq, 0.24 mmol, 28.8 mg) and B1 (3.6 eq, 0.72 mmol, 162.8 mg) were added in toluene (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of  $2 \times 10$  W LEDs. <sup>*b*</sup> isolted yields.

 Table S4. Screening of light sources<sup>a</sup>

|    | +     | CHO                  | B1 (3.0 e<br>2 × 10 W purpl<br>Toluene, rt, | q)<br>e LEDs<br>24 h | N Me |
|----|-------|----------------------|---------------------------------------------|----------------------|------|
| 1a |       | 2a                   |                                             |                      | 3a   |
|    | Entry | light sour           | rce                                         | Yield of <b>3</b>    | aa   |
|    |       |                      |                                             | $(\%)^b$             |      |
|    | 1     | $2 \times 10$ W purp | le LEDs                                     | 78                   |      |
|    | 2     | $2 \times 3$ W purpl | e LEDs                                      | 20                   |      |
|    | 3     | $2 \times 3$ W blue  | LEDs                                        | N.R.                 |      |
|    | 4     | $2 \times 3$ W green | n LEDs                                      | N.R.                 |      |

<sup>*a*</sup>A mixture of **1a** (1.0 eq, 0.2 mmol, 39.8 mg), **2a** (1.5 eq, 0.3 mmol, 36.0 mg) and B1 (3.0 eq, 0.6 mmol, 135.7 mg) were added in toluene (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of  $2 \times 10$  W LEDs. <sup>*b*</sup> isolted yields.

|    | +<br>2 Me <sup>-</sup> | CHO <u>E</u><br>2 × 10<br>Tolu | H (3.0 eq)<br>W purple LEDs<br>uene, rt, 24 h |      |
|----|------------------------|--------------------------------|-----------------------------------------------|------|
| 1a |                        | 2a                             | 3aa                                           | IVIC |
|    | Entry                  | Toluene (x                     | Yield of <b>3aa</b>                           |      |
|    |                        | mL)                            | $(\%)^b$                                      |      |
|    | 1                      | 1.0                            | /                                             |      |
|    | 2                      | 1.5                            | /                                             |      |
|    | 3                      | 2.0                            | 78                                            |      |
|    | 4                      | 3.0                            | 78                                            |      |
|    | 5                      | 4.0                            | 79                                            |      |

Table S5. Screening of the concentration of the reaction solution<sup>a</sup>

<sup>*a*</sup>A mixture of **1a** (1.0 eq, 0.2 mmol, 39.8 mg), **2a** (1.5 eq, 0.3 mmol, 36.0 mg) and B1 (3.0 eq, 0.6 mmol, 135.7 mg) were added in toluene (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of  $2 \times 10$  W LEDs. <sup>*b*</sup> isolted yields.

Table S6. Control experiment<sup>a</sup>

|       | + CHO B1 (3.0 eq)<br>2 × 10 W purple LEDs<br>Toluene, rt, 24 h<br>1a 2a | ► C N Me<br>3aa                      |
|-------|-------------------------------------------------------------------------|--------------------------------------|
| Entry | Deviation from the standard conditions                                  | Yield of <b>3aa</b> (%) <sup>b</sup> |
| 1     | dark                                                                    | N.R.                                 |
| 2     | $N_2$                                                                   | 75                                   |
| 3     | air                                                                     | 78                                   |

<sup>*a*</sup>A mixture of **1a** (1.0 eq, 0.2 mmol, 39.8 mg), **2a** (1.5 eq, 0.3 mmol, 36.0 mg) and B1 (3.0 eq, 0.6 mmol, 135.7 mg) were added in toluene (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of  $2 \times 10$  W LEDs. <sup>*b*</sup> isolted yields.

 Table S7. Screening of additives<sup>a</sup>

|       | +                                                    | B1 (3.0 eq)<br>additive<br>10 W purple LEDs<br>oluene, rt, 24 h |                                         |
|-------|------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|
|       | 1a 2n                                                |                                                                 | 3an                                     |
| Entry | Additive                                             | Equivalent                                                      | Yield of <b>3an</b><br>(%) <sup>b</sup> |
| 1     | /                                                    | /                                                               | 27                                      |
| 2     | $CF_3SO_3H$                                          | 0.2                                                             | trace                                   |
| 3     | MeSO <sub>3</sub> H                                  | 0.2                                                             | trace                                   |
| 4     | CF <sub>3</sub> COOH                                 | 0.2                                                             | 66                                      |
| 5     | PhCOOH                                               | 0.2                                                             | 25                                      |
| 6     | C <sub>6</sub> F <sub>5</sub> COOH                   | 0.2                                                             | 44                                      |
| 7     | PivOH                                                | 0.2                                                             | 58                                      |
| 8     | HFIP                                                 | 2.0                                                             | 75                                      |
| 9     | 4CzIPN                                               | 0.01                                                            | 26                                      |
| 10    | Mes-Acr <sup>+</sup> ClO <sub>4</sub> <sup>-</sup>   | 0.01                                                            | 20                                      |
| 11    | (Ir[dF(CF <sub>3</sub> )ppy] <sub>2</sub> (dtbpy))PF | <sub>6</sub> 0.01                                               | 18                                      |
| 12    | Eosin Y                                              | 0.01                                                            | 16                                      |
| 13    | $[Ru(bpy)_3]Cl_2$                                    | 0.01                                                            | 14                                      |

B1 (3.0 eq)

Í

<sup>a</sup>A mixture of **1a** (1.0 eq, 0.2 mmol, 39.8 mg), **2n** (1.5 eq, 0.3 mmol, 46.8 mg) and B1 (3.0 eq, 0.6mmol, 135.7 mg) were added in toluene (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of 2 ×10 W LEDs. <sup>b</sup>isolted yields.

|       | + C      | CH3CHO | B1 (3.0<br>additi<br>2 × 10 W pu<br>Toluene, | ) eq)<br>ive<br>rple LEDs<br>rt, 24 h | N Me                            |
|-------|----------|--------|----------------------------------------------|---------------------------------------|---------------------------------|
| 1a    |          | 2r     |                                              |                                       | 3ar                             |
| Entry | Additive | Equiv  | valent (eq)                                  | Yield c<br>(%)                        | of <b>3ar</b><br>) <sup>b</sup> |
| 1     | /        |        | /                                            | 15                                    | 5                               |
| 2     | HFIP     |        | 2.0                                          | 21                                    |                                 |
| 3     | 4CzIPN   |        | 0.01                                         | 46                                    | <u>,</u>                        |

Table S8. Screening of additives when the aldehyde is 3 equivalent<sup>a</sup>

<sup>a</sup>A mixture of **1a** (1.0 eq, 0.2 mmol, 39.8 mg), **2r** (3.0 eq, 0.6 mmol, 26.4 mg) and B1 (3.0 eq, 0.6 mmol, 135.7 mg) were added in toluene (2.0 mL, 0.1 M) and stirred at rt for 24 h under irradiation of 2 ×10 W LEDs. <sup>b</sup>isolted yields.

In order to explain the role of HFIP in the reaction, we performed control experiments in the absence of nitroaromatics

#### Table S9. Control experiments

|       | NO <sub>2</sub> H1 (3<br>add<br>Toluen<br>2 × 10 W pu | 8.0 eq)<br>litive<br>e (0.1 M)<br>rple LEDs, 12 h | NH <sub>2</sub> |
|-------|-------------------------------------------------------|---------------------------------------------------|-----------------|
|       | 2a                                                    | Ι                                                 |                 |
| Entry | Additive                                              | Yield of I                                        | Time            |
| 1     | /                                                     | 50%                                               | 12 h            |
| 2     | 4CZIPN (1 mol%)                                       | 52%                                               | 12 h            |
| 3     | HFIP (3.0 eq)                                         | 80%                                               | 12 h            |
| 4     | HFIP (3.0 eq)                                         | 76%                                               | 6 h             |

In order to test whether B-reactants, in addition to acting as a reducing agent, acts as a Lewis acid ligated with imine to assist in the completion of the subsequent electrocyclisation, we carried out the following experiments.



Scheme S1 Stepwise synthesis.

When a large amount of imine generation was monitored in reaction solution 1, UV

absorption experiments were performed. Similar to A-1, UV-visible absorption experiments were carried out after the addition of  $B_2nep_2$  and continuous stirring for 15 min following the detection of large amounts of imine formation in reaction A-2. As shown in Fig. S1



Fig. S1 UV absorption spectra

It can be seen in the figure that the UV absorption in the reaction solution was weakly enhanced at 380 nm under the condition of  $B_2nep_2$  addition, which indicated that  $B_2nep_2$  not only acted as a reducing agent, but also acted as a Lewis acid ligated with imine to assist the subsequent electrocyclisation reaction.

#### 2.2 General procedures and characterization

#### General procedure A

In a dry Schlenk tube, a mixture of 2-nitrobiphenyl (1.0 eq , 0.2 mmol, 39.8 mg), benzaldehyde (1.5 eq, 0.3 mmol, 36.0 mg) and B1 (3.0 eq, 0.6 mmol, 135.7 mg) in toluene (2.0 mL), was stirred under  $2 \times 10$  W purple LEDs for 24 hours until the 2-nitrobiphenyl was consumed completely, which was determined by TLC analysis. The residue was purified by column chromatography on silica gel to afford the desired

product.

#### **General procedure B**

In a dry Schlenk tube, a mixture of 2-nitrobiphenyl (1.0 eq, 0.2 mmol, 39.8 mg), benzaldehyde (1.5 eq, 0.3 mmol, 36.0 mg), B1 (3.0 eq, 0.6 mmol, 135.7 mg) and HFIP (2.0 eq, 0.4 mmol, 67.2 mg) in toluene (2.0 mL), was stirred under  $2 \times 10$  W purple LEDs for 24 hours until the 2-nitrobiphenyl was consumed completely, which was determined by TLC analysis. The residue was purified by column chromatography on silica gel to afford the desired product.

#### **General procedure C**

In a dry Schlenk tube, a mixture of 2-nitrobiphenyl (1.0 eq, 0.2 mmol, 39.8 mg), benzaldehyde (3.0 eq, 0.6 mmol, 36.0 mg), B1 (3.0 eq, 0.6 mmol, 135.7 mg) and 4CzIPN (1 mol%) in toluene (2.0 mL), was stirred under  $2 \times 10$  W purple LEDs for 24 hours until the 2-nitrobiphenyl was consumed completely, which was determined by TLC analysis. The residue was purified by column chromatography on silica gel to afford the desired product.

#### 6-(p-Tolyl)phenanthridine (3aa)<sup>1</sup>



According to **procedure A**. Light yellow solid, 78% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.70 (d, J = 8.3 Hz, 1H), 8.61 (d, J = 8.2 Hz, 1H), 8.25 (d, J = 8.1 Hz, 1H), 8.15 (d, J = 8.2 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.78 –

7.73 (m, 1H), 7.67 (dd, J = 19.9, 8.0 Hz, 3H), 7.63 – 7.59 (m, 1H), 7.38 (d, J = 7.6 Hz, 2H), 2.49 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 161.3, 143.9, 138.6, 137.0, 133.5, 130.5, 130.4, 129.7, 129.1, 129.0, 128.8, 127.1, 126.8, 125.4, 123.7, 122.2, 121.9, 21.4.

### 6-(4-(*tert*-Butyl)phenyl)phenanthridine (3ab)<sup>2</sup>

<sup>t</sup>Bu

According to procedure A. Yellow solid, 62% yield. <sup>1</sup>H NMR

(500 MHz, CDCl<sub>3</sub>) δ 8.70 (d, *J* = 8.3 Hz, 1H), 8.62 (d, *J* = 8.2 Hz, 1H), 8.26 (d, *J* = 8.1 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.85 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.72 – 7.66 (m, 3H), 7.65 – 7.56 (m, 3H), 1.42 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 161.4, 151.8, 143.9, 136.9, 133.5, 130.5, 130.4, 129.5, 129.1, 128.8, 127.1, 126.8, 125.4, 125.3, 123.7, 122.2, 121.9, 34.8, 31.4.

#### 6-([1,1'-Biphenyl]-4-yl)phenanthridine (3ac)<sup>3</sup>



According to **procedure A**. White solid, 65% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.72 (d, J = 8.3 Hz, 1H), 8.63 (d, J = 8.1 Hz, 1H), 8.29 (d, J = 8.2 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.90 – 7.76 (m, 6H), 7.72 (d, J = 7.6 Hz, 3H), 7.65 (t, J = 7.7 Hz, 1H),

7.51 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 161.0, 143.9, 141.7, 140.9, 138.8, 133.5, 130.6, 130.4, 130.3, 128.9, 128.9, 127.6, 127.3, 127.3, 127.2, 127.0, 125.3, 123.8, 122.3, 122.0.

#### 6-(4-Methoxyphenyl)phenanthridine (3ad)<sup>4</sup>



According to **procedure A**. Light yellow solid, 78% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.69 (d, J = 8.3 Hz, 1H), 8.60 (d, J = 8.2 Hz, 1H), 8.24 (d, J = 8.2 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.85 (t, J = 7.6 Hz, 1H), 7.78 – 7.70 (m, 3H), 7.67 (t, J = 7.6 Hz,

1H), 7.62 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 8.6 Hz, 2H), 3.92 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 160.9, 160.2, 143.9, 133.5, 132.3, 131.2, 130.5, 130.3, 129.0, 128.8, 127.1, 126.8, 125.4, 123.6, 122.2, 121.9, 113.9, 55.5.

#### 6-(4-Chlorophenyl)phenanthridine (3ae)<sup>5</sup>



According to **procedure A**. White solid, 52% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.72 (d, J = 8.3 Hz, 1H), 8.62 (d, J = 8.2 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.88 (t, J

= 7.6 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.1 Hz, 3H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 160.0,

143.7, 138.2, 134.9, 133.5, 131.2, 130.7, 130.4, 129.0, 128.7, 128.5, 127.3, 127.2, **S10**/61 125.0, 123.8, 122.4, 122.0.

#### 6-(4-(Trifluoromethyl)phenyl)phenanthridine (3af)<sup>3</sup>



According to procedure A. White solid, 51% yield. <sup>1</sup>H NMR CF<sub>3</sub>  $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.74 \text{ (d, } J = 8.3 \text{ Hz}, 1\text{H}), 8.65 \text{ (d, } J = 8.2 \text{ Hz})$ Hz, 1H), 8.25 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.93 -7.81 (m, 5H), 7.79 (t, J = 7.5 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -62.58. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 143.7, 143.4, 133.5, 130.85 (q, *J* = 32.8 Hz), 130.42, 130.18, 129.09, 128.34, 127.41, 125.47 (q, J = 3.8 Hz), 124.91 (q, J = 272.7 Hz), 122.43, 122.04.

#### Methyl 4-(phenanthridin-6-yl)benzoate (3ag)<sup>6</sup>



According to procedure B. Light yellow solid, 40% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.74 (d, J = 8.3 Hz, 1H), 8.65 (d, J = 8.1 Hz, 1H), 8.27 (dd, J = 14.6, 8.0 Hz, 3H), 8.04 (d, J =8.2 Hz, 1H), 7.90 (t, J = 7.7 Hz, 1H), 7.83 (d, J = 7.9 Hz, 2H),

7.79 (t, *J* = 7.5 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.7 Hz, 1H), 3.99 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 166.9, 160.2, 144.3, 143.7, 133.5, 130.8, 130.4, 130.3, 129.9, 129.7, 129.0, 128.5, 127.3, 127.3, 125.0, 123.9, 122.4, 122.0, 52.3.

#### 6-(3-Fluorophenyl)phenanthridine (3ah)



According to procedure A. White solid, 59% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.71 (d, J = 8.3 Hz, 1H), 8.62 (d, J = 8.2 Hz, 1H), 8.26 (d, J = 8.5 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.87 (t, J = 7.7 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.64 (t,

J = 7.6 Hz, 1H), 7.57 - 7.51 (m, 2H), 7.48 (dd, J = 9.5, 2.6 Hz, 1H), 7.26 - 7.21 (m, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -112.80. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 162.8 (d, J = 246.8 Hz), 159.8 (d, J = 2.3 Hz), 143.6, 141.9 (d, J = 7.3 Hz), 133.5, 130.8, 130.4, 130.1 (d, J = 8.2 Hz), 129.0, 128.6, 127.3 (d, J = 8.9 Hz), 125.6 (d, J = 3.0 Hz), 125.0, 123.9, 122.3, 122.0, 116.9 (d, J = 22.3 Hz), 115.7 (d, J = 21.0 Hz).**HRMS** (ESI) m/z: S11 / 61

 $[M+H]^+$  calcd for C<sub>19</sub>H<sub>12</sub>FN 274.1027, found 274.1024.

#### 3-(Phenanthridin-6-yl)benzonitrile (3ai)<sup>6</sup>



1H), 7.68 (dt, *J* = 10.6, 7.4 Hz, 2H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 158.6, 143.6, 141.1, 134.2, 133.6, 133.4, 132.3, 131.0, 130.4, 129.4, 129.2, 128.0, 127.6, 127.5, 124.7, 123.9, 122.6, 122.1, 118.6, 112.9.

#### 6-(3-Methoxyphenyl)phenanthridine (3aj)<sup>3</sup>



According to **procedure A**. Light yellow solid, 73% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.69 (d, *J* = 8.3 Hz, 1H), 8.61 (d, *J* = 8.2 Hz, 1H), 8.29 (d, *J* = 8.1 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.86 (t, *J* = 7.7 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.6

Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.31 (d, J = 7.4 Hz, 2H), 7.09 (dd, J = 7.7, 2.2 Hz, 1H), 3.89 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.1, 159.7, 143.4, 140.7, 133.5, 130.8, 130.2, 129.5, 129.1, 129.0, 127.2, 127.1, 125.2, 123.8, 122.3, 122.2, 122.0, 115.1, 114.9, 55.5.

#### 6-(2-Methoxyphenyl)phenanthridine (3ak)<sup>7</sup>



According to **procedure A**. Light yellow solid, 65% yield. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.67 (d, *J* = 8.3 Hz, 1H), 8.62 (d, *J* = 8.3 Hz, 1H), 8.27 (d, *J* = 8.2 Hz, 1H), 7.85 – 7.80 (m, 1H), 7.79 – 7.73 (m, 2H), 7.71 – 7.66 (m, 1H), 7.59 – 7.54 (m, 1H), 7.53 – 7.46 (m, 2H),

7.16 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 3.69 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 160.0, 157.4, 144.0, 132.8, 130.9, 130.5, 130.4, 130.2, 129.0, 128.7, 127.1, 126.9, 126.9, 126.2, 124.1, 122.0, 121.9, 121.1, 111.2, 55.6.



According to **procedure A**. Light yellow solid, 72% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.70 (d, J = 8.3 Hz, 1H), 8.64 (d, J= 6.7 Hz, 1H), 8.27 (d, J = 8.1 Hz, 1H), 7.85 (t, J = 7.6 Hz, 1H), 7.80 – 7.69 (m, 3H), 7.58 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 9.6

Hz, 1H), 6.98 (d, J = 7.9 Hz, 2H), 3.82 (s, 3H), 2.03 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.8, 157.7, 143.8, 140.0, 133.0, 131.4, 130.7, 130.4, 128.9, 128.7, 128.5, 127.4, 127.0, 125.7, 123.9, 122.1, 122.0, 114.8, 114.4, 55.4, 18.8. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>17</sub>NO 300.1383, found 300.1390.

#### 6-(2,4,5-Trimethylphenyl)phenanthridine (3am)



According to **procedure B**. Light yellow gum, 66% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.69 (d, *J* = 8.3 Hz, 1H), 8.63 (d, *J* = 8.1 Hz, 1H), 8.26 (d, *J* = 8.1 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.70 (t, *J* = 7.9 Hz, 1H), 7.57 (t, *J* = 7.6

Hz, 1H), 7.19 (s, 1H), 7.14 (s, 1H), 2.35 (s, 3H), 2.30 (s, 3H), 2.05 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 162.3, 143.9, 136.8, 136.7, 133.9, 133.5, 133.0, 131.6, 130.6, 130.4, 130.4, 128.9, 128.8, 127.3, 126.8, 126.0, 123.8, 122.1, 122.0, 19.6, 19.3, 19.3. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>22</sub>H<sub>19</sub>N 298.1590, found 298.1587.

#### 6-(Naphthalen-2-yl)phenanthridine (3an)<sup>1</sup>



According to **procedure B**. White solid, 75% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.73 (d, J = 8.3 Hz, 1H), 8.65 (d, J = 8.3 Hz, 1H), 8.30 (d, J = 8.2 Hz, 1H), 8.25 (s, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 8.00 – 7.93 (m, 2H), 7.91 –

7.84 (m, 2H), 7.79 (t, *J* = 7.6 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.64 – 7.55 (m, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 161.2, 143.9, 137.3, 133.5, 133.4, 133.3, 130.6, 130.4, 129.3, 129.0, 128.9, 128.5, 128.1, 127.8, 127.4, 127.2, 127.0, 126.6, 126.5, 125.4, 123.8, 122.3, 122.0.

#### 6-(Naphthalen-1-yl)phenanthridine (3ao)<sup>8</sup>

According to **procedure B**. White solid, 71% yield. <sup>1</sup>H NMR (500 S13 / 61

MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (d, J = 8.3 Hz, 1H), 8.70 (d, J = 8.2 Hz, 1H), 8.30 (d, J = 8.0 Hz, 1H), 8.03 (dd, J = 7.2, 2.4 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.85 (t, J = 7.6 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.78 – 7.73 (m, 1H), 7.70 – 7.63 (m, 3H), 7.52 – 7.46 (m, 2H), 7.44 (d, J = 8.5 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.1, 143.8, 137.1, 133.8, 133.1, 132.3, 130.9, 130.4, 129.2, 129.1, 129.0, 128.9, 128.3, 127.4, 127.3, 127.2, 126.6, 126.4, 126.1, 126.0, 125.4, 124.0, 122.1.

#### 6-(Thiophen-3-yl)phenanthridine (3ap)<sup>9</sup>



4.9 Hz, 1H), 7.52 (dd, *J* = 5.0, 3.0 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 156.5, 143.9, 140.9, 133. 4, 130.6, 130.3, 129.3, 128.9, 128.5, 127.3, 127.0, 126.4, 125.8, 125.5, 123.7, 122.2, 122.0.

#### Phenanthridine (3aq)<sup>10</sup>

According to **procedure C**. White solid, 33% yield. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 9.29 (s, 1H), 8.60 (dd, *J* = 15.1, 8.2 Hz, 2H), 8.20 (d, *J* = 8.1 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 7.7 Hz, 1H), 7.78 – 7.67 (m, 3H). <sup>13</sup>**C NMR** (12 6 MHz, CDCl<sub>3</sub>) δ 153.6, 144.5, 132.6, 131.0, 130.2, 128.8, 128.7, 127.5, 127.1, 126.4, 124.1, 122.2, 121.9.

#### **6-Methylphenanthridine** (3ar)<sup>5</sup>

Me According to **procedure C**. Light yellow solid, 45% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, J = 8.2 Hz, 1H), 8.54 (d, J = 8.1 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.86 – 7.81 (m, 1H),

7.74 – 7.67 (m, 2H), 7.62 (t, *J* = 7.6 Hz, 1H), 3.05 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 158.9, 143.7, 132.6, 130.5, 129.4, 128.7, 127.3, 126.6, 126.4, 126.0, 123.8, 122.3, 122.0, 23.4.

#### 6-Cyclohexylphenanthridine (3as)<sup>11</sup>



1.57 (t, J = 12.8 Hz, 2H), 1.45 (t, J = 12.8 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ 165.3, 143.9, 133.0, 130.0, 129.9, 128.4, 127.1, 126.1, 125.6, 124.8, 123.4, 122.6, 121.8, 42.0, 32.3, 26.9, 26.3.

#### 8-Methyl-6-(p-tolyl)phenanthridine (3ba)<sup>12</sup>



According to **procedure B**. Light yellow gum, 60% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 – 8.55 (m, 2H), 8.23 (d, J = 8.2 Hz, 1H), 7.91 (s, 1H), 7.75 – 7.70 (m, 1H), 7.66 (dd, J = 13.8, 8.3 Hz, 4H), 7.39 (d, J = 7.6 Hz, 2H), 2.51 (s, 3H), 2.50 (s, 3H). <sup>13</sup>C

**NMR** (126 MHz, CDCl<sub>3</sub>) δ 161.1, 143.6, 138.5, 137.1, 137.1, 132.2, 131.3, 130.3, 129.7, 129.1, 128.3, 128.3, 126.7, 125.5, 123.8, 122.1, 121.8, 21.8, 21.4.

#### 8-(*tert*-Butyl)-6-(p-tolyl)phenanthridine (3ca)



According to **procedure B**. Light yellow solid, 43% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.63 (d, *J* = 8.7 Hz, 1H), 8.58 (d, *J* = 8.2 Hz, 1H), 8.25 (d, *J* = 8.1 Hz, 1H), 8.18 (d, *J* = 2.0 Hz, 1H), 7.94 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.75 – 7.63 (m, 4H), 7.39 (d, *J* =

7.5 Hz, 2H), 2.50 (s, 3H), 1.39 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 161.4, 150.1, 143.7, 138.6, 137.0, 131.4, 130.2, 129.8, 129.1, 128.8, 128.4, 126.7, 125.2, 124.7, 123.7, 122.1, 121.8, 35.1, 31.3, 21.5. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>23</sub>N 326.1903, found 326.1911.

8-Methoxy-6-(p-tolyl)phenanthridine (3da)<sup>13</sup> \$15/61



According to **procedure B**. Light yellow solid, 58% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.61 (d, J = 9.0 Hz, 1H), 8.52 (d, J = 7.8 Hz, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.68 (dd, J = 19.2, 7.4 Hz, 4H), 7.53 – 7.46 (m, 2H), 7.37 (d, J = 7.6 Hz, 2H), 3.84 (s, 3H),

2.48 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 160.5, 158.5, 143.1, 138.6, 137.0, 130.3, 129.5, 129.2, 127.9, 127.8, 126.9, 126.7, 123.9, 123.8, 121.4, 121.0, 109.1, 55.5, 21.4.

### 8-(Methylthio)-6-(*p*-tolyl)phenanthridine (3ea)



According to **procedure B**. Light yellow gum, 20% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.58 (d, J = 8.7 Hz, 1H), 8.54 (d, J = 8.2 Hz, 1H), 8.21 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 2.0 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.68 – 7.62 (m, 3H), 7.37 (d, J = 7.7 Hz,

2H), 2.50 (s, 3H), 2.48 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  160.5, 143.6, 138.7, 138.1, 136.7, 130.9, 130.4, 129.6, 129.4, 129.2, 128.5, 127.0, 125.8, 125.1, 123.6, 122.7, 121.7, 21.4, 15.8. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>17</sub>NS 316.1154, found 316.1166.

#### 6-(p-Tolyl)phenanthridine-8-carbonitrile (3fa)



According to **procedure A**. White solid, 58% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.77 (d, *J* = 8.6 Hz, 1H), 8.59 (d, *J* = 8.2 Hz, 1H), 8.49 (d, *J* = 1.7 Hz, 1H), 8.27 (d, *J* = 8.2 Hz, 1H), 8.01 (d, *J* = 8.3 Hz, 1H), 7.85 (t, *J* = 7.6 Hz, 1H), 7.74 (t, *J* = 7.0 Hz, 1H),

7.61 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 2.51 (s, 3H).<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  160.5, 144.8, 139.5, 136.1, 135.6, 134.4, 131.7, 130.7, 130.6, 129.7, 129.5, 127.7, 124.8, 123.6, 122.5, 122.4, 118.6, 110.6, 21.4. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>14</sub>N<sub>2</sub> 295.1230, found 295.1233.

### Methyl 6-(p-tolyl)phenanthridine-8-carboxylate (3ga)

According to procedure A. White solid, 53% yield. <sup>1</sup>H NMR S16/61

(500 MHz, CDCl<sub>3</sub>)  $\delta$  8.86 (d, J = 1.7 Hz, 1H), 8.69 (d, J = 8.7 Hz, 1H), 8.58 (d, J = 8.2 Hz, 1H), 8.42 (dd, J = 8.6, 1.8 Hz, 1H), 8.24 (d, J = 6.7 Hz, 1H), 7.79 (t, J = 6.9 Hz, 1H), 7.69 (d, J = 6.9 Hz, 1H), 7.67 – 7.64 (m, 2H), 7.40 (d, J = 7.8 Hz, 2H), 3.94 (s, 3H), 2.50 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 161.6, 144.7, 139.0, 136.5, 136.4, 131.2, 130.5, 130.2, 129.9, 129.8, 129.3, 128.6, 127.2, 124.7, 122.8, 122.6, 122.5, 52.4, 21.5. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>22</sub>H<sub>17</sub>NO<sub>2</sub> 328.1332, found 328.1345.

#### 5-(*p*-Tolyl)benzo[i]phenanthridine (3ha)



According to **procedure B**. Light yellow solid, 43% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.65 (dd, *J* = 8.7, 4.3 Hz, 2H), 8.27 (d, *J* = 8.2 Hz, 1H), 8.17 (d, *J* = 8.9 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.7 Hz, 1H), 7.81 – 7.76 (m, 1H), 7.72 – 7.67

(m, 1H), 7.53 (d, J = 8.1 Hz, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.24 (t, J = 7.1 Hz, 1H), 2.48 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.4, 144.2, 141.8, 138.3, 134.3, 133.2, 132.3, 130.4, 130.0, 129.8, 129.0, 128.8, 128.4, 128.4, 126.7, 126.4, 125.8 123.6, 122.4, 121.5, 119.9, 21.5. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>17</sub>N 320.1434, found 320.1444.

#### 2-Methoxy-5-(*p*-tolyl)benzo[i]phenanthridine (3la)



According to **procedure B**.Light yellow solid, 49% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (t, J = 8.2 Hz, 2H), 8.25 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 8.9 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.70 – 7.65 (m, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.31 (d, J = 7.6

Hz, 2H), 7.28 (d, J = 2.8 Hz, 1H), 6.88 (dd, J = 9.5, 2.8 Hz, 1H), 3.93 (s, 3H), 2.48 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.1, 157.7, 143.8, 141.8, 138.2, 134.9, 132.8, 131.5, 129.9, 129.9, 129.8, 128.8, 128.5, 126.7, 124.9, 123.7, 122.2, 121.8, 120.5, 116.8, 107.8, 55.3, 21.5. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>19</sub>NO 350.1539, found 350.1549.

### 5-(p-Tolyl)benzo[i]phenanthridine (3ja)



According to **procedure B**. Light yellow solid, 60% yield. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.60 (d, *J* = 8.9 Hz, 1H), 8.51 (d, *J* = 8.5 Hz, 1H), 8.13 (d, *J* = 9.0 Hz, 1H), 8.07 (s, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.54 –

7.46 (m, 4H), 7.31 (d, J = 7.8 Hz, 2H), 7.25 – 7.20 (m, 1H), 2.61 (s, 3H), 2.48 (s, 3H).13C NMR (126 MHz, CDC13)  $\delta$  159.36, 144.25, 141.82, 139.24, 138.18, 134.40, 133.03, 132.19, 130.49, 129.72, 129.23, 128.82, 128.70, 128.40, 128.31, 126.16, 125.76, 122.21, 121.38, 121.07, 119.92, 21.63, 21.47. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>19</sub>N 334.1590, found 334.1581.

#### **3,8-Dimethoxy-6-**(*p***-tolyl)phenanthridine (3ka)**



According to **procedure B**. Light yellow solid, 22% yield. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 9.0 Hz, 1H), 8.36 (d, J = 9.1 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 2.7 Hz, 1H), 7.46 (d, J = 2.6 Hz, 1H), 7.42 (dd, J = 9.0, 2.7 Hz,

1H), 7.37 (d, J = 7.8 Hz, 2H), 7.27 (dd, J = 8.9, 2.5 Hz, 1H), 3.96 (s, 3H), 3.81 (s, 3H), 2.48 (s, 3H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.0, 159.5, 157.6, 144.6, 138.5, 137.2, 129.5, 129.2, 128.2, 125.6, 123.3, 122.6, 121.3, 118.1, 117.9, 109.9, 108.8, 55. 6, 55.4, 21.4. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>22</sub>H<sub>19</sub>NO<sub>2</sub> 330.1489, found 330.1498.

#### 10-Methoxy-3-methyl-6-(*p*-tolyl)phenanthridine (3la)



According to **procedure B**. Near white solid, 35% yield. <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.40 (d, J = 8.7 Hz, 1H), 8.05 (s, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 8.1 Hz, 2H), 7.53 -7.46 (m, 2H), 7.35 (d, J = 7.7 Hz, 2H), 7.30 (d, J = 8.0 Hz,

1H), 4.16 (s, 3H), 2.59 (s, 3H), 2.47 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 161.1, 158.0, 144.6, 138.3, 138.1, 137.7, 129.7, 129.6, 129.0, 128.3, 127.6, 127.3, 126.5, **S18**/61 124.1, 121.5, 121.1, 111.4, 55.9, 21.4. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>22</sub>H<sub>19</sub>NO 314.1539, found 314.1548.

### 2-Aminobiphenyl (I)

White solid, 80% yield. <sup>1</sup>H NMR (500 MHz, Chloroform-d)  $\delta$  7.52 – 7.46 (m, 4H), 7.42 – 7.36 (m, 1H), 7.23 – 7.15 (m, 2H), 6.87 (td, J = 7.4, 1.2 Hz, 1H), 6.81 (dd, J = 7.9, 1.2 Hz, 1H), 3.77 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  143.53, 139.59, 130.46, 129.11, 128.81, 128.50, 127.68, 127.16, 118.65, 115.61. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>11</sub>N 170.0964, found 170.0967.

### 3. Modification of celecoxib



4-(5-(4-(Phenanthridin-6-yl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-

yl)benzenesulfonamide (5)



According to **procedure A**. White solid, 61% yield. <sup>1</sup>H **NMR** (500 MHz, DMSO-d6)  $\delta$  8.93 (d, J = 8.0 Hz, 1H), 8.83 (d, J = 8.3 Hz, 1H), 8.10 (dd, J = 8.1, 1.4 Hz, 1H), 7.95 (dd, J = 15.6, 8.2 Hz, 4H), 7.80 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 7.77 – 7.72 (m, 4H), 7.69 – 7.64 (m, 2H), 7.53 (d, J = 8.2 Hz, 4H), 7.36 (s, 1H). <sup>19</sup>F NMR (471 MHz, DMSO-d6)  $\delta$  -60.81. <sup>13</sup>C NMR (126 MHz,

DMSO- d6)  $\delta$  159.99, 145.28, 144.64, 143.60, 142.83 (q, *J* = 37.9 Hz), 141.56, 140.52, 133.30, 130.20, 130.0 (q, *J* = 152.5 Hz), 129.66, 129.04, 128.33, 127.95, 127.45, 126.59, 124.66, 123.78, 123.41, 123.19, 121.78 (q, *J* = 268.4 Hz), 107.31. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>19</sub>F<sub>3</sub>N<sub>4</sub>O<sub>2</sub>S 545.1254, found 545.1249.

### 4. Reference

1, Kobayashi, E.; Kishi, A.; Togo, H. 6-Arylphenanthridines from Aryl *o*-Biaryl Ketones with 1, 1, 1, 3, 3, 3-Hexamethyldisilazane and Molecular Iodine. *Eur. J. Org. Chem.* **2019**, *2019*, 7335-7347.

2, Li, J.; Wang, H.; Sun, J.; Yang, Y.; Liu, L. Synthesis of phenanthridine derivatives via cascade annulation of diaryliodonium salts and nitriles. *Org. Biomol. Chem.* **2014**, *12*, 7904-7908.

3, Jaiswal, Y.; Kumar, Y.; Pal, J. Subramanian, R.; Kumar, A. Rapid Synthesis of Polysubstituted Phenanthridines from Simple Aliphatic/Aromatic Nitriles and Iodo Arenes via Pd(II) Catalyzed Domino C–C/C–C/C–N Bond Formation. *Chem. Comm.* **2018**, *54*, 7207-7210.

4, Lu, R.; Cao, L.; Guan, H.; Liu, L. Iron-catalyzed aerobic dehydrogenative kinetic resolution of cyclic secondary amines. *J. Am. Chem. Soc.* **2019**, *141*, 6318-6324.

5, Kishi, A.; Moriyama, K.; Togo, H. Preparation of phenanthridines from *o*-cyanobiaryls via addition of organic lithiums to nitriles and imino radical cyclization with iodine. *J. Org. Chem.* **2018**, *83*, 11080-11088.

6, Korotvička, A.; Frejka, D.; Hampejsová, Z.; Císařová, I.; Kotora, M. Synthesis of Phenanthridines via a Rhodium-Catalyzed C–C Bond Cleavage Reaction of Biphenylene with Nitriles. *Synthesis*. **2016**, *48*, 987-996.

7, Pawlas, J.; Begtrup, M. A one-pot access to 6-substituted phenanthridines from fluoroarenes and nitriles via 1, 2-arynes. *Org. Lett.* **2002**, *4*, 2687-2690.

8, Chen, Y.-F.; Hsieh, J.-C. Synthesis of Polysubstituted Phenanthridines via Ligand-Free Copper-Catalyzed Annulation. *Org. Lett.* **2014**, *16*, 4642-4645.

 Ramanathan, M.; Liu, S.-T. Preparation of Substituted Phenanthridines from the Coupling of Aryldiazonium Salts with Nitriles: A Metal Free Approach. *J. Org. Chem.* 2015, *80*, 5329-5336.

10, Kim, K. D.; Lee, J. H. Visible-Light Photocatalyzed Deoxygenation of N-Heterocyclic N-Oxides. *Org. Lett.* **2018**, *20*, 7712-7716.

11, Huang, C.; Wang, J.-H. Qiao, J.; Fan, X.-W.; Chen, B.; Tung, C.-H.; Wu, L.-Z.

Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. *J. Org. Chem.* **2019**, *84*, 12904-12912.

12, Maiti, D.; Halder, A.; De Sarkar, S. Base-Promoted Aerobic Oxidation/Homolytic Aromatic Substitution Cascade toward the Synthesis of Phenanthridines. *Adv. Synth. Catal.* **2019**, *361*, 4941-4948.

13, Liu, S.; Pan, W.; Wu, S.; Bu, X.; Xin, S.; Yu, J.; Xu, H.; Yang, X. Visible-Light-Induced Tandem Radical Addition–Cyclization of 2-Aryl Phenyl Isocyanides Catalysed by Recyclable Covalent Organic Frameworks. *Green Chem.* **2019**, *21*, 2905-2910.

# 5. NMR Spectra of compounds.



fl (ppm) 



# 500 Hz <sup>1</sup>H NMR spectrum of **3ac** in CDCl<sub>3</sub>



126 Hz  $^{13}$ C { $^{1}$ H} NMR spectrum of **3ac** in CDCl<sub>3</sub>





# 500 Hz <sup>1</sup>H NMR spectrum of **3ae** in CDCl<sub>3</sub>



126 Hz  $^{13}$ C { $^{1}$ H} NMR spectrum of **3ae** in CDCl<sub>3</sub>



# 500 Hz $^{1}$ H NMR spectrum of **3af** in CDCl<sub>3</sub>

#### 8,745 8,6745 8,657 8,8537 8,8537 8,8254 8,8254 8,8254 8,8258 8,8258 8,8258 8,8258 8,8258 8,8258 8,8258 8,8258 8,8258 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,7



471 Hz  $^{19}F$  {<sup>1</sup>H} NMR spectrum of **3af** in CDCl<sub>3</sub>



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)





500 Hz <sup>1</sup>H NMR spectrum of **3ah** in CDCl<sub>3</sub>

# 



126 Hz<sup>13</sup>C {<sup>1</sup>H} NMR spectrum of **3ah** in CDCl<sub>3</sub>









500 Hz <sup>1</sup>H NMR spectrum of **3aj** in CDCl<sub>3</sub>



126 Hz  $^{13}C$  {<sup>1</sup>H} NMR spectrum of **3aj** in CDCl<sub>3</sub>











126 Hz  $^{13}$ C { $^{1}$ H} NMR spectrum of **3am** in CDCl<sub>3</sub>



# 500 Hz <sup>1</sup>H NMR spectrum of **3an** in CDCl<sub>3</sub>







500 Hz <sup>1</sup>H NMR spectrum of **3ao** in CDCl<sub>3</sub>

### 





126 Hz<sup>13</sup>C {<sup>1</sup>H} NMR spectrum of **3ao** in CDCl<sub>3</sub>



# 500 Hz <sup>1</sup>H NMR spectrum of **3ap** in CDCl<sub>3</sub>

# 





# 126 Hz $^{13}C$ {<sup>1</sup>H} NMR spectrum of **3ap** in CDCl<sub>3</sub>





126 Hz  $^{13}C$  {1H} NMR spectrum of **3aq** in CDCl<sub>3</sub>



500 Hz <sup>1</sup>H NMR spectrum of **3ar** in CDCl<sub>3</sub>





500 Hz <sup>1</sup>H NMR spectrum of **3as** in CDCl<sub>3</sub>





126 Hz  $^{13}C$  {1H} NMR spectrum of **3as** in CDCl<sub>3</sub>





126 Hz  $^{13}C$  {<sup>1</sup>H} NMR spectrum of **3ba** in CDCl<sub>3</sub>







500 Hz <sup>1</sup>H NMR spectrum of **3ea** in CDCl<sub>3</sub>





500 Hz <sup>1</sup>H NMR spectrum of **3fa** in CDCl<sub>3</sub>



126 Hz  $^{13}C$  {1H} NMR spectrum of **3fa** in CDCl<sub>3</sub>







S53 / 61



126 Hz  $^{13}C$  {1H} NMR spectrum of **3ia** in CDCl<sub>3</sub>



126 Hz  $^{13}C$  {1H} NMR spectrum of **3ja** in CDCl<sub>3</sub>



# 126 Hz $^{13}C$ {<sup>1</sup>H} NMR spectrum of **3ka** in CDCl<sub>3</sub>



500 Hz <sup>1</sup>H NMR spectrum of **3la** in CDCl<sub>3</sub>





126 Hz  $^{13}C$  {<sup>1</sup>H} NMR spectrum of **3la** in CDCl<sub>3</sub>

500 Hz <sup>1</sup>H NMR spectrum of I in CDCl<sub>3</sub>



126 Hz  $^{13}C$  {1H} NMR spectrum of I in CDCl3





471 Hz  $^{19}F$  {<sup>1</sup>H} NMR spectrum of **5** in CDCl<sub>3</sub>





#### S61 / 61