Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Iridium-Catalysed Reductive Beta-alkyltion of (Iso)quinoline Derivatives by an In-situ Enone-trapping Strategy

Yanping Sun,[†] Jianjie Chen and Min Zhang*,[†]

State Key Laboratory of Pulp and Paper Engineering and School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.

Corresponding Authors

*Email: minzhang@scut.edu.cn

Table of Contents

General information	S2
Optimization of reaction conditions	S3
Control experiments	S3-S5
The Synthetic Utility	S5-S6
Analytical data of the obtained compounds	S6-S17
NMR spectra of obtained compounds	S18-S52
References	S53

General information

All the obtained products were characterized by melting points (m.p.), ¹H NMR, ¹³C NMR and mass spectra (MS). Melting points were measured on an Electrothermal SGW-X4 microscopy digital melting point apparatus and are uncorrected. ¹H-NMR and ¹³C-NMR spectra were obtained on Bruker-400 or Bruker-500 and referenced to 7.26 ppm for chloroform solvent or 2.54 ppm for dimethyl sulfoxide solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 600 mesh silica gel plates (GF254), and visualization was effected at 254 nm. Unless otherwise stated, all the reagents were purchased from commercial sources, used without further purification. Moreover, the N-heteroareniums are named as **A**_x (Synthesised according to literature)¹, the chloralkane are named as **B**_x, and the obtained final products are named as **C**_x.

unsuccessful substrates:

Typical procedure for the synthesis of C

(Iso)quinolinium salts (0.2mmol), chloroalkyl ketone (0.28 mmol), $[IrCp^*Cl_2]_2$ (0.002 mmol), Mg(OMe)₂ (1.5 eq), $(CH_2O)_n$ (3 eq) and KI (2 eq) were added to a 50 mL Schlenk tube. After charging N₂ for three times, 1mL methanol was added and the tube was then closed. The resulting mixture which was stirred at 65 °C for 24 h. After cooling down to room temperature, the reaction mixture was concentrated under vacuum, and nitromethane (0.2 mmol) was added as the internal standard to calculate ¹H NMR yield. (Some products were isolated by preparative TLC on silica)

	$\begin{array}{c} & & & \\$	Cat., HD, base, solvent 65 °C, N ₂ , 24 h	→ N Bn	
Entry	catalyst	base	solvent	Yield(%) ^b
1	[IrCp*Cl ₂] ₂	Mg(OMe) ₂	MeOH	56%
2	$[Ir(cod)Cl_2]_2$	Mg(OMe) ₂	MeOH	trace
3	Ru(p-cymene) ₂ Cl ₂	Mg(OMe) ₂	MeOH	43%
4	RuCl ₃ ·H ₂ O	Mg(OMe) ₂	MeOH	trace
5	RuCl ₂ PPh ₃	Mg(OMe) ₂	MeOH	trace
6	RuCp*(cod)Cl	Mg(OMe) ₂	MeOH	trace
5	[RhCp*Cl ₂] ₂	Mg(OMe) ₂	MeOH	39%
7	[IrCp*Cl ₂] ₂	NaOMe	MeOH	trace
8	[IrCp*Cl ₂] ₂	Cs ₂ CO ₃	MeOH	trace
9	[IrCp*Cl ₂] ₂	Mg(EtO) ₂	MeOH	20%
10	[IrCp*Cl ₂] ₂	K ₃ PO ₄	MeOH	trace
11	[IrCp*Cl ₂] ₂	LiOMe	MeOH	trace
12	[IrCp*Cl ₂] ₂	Mg(OMe) ₂	EtOH	30%
13	[IrCp*Cl ₂] ₂	Mg(OMe) ₂	ⁱ PrOH	trace
14	$[Ir(cod)Cl_2]_2$	Mg(OMe) ₂	MeOH	$(65, 64)^c$
15	$[Ir(cod)Cl_2]_2$	Mg(OMe) ₂	MeOH	73 ^d
16	$[Ir(cod)Cl_2]_2$	Mg(OMe) ₂	MeOH	46 ^e

Table S1. Optimization of reaction conditions^a

^{*a*} Conditions: unless otherwise stated, all the reactions were performed with A_1 (0.20 mmol), B_1 (0.24 mmol), catalyst (1 mol %), (HCHO)_n (2.0 equiv), base (1.5 equiv), KI (2.0 equiv), MeOH (1.0 mL) at 65 °C for 24 h under N₂ protection. ^{*b*} NMR yield using nitromethane as an internal standard. ^{*c*} Yield obtained with 3.0 and 4.0 equiv. (HCHO)_n respectively. ^{*d*} Yield obtained with 3.0 equiv. (HCHO)_n and 0.28 mmol B_1 . ^{*e*} Yield obtained with the absence of KI.

Control experiments Intermediate capture

re S2 GC-MS of the product C_1 generated by interruption test of the model reaction at 2 h $\,$

Deuterium-labelling studies

Figure S3 ¹H-NMR spectrum of C₁

Figure S4¹H-NMR spectrum of C₁ with CD₃OD as solvent

Figure S5¹H-NMR spectrum of C₁ with (CD₂O)_n

The Synthetic Utility Synthesis of camphor analogue C₃₁

Scheme S2. Synthesis of compound C₃₁

To a solution of 6-aminoquinoline (10 mmol, 1.44 g) in anhydrous CH_2Cl_2 was added triethylamine (12 mmol, 1.21 g) and (-)-(1S,4R)-Camphanoyl chloride (11 mmol, 2.38 g) at 0 °C. The reaction mixture was stirred at room temperature until the reaction was completed (monitored by TLC). Water (50 mL) was added to the mixture and extracted with CH_2Cl_2 (30 mL). The organic phase was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford A_{24} '. A_{24} ' (3 mmol), benzyl bromide (6 mmol) and acetone (5 mL) were introduced in a flask (50 mL). And it was stirred at room temperature for 24 h. Then, the solvent was removed. The reaction mixture was washed with small amount of diethyl ether and finally dried under vacuum to get A_{24} (The product is a known compound, consistent with the literature reports)².

A₂₄ (0.2mmol), chloroalkyl ketone (0.28 mmol), $[IrCp^*Cl_2]_2$ (0.002 mmol), Mg(OMe)₂ (1.5 eq), $(CH_2O)_n$ (3 eq) and KI (2 eq) were added to a 50 mL Schlenk tube. After charging N₂ for three times, 1mL methanol was added and the tube was then closed, which was stirred at 65 °C for 24 h. After cooling down to the room temperature, the reaction mixture was concentrated under vacuum and purified by preparative TLC on silica to obtain product C₃₁ (55% isolated yield).

The transformation of C₁ Debenzylation and reduction

Scheme S3. Synthesis of compound C₃₂

Under N₂ atmosphere, Pd(OH)₂/C (10 mol%), C₁ (0.2 mmol), HCOOH (0.6 mmol) were added to a 50 mL Schlenk tube. The tube was closed and stirred at 40 °C for 24 h. After cooling down to the room temperature, the mixture was filtered through a funnel with filter paper and concentrated filtrate. Finally, the residue was purified by preparative TLC on silica to give C_{32} as liquid (65% isolated yield).

Wittig Reaction

Scheme S4. Synthesis of compound C₃₃

Methyltriphenylphosphonium bromide (0.3 mmol) was introduced into a dry Schlenk tube. Then, the tube was charged with N₂ for three times, and 'BuOK in THF (1M) and THF (0.5 mL) were added to the tube. The reaction mixture was stirred at 0 °C, and C₁ in 0.5 Ml THF was added dropwise. The resulting mixture was warmed to room temperature and stirred overnight. Upon completion, the reaction mixture was filtered through a funnel with filter paper and concentrated filtrate. Finally, the residue was purified by preparative TLC on silica to give C₃₃ as liquid (75% yield).

Analytic data of the obtained compounds

(1) $3-(1-\text{benzyl-1},2,3,4-\text{tetrahydroquinolin-3-yl})-1-\text{phenylpropan-1-one}(C_1)$

Brown solid; M.p. 124-126 °C, (73% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.32 – 7.20 (m, 5H), 6.97 (t, J = 7.0 Hz, 2H), 6.64 – 6.47 (m, 2H), 4.52-4.43 (m, 2H), 3.39-3.35 (m, 1H), 3.15 – 2.96 (m, 3H), 2.95-2.90 (m, 1H), 2.57 (dd, J = 16.0, 12.0 Hz, 1H), 2.16 – 2.07 (m, 1H), 1.89 – 1.73 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.0, 145.2, 138.8, 136.8, 133.0, 129.2, 128.6, 128.6, 128.0, 127.2, 126.8, 126.6, 121.2, 116.1, 110.9, 55.2, 54.9, 35.8, 34.3, 32.0, 27.8. HRMS (ESI): Calcd. for C₂₅H₂₆NO⁺ [M+H]⁺: 356.2009; found: 356.2004.

(2) 3-(1-benzy)-6-methyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₂)

Yellow solid; M.p. 78-82 °C, (57% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.31 – 7.20 (m, 5H), 6.81-6.77 (m, 2H), 6.44(d, *J* = 8.0 Hz, 1H), 4.49 – 4.39 (m, 2H), 3.36 – 3.31 (m, 1H), 3.10 – 3.00 (m, 3H), 2.91-2.86 (m, 1H), 2.58 – 2.52 (m, 1H), 2.19 (s, 3H), 2.41 – 2.05 (m, 1H), 1.89 – 1.71 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 143.1, 139.1, 136.9, 133.0, 130.0, 128.6, 128.5, 128.0, 127.6, 126.7, 126.6, 125.2, 121.2, 111.0, 55.4, 54.9, 35.9, 34.3, 32.2, 27.8, 20.2. HRMS (ESI): Calcd. for C₂₆H₂₈NO⁺ [M+H]⁺: 370.2165; found: 370.2161.

(3) 3-(1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₃)

Brown oily liquid, (65% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-d) & 7.95-7.92 (m, 2H),

7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.322 – 7.21 (m, 5H), 6.72 – 6.65 (m, 2H), 6.40 (dd, J = 9.0, 4.6 Hz, 1H), 4.48 – 4.38 (m, 2H), 3.36 – 3.32 (m, 1H), 3.11 – 2.86 (m, 3H), 2.92 – 2.86 (m, 1H), 2.59 – 2.52 (m, 1H), 2.14 – 2.06 (m, 1H), 1.89 – 1.75 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 156.0, 153.6, 141.7 (d, J = 2.0 Hz), 138.7, 136.8, 133.0, 128.6, 128.0, 126.9, 126.6, 122.7 (d, J = 6.1 Hz), 115.6 (d, J = 22.2 Hz), 113.2 (d, J = 21.2 Hz), 111.6 (d, J = 8.1 Hz), 55.7, 54.9, 35.8, 34.4, 32.0, 27.6. ¹⁹F NMR (376 MHz, Chloroform-d) δ -129.74. HRMS (ESI): Calcd. for C₂₅H₂₅NOF⁺ [M+H]⁺: 374.1915; found: 374.1912.

(4) 3-(4-benzyl-7-chloro-1,2,3,4-tetrahydronaphthalen-2-yl)-1-phenylpropan-1-one (C₄)

Brown oily liquid, (48% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.92 (m, 2H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.32 – 7.20 (m, 5H), 6.93 (d, *J* = 2.6 Hz, 1H), 6.94 – 6.88 (m, 2H), 6.40 (d, *J* = 8.8 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.39 – 3.34 (m, 1H), 3.14 – 2.96 (m, 3H), 2.90 – 2.85 (m, 1H), 2.57 – 2.50 (m, 1H), 2.13 – 2.05 (m, 1H), 1.89 – 1.73 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.7, 143.7, 138.2, 136.6, 133.1, 128.8, 128.6, 128.6, 128.0, 126.9, 126.8, 126.5, 122.8, 120.4, 111.9, 55.2, 54.8, 35.7, 34.1, 31.7, 27.5. HRMS (ESI): Calcd. for C₂₅H₂₅NOCl⁺ [M+H]⁺: 390.1619; found: 390.1615.

(5) 3-(1-benzyl-6-bromo-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₅)

Red oily liquid, (31% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.92 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.24 – 7.20 (m, 3H), 7.07 – 7.01 (m, 2H), 6.36 (d, *J* = 8.6 Hz, 1H), 4.50 – 4.39 (m, 2H), 3.39 – 3.35 (m, 1H), 3.14 – 3.00(m, 3H), 2.91 – 2.85 (m, 1H), 2.57 – 2.51 (m, 1H), 2.13 – 2.05 (m, 1H), 1.89 – 1.72 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.7, 144.2, 138.1, 136.7, 133.1, 131.5, 129.7, 128.7, 128.6, 128.0, 126.9, 126.5, 123.3, 112.4, 107.5, 55.1, 54.8, 35.7, 34.0, 31.7, 27.5. HRMS (ESI): Calcd. for C₂₅H₂₅NOBr⁺ [M+H]⁺: 434.1114; found: 434.1109.

(6) 3-(1-benzyl-6-iodo-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C_6)

Yellow oily liquid, (20% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.92 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.32 – 7.19 (m, 7H), 6.27 (d, *J* = 8.6 Hz, 1H), 4.50 –

4.40 (m, 2H), 3.40 - 3.36 (m, 1H), 3.15 - 2.96 (m, 3H), 2.90 - 2.84 (m, 1H), 2.56 - 2.50 (m, 1H), 2.14 - 2.04 (m, 1H), 1.89 - 1.72 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.7, 144.8, 138.1, 137.3, 136.8, 135.7, 133.1, 128.7, 128.6, 128.0, 127.0, 126.4, 123.9, 113.0, 54.9, 54.8, 35.7, 33.9, 31.6, 27.5. HRMS (ESI): Calcd. for C₂₅H₂₅NOI⁺ [M+H]⁺: 482.0975; found: 482.0971.

(7) 3-(1-benzyl-7-methyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (\mathbb{C}_7)

Yellow solid; M.p. 104-107 °C, (71% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.90 (m, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.19 (m, 5H), 6.87 (d, *J* = 7.4 Hz, 1H), 6.41 (d, *J* = 7.6 Hz, 1H), 6.38 (s, 1H), 4.50 – 4.41 (m, 2H), 3.34 – 3.30 (m, 1H), 3.09 – 2.93 (m, 3H), 2.91 – 2.85 (m, 1H), 2.55-2.49 (m, 1H), 2.17 (s, 3H), 2.10 – 2.04 (m, 1H), 1.87 – 1.71 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 145.2, 138.9, 136.9, 136.8, 132.9, 129.1, 128.5, 128.0, 126.7, 126.7, 118.3, 116.9, 111.5, 55.1, 54.7, 35.8, 34.0, 32.1, 27.7, 21.5. HRMS (ESI): Calcd. for C₂₆H₂₈NO⁺ [M+H]⁺: 370.2165; found: 370.2163.

(8) 3-(1-benzyl-5-methyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₈)

Off-white solid; M.p. 117-119 °C, (60% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.31 – 7.20 (m, 5H), 6.89 (t, *J* = 8.0 Hz, 1H), 6.51 (d, *J* = 7.4 Hz, 1H), 6.42 (d, *J* = 8.2 Hz, 1H), 4.52 – 4.42 (m, 2H), 3.36 – 3.31 (m, 1H), 3.12 – 2.99 (m, 3H), 2.91 – 2.85 (m, 1H), 2.41 – 2.34 (m, 1H), 2.21 (s, 3H), 2.16 – 2.08 (m, 1H), 1.84 (q, *J* = 7.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.9, 145.5, 139.0, 136.9, 136.6, 133.0, 128.6, 128.5, 128.0, 126.7, 126.6, 126.4, 119.9, 118.3, 109.4, 55.9, 54.5, 35.9, 32.0, 31.4, 28.2, 19.9. HRMS (ESI): Calcd. for C₂₆H₂₈NO⁺ [M+H]⁺: 370.2165; found: 370.2160

(9) (R)-N-(1-benzyl-3-(3-oxo-3-phenylpropyl)-1,2,3,4-tetrahydroquinolin-6-yl)acetamide (C9)

Red oily liquid, (59% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.89 (m, 3H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.19 (m, 6H), 6.97 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.40 (d, *J* = 8.8 Hz, 1H), 4.44 – 4.34 (m, 2H), 3.30 – 3.27 (m, 1H), 3.06 – 2.95 (m, 3H), 2.84 – 2.79 (m, 1H), 2.50 – 2.44 (m, 1H), 2.04 (s, 3H), 2.06 – 2.00 (m, 1H), 1.83 – 1.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 168.4, 142.3, 138.6, 136.6, 132.9, 128.5, 128.4, 127.8, 127.1, 126.7, 126.5, 122.4,

121.3, 120.1, 110.7, 55.1, 54.7, 35.8, 34.2, 31.9, 27.5, 23.9. HRMS (ESI): Calcd. for $C_{27}H_{29}N_2O_2^+$ [M+H]⁺: 413.2224; found: 413.2219.

(10) 3-(1-benzyl-5-methoxy-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₁₀)

White solid; M.p. 78-80 °C, (52% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.92 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.19 (m, 5H), 6.94 (t, *J* = 8.2 Hz, 1H), 6.24 (d, *J* = 8.0 Hz, 2H), 4.52 – 4.42 (m, 2H), 3.79 (s, 3H), 3.32 – 3.28 (m, 1H), 3.14 – 2.97 (m, 4H), 2.34 – 2.28 (m, 1H), 2.07 – 2.02 (m, 1H), 1.90 – 1.72 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 200.0, 157.4, 146.3, 139.0, 136.7, 132.9, 128.5, 128.5, 128.0, 126.9, 126.7, 126.6, 109.1, 104.7, 98.7, 55.6, 55.3, 54.6, 35.9, 31.5, 28.1, 27.4. HRMS (ESI): Calcd. for C₂₆H₂₈NO₂⁺ [M+H]⁺: 386.2115; found: 386.2109.

(11) 3-(1-benzyl-6-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₁₁)

Yellow solid; M.p. 86-88 °C, (63% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 7.2 Hz, 2H), 7.55 – 7.50 (m, 3H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37 – 7.19 (m, 10H), 6.59 (d, *J* = 8.4 Hz, 1H), 4.56 – 4.46 (m, 2H), 3.42 – 3.38 (m, 1H), 3.18 – 2.97 (m, 4H), 2.67 – 2.60 (m, 1H), 2.18 – 2.10 (m, 1H), 1.92 – 1.76 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.8, 144.7, 141.2, 138.6, 136.8, 133.0, 128.8, 128.6, 128.4, 128.5, 128.0, 127.8, 126.7, 126.6, 126.1, 125.8, 125.8, 121.4, 111.1, 55.1, 55.0, 35.8, 34.4, 32.0, 27.7. HRMS (ESI): Calcd. for C₃₁H₃₀NO⁺ [M+H]⁺: 432.2322; found: 432.2319.

(12) 3-(1-benzyl-6-(thiophen-2-yl)-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₁₂)

Yellow solid; M.p. 100-102 °C, (44% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.33 – 7.22 (m, 7H), 7.11 – 7.08 (m, 2H), 7.00 – 6.98 (m, 1H), 6.51 (d, *J* = 8.6 Hz, 1H), 4.5 – 4.46 (m, 2H), 3.42 – 3.38 (m, 1H), 3.18 – 2.94 (m, 4H), 2.64 – 2.57 (m, 1H), 2.17 – 2.09 (m, 1H), 1.92 – 1.75 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.8, 145.3, 144.8, 138.4, 136.8, 133.1, 128.7, 128.6, 128.0, 127.7, 127.0, 126.9, 126.6, 125.1, 122.6, 122.5, 121.4, 120.6, 111.0, 55.1, 55.0, 35.8, 34.3, 31.9, 27.7. HRMS (ESI): Calcd. for C₂₉H₂₈NOS⁺ [M+H]⁺: 438.1886; found: 438.1881.

(13)3-(6-(benzo[d][1,3]dioxol-5-yl)-1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₁₃)

Brown oily liquid, (32% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.34 – 7.24 (m, 5H), 7.17 – 7.14 (s, 2H), 7.00 – 6.95 (m, 2H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 8.4 Hz, 1H), 5.95 (s, 2H), 4.56 – 4.47 (m, 2H), 3.43 – 3.88 (m,1H), 3.19 – 2.995 (m, 4H), 2.66 – 2.60 (m, 1H), 2.23 – 2.15 (m, 1H), 1.93 – 1.77 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.8, 147.9, 145.9, 144.5, 138.7, 136.8, 135.8, 133.1, 128.8, 128.6, 128.6, 128.0, 127.7, 126.9, 126.6, 125.6, 121.4, 119.4, 111.1, 108.4, 106.9, 100.9, 55.2, 56.0, 35.9, 34.5, 32.06, 27.7. HRMS (ESI): Calcd. for C₃₂H₃₀NO₃⁺ [M+H]⁺: 476.2220; found: 476.2217.

(14) 3-(1-benzyl-6-(furan-2-yl)-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C14)

Red oily liquid, (46% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.28 (m, 5H), 7.26 – 7.22 (s, 3H), 6.53 (d, *J* = 8.4 Hz, 1H), 6.41 – 6.37 (m, 2H), 4.57 – 4.47 (m, 2H), 3.43 – 3.39 (m, 1H), 3.19 – 2.94 (m, 4H), 2.64 – 2.58 (m, 1H), 2.18 – 2.09 (m,1H), 1.92 – 1.77 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.8, 154.9, 144.7, 140.5, 138.5, 136.7, 133.1, 128.7, 128.6, 128.0, 126.9, 126.6, 125.1, 123.3, 121.2, 119.48, 111.4, 110.9, 101.7, 55.0, 55.0, 35.8, 34.3, 32.0, 27.6. HRMS (ESI): Calcd. for C₂₉H₂₈NO₂⁺ [M+H]⁺: 422.2115; found: 422.2109.

(15) 3-(1-(naphthalen-2-ylmethyl)-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₁₅)

Red solid; M.p. 94-96 °C, (62% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.88 (m, 2H), 7.81 – 7.74 (m, 3H), 7.69 (s, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.45 – 7.37 (m, 5H), 7.02 – 6.96 (m, 2H), 6.62 (t, *J* = 8.0 Hz, 2H), 4.67 – 4.57 (m, 2H), 3.44 – 3.39 (m, 1H), 3.18 – 2.94 (m, 4H), 2.64 – 2.58 (m, 1H), 2.20 – 2.11 (m, 1H), 1.91 – 1.76 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.9, 145.4, 136.9, 136.4, 133.5, 133.0, 132.6, 129.3, 128.6, 128.4, 128.0, 127.7, 127.7, 127.3, 126.1, 125.5, 125.1, 125.0, 121.3, 116.2, 111.0, 55.5, 54.8, 35.8, 34.4, 32.0, 27.7. HRMS (ESI): Calcd. for C₂₉H₂₈NO⁺ [M+H]⁺:406.2165; found: 4406.2162.

(16) 1-phenyl-3-(1-(4-(trifluoromethyl)benzyl)-1,2,3,4-tetrahydroquinolin-3-yl)propan-1-one (C₁₆)

Yellow solid; M.p. 73-75 °C, (61% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.58 – 7.54 (m, 3H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.01 – 6.95 (m, 2H), 6.61 (t, *J* = 7.4 Hz, 1H), 6.43 (d, *J* = 8.2 Hz, 1H), 4.52 (s, 2H), 3.39 – 3.34 (m, 1H), 3.16–2.99 (m, 3H), 2.97 – 2.92 (m, 1H), 2.62 – 2.56 (m, 1H), 2.19 – 2.08 (m, 1H), 1.92 – 1.75 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 144.9, 143.2 (d, *J* = 2.0 Hz), 136.8, 133.1, 129.4, 129.1 (q, *J* = 32.3 Hz), 128.6, 128.0, 127.3, 126.8, 125.5 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 272.7 Hz), 121.4, 116.6, 110.8, 55.3, 55.0, 35.8, 34.2, 32.0, 27.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.28. HRMS (ESI): Calcd. for C₂₆H₂₅F₃NO⁺ [M+H]⁺: 424.1883; found: 424.1877.

(17) 3-(1-(4-bromobenzyl)-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₁₇)

Yellow solid; M.p. 86-88 °C, (63% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.95 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.50 – 7.43 (m, 4H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.01 (d, *J* = 7.4 Hz, 2H), 6.63 (t, *J* = 7.4 Hz, 1H), 6.48 (d, *J* = 8.2 Hz, 1H), 4.48 – 7.39 (m, 2H), 3.39 – 3.34 (m, 1H), 3.15 – 3.00 (m, 3H), 2.98 – 2.92 (m, 1H), 2.63 – 2.57 (m, 1H), 2.17 – 2.09 (m, 1H), 1.92 – 1.76 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.7, 144.9, 137.6, 136.8, 133.0, 131.6 129.3, 128.6, 128.3, 127.9, 127.2, 121.3, 120.4, 116.3, 110.8, 55.0, 54.7, 35.7, 34.2, 31.9, 27.7. HRMS (ESI): Calcd. for C₂₅H₂₅NOBr⁺ [M+H]⁺:434.1114; found: 434.1109.

(18) 3-(1-(3-methoxybenzyl)-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C₁₈)

Off-white solid; M.p. 70-72 °C, (61% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 7.0 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 8.0 Hz, 1H), 6.99 – 6.95 (m, 2H), 6.84 (d, J = 7.6 Hz, 1H), 6.81 (s, 1H), 6.77 – 6.74 (m, 1H), 6.58 (t, J = 7.4 Hz, 1H), 6.51 (d, J = 8.6 Hz, 1H), 4.48 – 4.39 (m, 2H), 3.74 (s, 3H), 3.38 – 3.35 (m, 1H), 3.14 – 2.96 (m, 3H), 2.94 – 2.89 (m, 1H), 2.60 – 2.54 (m, 1H), 2.16 – 2.07 (m, 1H), 1.89 – 1.73 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 159.9, 145.2, 140.6, 136.8, 133.0, 129.6, 129.2, 128.5, 128.0, 127.2, 121.1, 118.8, 116.1, 112.2, 112.0, 110.9, 55.2, 55.1, 54.9, 35.8, 34.3, 32.0, 27.7. HRMS (ESI): Calcd. for C₂₆H₂₈NO₂⁺ [M+H]⁺:

386.2114; found: 386.2109.

(19) 3-(1-methyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-phenylpropan-1-one (C19)

Brown oily liquid, (64% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 7.2 Hz, 1H), 6.62 – 6.57 (m, 2H), 3.25 – 3.21 (m, 1H), 3.14 – 3.00 (m, 2H), 2.98 – 2.93 (m, 1H), 2.89 – 3.84 (m, 4H), 2.54 – 2.47 (m, 1H), 2.11 – 2.01 (m, 1H), 1.89 – 1.71 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 146.3, 136.8, 133.0, 128.9, 128.6, 128.0, 127.1, 121.8, 116.3, 110.7, 56.5, 39.0, 35.9, 34.1, 32.1, 28.0. HRMS (ESI): Calcd. for C₁₉H₂₂NO⁺ [M+H]⁺: 280.1696; found: 280.1692.

(20) 3-(2-benzyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-1-phenylpropan-1-one (C₂₀)

Brown oily liquid, (50% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.45 – 7.38 (m, 4H), 7.32 – 7.21 (m, 4H), 7.17 – 7.06 (m, 2H), 7.00 (d, *J* = 6.6 Hz, 1H), 3.84 – 7.72 (m, 2H), 3.58 – 3.44 (m, 2H), 2.98 – 2.799 (m, 4H), 2.58 (dd, *J* = 11.6, 4.2 Hz, 1H), 2.24 – 2.14 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 200.4, 138.7, 138.3, 137.01, 135.0, 132.8, 129.1, 128.5, 128.3, 128.0, 127.1, 126.4, 126.2, 125.8, 62.8, 56.7, 54.0, 37.8, 35.9, 30.3. HRMS (ESI): Calcd. for C₂₅H₂₆NO⁺ [M+H]⁺: 356.2009; found: 356.2005.

(21) 3-(2-benzyl-5-hydroxy-1,2,3,4-tetrahydroisoquinolin-4-yl)-1-phenylpropan-1-one (C₂₁)

Yellow oily liquid, (14.9 mg, 20% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 (s, 1H), 7.99 – 7.97 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.43 – 7.41 (m, 2H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 7.6 Hz, 1H), 3.90 (d, *J* = 13.6 Hz, 1H), 3.68 (dd, *J* = 80.6, 13.1 Hz, 2H), 3.35 (d, *J* = 14.9 Hz, 1H), 3.13 – 3.07 (m, 1H), 3.00 – 2.91 (m, 1H), 2.83 (d, *J* = 11.5 Hz, 1H), 2.74 – 2.70 (m, 1H), 2.322 – 2.24 (m, 2H), 1.99 (t, *J* = 13.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 202.6, 155.2, 138.7, 136.3, 135.7, 133.8, 128.9, 128.7, 128.3, 127.1, 124.3, 117.6, 113.9, 62.7, 56.5, 52.4, 34.9, 33.2, 26.6. HRMS (ESI): Calcd. for C₂₅H₂₆NO₂⁺ [M+H]⁺: 372.1958; found: 372.1954.

(22) 3-(2-(3-methoxybenzyl)-5-nitro-1,2,3,4-tetrahydroisoquinolin-4-yl)-1-phenylpropan-1-one (C₂₂)

Brown oily liquid, (34.5 mg, 40% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.78 – 7.74 (m, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.96 – 6.93 (m, 2H), 6.74 – 6.71 (m, 1H), 4.04 (d, *J* = 15.4 Hz, 1H), 3.75 – 3.69 (m, 4H), 3.58 – 3.34 (m, 3H), 3.04 – 2.95 (m, 2H), 2.79 – 2.71 (m, 1H), 2.43 – 2.31 (m, 2H), 1.92 (t, *J* = 16.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 199.6, 159.7, 149.1, 139.7, 137.6, 136.8, 134.1, 132.8, 131.6, 129.3, 128.4, 128.0, 126.4, 123.2, 121.3, 114.4, 112.7, 62.3, 56.4, 55.0, 51.8, 36.9, 35.0, 29.7. HRMS (ESI): Calcd. for C₂₆H₂₇N₂O₄⁺ [M+H]⁺: 431.1965; found: 431.1958.

(23) 3-(2-(3-methoxybenzyl)-5-nitro-1,2,3,4-tetrahydroisoquinolin-4-yl)-1-phenylpropan-1-one (C₂₃)

Yellow oily liquid, (30.4 mg, 35% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.86 (m, 2H), 7.77 – 7.74 (m, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.20 – 7.13 (m, 3H), 6.89 – 6.95 (m, 2H), 6.74 – 6.72 (m, 1H), 4.04 – 3.95 (m, 1H), 3.83 (s, 3H), 3.78 – 3.71 (m, 2H), 3.69 (s, 3H), 3.52 – 3.41 (m, 2H), 3.05 – 2.97 (m, 2H), 2.81 – 2.73 (m, 1H), 2.41 – 2.38 (m, 1H), 2.34 – 2.24 (m, 1H), 1.93 – 1.89 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 200.2, 167.9, 159.6, 140.9, 140.2, 137.0, 135.9, 132.6, 130.6, 129.2, 129.2, 129.0, 128.4, 128.1, 125.5, 121.3, 114.3, 112.6, 62.6, 57.0, 55.0, 52.3, 51.9, 37.2, 35.8, 30.8. HRMS (ESI): Calcd. for C₂₈H₃₀NO₄⁺ [M+H]⁺: 444.2169; found: 444.2163.

(24) 3-(1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-(p-tolyl)propan-1-one (C₂₄)

Yellow solid; M.p. 128-130 °C, (40% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, J = 8.2 Hz, 2H), 7.32 – 7.20 (m, 7H), 6.97 (t, J = 7.1 Hz, 2H), 6.58 (t, J = 6.8 Hz, 1H), 6.51 (d, J = 8.2 Hz, 1H), 4.52 – 4.43 (m, 2H), 3.39 – 3.34 (m, 1H), 3.14 – 3.09 (m, 1H), 3.07 – 2.89 (m, 3H), 2.60 – 2.54 (m, 1H), 2.40 (s, 3H), 2.15 – 2.08 (m, 1H), 1.88 – 1.72 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.6, 145.2, 143.8, 138.8, 134.4, 129.2, 129.2, 128.6, 128.1, 127.2, 126.8, 126.6, 121.2, 116.0, 110.8, 55.2, 55.0, 35.7, 34.4, 32.0, 27.9, 21.6. HRMS (ESI): Calcd. for C₂₆H₂₈NO⁺ [M+H]⁺: 370.2165; found: 370.2159.

(25) 3-(1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-(4-fluorophenyl)propan-1-one (C₂₅)

Yellow solid; M.p. 140-142 °C, (68% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.93 (m, 2H), 7.32 – 7.22 (m, 5H), 7.11 (t, *J* = 8.6 Hz, 2H), 6.99 – 6.96 (m, 2H), 6.58 (t, *J* = 7.3 Hz,

1H), 6.52 (d, J = 7.6 Hz, 1H), 4.52 – 4.42 (m, 2H), 3.38 – 3.34 (m, 1H), 3.14 – 3.09 (m, 1H), 3.03 – 2.89 (m, 3H), 2.60 – 2.54 (m, 1H), 2.14 – 2.05 (m, 1H), 1.89 – 1.74 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 158.7, 142.1, 141.0, 129.4 (d, J = 32.3 Hz), 129.0, 127.8, 127.2, 126.8, 126.6, 125.7 (d, J = 4.0 Hz), 124.1 (d, J = 272.0 Hz), 118.3, 111.2, 108.3, 84.6, 61.3, 52.1, 27.9, 27.3, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.27. HRMS (ESI): Calcd. for C₂₅H₂₅NOF⁺ [M+H]⁺: 3374.1915; found: 374.1912.

(26) 3-(1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-(4-chlorophenyl)propan-1-one (C₂₆)

Yellow solid; M.p. 129-131 °C, (44% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 7.32 – 7.23 (m, 5H), 7.00 – 6.97 (m, 2H), 6.59 (t, J = 7.3 Hz, 1H), 6.53 (d, J = 8.6 Hz, 1H), 4.53 – 4.43 (m, 2H), 3.38 – 3.35 (m, 1H), 3.14 – 2.94 (m, 4H), 2.61 – 2.54 (m, 1H), 2.14 – 2.06 (m, 1H), 1.88 – 1.75 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 198.6, 145.2, 139.5, 138.8, 135.1, 129.4, 129.2, 128.9, 128.6, 127.3, 126.8, 126.6, 121.1, 116.1, 110.7, 55.1, 54.8, 35.8, 34.3, 31.9, 27.6. HRMS (ESI): Calcd. for C₂₅H₂₅ClNO⁺ [M+H]⁺: 390.1619; found: 390.1614.

(27) 3-(1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-(4-bromophenyl)propan-1-one (C₂₇)

Yellow solid; M.p. 133-135 °C, (41% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.31 – 7.22 (m, 5H), 6.70 – 6.96 (m, 2H), 6.58 (t, J = 7.3 Hz, 1H), 6.53 (d, J = 8.5 Hz, 1H), 4.52 – 4.42 (m, 2H), 3.37 – 3.33(m, 1H), 3.13 – 3.08 (m, 1H), 3.01 – 2.89 (m, 3H), 2.60 – 2.54 (m, 1H), 2.13 – 2.07 (m, 1H), 1.86 – 1.74 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 198.8, 145.2, 138.8, 135.5, 131.7, 129.5, 129.2, 128.6, 128.1, 127.3, 126.8, 126.6, 121.0, 116.1, 110.8, 55.1, 54.8, 35.8, 34.3, 31.9, 27.6. HRMS (ESI): Calcd. for C₂₅H₂₅NOBr⁺ [M+H]⁺: 434.1114; found: 434.1110.

(28) 3-(1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-(4-methoxyphenyl)propan-1-one (C₂₈)

Off-white solid; M.p. 114-116 °C, (39% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.32 – 7.22 (m, 5H), 6.99 – 6.91 (m, 4H), 6.58 (t, *J* = 6.8 Hz, 1H), 6.52 (d, *J* = 7.6 Hz, 1H), 4.53 – 4.43 (m, 2H), 3.86 (s, 3H), 3.39 – 3.35 (m, 1H), 3.14 – 3.09 (m, 1H), 3.02 – 2.89 (m, 3H), 2.61 – 2.54 (m, 1H), 2.13 – 2.07 (m, 1H), 1.87 – 1.76 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 198.5,

163.4, 145.3, 138.8, 130.3, 129.9, 129.2, 128.6, 127.2, 126.8, 126.6, 121.2, 116.0, 113.7, 110.8, 55.4, 55.2, 55.0, 35.5, 34.4, 32.0, 28.0. HRMS (ESI): Calcd. for $C_{26}H_{28}NO_2^+$ [M+H]⁺: 386.2115; found: 386.2110.

(29) 3-(1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)-1-(2-fluorophenyl)propan-1-one (C₂₉)

Yellow solid; M.p. 74-76 °C, (64% ¹H NMR yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.81 (m, 1H), 7.53 – 7.47 (m, 1H), 7.32 – 7.20 (m, 6H), 7.14 – 7.10 (m, 1H), 6.97 (t, *J* = 7.3 Hz, 2H), 6.58 (t, *J* = 7.3 Hz, 1H), 6.51 (d, *J* = 7.5 Hz, 1H), 4.52 – 4.43 (m, 2H), 3.38 – 3.34 (m, 1H), 3.14 – 3.05 (m, 3H), 2.94 – 2.88 (m, 1H), 2.60 – 2.53 (m, 1H), 2.13 – 2.05 (m, 1H), 1.88 – 1.73 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 198.3 (d, *J* = 3.8 Hz), 161.8 (d, *J* = 254.5 Hz), 145.2, 138.8, 134.4 (d, *J* = 2.5 Hz), 130.6 (d, *J* = 2.5 Hz), 129.2, 128.6, 127.2, 126.8, 126.6, 125.7 (d, *J* = 12.6 Hz), 124.5 (d, *J* = 3.8 Hz), 161.9 (d, *J* = 7.6 Hz), 34.3, 31.6, 27.5 (d, *J* = 1.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.47. HRMS (ESI): Calcd. for C₂₅H₂₅NOF⁺ [M+H]⁺: 374.1915; found: 374.1910.

(30) 4-(1-benzyl-1,2,3,4-tetrahydroquinolin-3-yl)butan-2-one (C₃₀)

Brown oily liquid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.23 (m, 5H), 6.99 – 6.96 (m, 2H), 6.58 (t, *J* = 7.3 Hz, 1H), 6.52 (d, *J* = 7.6 Hz, 1H), 4.51 – 4.42 (m, 2H), 3.33 – 3.28 (m, 1H), 3.08 – 3.03 (m, 1H), 2.89 – 2.84 (m, 1H), 2.55 – 2.47 (m, 3H), 2.13 (s, 3H), 2.04 – 1.96 (m, 1H), 1.72 – 1.59 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 208.5, 145.2, 138.8, 129.2, 128.6, 127.2, 126.8, 126.6, 121.1, 116.1, 110.8, 55.1, 54.8, 41.0, 34.3, 31.9, 29.9, 27.2. HRMS (ESI): Calcd. for C₂₀H₂₅NO⁺ [M+H]⁺: 294.1852; found: 294.1848.

(31)(1S,4R)-N-(1-benzyl-3-(3-oxo-3-phenylpropyl)-1,2,3,4-tetrahydroquinolin-6-yl)-4,7,7trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxamide (C₃₁)

Yellow oily liquid, (62.3 mg, 55% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.92 (m, 3H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.35 – 7.28 (m, 3H), 7.25 – 7.22 (m, 2H), 7.07 – 7.02 (m, 1H), 6.46 (d, *J* = 8.8 Hz, 1H), 4.52 – 4.42 (m, 2H), 3.38 – 3.35 (m, 1H), 3.15 – 3.10 (m, 1H), 3.08 – 3.01 (m, 2H), 2.95 – 2.91 (m, 1H), 2.63 – 2.54 (m, 2H), 2.10 (s, 1H), 2.00 – 1.94 (m, 2H), 1.88 – 1.67

(m, 4H), 1.15 (s, 3H), 1.13 (s, 3H), 0.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.7, 178.1, 164.4, 142.8, 138.4, 136.8, 133.0, 128.5, 127.9, 126.8, 126.5, 125.7, 121.8, 121.5, 119.6, 110.8, 92.4, 55.3, 55.1, 54.8, 54.1, 35.7, 34.3, 31.9, 30.3, 29.0, 27.5, 16.7, 16.5, 9.7. HRMS (ESI): Calcd. for $C_{35}H_{39}N_2O_4^+$ [M+H]⁺: 551.2904; found: 551.2897.

(32) 1-phenyl-3-(1,2,3,4-tetrahydroquinolin-3-yl)propan-1-ol (C₃₂)

Yellow oily liquid, (35.8 mg, 67% yield, d.r. 3:2); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.31 (m, 4H), 7.29 – 7.25 (m, 1H), 6.96 – 6.90 (m, 2H), 6.59 (t, *J* = 7.4 Hz, 1H), 6.44 (d, *J* = 9.1 Hz, 1H), 4.65 – 4.61 (m, 1H), 3.27 – 3.23 (m, 1H), 2.88 – 2.75 (m, 2.5H), 2.44 – 2.36 (m, 1H), 1.95 – 1.71 (m, 3H), 1.56 – 1.40 (m, 1H), 1.38 – 1.17 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 144.4, 129.6, 129.5, 128.5, 127.6, 126.7, 125.8, 120.8, 117.0, 113.9, 74.7, 74.6, 47.1, 47.0, 36.4, 36.3, 33.6, 33.5, 32.2, 32.1, 29.8, 29.7. HRMS (ESI): Calcd. for C₁₈H₂₂NO⁺ [M+H]⁺: 268.1696; found: 268.1690.

(33) 1-benzyl-3-(3-phenylbut-3-en-1-yl)-1,2,3,4-tetrahydroquinoline (C₃₃)

Yellow oily liqui, (53.0 mg, 75% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.36 (m, 2H), 7.32 – 7.19 (m, 8H), 6.97 – 6.94 (m, 2H), 6.57 (t, *J* = 7.8 Hz, 1H), 6.49 (d, *J* = 8.6 Hz, 1H), 5.25 (s, 1H), 5.04 (s, 1H), 4.44 (s, 2H), 3.32 – 3.28 (m, 1H), 3.06 – 3.01 (m, 1H), 2.90 – 2,84 (m, 5.6 Hz, 1H), 2.65 – 2.47 (m, 3H), 2.08 – 2.00 (m, 1H), 1.53 – 1.45 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 145.3, 141.1, 138.9, 129.2, 128.5, 128.3, 127.4, 127.1, 126.7, 126.5, 126.1, 121.5, 115.9, 112.5, 110.7, 55.1, 55.0, 34.5, 32.6, 32.1, 31.9. HRMS (ESI): Calcd. for C₂₆H₂₈N⁺ [M+H]⁺: 354.2216; found: 354.2213.

NMR spectra of the obtained compounds ¹H-NMR spectrum of C₁

1jt(j)-20230913-2.32.fid

¹³C-NMR spectrum of C₁

¹H-NMR spectrum of C₂

¹³C-NMR spectrum of C₂

¹H-NMR spectrum of C₃

¹³C-NMR spectrum of C₃

¹⁹F-NMR spectrum of C₃

¹H-NMR spectrum of C₄

¹³C-NMR spectrum of C₄

¹H-NMR spectrum of C₅

¹³C-NMR spectrum of C₅

¹H-NMR spectrum of C₆

¹³C-NMR spectrum of C₆

¹H-NMR spectrum of C₇

¹³C-NMR spectrum of C₇

¹H-NMR spectrum of C₈

¹³C-NMR spectrum of C₈

¹H-NMR spectrum of C₉

¹³C-NMR spectrum of C₉

¹H-NMR spectrum of C₁₀

¹³C-NMR spectrum of C₁₀

¹H-NMR spectrum of C₁₁

¹³C-NMR spectrum of C₁₁

¹H-NMR spectrum of C₁₂

¹³C-NMR spectrum of C₁₂

¹H-NMR spectrum of C₁₃

¹³C-NMR spectrum of C₁₃

¹H-NMR spectrum of C₁₄

¹³C-NMR spectrum of C₁₄

¹H-NMR spectrum of C₁₅

¹³C-NMR spectrum of C₁₅

¹H-NMR spectrum of C₁₆

¹³C-NMR spectrum of C₁₆

¹⁹F-NMR spectrum of C₁₇

¹H-NMR spectrum of C₁₇

¹³C-NMR spectrum of C₁₇

¹H-NMR spectrum of C₁₈

¹³C-NMR spectrum of C₁₈

¹H-NMR spectrum of C₁₉

¹³C-NMR spectrum of C₁₉

¹H-NMR spectrum of C₂₀

¹³C-NMR spectrum of C₂₀

¹H-NMR spectrum of C₂₁

¹³C-NMR spectrum of C₂₁

¹H-NMR spectrum of C₂₂

¹³C-NMR spectrum of C₂₂

¹H-NMR spectrum of C₂₃

¹³C-NMR spectrum of C₂₃

¹H-NMR spectrum of C₂₄

¹³C-NMR spectrum of C₂₄

¹H-NMR spectrum of C₂₅

¹³C-NMR spectrum of C₂₅

¹⁹F-NMR spectrum of C₂₅

¹H-NMR spectrum of C₂₆

¹³C-NMR spectrum of C₂₆

¹H-NMR spectrum of C₂₇

¹³C-NMR spectrum of C₂₇

¹H-NMR spectrum of C₂₈

¹³C-NMR spectrum of C₂₈

¹H-NMR spectrum of C₂₉

¹³C-NMR spectrum of C₂₉

¹H-NMR spectrum of C₂₉

¹H-NMR spectrum of C₃₀

¹³C-NMR spectrum of C₃₀

¹H-NMR spectrum of C₃₁

¹³C-NMR spectrum of C₃₁

¹H-NMR spectrum of C₃₂

¹³C-NMR spectrum of C₃₂

¹H-NMR spectrum of C₃₃

¹³C-NMR spectrum of C₃₃

References

- (1) Wang, M.; Zhang, M. Diastereoselective Construction of Carbo-Bridged Polyheterocycles by a Three-component Tandem Annulation Reaction. *Org. Bio. Chem.* **2023**, *21*, 6342–6347.
- (2) Yang, J.; Zhao, H.; Tan, Z.; Cao, L.; Jiang, H.; Ci, C.; Dixneuf, P. H.; Zhang, M. syn-Selective Construction of Fused Heterocycles by Catalytic Reductive Tandem Functionalization of *N*-Heteroarenes. *ACS Catal.* **2021**, *11*, 9271–9278.