Supporting Information

Influence of steric hindrance on 1,4- versus 1,6-Michael addition: Synthesis of furans and pentasubsituted benzenes

Shally Rana,^[a,c] Ranjay Shaw^[b], and Ramendra Pratap*^[a]

[a] Dr. S. Rana and Dr. R. Pratap
Department of Chemistry, University of Delhi, North Campus, Delhi, India, Pin-110007
[b] Dr. Ranjay Shaw
Department of Chemistry, GLA University, Mathura, India, 281406
[c] Dr. S. Rana
Department of Chemistry, School of Science Indrashil University, Rajpur, Kadi, Ahmedabad-Mehsana Highway
Gujarat, 382740.

Table of Contents:

SN	Content	Page no
1	X-ray crystallography data of 4d and 5b	S2-S4
2	¹ H NMR and ¹³ C NMR Spectra of 4a-4k	S5-S15
3	¹ H NMR and ¹³ C NMR Spectra of 5a-5c	S16-S18
4	¹ H NMR and ¹³ C NMR Spectra of 7a-7k	S19-S29
5	¹ H NMR and ¹³ C NMR Spectra of 9a-9j	S30-S39
6	¹ H NMR and ¹³ C NMR Spectra of 11 and 12a-12e	S40-S45

Crystal data for (4d) and (5b): To a 5 ml glass vial 25-30 mg of 2-(bis(methylthio)methyl)-3-(3,4-dimethoxyphenyl)-5-methylfuran (4d) or 4-acetyl-3-amino-2'-chloro-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (5b) was completely dissolved in DCM followed by addition of 1-2 drops of hexanes. Further, solution was kept for slow evaporation at room temperature until yellow rod shaped type suitable crystal obtained for X-ray analysis.

A white crystal was mounted on a capillary tube for indexing and intensity data collection at 302 and 293 K respectively on an Oxford Xcalibur Sapphire3 CCD single-crystal diffractometer (MoK α radiation, $\lambda = 0.71073$ Å).¹ Routine Lorentz and polarization corrections were applied, and an absorption correction was performed using the ABSCALE 3 program [CrysAlis Pro software system, Version 171.34; Oxford Diffraction Ltd., Oxford, U.K., 2011]. Data reduction was performed with the CrysAllis-PRO.¹ The structure was solved by direct methods using SIR-92 program² and refined on F2 using all data by full matrix least-squares procedures with SHELXL-2016/6 incorporated in WINGX 1.8.05 crystallographic collective package.³ The hydrogen atoms were placed at the calculated positions and included in the last cycles of the refinement. All calculations were done using the WinGX software package.⁴⁻⁵ Crystallographic data collection and structure solution parameters are summarized in **Table S1**. This data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.uk/data_request/cif.

Figure S1. ORTEP diagram of 4d; thermal ellipsoids are drown at the 50% probability level

Figure S2: (a) ORTEP diagram of 5b; thermal ellipsoids are drowned at the 50% probability level. (b) 5b showing intermolecular C-H…N≡C interaction.

	4d	5b
CCDC No.	1974747	1974746
Empirical formula	$C_{16}H_{20}O_3S_2$	C ₁₆ H ₁₃ ClN ₂ OS
Formula weight	324.44	316.79
Temperature/k	302	293
Crystal system	Triclinic	Monoclinic
Space group	P -1	P21/c
a/Å	7.4509(5)	10.9847(6) Å
b/Å	8.5535(6)	9.3266(4) Å
c/Å	13.4726(9)	15.3230(8) Å
a./°	87.055(2)	90°.
β/°	83.603(2)	107.140(6)°
γ/°	79.582(2)	90°.
Volume/Å ³	838.79(10)	1500.12(14)
Z	2	4
$\rho_{calc}g/cm^3$	1.285	1.403
μ/mm ⁻¹	0.324	0.393
F(000)	344	656
Crystal size/mm ³	0.43 x 0.28 x 0.12	0.22 x 0.20 x 0.18

TableS1: Crystal data and structure refinement for 4d and 5b

20 range for data collection/°	2.422 to 28.302	3.474 to 25.000°
Index ranges	-9<=h<=9, -11<=k<=11, -	-13<=h<=13, -11<=k<=11,
	17<=1<=17	-18<=1<=18
Reflections collected	11608	18167
Independent reflections	4093 [R(int) = 0.0868]	2626 [R(int) = 0.0420]
Data/restraints/parameters	4093 /0/195	2626 / 0 / 190
Goodness-of-fit on F ²	1.125	1.004
Final R indexes [I>=2σ (I)]	$R_1 = 0.0458, wR_2 = 0.1361$	R1 = 0.0454, wR2 = 0.1035
Final R indexes [all data]	$R_1 = 0.0514,$ $wR_2 = 0.1407$	R1 = 0.0614, wR2 = 0.1109
Largest diff. peak/hole / e Å ⁻³	0.251 and -0.284 e.Å ⁻³	0.187 and -0.239e.Å ⁻³

References

- (1) CrysAlisPro, v. 1.171.33.49b, Oxford Diffraction Ltd., 2009.
- (2) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1993, 26, 343.
- (3) Sheldrick, G. M. SHELXL-2014/7: Program for the solution of crystal structures, University of Gottingen, Gottingen, Germany, **2014**.
- (4) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.
- (5) Farrugia, L. J. WinGX, v. 1.70, An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single-Crystal X-ray Diffraction Data, Department of Chemistry, University of Glasgow, 2003.

¹H NMR and ¹³C NMR spectra of 2-(bis(methylthio)methyl)-5-methyl-3-phenylfuran (4a)

¹H NMR and ¹³C NMR Spectra of 2-(bis(methylthio)mehyl)-5-methyl-3-(*p*-tolyl)furan (4b)

¹H NMR and ¹³C NMR spectra of 3-(bis(methylthio)methyl)-2-(4-methoxyphenyl)-5-methylfuran(4c)

¹H NMR and ¹³C NMR spectra of 2-(bis(methylthio)methyl)-3-(3,4-dimethoxyphenyl)-5methylfuran (4d)

¹H NMR and ¹³C NMR spectra of 2-(bis(methylthio)methyl)-3-(4-fluorophenyl)-5methylfuran (4e)

¹H NMR and ¹³C NMR spectra of 3-(bis(methylthio)methyl)-2-(4-chlorophenyl)-5methylfuran (4f)

¹H NMR and ¹³C NMR spectra of 2-(bis(methylthio)methyl)-3-(3-bromophenyl)-5methylfuran (4g)

¹H NMR and ¹³C NMR spectra of 2-(bis(methylthio)methyl)-3-(4-bromophenyl)-5methylfuran (4h)

¹H NMR and ¹³C NMR spectra of 3-(bis(methylthio)methyl)-5-methyl-2-(thiophen-2-yl)furan (4i)

¹H NMR and ¹³C NMR spectra of 2-([1,1'-biphenyl]-4-yl)-3-(bis(methylthio)methyl)-5-methylfuran (4j)

H NMR and ¹³C NMR spectra of 2-(bis(methylthio)methyl)-3-cyclopropyl-5-methylfuran (4k)

¹H NMR and ¹³C NMR spectrum of 4-acetyl-3-amino-2'-methoxy-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (5a)

¹H NMR and ¹³C NMR spectrum of 4-acetyl-3-amino-2'-chloro-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (5b)

¹H NMR and ¹³C NMR spectrum of 3-acetyl-2-amino-4-(methylthio)-6-(naphthalen-2-yl)benzonitrile (5c)

¹H NMR and ¹³C NMR spectra of 3-amino-2-methyl-5-(methylthio)-[1,1'-biphenyl]-4carbonitrile (7a)

¹H NMR and ¹³C NMR spectrum of 3-amino-2,4'-dimethyl-5-(methylthio)-[1,1'-biphenyl]-4-carbonitrile (7b)

¹H NMR and ¹³C NMR spectrum of 3-amino-4'-methoxy-2-methyl-5-(methylthio)-[1,1'biphenyl]-4-carbonitrile (7c)

¹H NMR and ¹³C NMR spectrum of 3-amino-3',4'-dimethoxy-2-methyl-5-(methylthio)-[1,1'-biphenyl]-4-carbonitrile (7d)

¹H NMR and ¹³C NMR spectrum of 3-amino-2'-methoxy-2-methyl-5-(methylthio)-[1,1'-biphenyl]-4-carbonitrile (7e)

¹H NMR and ¹³C NMR spectrum of 3-amino-4'-fluoro-2-methyl-5-(methylthio)-[1,1'-biphenyl]-4-carbonitrile (7f)

¹H NMR and ¹³C NMR spectrum of 3-amino-4'-chloro-2-methyl-5-(methylthio)-[1,1'-biphenyl]-4-carbonitrile (7g)

¹H NMR and ¹³C NMR spectrum of 3-amino-2',4'-dichloro-2-methyl-5-(methylthio)-[1,1'-biphenyl]-4-carbonitrile (7h)

¹H NMR and ¹³C NMR spectrum of 3-amino-4'-bromo-2-methyl-5-(methylthio)-[1,1'biphenyl]-4-carbonitrile (7i)

¹H NMR and ¹³C NMR spectrum of 3-amino-3'-bromo-2-methyl-5-(methylthio)-[1,1'biphenyl]-4-carbonitrile (7j)

¹H NMR and ¹³C NMR spectrum of 2-amino-3-methyl-6-(methylthio)-4-(naphthalen-2-yl)benzonitrile (7k)

¹H NMR and ¹³C NMR spectrum of 3-Amino-4-benzoyl-2'-methoxy-5-(methylthio)-[1,1'biphenyl]-2-carbonitrile (9a)

¹H NMR and ¹³C NMR spectrum of 3-Amino-2'-methoxy-4-(4-methylbenzoyl)-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (9b)

¹H NMR and ¹³C NMR spectrum of 3-Amino-2'-methoxy-5-(methylthio)-4-(thiophene-2carbonyl)-[1,1'-biphenyl]-2-carbonitrile (9c)

¹H NMR and ¹³C NMR spectrum of 3-amino-4-benzoyl-2'-chloro-5-(methylthio)-[1,1'biphenyl]-2-carbonitrile (9d)

¹H NMR and ¹³C NMR spectrum of 3-amino-2'-chloro-4-(4-methylbenzoyl)-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (9e)

¹H NMR and ¹³C NMR spectrum of 3-amino-2'-chloro-4-(4-methoxybenzoyl)-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (9f)

¹H NMR and ¹³C NMR spectrum of 3-amino-4-benzoyl-2',4'-dichloro-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (9g)

¹H NMR and ¹³C NMR spectrum of 3-amino-2',4'-dichloro-4-(4-methylbenzoyl)-5-(methylthio)-[1,1'-biphenyl]-2-carbonitrile (9h)

¹H NMR and ¹³C NMR spectrum of 2-amino-3-(4-methoxybenzoyl)-4-(methylthio)-6-(naphthalen-2-yl)benzonitrile (9i)

¹H NMR and ¹³C NMR spectrum of 2-amino-3-(4-methoxybenzoyl)-4-(methylthio)-6-(naphthalen-2-yl)benzonitrile (9j)

¹H NMR and ¹³C NMR spectrum of 5-methyl-3-phenylfuran-2-carbaldehyde (12a)

¹H NMR and ¹³C NMR spectrum of 5-methyl-3-(*p*-tolyl)furan-2-carbaldehyde (12b)

¹H NMR and ¹³C NMR spectrum of 3-(4-methoxyphenyl)-5-methylfuran-2-carbaldehyde (12c)

¹H NMR and ¹³C NMR spectrum of 2-(3,4-dimethoxyphenyl)-5-methylfuran-3-carbaldehyde (12d)

¹H NMR and ¹³C NMR spectrum of 3-(4-bromophenyl)-5-methylfuran-2-carbaldehyde (12e)

SUV-05

¹H NMR and ¹³C NMR spectrum of 2-(bis(methylthio)methyl)-3-(4-chlorophenyl)-5ethylfuran (11)