Supporting Information

Visible-Light-Induced Photocatalytic Four-Component fluoroalkylation–dithiocarbamylation via Difunctionalization of Styrenes

Patamawadee Silalai,^[a] and Rungnapha Saeeng *,^[a, b]

[a]	Dr. S. Patamawadee, Prof. Dr. S. Rungnapha
	Department of Chemistry and Center for In-novation in Chemistry, Faculty of Science
	Burapha University
	Chonburi 20131, Thailand
	E-mail: rungnaph@buu.ac.th
[b]	Prof. Dr. S. Rungnapha
	The Research Unit in Synthetic Compounds and Synthetic Ana-logues from Natural Product for Drug Discovery (RSND
	Burapha University
	Chonburi 20131, Thailand

Table of contents

	Page
General information	 S4
Graphical supporting information for visible-light-induced photocatalytic four-component difluoroalkylation– dithiocarbamylation via difunctionalization of alkenes	 S4-S5
Stern-Volmer fluorescence quenching studies	 S5-S7
Spectra for visible-light-induced photocatalytic four-component compounds	
Compound 5a ¹ H, ¹³ C{1H} NMR, ¹⁹ F{1H} NMR and DEPT135 NMR	 S8-S9
Compound 5b ¹ H, ¹³ C{1H} NMR, ¹⁹ F{1H} NMR and DEPT135 NMR	 S10-S11
Compound 5c ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S12-S13
Compound 5d ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR and DEPT135 NMR	 S14-S15
Compound 5e ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S16-S17
Compound 5f ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S18-S19
Compound 5g ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S20-S21
Compound 5h ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S22-S23
Compound 5i ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S24-S25
Compound 5j ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S26-S27
Compound 5I ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S28-S29
Compound 5m ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S30-S31
Compound 5n ¹ H, ¹³ C{1H} NMR	 S32
Compound 5o ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S33-S34
Compound 5p ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S35-S36
Compound 5q ¹ H, ¹³ C{1H} NMR	 S37
Compound 6a ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S38-S39
Compound 6b ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S40-S41
Compound 6c ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S42-S43
Compound 6d ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S44-S45
Compound 6e ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S46-S47
Compound 6f ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S48-S49
Compound 6g ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S50-S51
Compound 6h ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S52-S53
Compound 6i ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S54-S55
Compound 6j ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S56-S57
Compound 6k ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S58-S59
Compound 6I ¹ H, ¹³ C{1H} NMR and ¹⁹ F NMR	 S60-S61

Compound **7a** ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7b 1H, 13C{1H} NMR and 19F NMR Compound 7c¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7d ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7e ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound **7f** ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound **7g** ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7h ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7i ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7j ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7k ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 7I ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 8a ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 8b ¹H, ¹³C{1H} NMR Compound 8c ¹H, ¹³C{1H} NMR Compound 8d ¹H, ¹³C{1H} NMR Compound 8e 1H, ¹³C{1H} NMR Compound 8f ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 8g ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 8h ¹H, ¹³C{1H} NMR and ¹⁹F NMR Compound 9 ¹H, ¹³C{1H} NMR and ¹⁹F NMR

Tr	oub	lesho	ootin	g &	FAQ

References and notes

S62-S63 S64-S65 S66-S67 S68-S69 S70-S71 S72-S73 S74-S75 S76-S77 S78-S79 S80-S81 S82-S83 S84-S85 S86-S7 S88 S89 **S90** S91 S92-S93 S94-S95 S96-S97 S98-S99 S100 S101

General information

The light-promoted reactions were used in the blue LED, using a homemade photoreactor having blue LED strips with λ 460-463 nm. 36W Blue LEDs were purchased from the market available commercial source (budget led). Borosilicate reaction tube was used as material of the irradiation vessel. Distance between light source and reaction tube was approximately 5 cm and no filter was used for the reaction. A fan was used to ensure reactions remained at or near room temperature when using LED.

Figure S1. The photo reaction setup and blue LED lamps

Graphical supporting information for visible-light-induced photocatalytic fourcomponent difluoroalkylation–dithiocarbamylation via difunctionalization of alkenes (0.2 mmol scale)

Figure S2. (Left) Starting materials for visible-light-induced photocatalytic four-component difluoroalkylation–dithiocarbamylation via difunctionalization reaction. **(Right)** 10.0 mL of Schlenk tube.

Figure S3. (Left) Photocatalyst $[Ir(2',4'-dF-5-CF3-ppy)_2(4,4'-dtbbpy)]PF_6$ (yellow solid) were weighed on the bench top. (Center) Carbondisulfide (CS₂) (**Right**) Solvent (DCM) for visible-light-induced photocatalytic four-component difluoroalkylation–dithiocarbamylation via difunctionalization reaction.

Figure S4. The tube was evacuated, refilled with N_2 and the reaction stirred under blue LEDs at room temperature.

Stern-Volmer fluorescence quenching studies

The fluorescence quenching experiment was conducted using a fluorescence spectrophotometer (Agilent Technologies). The excitation wavelength was 360 nm, and the emission intensity was collected at 524 nm. Samples were prepared by mixing [lr(ppy)₂(4,4'-dtb-bpy)]PF₆ (1.0×10^{-4} M) with varying amounts of quencher **2a** (BrF₂CO₂Et) in DCM (total volume = 5.0 mL) in a quartz fluorescence cuvette. For each quenching experiment, different volumes of the quencher's stock solution were titrated into a solution of [lr(ppy)₂(4,4'-dtb-bpy)]PF₆ (2.5 mL, maintaining a total volume of 5.0 mL). The emission intensity was then measured.

Entry	[lr(ppy) ₂ (4,4'-dtb-bpy)]PF ₆	Quencher 2a (BrF ₂ CO ₂ Et)	DCM	Total volume
1	2.5 mL (5x10 ⁻⁵ M)	0 mL (0 mM)	2.5 mL	5.0 mL
2	2.5 mL (5x10 ⁻⁵ M)	0.5 mL (5 mM)	2.0 mL	5.0 mL
3	2.5 mL (5x10 ⁻⁵ M)	1.0 mL (10 mM)	1.5 mL	5.0 mL
4	2.5 mL (5x10 ⁻⁵ M)	1.5 mL (15 mM)	1.0 mL	5.0 mL
5	2.5 mL (5x10 ⁻⁵ M)	2.0 mL (20 mM)	0.5 mL	5.0 mL

Inspired by the significant results, we sought to gain insights into the mechanism. We conducted Stern–Volmer fluorescence quenching experiments using $[Ir(ppy)_2(4,4'-dtb-bpy)]PF_6$ in the presence of BrF₂CO₂Et (**2a**). F₀ and F show the intensities of the emission in the absence and presence of the quencher at 524 nm. The results indicated that compound **2a** could effectively quench the excited state of the photosensitizer $[Ir(ppy)_2(4,4'-dtb-bpy)]PF_6^*$.

Figure S5. Fluorescence quenching experiment

Stern-Volmer fluorescence quenching experiments were run with a freshly prepared solution of $[Ir(ppy)_2(4,4'-dtb-bpy)]PF_6 (1.0 \times 10^{-4} \text{ M})$ in DCM. Samples were prepared by mixing $[Ir(ppy)_2(4,4'-dtb-bpy)]PF_6 (1.0 \times 10^{-4} \text{ M})$ with 5 mM of quenchers alkene (**1a**), BrF₂CO₂Et (**2a**), CS₂ (**3a**) and piperazine derivative (**4a**) in DCM (total volume = 5.0 mL) in a quartz fluorescence cuvette. For each quenching experiment, different quenchers with 5 mM were titrated into a solution of $[Ir(ppy)_2(4,4'-dtb-bpy)]PF_6 (2.5 mL, maintaining a total volume of 5.0 mL). The emission intensity was then measured.$

Entry	Substrates	Conc.	Cat.G	DCM	l otal volume
1	-	-	2.5 mL (5x10 ⁻⁵ M)	2.5 mL	5.0 mL
2	Quencher 1a	0.5 mL (5 mM)	2.5 mL (5x10 ⁻⁵ M)	2.0 mL	5.0 mL
3	Quencher 2a	0.5 mL (5 mM)	2.5 mL (5x10⁻⁵ M)	2.0 mL	5.0 mL
4	Quencher 4a	0.5 mL (5 mM)	2.5 mL (5x10⁻⁵ M)	2.0 mL	5.0 mL
5	Quencher 3+4a	0.5 mL (5 mM)	2.5 mL (5x10 ⁻⁵ M)	2.0 mL	5.0 mL

The fluorescence quenching studies illustrated in the provided graph (see SI; Stern–Volmer graph, **Figure S6**) show the interaction of the photoexcited $[Ir(ppy)_2(4,4'-dtb-bpy)]PF_6^*$ with different substrates. The higher fluorescence intensity quenching observed with BrF₂CO₂Et (**2a**) and the piperazine derivative (**4a**) suggests a more efficient single electron transfer (SET) event compared to the other substrates (**1a** and **3a+4a**). Inspired by these important results, we sought to gain further insights into the mechanism. The formation of dithiocarbamate **3+4a** was readily achieved from the piperazine derivative (**4a**) and CS₂ (**3a**), even in the absence of a base. Therefore, the interaction of the photoexcited [Ir(ppy)_2(4,4'-dtb-bpy)]PF₆ in the presence of either piperazine derivative (**4a**) or BrF₂CO₂Et (**2a**) revealed that only compound **2a** could effectively quench the excited state of [Ir(ppy)_2(4,4'-dtb-bpy)]PF₆*. Therefore, the result of fluorescence quenching experiments indicated that **2a** was a more efficient quencher of the excited state of [Ir(ppy)_2(4,4'-dtb-bpy)]PF₆* than **4a**.

Figure S6. Fluorescence quenching experiments.

Spectra for visible-light-induced photocatalytic four-component difluoroalkylationdithiocarbamylation via difunctionalization reaction

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((4-*phenylpiperazine*-1-*carbonothioyl*)*thio*)*butanoate* (**5***a*):

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((4-(2-*methoxyphenyl*)*piperazine*-1-*carbonothioyl*)*thio*)*butanoate* (**5***b*):

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((4-(*p-tolyl*)*piperazine*-1-*carbonothioyl*)*thio*)*butanoate* (**5***c*):

Patamawadee 26-6-65 No.4 PS-P7-119 in CDCl3

5c ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((4-(2-fluorophenyl)*piperazine*-1-*carbonothioyl*)*thio*)*butanoate* (**5***d*):

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-4-((4-((4*chlorophenyl*)(*phenyl*)*methyl*)*piperazine-1-carbonothioyl*)*thio*)-2, 2-*difluorobutanoate* (**5e**):

5e ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-(*bis*(4-fluorophenyl)*methyl*)*piperazine-1-carbonothioy*))*thio*)-4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluorobutanoate* (**5f**):

5f ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 8-6-65 No.9 19F{1H} PS-P7-105 in CDC13

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-4-((4-(4-*chlorobenzyl*)*piperazine*-1-*carbonothioyl*)*thio*)-2,2-*difluorobutanoate* (**5***g*):

5g ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 23-6-65 No.4 19F{1H{} PS-P7-115 in CDC13

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazine-1-carbonothioyl)thio)-4-(4-(tert-butyl)phenyl)-2,2-difluorobutanoate (**5h**):

5h ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-4-((4-(2,3*dihydrobenzo*[*b*][1,4]*dioxine-2-carbonyl*)*piperazine-1-carbonothioyl*)*thio*)-2,2-*difluorobutanoate* (**5***i*):

5i ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((4-(*pyrimidin*-2*yl*)*piperazine*-1-*carbonothioyl*)*thio*)*butanoate* (**5***j*):

5j ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 21-6-65 No.3 19F{1H} PS-P7-114 in CDC13

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((4-(*pyrimidin*-2*yl*)*piperazine*-1-*carbonothioyl*)*thio*)*butanoate* (**5***l*):

5I ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((4-(2-*hydroxyethyl*)*piperazine*-1-*carbonothioyl*)*thio*)*butanoate* (**5***m*):

5m ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 6-7-65 No.3 19F{1H} PS-P7-130 in CDC13

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((*benzyl(methyl)carbamothioyl)thio*)-4-(4-(*tert-butyl)phenyl*)-2,2-*difluorobutanoate* (**5***n*):

50 ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(*tert-butyl*)*phenyl*)-2,2-*difluoro*-4-((*morpholine*-4*carbonothioy*))*thio*)*butanoate* (**5***p*):

5p ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 29-6-65 No.3 19F{1H} PS-P7-131 in CDC13

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-(tert-butyl)phenyl)-4-((diethylcarbamothioyl)thio)-

2,2-difluorobutanoate (5q):

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-phenylbutanoate (**6a**):

Patamawadee 13-9-65 No.4 PS-P7-201 in CDCl3

6a ¹⁹F{1H} NMR (400 MHz, CDCI₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-(p-tolyl)butanoate (**6b**):

Patamawadee 13-9-65 No.2 19F PS-P7-202 in CDCl3

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-(2,4,5-trimethylphenyl)butanoate (**6c**):

6c $^{19}F\{1H\}$ NMR (400 MHz, $CDCI_3)$

Patamawadee 14-9-65 No.7 19F PS-P7-199 in CDC13

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-phenylpentanoate (**6d**):

6d ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-(4-methoxyphenyl)butanoate (**6e**):

6e ¹⁹F{1H} NMR (400 MHz, CDCI₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-(2-methoxyphenyl)butanoate (**6f**):

6f ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-(4-acetoxyphenyl)-4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluorobutanoate (**6g**):

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-4-(4-chlorophenyl)-2,2-difluorobutanoate (**6***h*):

6h ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-4-(4-bromophenyl)-2,2-difluorobutanoate (**6***i*):

6i ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-(4-fluorophenyl)butanoate (**6j**):

6j ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-(3-fluorophenyl)butanoate (**6k**):

6k ¹⁹F{1H} NMR (400 MHz, CDCI₃)

Patamawadee 8-10-65 No.1 19F PS-P7-231 in CDCl3

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-acetylpiperazine-1-carbonothioyl)thio)-2,2-difluoro-4-(4-(trifluoromethyl)phenyl)butanoate (**6**I):

6I ¹⁹F{1H} NMR (400 MHz, CDCI₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *3*,*3*-*difluoro-1-(4-methoxyphenyl)-4-morpholino-4-oxobutyl 4-* (2-*fluorophenyl)piperazine-1-carbodithioate* (*7a*):

7a ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *3,3-difluoro-4-(4-(2-fluorophenyl)piperazin-1-yl)-1-(4-methoxyphenyl)-4-oxobutyl 4-(2-fluorophenyl)piperazine-1-carbodithioate* (**7b**):

7b ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 20-8-65 No.2 19F PS-P7-170 in CDCl3 -122.92 Т **_**__ -85 -95 ppm -80 -90 -100 -105 -110 -115 -120 -125 -130 -135 -140 1.00 0.99 2.38

¹H NMR (400 MHz, CDCl₃) spectrum of *4-(4-benzhydrylpiperazin-1-yl)-3,3-difluoro-1-(4-methoxyphenyl)-4-oxobutyl 4-(2-fluorophenyl)piperazine-1-carbodithioate (7c):*

Patamawadee 18-8-65 No.14 PS-P7-160 in CDC13

7c $^{19}\text{F}\{1\text{H}\}$ NMR (400 MHz, CDCl_3)

¹H NMR (400 MHz, CDCl₃) spectrum of *3,3-difluoro-1-(4-methoxyphenyl)-4-oxo-4-(4-(pyrimidin-2-yl)piperazin-1-yl)butyl 4-(2-fluorophenyl)piperazine-1-carbodithioate (7d):*

7d ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 4-((4-(2-fluorophenyl)piperazine-1-carbonothioyl)thio)-4-(4-methoxyphenyl)-2,2-dimethylbutanoate (**7e**):

7e ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 15-9-65 No.2 19F PS-P7-209 in CDCl3

-122.88

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl ethyl 2-fluoro-4-((4-(2-fluorophenyl)piperazine-1-carbonothioyl)thio)-4-(4-methoxyphenyl)butanoate (7f)*:

Patamawadee 8-12-65 No.1 PS-P7-276-2 in CDC13 $\begin{array}{c} 7.236\\ 7.256\\ 7.266\\ 7.$ S OEt MeO F ö H₂O 10 9 6 2 Ó 8 7 5 3 1 ppm 4 1.95 2.45 3.13 0.52 0.43 0.54 0.54 2.10 2.39 1.84 3.05 1.09 3.54 7f ¹³C{1H} NMR (100 MHz, CDCl₃) Patamawadee 10-12-65 No.3 13C PS-P7-276-2 in CDC13 138.97 138.97 131.38 131.38 129.72 129.45 122.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.4 169.53 169.19 169.19 169.19 159.22 159.22 154.48 V 195.12 -77.33 61.69 38.81 14.11 87.89 87.60 86.03 55.26 51.35 51.30 51.14 50.03 -0.03 200 190 180 170 160 150 140 130 120 110 100 70 50 90 80 60 40 30 20 10 ppm
7f ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *3*,*3*,*3*-*trifluoro-1-(4-methoxyphenyl)propyl 4-(2-fluorophenyl)piperazine-1-carbodithioate* (**7***g*):

7g ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *3*,*3*,*4*,*4*,*5*,*5*,*5*-heptafluoro-1-(4-methoxyphenyl)pentyl 4-(2-fluorophenyl)piperazine-1-carbodithioate (**7h**):

7h ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of *3,4,4,4-tetrafluoro-1-(4-methoxyphenyl)-3-* (*trifluoromethyl*)*butyl 4-(2-fluorophenyl*)*piperazine-1-carbodithioate* (*7i*):

7i ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 20-9-66 No.2 19F PS-P7-369 in CDCl3

¹H NMR (400 MHz, CDCl₃) spectrum of *3*,*3*,*4*,*4*,*5*,*5*,*6*,*6*,*6*-*nonafluoro-1-(4-methoxyphenyl)hexyl 4*-(2-fluorophenyl)piperazine-1-carbodithioate (*7j*):

7j ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-(4methoxyphenyl)octyl 4-(2-fluorophenyl)piperazine-1-carbodithioate (**7k**):

7k ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-(4methoxyphenyl)octyl 4-(2-fluorophenyl)piperazine-1-carbodithioate (**7m**):

7m ¹⁹F{1H} NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of (*1R*, *2R*, *5R*)-2-*isopropyl*-5-*methylcyclohexyl* 2, 2-*difluoro*-4-((4-(2-fluorophenyl)piperazine-1-carbonothioyl)thio)-4-(4-methoxyphenyl)butanoate (**8a**):

8a ¹⁹F{1H} NMR (400 MHz, CDCI₃)

¹H NMR (400 MHz, CDCl₃) spectrum of (1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 2,2-difluoro-4-(4-methoxyphenyl)-4-((morpholine-4-carbonothioyl)thio)butanoate (**8b**):

¹H NMR (400 MHz, CDCl₃) spectrum of *1,3,3-trimethylbicyclo*[2.2.1]heptan-2-yl 2,2-difluoro-4-(4-methoxyphenyl)-4-((morpholine-4-carbonothioyl)thio)butanoate (**8c**):

¹H NMR (400 MHz, CDCl₃) spectrum of (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((*R*)-6methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl 2,2-difluoro-4-(4-methoxyphenyl)-4-((morpholine-4carbonothioyl)thio)butanoate (**8d**):

¹H NMR (400 MHz, CDCl₃) spectrum of (*methyl* (4*R*)-4-((3*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3-((2,2difluoro-4-(4-methoxyphenyl)-4-((morpholine-4-carbonothioyl)thio)butanoyl)oxy)-10,13dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (**8e**):

¹H NMR (400 MHz, CDCl₃) spectrum of

ethyl 2,2-difluoro-4-(4-(((2-(4-isobutylphenyl)propanoyl)oxy)methyl)phenyl)-4-((morpholine-4-carbonothioyl)thio)butanoate (**8f**):

Patamawadee 20-7-66 No.18 PS-P7-447-1 in CDC13

8f ¹⁹F{1H} NMR (400 MHz, CDCI₃)

Patamawadee 29-11-66 No.2 19F PS-P7-447 in CDCl3

¹H NMR (400 MHz, CDCl₃) spectrum of *ethyl* 2,2-*difluoro*-4-(4-((((S)-2-(6-methoxynaphthalen-2yl)propanoyl)oxy)methyl)phenyl)-4-((morpholine-4-carbonothioyl)thio)butanoate (**8**g):

8g ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 29-11-66 No.4 19F PS-P7-456 in CDCl3

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(4-ethoxy-3,3-difluoro-1-((morpholine-4-carbonothioyl)thio)-4-oxobutyl)benzyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (**8h**):

8h ¹⁹F{1H} NMR (400 MHz, CDCI₃)

Patamawadee 29-11-66 No.6 19F PS-P7-460 in CDCl3

¹H NMR (400 MHz, CDCl₃) spectrum of *3*,*3-difluoro-4-hydroxy-1-(4-methoxyphenyl)butyl morpholine-4-carbodithioate* (**9**):

Patamawadee 27-9-66 No.1 PS-P7-471 in CDCl3

9 ¹⁹F{1H} NMR (400 MHz, CDCl₃)

Patamawadee 29-11-66 No.5 19F PS-P7-471 in CDCl3

Troubleshooting & FAQ

Could I use other alkenes besides styrenes in this reaction?

Currently, our protocol is limited to styrenes. The other alkenes such as indene or vinylcyclohexane were found to be incompetent reaction partners for visible-light-induced photocatalytic four-component fluoroalkylation–dithiocarbamylation.

Which by-products should I expect in this reaction?

The main by-product is three component coupling products originating from the difluorobromoacetate (**2a**), CS_2 (**3**) and amines (**4**) by fluoroalkylation–dithiocarbamylation reaction, as detected by HRMS.

Is it necessary to wait for 24 hours for the visible-light-induced photocatalytic four-component fluoroalkylation–dithiocarbamylation reaction?

The reaction does not proceed to completion if less than 24 h and there is still starting material and show the same spot with three component product (by-product) and target product on TLC. We suggest the reaction needs to completion for easily to isolated.

How important is the equivalent of reaction to the success of the visible-light-induced photocatalytic four-component fluoroalkylation–dithiocarbamylation reaction?

The equivalent amount of reactant is crucial for the success of the reaction. Our findings indicate that employing 3.0 equivalents of compounds **2**, **3**, and **4** was optimal for yielding the four-component coupling product **5** in high yield. Conversely, using 1.5 to 2.0 equivalents resulted in lower yields of product **5** compared to the 3.0 equivalent.

How do I purify my product?

We use silica gel flash column chromatography.

How do I remove three component product (by-product)?

We use silica gel flash column chromatography.

Our research bears similarities to the study conducted by Wang's group in 2023. How can I effectively analyze and compare the differences and advantages between our research and the study conducted by Wang's group?

Wang's group developed a visible-light induced four-component reaction of styrene with BrCF₂CO₂Et to furnish thiodifluoroesters in moderate to good yields.¹ This method has a limited substrate scope and relies on a stoichiometric amount of base. Our work allows the important expansion of the chemical space of this class of compounds that can be practically applied to target molecules containing drug and natural product skeletons under mild conditions and without the need for any special additives (Cu catalyst) or strong bases.

References and notes

[1] Yang, S.-H.; Song, J.-C.; Yang, H.; Zhou, M.-Y.; Wei, Z.-H.; Gao, J.-H.; Dong, D.-Q.; Wang, Z.-L. *Chinese Chemical Letters* **2023**, *34*.