Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

for

InCl₃ Catalyzed Simultaneous Reductive Sulfoximination and *O*-Silylation: Synthesis of Silyloxy Benzylsulfoximine

K. Natarajan,^a V. Jayakumar,^b V. R. Padma Priya,^a A. Antony Haritha Mercy,^a Ganesh Chandra Nandi^{* a}

^aDepartment of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamilnadu, India; Email: <u>ganeshnandi@gmail.com</u>; <u>nandi@nitt.edu</u>

^bDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, 632014, Tamil Nadu, India

Table of Contents

1. General information	S2
2. General procedure for synthesis of o-silyloxy benzylsulfoximine	S2
3. General procedure for Suzuki-Miyaura coupling reaction of bromine	
containing O-siloxybenzylsulfoximine	S2
4. H ₂ evolution studies	S3
5. Analytical data of the synthesized compounds	S6
6. ¹ H and ¹³ C NMR spectra of synthesized compounds	S15

1. General information

The starting material sulfoximines were synthesized in the laboratory following the reported method.¹ The arylaldehydes, trialkylsilylhydrides, InCl₃ and anhydrous dichloromethane and other chemicals were purchased from various suppliers and used as received. ¹H (400 and 500 MHz) and ¹³C NMR (101 and 126 MHz) spectra were recorded on BRUKER NMR spectrophotometer. CDCl₃ was used as solvent to record NMR spectra. HR Mass spectra were recorded with Agilent QTOF G6545 XT spectrometer at 50,000 resolutions using ESI mode. Melting points were uncorrected. Infrared (IR) spectra were acquired on Perkin Elmer ATR FT-IR Spectrometer. Frequencies are given in wave numbers (cm⁻¹) and only selected peaks were reported.

2. General procedure for synthesis of *ortho*-silyloxy benzylsulfoximine (4a)

A 15 mL sealed tube (1.5 x 8 cm) with a septum containing salicylaldehyde **1a** (15 mg, 0.12 mmol), sulfoximine **2a** (19 mg, 0.12 mmol), trialkylsilane **3a** (43 mg, 0.36 mmol), and InCl₃ (5 mol%) was evacuated and backfilled with nitrogen 3 times. The solvent anhydrous DCM (1.5 mL) was added under nitrogen atmosphere to the pressure tube. Then, the rubber septum was replaced by a screw cap and the resulting mixture was stirred at 80 °C for 18 hours. The solvent was evaporated and quenched by water, and further extracted with ethyl acetate (3 x 10 mL). The organic phase was then washed with brine solution (2 x 10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified through column chromatography (100–200 mesh SiO₂) using 20% of EtOAc in hexane as eluent to give the product **4a**.

Similar protocol was used to synthesize rest of *ortho*-silyloxy benzylsulfoximine (**4b-4t**) and the products were purified using 10-30% of EtOAc in hexane as eluent.

Note: The same procedure was followed for preparing *N*-benzyl sulfoximines (**5a-c**) and *o*-,*m*-disilyloxy benzylsulfoximine (**5d**) with 1 equiv. and 4 equiv. of trialkylsilane respectively.

3. General procedure for the synthesis of 7: Suzuki-Miyaura coupling reaction

A mixture of bromine containing *ortho*-silyloxy benzylsulfoximine (**4e**, 20 mg, 0.0427 mmol), arylboronic acid (6, 19.5 mg, 0.1281 mmol), K_2CO_3 (29.5 mg, 0.2235 mmol), PPh₃ (1.1 mg, 10 mol %) in 1,4-dioxane (2.0 mL), and distilled water (0.8 mL) was degassed with a stream of argon passing through the solution for 15 min. Thereafter, Pd(PPh₃)₂Cl₂ (1.5 mg, 5 mol %) was added, and the reaction mixture was stirred under argon atmosphere for 3 h at 80 °C. After

completion, the reaction mixture was cooled, diluted with water (15 mL), and extracted with DCM (3 \times 20 mL). The collected organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with 25% of EtOAc in hexane as eluent to give the product 7.

Reference:

1. Y. Xie, B. Zhou, S. Zhou, S. Zhou, W. Wei, J. Liu, Y. Zhan, D. Cheng, M. Chen and Y. Li, *ChemistrySelect*, 2017, **2**, 1620

4. H₂ Evolution studies:

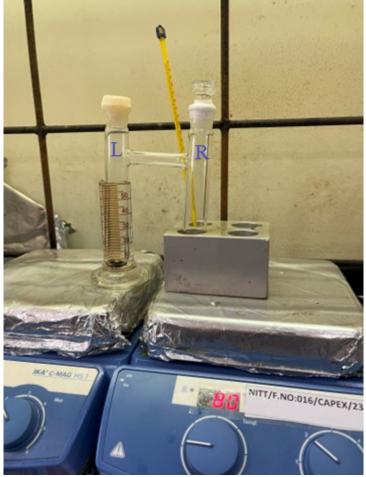
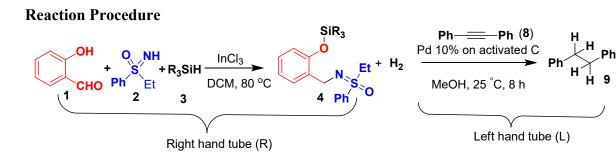
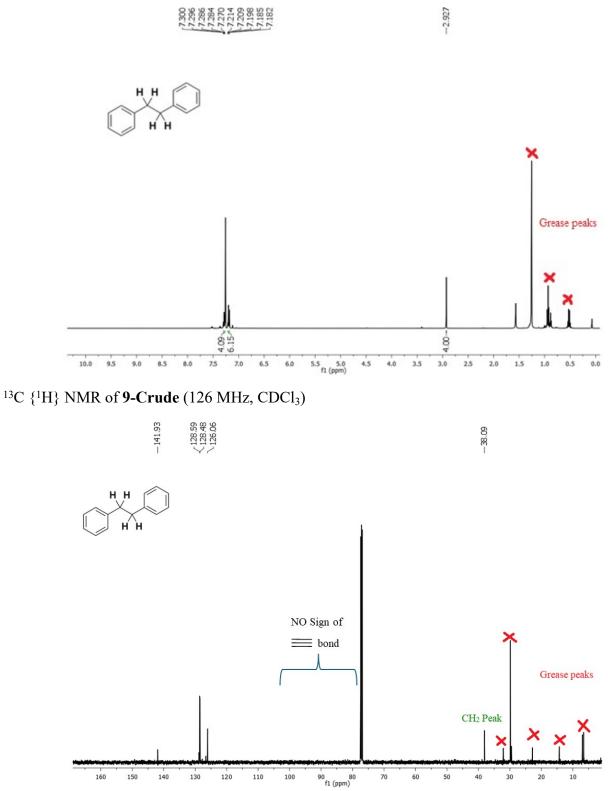
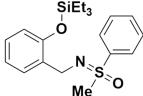



Figure 1: Reaction setup

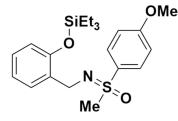


A 20 mL H-shape tube (2.5 x 17 cm) was taken for the reaction. Left side tube (L) with septum was charged with diphenylacetylene (8, 0.1 mmol), Pd/C, and MeOH (1.5 mL) at room temperature (25 °C). The L-tube is linked with the right side tube (R) containing salicylaldehyde 1a (15 mg, 0.12 mmol), sulfoximine 2a (19 mg, 0.12 mmol), trialkyl silane 3a (43 mg, 0.36 mmol), and InCl₃ (5 mol%). The solvent DCM (1.5 mL) was added and closed tightly with lid (ensured there is no contact with atmospheric air). The resulting mixture was stirred at 80 °C for 8 hours. Simultaneously, The L-tube mixture too stirred for 8 h at room temp. After 8 h, the reaction mixture of L-tube was filtered and the filtrate was concentrated under reduced pressure, followed by triturated with hexane twice. The NMR of reaction mixture (without purification) proves the formation of 9. It is possible only if diphenyl acetylene 8 is reduced (by hydrogen). The experiment proves the formation of H₂ in the reaction.

Analytical data of 9 (crude)

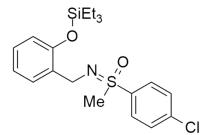

Yellowish sticky liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.30 - 7.27 (m, 4H), 7.21 - 7.18 (m, 6H), 2.92 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 141.9, 128.5, 128.4, 126.0, 38.0.

¹H NMR of **9-crude** (500 MHz, CDCl₃)


5. Analytical Data of the Synthesized Compounds

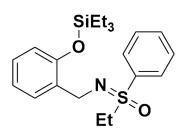
Compound 4a

Yellowish sticky liquid, Yield: 69% (32 mg from 0.1228 mmol of salicylaldehyde), column purified through chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.5Hz, 2H), 7.63 – 7.57 (m, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 4.20 (d, J = 16.0 Hz, 1H), 4.04 (d, J = 15.5 Hz, 1H), 3.15 (s, 3H), 0.88 (t, J = 7.5 Hz, 9H), 0.66 (q, J = 8.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 152.8, 139.7, 132.8, 131.9, 129.4, 128.8, 128.7, 127.1, 121.3, 118.1, 45.4, 42.1, 6.7, 5.3. **HRMS** (ESI) calcd for C₂₀H₃₀NO₂SSi⁺ [M+H]⁺ 376.1761; found 376.1761. **IR** $(cm^{-1}): v = 3062, 2926, 1587, 1489, 1455, 1211, 1124, 1083.$


Compound 4b

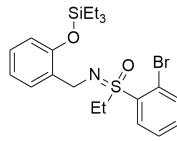
Yellowish sticky liquid, Yield: 56% (28 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 9.0 Hz, 2H), 7.63 (d, J = 7.5 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.98 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 7.5 Hz, 1H), 6.70 (d, J = 7.5

Hz, 1H), 4.17 (d, J = 16.0 Hz, 1H), 4.03 (d, J = 16.0 Hz, 1H), 3.85 (s, 3H), 3.13 (s, 3H), 0.89 (t, J = 8.0 Hz, 9H), 0.66 (t, J = 8.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 163.2, 152.7, 132.0, 130.9, 130.7, 128.6, 127.1, 121.2, 118.0, 114.6, 55.7, 45.6, 42.0, 6.7, 5.3. HRMS (ESI) calcd for $C_{21}H_{32}NO_3SSi^+[M+H]^+ 406.1867$; found 406.1879. **IR (cm⁻¹)**: v = 3061, 2924, 2851, 1592, 1577, 1493, 1456, 1120, 1086.


Compound 4c

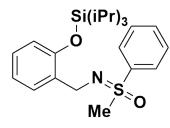
Yellowish sticky liquid, Yield: 62% (31 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.06 (t, J = 8.0 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.70 (d,

J = 8.0 Hz, 1H), 4.18 (d, J = 15.5 Hz, 1H), 4.03 (d, J = 15.5 Hz, 1H), 3.13 (s, 3H), 0.90 (t, J = 15.5 Hz, 1H), 3.15 (s, 3H), 0.90 (t, J = 15.5 Hz, 1H), 3.15 (s, 3H), 0.90 (t, J = 15.5 Hz, 1H), 3.15 (s, 3H), 0.90 (t, J = 15.5 Hz, 1H), 3.15 (s, 3H), 0.90 (t, J = 15.5 Hz, 1H), 3.15 (t, J = 15.5 8.0 Hz, 9H), 0.66 (q, J = 8.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 152.8, 139.5, 138.3, 131.5, 130.2, 129.6, 128.7, 127.3, 121.2, 118.1, 45.4, 41.9, 6.7, 5.3. HRMS (ESI) calcd for $C_{20}H_{29}CINO_2SSi^+$ [M+H]⁺ 410.1371; found 410.1381. IR (cm⁻¹): v = 3087, 2954, 2875, 1587, 1489, 1456, 1211, 1126, 1083, 733.


Compound 4d

Yellowish sticky liquid, Yield: 71% (34 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.2 Hz, 2H), 7.66 (d, J = 6.8 Hz, 1H), 7.58 (t, J = 6.8 Hz, 1H), 7.51 (t, J = 7.2 Hz, 2H), 7.06 (t, J = 7.2 Hz, 1H), 6.96 (t, J = 7.2 Hz,

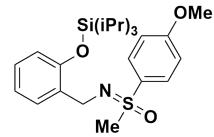
1H), 6.70 (d, J = 7.6 Hz, 1H), 4.20 (d, J = 16.0 Hz, 1H), 4.06 (d, J = 16.0 Hz, 1H), 3.33 – 3.18 (m, 2H), 1.27 (t, J = 7.6 Hz, 3H), 0.87 (t, J = 8.0 Hz, 9H), 0.64 (q, J = 7.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 152.8, 137.7, 132.8, 132.2, 129.5, 129.3, 128.6, 127.0, 121.2, 118.0, 51.1, 41.8, 29.8, 7.8, 6.7, 5.3. HRMS (ESI) calcd for C₂₁H₃₂NO₂SSi⁺ [M+H]⁺ 390.1918; found 390.1918.


Compound 4e

Brown liquid, Yield: 55% (31 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8.5:1.5). ¹H NMR (500 MHz, CDCl₃): δ 8.18 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.04 (t, *J*

= 7.5 Hz, 1H), 6.93 (t, J = 7.0 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 4.15 (d, J = 16.0 Hz, 1H), 4.05 (d, J = 16.0 Hz, 1H), 3.70 – 3.63 (m, 1H), 3.57 – 3.50 (m, 1H), 1.28 (t, J = 7.5 Hz, 3H), 0.88 (t, J = 8.0 Hz, 9H), 0.65 (q, J = 8.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 152.6, 136.7, 135.5, 134.4, 133.8, 131.6, 128.8, 128.0, 127.0, 121.2, 121.1, 117.8, 48.4, 42.2, 7.1, 6.6, 5.2. HRMS (ESI) calcd for C₂₁H₃₁BrNO₂SSi⁺ [M+H]⁺ 468.1023; found 468.1032. IR (cm⁻¹): v = 3082, 2925, 1587, 1489, 1455, 1210, 1132,1092, 569.

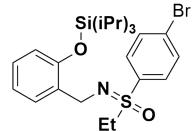
Compound 4f



Yellow sticky liquid, Yield: 65% (33 mg from 0.1289 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 7.5 Hz, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.0 Hz, 2H), 7.05 (t, J = 7.0 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H),

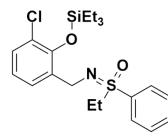
6.71 (d, J = 8.0 Hz, 1H), 4.22 (d, J = 16.0 Hz, 1H), 4.08 (d, J = 16.0 Hz, 1H), 3.16 (s, 3H),

1.21-1.14 (m, 3H), 0.99 (dd, J = 1.5 Hz, 18H). ¹³C NMR (126 MHz, CDCl₃): δ 153.0, 139.7, 132.8, 131.7, 129.4, 128.8, 128.4, 127.0, 120.9, 117.6, 45.3, 42.4, 18.1, 13.1. HRMS (ESI) calcd for C₂₃H₃₆NO₂SSi⁺ [M+H]⁺ 418.2231; found 418.2236.


Compound 4g

Brown solid, Yield: 68% (37 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 7.5:2.5), mp 102-104 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.98 - 6.93 (m, 3H), 6.71

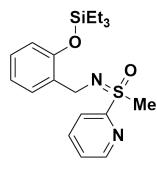
(d, J = 8.0 Hz, 1H), 4.21 (d, J = 16.0 Hz, 1H), 4.09 (d, J = 16.0 Hz, 1H), 3.86 (s, 3H), 3.14 (s, 3H), 1.2 - 1.16 (m, 3H), 1.00 (dd, J = 6.5, 1.0 Hz, 18H). ¹³C NMR (126 MHz, CDCl₃): δ 163.2, 153.0, 131.9, 130.9, 128.4, 126.9, 120.9, 117.6, 114.6, 55.7, 45.6, 42.4, 18.1, 13.1. HRMS (ESI) calcd for C₂₄H₃₈NO₃SSi⁺ [M+H]⁺ 448.2336; found 448.2354. IR (cm⁻¹): v = 3064, 2943, 2866, 1593, 1485, 1453, 1219, 1135, 1085.


Compound 4h

Brown solid, Yield: 66% (41 mg from 0.1289 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2), mp 104-106 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.69 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 3H), 7.05 (t, J = 7.5 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.70 (d, J =

8.0 Hz, 1H), 4.22 (d, J = 16.0 Hz, 1H), 4.11 (d, J = 15.5 Hz, 1H), 3.29 – 3.18 (m, 2H), 1.28 (t, J = 7.5 Hz, 3H), 1.22 - 1.15 (m, 3H), 1.00 (dd, J = 6.5, 1.0 Hz, 18H). ¹³C NMR (126 MHz, CDCl₃): δ 153.0, 137.0, 132.6, 131.7, 131.1, 128.4, 128.0, 127.0, 120.9, 117.6, 51.2, 42.1, 18.1, 13.1, 7.7. HRMS (ESI) calcd for C₂₄H₃₇BrNO₂SSi⁺ [M+H]⁺ 510.1492 ; found 510.1507. IR (cm⁻¹): v = 3065, 2943, 1599, 1485, 1453, 1218, 1138, 1082, 584.

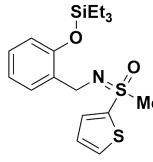
Compound 4i



Yellowish sticky liquid, Yield: 55% (41 mg from 0.1755 mmol of corresponding salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, J = 8.0 Hz, 2H), 7.62 – 7.56 (m, 2H), 7.53 (t, J = 7.0 Hz, 2H), 7.17 (d, J = 7.5 Hz, 1H), 6.91 (t, J = 8.0 Hz, 1H),

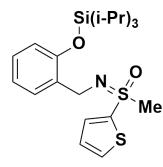
4.16 (d, J = 16.0 Hz, 1H), 4.04 (d, J = 16.0 Hz, 1H), 3.33 – 3.20 (m, 2H), 1.29 (t, J = 7.5 Hz,

3H), 0.85 (t, J = 8.0 Hz, 9H), 0.66 (q, J = 7.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 149.2, 137.7, 134.5, 132.9, 129.5, 129.4, 127.9, 126.9, 124.5, 122.0, 51.1, 42.7, 7.7, 6.7, 5.7. HRMS (ESI) calcd for C₂₁H₃₁ClNO₂SSi⁺ [M+H]⁺ 424.1528; found 424.1540. **IR (cm⁻¹)**: v = 3061, 2955, 2876, 1579, 1456, 1126, 1085, 764.


Compound 4j

Pale yellow solid, Yield: 53% (24 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2), mp 112-114 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.71- 8.70 (m, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 7.5 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.46 - 7.43 (m, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 4.26 (d, J

= 16.0 Hz, 1H), 4.08 (d, J = 15.5 Hz, 1H), 3.33 (s, 3H), 0.90 (t, J = 7.5 Hz, 9H), 0.71 – 0.65 (m, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 158.2, 152.6, 150.3, 137.7, 131.5, 128.8, 127.1, 126.4, 123.1, 121.2, 117.8, 41.9, 41.2, 6.7, 5.3. HRMS (ESI) calcd for C₁₉H₂₉N₂O₂SSi⁺ [M+H]⁺ 377.1714; found 377.1704. IR (cm⁻¹): v = 3060, 2927, 2851, 1600, 1450, 1262, 1110, 1073.


Compound 4k

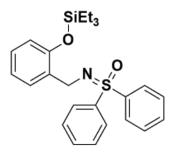
Yellowish sticky liquid, Yield: 60% (28 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 7.5:2.5). ¹H NMR (500 MHz, CDCl₃): δ 7.65 (dd, J = 5.0, 1.5 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.56 (dd, J = 4.0, 1.5 Hz, 1H), 7.15 – 7.06 (m, 2H), 6.96 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 4.28 (d, J = 15.5 Hz, 1H), 4.17 (d, J = 15.5 Hz, 1H), 3.29

(s, 3H), 0.91 (t, J = 7.5 Hz, 9H), 0.71 – 0.66 (m, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 152.8, 141.5, 133.7, 133.6, 131.6, 128.6, 128.1, 127.2, 121.2, 118.1, 47.2, 42.2, 6.7, 5.3. HRMS (ESI) calcd for C₁₈H₂₈NO₂S₂Si⁺ [M+H]⁺ 382.1325; found 382.1324.

Compound 41

Pale yellow solid, Yield: 62% (32 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 7:3), mp 120-122 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, J = 5.0 Hz, 1H), 7.62 - 7.60 (m, 1H), 7.55 (d, J = 3.5 Hz, 1H), 7.10 - 7.09 (m, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 4.32 (d, J = 16.0 Hz, 1H), 4.21 (d,

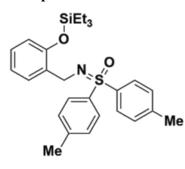
J = 16.0 Hz, 1H), 3.30 (s, 3H), 1.25 - 1.17 (m, 3H), 1.02 (d, J = 7.5 Hz, 18H). ¹³C NMR (126 MHz, CDCl₃): δ 153.0, 141.4, 133.6, 133.6, 131.4, 128.4, 128.0, 127.1, 120.9, 117.6, 47.2, 42.5, 18.1, 13.0. HRMS (ESI) calcd for C₂₁H₃₄NO₂S₂Si⁺ [M+H]⁺ 424.1795; found 424.1799.


SiEt₃ O N_SS Et[']O

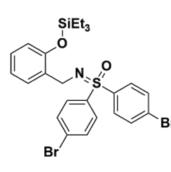
Compound 4m

Colourless sticky liquid, Yield: 62% (30 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 8.0 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 4.30 (s, 2H), 3.06 - 2.97 (m, 3H), 2.27

- 2.25 (m, 1H), 2.17 - 2.15 (m, 1H), 1.93 - 1.89 (m, 2H), 1.72 - 1.69 (m, 1H), 1.61 – 1.52 (m, 2H), 1.32 (t, J = 7.5 Hz, 3H), 1.28 – 1.18 (m, 3H), 0.98 (t, J = 7.5 Hz, 9H), 0.75 (q, J = 8.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 152.6, 132.6, 128.4, 126.8, 121.0, 117.7, 60.8, 43.2, 40.5, 26.2, 25.8, 25.6, 25.5, 25.3, 7.5, 6.7, 5.3. HRMS (ESI) calcd for C₂₁H₃₈NO₂SSi⁺ [M+H]⁺ 396.2387; found 396.2406.


Compound 4n

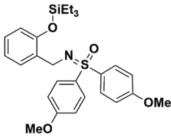
Yellowish sticky liquid, Yield: 40% (21.5 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 8.02 (d, J = 8.5 Hz, 4H), 7.81 (d, J = 8.5 Hz, 1H), 7.51 - 7.44 (m, 6H), 7.09 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 4.28 (s, 2H), 0.87 (t, J = 7.5 Hz, 9H), 0.67 - 0.62 (m, 6H). ¹³C NMR


(126 MHz, CDCl₃): δ 152.8, 140.9, 132.4, 132.3, 129.2, 128.7, 128.3, 127.0, 121.2, 117.9, 42.1,
6.7, 5.3. HRMS (ESI) calcd for C₂₅H₃₂NO₂SSi⁺ [M+H]⁺ 438.1918; found 438.1922.

Compound 4o

Yellowish sticky liquid, Yield: 66% (37.5 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8.5:1.5). ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, *J* = 8.5 Hz, 4H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 4H), 7.09 (t, *J* = 8.0 Hz, 1H), 7.02 (t, *J* = 7.0 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 4.26 (s, 2H), 2.36 (s, 6H), 0.88 (t, *J* = 8.0 Hz, 9H),

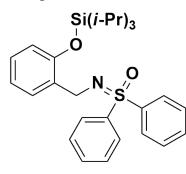
0.65 (q, *J* = 8.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 152.7, 143.0, 138.1, 132.4, 129.8, 128.6, 128.4, 126.9, 121.2, 117.8, 42.1, 21.5, 6.7, 5.3. HRMS (ESI) calcd for C₂₇H₃₆NO₂SSi⁺ [M+H]⁺ 466.2231; found 466.2249. IR (cm⁻¹): ν = 3042, 2956, 1662, 1593, 1488, 1455, 1248, 1126, 1083.



Compound 4p

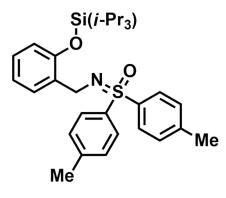
Brown sticky liquid, Yield: 57% (41.5 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 9:1). ¹**H NMR** (500 MHz, CDCl₃): δ 7.83 (d, J = 8.5 Hz, 4H), 7.70 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 8.5 Hz, 4H), 7.10 (t, J = 8.0 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 4.25 (s, 2H), 0.89 (t, J = 8.0 Hz, 9H), 0.66 (q, J = 8.0 Hz,

6H). ¹³C NMR (126 MHz, CDCl₃): δ 152.8, 139.7, 132.6, 131.6, 130.2, 128.4, 127.9, 127.3, 121.2, 118.0, 41.9, 6.7, 5.3. HRMS (ESI) calcd for C₂₅H₃₀ Br₂NO₂SSi⁺ [M+H]⁺ 594.0128; found 594.0136. IR (cm⁻¹): v = 3084, 2955, 2875, 1571, 1486, 1454, 1264, 1139, 1092.


Compound 4q

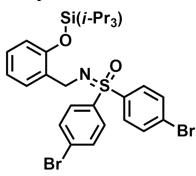
Yellowish sticky liquid, Yield: 64% (39 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 7:3). ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 9.0 Hz, 4H), 7.84 (d, J = 7.5 Hz, 1H), 7.09 (t, J = 8.0 Hz, 1H), 7.02 (t, J = 7.0 Hz, 1H), 6.91 (d, J = 9.0 Hz, 4H), 6.73 (d, J = 8.0

Hz, 1H), 4.27 (s, 2H), 3.78 (s, 6H), 0.89 (t, J = 8.0 Hz, 9H), 0.66 (q, J = 8.0 Hz, 6H).¹³C NMR (126 MHz, CDCl₃): δ 162.6, 152.6, 132.8, 132.5, 130.4, 128.2, 126.8, 121.1, 117.8, 114.3, 55.5, 42.0, 6.6, 5.2. HRMS (ESI) calcd for C₃₀H₄₂NO₄SSi⁺ [M+H]⁺ 498.2129; found 498.2122.


Compound 4r

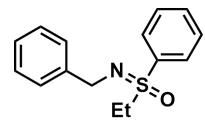
Pale yellow solid, Yield: 42% (24.5 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8.5:1.5), mp 101-103 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.02 (d, J = 8.5 Hz, 4H), 7.83 (d, J = 7.5 Hz, 1H), 7.51 – 7.44 (m, 6H), 7.07 (t, J = 8.0 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 4.31 (s, 2H), 1.21 - 1.15 (m, 3H), 0.98

(d, J = 7.0 Hz, 18H). ¹³C NMR (126 MHz, CDCl₃): δ 153.0, 140.8, 132.4, 132.0, 129.2, 128.8, 128.2, 126.9, 120.9, 117.5, 42.5, 18.1, 13.0. HRMS (ESI) calcd for C₂₈H₃₈NO₂SSi⁺ [M+H]⁺ 480.2387; found 480.2404.


Compound 4s

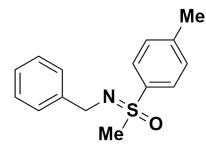
Yellowish sticky liquid, Yield: 40% (25 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 8.5 Hz, 4H), 7.83 (d, J = 7.5 Hz, 1H), 7.24 (d, J = 8.5 Hz, 4H), 7.06 (t, J = 8.0 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 4.29 (s, 2H), 2.36 (s, 6H), 1.18 – 1.12 (m, 3H), 0.98 (d, J = 7.5 Hz,

18H). ¹³C NMR (126 MHz, CDCl₃): δ 152.9, 143.2, 138.9, 132.1, 129.9, 128.7, 128.3, 126.9, 120.9, 117.5, 41.8, 21.5, 18.1, 13.0. **HRMS** (ESI) calcd for C₃₀H₄₂NO₂SSi⁺ [M+H]⁺ 508.2700; found 508.2726.


Compound 4t

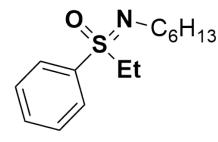
Yellowish sticky liquid, Yield: 40% (31 mg from 0.1228 mmol of salicylaldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 8.5 Hz, 4H), 7.71 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 9.0 Hz, 4H), 7.08 (t, J = 8.0 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 4.29 (s, 2H), 1.22 - 1.16

(m, 3H), 1.00 (d, J = 7.0 Hz, 18H).¹³C NMR (126 MHz, CDCl₃): δ 153.0, 139.6, 132.6, 131.4, 130.3, 128.2, 127.9, 127.2, 120.9, 117.6, 42.3, 18.1, 13.0. HRMS (ESI) calcd for C₂₈H₃₆Br₂NO₂SSi⁺ [M+H]⁺ 636.0597; found 636.0595


Compound 5a

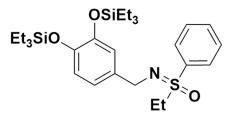
Yellowish sticky liquid, Yield: 76% (28 mg from 0.1413 mmol of corresponding aldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 2H), 7.38 (d, J = 7.5 Hz, 2H), 7.29 (t, J =

7.0 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 4.25 (d, J = 14.5 Hz, 1H), 4.03 (d, J = 14.5 Hz, 1H), 3.31 – 3.19 (m, 2H), 1.26 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃): δ 141.5, 137.5, 133.0, 129.5, 129.4, 128.3, 127.6, 126.5, 51.0, 47.2, 7.5. **HRMS** (ESI) calcd for C₁₅H₁₈NOS⁺ [M+H]⁺ 260.1104; found 260.1109.


Compound 5b

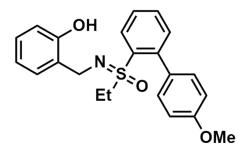
Colourless sticky liquid, Yield: 71% (26 mg from 0.1413 mmol of corresponding aldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J = 8.5 Hz, 2H), 7.26 - 7.24 (m, 4H), 7.18 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 7.5 Hz, 1H), 4.09 (d, J = 14.5 Hz, 1H), 3.87 (d, J = 14.5 Hz, 1H), 3.03 (s, 3H), 2.34 (s,

3H).¹³C NMR (126 MHz, CDCl₃): δ 143.8, 141.2, 136.2, 130.1, 128.7, 128.2, 127.6, 126.4, 47.3, 45.3, 21.5. HRMS (ESI) calcd for C₁₅H₁₈NOS⁺ [M+H]⁺ 260.1104; found 260.1123.


Compound 5c

Colourless sticky liquid, Yield: 59% (30 mg from 0.1997 mmol of corresponding aldehyde), purified through column chromatography (Hexane/EtOAc 9:1). ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.58 (t, *J* = 7.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 3.20 – 3.11 (m, 2H), 2.98 – 2.93

(m, 1H), 2.81 - 2.76 (m, 1H), 1.57 - 1.51 (m, 2H), 1.32 - 1.23 (m, 6H), 1.99 (t, J = 7.5 Hz, 3H), 0.84 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 138.0, 132.8, 129.6, 129.3, 50.9, 43.9, 33.0, 31.7, 27.0, 22.7, 14.1, 7.5. **HRMS** (ESI) calcd for C₁₄H₂₄NOS⁺ [M+H]⁺ 254.1573; found 254.1569.


Compound 5d

Yellowish sticky liquid, Yield: 48% (27 mg from 0.1086 mmol of corresponding aldehyde), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, *J* = 8.5 Hz, 2H), 7.59 (t, *J* =

7.0 Hz, 1H), 7.52 (t, J = 7.0 Hz, 2H), 6.85 (d, J = 2.5 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 4.12 (d, J = 14.5 Hz, 1H), 3.90 (d, J = 14.0 Hz, 1H), 3.27 – 3.15 (m, 2H), 1.24 (t, J = 7.5 Hz, 3H), 0.99 - 0.95 (m, 18H), 0.76 – 0.65 (m, 12H). ¹³C NMR (126 MHz, CDCl₃): δ 146.5, 145.3, 137.8, 134.7, 132.9, 129.5, 129.4, 120.4, 120.2, 119.9, 51.1, 46.6, 7.6, 6.8, 6.8, 5.2, 5.1. HRMS (ESI) calcd for C₂₇H₄₆NO₃SSi₂⁺ [M+H]⁺ 520.2731; found 520.2739.

Compound 7

Colourless sticky liquid, Yield: 66% (11 mg from 0.0427 mmol of 4e), purified through column chromatography (Hexane/EtOAc 8:2). ¹H NMR (500 MHz, CDCl₃): δ 8.19 (t, J = 8.0 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.18 (d, J = 9.0 Hz, 2H), 7.12 (t, J = 8.0 Hz, 1H), 6.88 – 6.81 (m, 4H),

6.76 – 6.72 (m, 1H), 4.46 (d, J = 14.5 Hz, 1H), 4.11 (d, J = 15.0 Hz, 1H), 3.82 (s, 3H), 2.96 – 2.89 (m, 1H), 2.74 – 2.67 (m, 1H), 1.10 (t, J = 7.5 Hz, 3H).¹³**C NMR** (126 MHz, CDCl₃): δ 159.7, 157.4, 142.1, 135.4, 133.5, 132.9, 131.4, 130.7, 130.4, 128.1, 128.0, 127.7, 124.1, 121.1, 119.2, 113.4, 55.4, 49.1, 46.5, 6.8. **HRMS** (ESI) calcd for C₂₂H₂₄NO₃S⁺ [M+H]⁺ 382.1471; found 382.1481.