Highly (regio)selective hydroformylation of olefins using selfassembling phosphines

Pierre Fablet, ${ }^{\text {a }}$ Maria Dolores Fernandez-Martinez, ${ }^{\text {b }}$ Ralf Jackstell, ${ }^{\text {a }}$ Anke Spannenberg, ${ }^{\text {a }}$ Haijun Jiao ${ }^{\text {a }}$ and Matthias Beller *a

Supporting Information - Table of Contents

SI-A: General information 4
SI-B: General procedure for the synthesis of ligands L1-L7 5
SI-C: NMR Spectra of the phosphine ligands (L1-L7) 11
SI-D: HR-MS (ESI) of the phosphine ligands (L1-L7) 23
SI-E: \quad Single Crystal X-ray Diffraction (SC-XRD) of new phosphine ligands (L2,L3,L4,L5) 37
SI-F: General procedures for hydroformylation experiments 43
a) Influence of temperature 44
b) Variation of ligands 45
c) Ligand-Metal ratio influence 46
d) Influence of pressure 46
e) Solvent screening 47
f) Ligand screening in optimized conditions 47
SI-G: Kinetic profile and gas consumption experiments 48
SI-H: DFT and experimental IR spectra 56
a) Computational details 56
b) IR data 74
SI-I: Addendum to the scope : unreacted olefins 79
SI-J: NMR attribution and spectra of hydroformylation products 80

SI-A: General information

Air- and moisture-sensitive syntheses were performed under argon atmosphere. Chemicals were purchased from Aldrich, TCI or ABCR . Unless otherwise noted, all commercial reagents were used without further purification.

Products were characterized by 1H NMR, 13C NMR, and HRMS spectroscopy. 1H and 13C NMR spectra were recorded on Bruker Avance $300(300 \mathrm{MHz})$ or 400 (400M) NMR spectrometers. Chemical shifts $\delta(\mathrm{ppm})$ are given relative to solvent: references for CDCl 3 were $7.26 \mathrm{ppm}(1 \mathrm{H}-\mathrm{NMR})$ and 77.16 ppm (13C-NMR). 13C-NMR spectra were acquired on a broad band decoupled mode. Multiplets were assigned as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), td (triplet of doublet), and m (multiplet).

For GC analyses, HP 6890 chromatograph with a 29 m HP5 column was used. Linear to branched ratios were determined by GC analysis of the crude reaction mixture.

ESI (electrospray ionization) high resolution mass spectra were recorded on an Agilent Technologies 6210 TOF.
Solid-state IR data were collected on a Bruker Alpha FT-IR-Spectrometer.
Data were collected on a Bruker Kappa APEX II Duo diffractometer. The structures were solved by intrinsic phasing (SHELXT: Sheldrick, G. M. Acta Cryst. 2015, A71, 3.) and refined by full-matrix least-squares procedures on F^{2} (SHELXL2019: Sheldrick, G. M. Acta Cryst. 2015, C71, 3.). XP (Bruker AXS) was used for graphical representations.

SI-B: General procedure for the synthesis of ligands L1-L7

Supplementary Figure 1. General method for the synthesis of ligands L1-L7

2-tert-Butoxy-6-bromo-pyridine (b)

Synthesis was performed as previously reported by Breit et al. (J. Am. Chem. Soc. 2003, 125, 6608-6609, J. Am. Chem. Soc. 2011, 133, 964-975). To a solution of $10.00 \mathrm{~g} 2,6$-dibromo-pyridine ($42.21 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 100 ml toluene was added 7.11 g potassium-tert-butylate ($63.32 \mathrm{mmol}, 1.2 \mathrm{eq}$). The mixture was heated at $80^{\circ} \mathrm{C}$ overnight. After this time, it was cooled to room temperature and was filtered through celite. The filtrate was concentrated in a rotary evaporator and distillated $\left(110^{\circ} \mathrm{C}\right.$, reduced pressure). 2-Tert-butoxy-6-bromo-pyridine was obtained as colorless liquid. (7.77 g, 80\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=7.33(\mathrm{t}, \mathrm{J}=7.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=8.13 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H})$.

6-Diphenylphosphanyl-1H-pyridin-2-one (6-DPPon) (L1)

Synthesis was performed as previously reported by Breit et al. (J. Am. Chem. Soc. 2003, 125, 6608-6609, J. Am. Chem. Soc. 2011, 133, 964-975). 2-Tert-butoxy-6-bromo-pyridine ($0.52 \mathrm{ml}, 3.04 \mathrm{mmol}$) was dissolved in 18 ml of $\mathrm{Et}_{2} \mathrm{O}$ and 1.6 $\mathrm{M} n-\mathrm{BuLi}(2 \mathrm{ml}, 3.19 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C} 1$ hour and then stirred at room temperature for 30 minutes. A solution of chlorodiphenylphosphine in 3 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ and reaction mixture was stirred an hour at room temperature. Then, 10 ml of water was added, the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($4 \times 6 \mathrm{ml}$)and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added for drying. It was filtrated and evaporated. 2-Tert-butoxy-6-diphenylphosphanyl-pyridine was obtained as a yellow oil. ${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) 7.43-7.29(\mathrm{~m}, 11 \mathrm{H}), 6.77$ (ddd, J = 7.11, 3.11, $0.87 \mathrm{~Hz}, 1 \mathrm{H}$), $6.50(\mathrm{dt}, \mathrm{J}=8.29,0.73 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)-2.62$. This product was no isolated. It was dissolved in concentrated formic acid (11 ml) and stirred overnight at room temperature. After this time, distilled water (22 ml) was added. The organic phase was extracted with DCM ($3 \times 10 \mathrm{ml}$). It was washed with a mixture of 1.5 ml FA and 4.5 ml of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added. Solution was filtrated via cannula and dried under vacuum giving a white solid/yellow oil. ${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=7.45-7.34(\mathrm{~m}, 11 \mathrm{H}), 6.58(\mathrm{~d}$, $\mathrm{J}=9.17,1.10 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ (ddd, $\mathrm{J}=6.76,3.94,1.09 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)-8.99$. It was recrystallized from acetone (5 ml) and washed several times ($4 \times 5 \mathrm{ml}$). Product was obtained as white crystals ($520 \mathrm{mg}, 61 \%$). In the washes there were more crystals, but they were not isolated.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=8.52(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 11 \mathrm{H}), 6.49(\mathrm{ddd}, \mathrm{J}=9.25,1.080 .47 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dt}, \mathrm{J}=$ $6.39,1.13 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $=163.97,146.25,140.26,133.94,132.80,130.21,129.31,121.11$, 113.54. ${ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=-9.25$ (100\%). HR-MS (ESI-TOF) calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{PON}$ [M] 279.0813, found $[\mathrm{M}+\mathrm{H}(1)]: 280.0891,[\mathrm{M}+\mathrm{Na}(23)]: 302.0705$.

6-Dicyclohexylphosphanyl-1H-pyridin-2-one (L2)

2-Tert-butoxy-6-bromo-pyridine ($2.62 \mathrm{ml}, 15.21 \mathrm{mmol}$) was dissolved in 40 ml of $\mathrm{Et}_{2} \mathrm{O}$ and $1.6 \mathrm{M} \mathrm{n-BuLi}(9.98 \mathrm{ml}, 15.97$ mmol) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour and after that time, it was stirred at room temperature for 30 minutes giving a yellow/orange suspension. A solution of chlorodicyclohexylphosphine in 10 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ and stirred an hour at room temperature. Color turned orange/brown. Then, 30 ml of water was added and the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml}) . \mathrm{Na}_{2} \mathrm{SO}_{4}$ was added and the suspension was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{ml})$. It was filtrated and evaporated. 2-Tert-butoxy-6-dicyclohexylphosphanyl-pyridine was obtained. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $=7.40(\mathrm{dt}, 7.79,2.39 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}$, broad signal, 1 H$), 6.53(\mathrm{~d}, \mathrm{~J}=8.26,0.73 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ ($\mathrm{s}, 9 \mathrm{H}$), ${ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=-8.38$. This product was no isolated. It was dissolved in concentrated formic acid (56 ml) and stirred overnight at room temperature. After this time, distilled water (112 ml) was added. The organic phase was extracted with DCM ($6 \times 20 \mathrm{ml}$). It was washed with a mixture of 3 ml FA and 12 ml of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added. The solution was filtrated via cannula, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated again (DCM $2 \times 5 \mathrm{ml}$) and dried under vacuum. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) = $7.36(\mathrm{dt}, \mathrm{J}=6.58,1.30 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{td}, \mathrm{J}=9.15,1.05 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, \mathrm{J}=$ $6.31,1.08 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{31} \mathrm{p}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=3.77$ (94%). It was recrystallized from acetone (10 ml) and washed several times ($5 \times 5 \mathrm{ml}, 2 \times 10 \mathrm{ml}$). Product was obtained as a white powder ($1.91 \mathrm{~g}, 43 \%$). Washes from recrystallization were concentrated under vacuum and let overnight in the freezer. After this time, they were filtrated with a cannula and washed several times with cold acetone ($2 \times 10 \mathrm{ml}, 1 \times 5 \mathrm{ml}$). 0.68 g were obtained with a final yield of 58%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) = $9.84(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=7.94,1.44 \mathrm{~Hz} 1 \mathrm{H}), 6.55(\mathrm{td}, \mathrm{J}=9.23,1.11 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dt}$, J $=6.27,1.13 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=164.93,145.87,140.09,121.29,115.41,32.55,30.33,29.39$, 27.03, 26.82, 26.27, 113.54. ${ }^{31} \mathrm{P}=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ 3.58. HR-MS (ESI-TOF) calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{PON}$ [M] 291.1752, found $[\mathrm{M}+\mathrm{H}(1)]$: 292.1830, $[\mathrm{M}+\mathrm{Na}(23)]$: 314.1644.

6-(tert-Butyl)-phenylphosphanyl-1H-pyridin-2-one (L3)

2-Tert-butoxy-6-bromo-pyridine ($1.87 \mathrm{ml}, 10.86 \mathrm{mmol}$) was dissolved in 27 ml of $\mathrm{Et}_{2} \mathrm{O}$ and 1.6 M n - $\mathrm{BuLi}(7.13 \mathrm{ml}, 11.41$ mmol) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour and after that time, it was stirred at room
temperature for 30 minutes. A solution of (tert-butyl)-chloro-phenylphosphine ($2.15 \mathrm{ml}, 11.41 \mathrm{mmol}$) in $6 \mathrm{ml}^{2}$ of $\mathrm{Et}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ and stirred an hour at room temperature. Then, 19 ml of water was added and the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{ml}), \mathrm{Na}_{2} \mathrm{SO}_{4}$ was added (washed with $2 \times 5 \mathrm{ml}$ of $\mathrm{Et}_{2} \mathrm{O}$) and it was filtrated and evaporated giving a yellow oil. 2-Tert-butoxy-6-(tert-butyl)-phenylphosphanyl-pyridine was obtained. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}) 7.66(\mathrm{dt}, \mathrm{J}=7.54,1.69 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=5.99 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{p}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=18.95$. This product was no isolated. It was dissolved in concentrated formic acid (40 ml) and stirred overnight at room temperature. After this time, distilled water (80 ml) was added. The organic phase was extracted with DCM ($4 \times 20 \mathrm{ml}$). It was washed with a mixture of 2.5 ml FA and 10 ml of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added. The solution was filtrated via cannula and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then under vacuum. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=$ $7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 4 \mathrm{H}), 6.61-6.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=14.57$. It was recrystallized from acetone (5 ml) and washed several times ($4 \times 5 \mathrm{ml}$). Product was obtained as a white powder ($1.23 \mathrm{mg}, 32 \%$). Washes were concentrated and let in the freezer overnight. After that, they were filtered and washed several times with cold acetone giving 0.500 g (total yield of 61\%).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=9.05(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{dt}, \mathrm{J}=8.06,2.05 \mathrm{~Hz}, 1 \mathrm{H})$, 6.49-6.42 (m, 2H). ${ }^{13} \mathrm{CNMR}^{2}=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=163.71,146.41,140.08,135.02,131.97,130.30,129.14,120.68$, 113.44, 31.78, 28.68. ${ }^{31} \mathrm{P}=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) 14.51$ (100\%). HR-MS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{PON}$ [M] 259.1126, found [$\mathrm{M}+\mathrm{H}(1)]: 260.1204,[\mathrm{M}+\mathrm{Na}(23)]: 282.1018$.

6-Di-tert-butylphosphanyl-1H-pyridin-2-one (L4)

2-Tert-butoxy-6-bromo-pyridine ($1.80 \mathrm{ml}, 10.44 \mathrm{mmol}$) was dissolved in 30 ml of $\mathrm{Et}_{2} \mathrm{O}$ and 1.6 M n -BuLi ($6.85 \mathrm{ml}, 10.96$ mmol) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour and after that time, it was stirred at room temperature for 30 minutes. A solution of di-tert-butylchlorophosphine in 4 ml of Et 2 O was added at $0^{\circ} \mathrm{C}$ and stirred an hour at room temperature. Then, 15 ml of water were added and the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{ml}$, $1 \times 5 \mathrm{ml}$). $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added and the suspension was filtrated and evaporated. 2-Tert-butoxy-6-di-tert-butyl-phosphanylpyridine was obtained. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=7.41(\mathrm{dt}, \mathrm{J}=7.72,2.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dt}, \mathrm{J}=8.15,0.87 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{td}, \mathrm{J}=8.33,1.17 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=42.34$. This product was no isolated. It was dissolved in concentrated formic acid (15 ml) and stirred overnight at room temperature. After this time, distilled water (30 ml) was added. The organic phase was extracted with DCM ($4 \times 10 \mathrm{ml}$). It was washed with a mixture of 3 ml FA and 12 ml of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added. The solution was filtrated via cannula and washed $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ($2 \times 5 \mathrm{ml}$ of DCM) and dry under vacuum giving a yellow oil.
$\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=7.49(\mathrm{dd}, \mathrm{J}=9.14,0.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dt}, \mathrm{J}=8.15,2.60,0.98 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{td}, \mathrm{J}=9.10$, $1.10 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=38.13$. This product was distillated under vacuum (0.002 bar) at $110-120^{\circ} \mathrm{C}$). It crystallized in the top part of the distillation Schlenk as colorless to white crystals. At the bottom, an orange/yellow oil was obtained. Then, this oil was washed away with DCM several times and the white crystals were dried under vacuum. 1.39 g were obtained giving a yield of 56%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=9.13(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.47(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}=(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=163.51,146.51,140.05,121.83,115.29,32.77,30.26 .{ }^{31} \mathrm{P}=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=38.28 . \mathrm{HR}-\mathrm{MS}$ (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{PON}[\mathrm{M}] 239.1439$, found [M+H(1)]: 240.1517.

Synthesis was performed as previously reported by Breit et al. (Chem. Sci., 2013, 4, 2418-2422). 2-Tert-butoxy-6-bromo-pyridine ($0.37 \mathrm{ml}, 2.17 \mathrm{mmol}$) was dissolved in 18 ml of $\mathrm{Et}_{2} \mathrm{O}$ and $1.6 \mathrm{M} \mathrm{n-BuLi} \mathrm{(} 1.43 \mathrm{ml}, 2.28 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour and after that time, it was stirred at room temperature for 30 minutes giving an orange suspension. A solution of bis-(3,5-di-(trifluoromethyl)-phenyl)-chlorophosphine (1.12 g , 2.28 mmol) in 2 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added at $-78^{\circ} \mathrm{C}$ and stirred an hour at room temperature. Color turned dark purple/brown). Then, 10 ml of water were added and the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(7 \times 10 \mathrm{ml}), \mathrm{Na}_{2} \mathrm{SO}_{4}$ was added and the suspension was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$. It was filtrated and evaporated. 2-Tert-butoxy-6-bis-(3,5-di-(trifluoromethyl)-phenylphosphanyl-pyridine was obtained as brownish solid/oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm})=7.90-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{ddd}, \mathrm{J}=9.36,3.09,1.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dt}, \mathrm{J}=7.33,0.82,0.74 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{qd}, \mathrm{J}=8.51$, $1.01,0.44 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=2.46$. This product was not isolated. It was dissolved in concentrated formic acid (8 ml) and stirred overnight at room temperature. After this time, distilled water (16 ml) was added. The organic phase was extracted with DCM ($7 \times 10 \mathrm{ml}$). It was washed with a mixture of 1 ml FA and 4 ml of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added. The solution was filtrated via cannula, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated again (DCM 3×5 $\mathrm{ml})$ and dried further under vacuum. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=7.94-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{td}, \mathrm{J}=8.11,2.52,1.86$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50-6.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=-7.51$. It was recrystallized from acetone (6 ml) and washed several times ($4 \times 2 \mathrm{ml}, 1 \times 1 \mathrm{ml}$). Product was obtained as a white powder (0.300 g). Washes from recrystallization were concentrated under vacuum and let overnight in the freezer. After this time, they were filtrated with a cannula and washed several times with cold acetone ($3 \times 5 \mathrm{ml}$) and recrystallized again. An additional 0.270 g were obtained with a final yield of 64%.
NMR (300 MHz, CDCl $\left.{ }_{3}, \mathrm{ppm}\right)=12.74(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{td}, \mathrm{J}=7.86,2.46,2.33 \mathrm{~Hz} 1 \mathrm{H}), 6.43$ (ddd, J = 7.71, $1.12,1.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dt}, \mathrm{J}=9.28,1.08 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=165.24,142.61,142.28,140.29$, $140.14,136.15,135.95,133.73,133.45,133.04,132.95,132.60,132.51,132.15,132.06,131.70,131.61,123.98\left({ }^{13} \mathrm{C}-\right.$ $\left.{ }^{19} \mathrm{~F}: 124.08,124.03,123.93,123.88\right) 122.91,121.07\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}: 128.31,124.69,117.45,116.77\right), 116.35,77.43,77.21$, $77.01,76.58 .{ }^{31} \mathrm{P}=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=-7.13$. $\mathrm{HR}-\mathrm{MS}(\mathrm{EI})$ calculated for $\mathrm{C}_{21} \mathrm{H}_{10} \mathrm{NF}_{12} \mathrm{PON}$ [M] 551.03029, found [M]: 551.03032.

6,6'-(phenylphosphanediyl)bis(pyridin-2(1H)-one) (L6)

2-Tert-butoxy-6-bromo-pyridine ($0.75 \mathrm{ml}, 4.35 \mathrm{mmol}$) was dissolved in 30 ml of $\mathrm{Et}_{2} \mathrm{O}$ and $1.6 \mathrm{M} \mathrm{n-BuLi}(2.85 \mathrm{ml}, 4.56$ mmol) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour and after that time, it was stirred at room temperature for 30 minutes. A solution of dichlorophenylphosphine in 4 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ and stirred 1 hour at room temperature. Then, 20 ml of water were added and the organic phase was extracted with $\mathrm{Et} 2 \mathrm{O}(3 \times 10 \mathrm{ml}), \mathrm{Na}_{2} \mathrm{SO}_{4}$ was added, and it was filtrated and evaporated. 2-Tert-butoxy-6,6'-(phenylphosphanyl)bis-pyridine was obtained. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) 7.54-7.46 (m, 2H), 7.39 (ddd, J = 7.74, 2.64, 1.12Hz, 2H), 7.36-7.30 (m, 3H), $6.86(\mathrm{dd}, \mathrm{J}=$ $3.28,0.87 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dt}, \mathrm{J}=8.35,0.79 \mathrm{~Hz}, \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) .{ }^{31} \mathrm{P}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=0.31$. It was dissolved in concentrated formic acid (15 ml) and stirred overnight at room temperature. After this time, distilled water (30 ml) was added, and formation of a precipitate occurred. Complete evaporation was carried out under vacuum (at $50^{\circ} \mathrm{C}$), MeOH was added ($3 \times 2 \mathrm{ml}$) and evaporated every time. Then, the compound was redispersed in 15 ml of MeOH and filtered through a frit. It was washed several times $(1 \times 10 \mathrm{ml}, 2 \times 5 \mathrm{ml})$ and dried under vacuum. Off-white powder was obtained ($480 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, ~ D M S O, ~ p p m\right) ~=~ 11.80(\mathrm{~s}, 2 \mathrm{H}), 7.59-7.34(\mathrm{~m}, 7 \mathrm{H}), 6.38(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.88(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}(300 \mathrm{MHz}$, DMSO, ppm $)=-15.05$, broad signal. ${ }^{13} \mathrm{C} N M R=(400 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm})=163.18,146.77,140.02,134.21,131.19,130.45$, 129.20, 119.20, 113.09. HR-MS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{PO}_{2} \mathrm{~N}_{2}[\mathrm{M}] 296.0715$, found $[\mathrm{M}+\mathrm{H}(1)]$: 297.0793, [$\mathrm{M}+\mathrm{Na}(23)]$: 319.0607.

6,6',6'-phosphanetriyltris(pyridin-2(1H)-one) (L7)

2-Tert-butoxy-6-bromo-pyridine ($0.37 \mathrm{ml}, 2.17 \mathrm{mmol}$) was dissolved in 18 ml of $\mathrm{Et}_{2} \mathrm{O}$ and 1.6 M n BuLi ($1.43 \mathrm{ml}, 2.28 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour and after that time, it was stirred at room temperature for 30 minutes. A solution of trichlorophosphine in 2 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ and stirred an hour at room temperature. Then, 10 ml of water were added, and the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 10 \mathrm{ml}$), $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added, and it was filtrated and the solution was evaporated. 2-Tert-butoxy-6, $6^{\prime}, 6^{\prime \prime}$ -phosphanetriyltris-pyridine was obtained. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $=7.40$ (ddd, $\left.\mathrm{J}=6.67,2.52,1.09 \mathrm{~Hz}, 3 \mathrm{H}\right), 6.90$ (ddd, J = 7.29, $2.67,1.12 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 21 \mathrm{H}) .{ }^{31} \mathrm{P}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)=3.14$. It was dissolved in concentrated formic acid (8 ml) and stirred overnight at room temperature. After this time, distilled water (16 ml) was added, and formation of a precipitate occurred. Complete evaporation was carried out under vacuum (at $50^{\circ} \mathrm{C}$), MeOH was added $(3 \times 2 \mathrm{ml})$ and evaporated every time. Then, the compound was redispersed in 10 ml of MeOH and filtered through a frit. It was washed several times ($3 \times 2 \mathrm{ml}$) and dried under vacuum. Off-white powder was obtained ($120 \mathrm{mg}, 53 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm}$) $=11.79(\mathrm{~s}, 3 \mathrm{H}), 7.48(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}=8.74,3 \mathrm{H}), 6.18(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}(300 \mathrm{MHz}$, DMSO, ppm $)=-18.04$, broad signal. ${ }^{13} \mathrm{C}$ NMR $=(400 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm})=163.62,145.63,140.61,119.78,115.21$. HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{PO}_{3} \mathrm{~N}_{3}[\mathrm{M}] 313.0616$, found [$\left.\mathrm{M}+\mathrm{H}(1)\right]: 314.0694,[\mathrm{M}+\mathrm{Na}(23)]: 336$.

SI-C: NMR Spectra of the phosphine ligands (L1-L7)

Supplementary Figure $\mathbf{2 . ~}^{1} \mathrm{H}$ NMR spectrum of L 1 in CDCl_{3} at RT and AP.
221026.f334.13.fid - Maria Dolores Fernandez MDFM-015-charact - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.2\} 221034 चु $\underbrace{\text { なo }}$

Supplementary Figure 4. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{L1}$ in CDCl_{3} at RT and AP.
221026.f323.10.fid - Maria Dolores Fernandez MDFM-014-charact — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.2\} 221023

\iint

Supplementary Figure $5 .{ }^{1} \mathrm{H}$ NMR spectrum of L 2 in CDCl_{3} at RT and AP.

20	210	200	0	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		0	-10
												f1 (ppm)											

Supplementary Figure 6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{L2}$ in CDCl_{3} at RT and AP.

Supplementary Figure 7. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{L2}$ in CDCl_{3} at RT and AP.

Supplementary Figure 8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{L3}$ in CDCl_{3} at RT and AP.
221026.f333.13.fid - Maria Dolores Fernandez MDFM-016-charact — C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.2\} 221033
N

Supplementary Figure 9. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{L3}$ in CDCl_{3} at RT and AP.

Supplementary Figure 10. ${ }^{31}$ P NMR spectrum of L3 in CDCl_{3} at RT and AP.
221026.f322.10.fid — Maria Dolores Fernandez MDFM-012-charact — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.2\} 221022

Supplementary Figure 11. ${ }^{1} \mathrm{H}$ NMR spectrum of L 4 in CDCl_{3} at RT and AP.

20	210	200	190	180	170	160	150	140	130	120	110	100	90	10	10	10	10	10	10	10	10	10	10	10

Supplementary Figure $12 .{ }^{13} \mathrm{C}$ NMR spectrum of L 4 in CDCl_{3} at RT and AP.
221026.f322.12.fid - Maria Dolores Fernandez MDFM-012-charact — P31 CDCl3 \{C:\Bruker\TopSpin3.6.2\} 221022

Supplementary Figure 13. ${ }^{31} \mathrm{P}$ NMR spectrum of L 4 in CDCl_{3} at RT and AP.

Supplementary Figure 14. ${ }^{1} \mathrm{H}$ NMR spectrum of L 5 in CDCl_{3} at RT and AP.
221118.351.13.fid

Fernandez/ MDFM-030-crust
Au13C CDCl3 \{C:\Bruker\TopSpin3.6.2\} 221151

Supplementary Figure $15 .{ }^{13} \mathrm{C}$ NMR spectrum of L 5 in CDCl_{3} at RT and AP.

221021.413.12.fid — Jackstell MDFM-08 - Au1H DMSO \{C:\Bruker\TopSpin3.6.2\} 221013

Supplementary Figure 17. ${ }^{1} \mathrm{H}$ NMR spectrum of L6 in DMSO-d6 at RT and AP.

Supplementary Figure 18. ${ }^{13} \mathrm{C}$ NMR spectrum of L6 in DMSO-d6 at RT and AP.
221021.413.10.fid — Jackstell MDFM-08 - Au31P DMSO \{C:\Bruker\TopSpin3.6.2\} 221013

Supplementary Figure 19. ${ }^{31}$ P NMR spectrum of L6 in DMSO-d6 at RT and AP.
221129.355.10.fid - Maria Dolores Fernandez MDFM-019-charact-1 - Au1H DMSO \{C:\Bruker\TopSpin3.6.2\} 221155

Supplementary Figure 20. ${ }^{1} \mathrm{H}$ NMR spectrum of L7 in DMSO-d6 at RT and AP.
221028.409.10.fid — Maria Dolores Fernandez MDFM-019-charact-1 — Au13C DMSO \{C:\Bruker\TopSpin3.6.2\} 22109

Supplementary Figure 22. ${ }^{31}$ P-NMR spectrum of L7 in DMSO-d6 at RT and AP.

SI-D:HR-MS (ESI) of the phosphine ligands (L1-L7)

ESI-TOF Accurate Mass Report
File:22101803
Vial:1:F; 1
Description: $\mathrm{MeOH} / 0.1 \% \mathrm{HCOOH}$ in $\mathrm{H} 2 \mathrm{O} 90: 10$

Sample Report:

ESI-TOF Accurate Mass Report
Results file: E:JProjectsi2210.PROISampleDB12210.rp
Last modified: Tuesday, October 18, 2022 12:45:14

Sample Summary:

Sample	File	Sample Name	User	Targel	Formula	Expected Mass	Observed Mass	Error PPM	ErrormDa
33	221.01803	MDFM-015	Fernanderz.	279.0813	C17H14PON	$\begin{aligned} & 280.0891 \\ & 302.0705 \end{aligned}$	$\begin{aligned} & 280.0891 \\ & 302.0711 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 2.0 \end{aligned}$	0.0 0.6

Supplementary Figure 23.a Accurate Mass Report of L1

Supplementary Figure 23.b HR-MS spectrum of L1

Sample Report:
(Time; 0.50) Combine (45-94:97) - Dead time test passed

Sample Summary:

Sample	File	Sample Name	User	Targel	Formula	Expected Mass	Observed Mass	Error PPM	Error mDa
32	22101802	MDFM-014	Fernandez	291.1752	C17H26PON	$\begin{aligned} & 292.1830 \\ & 314.1644 \end{aligned}$	$\begin{aligned} & 292.1828 \\ & 314.1650 \end{aligned}$	$\begin{array}{r} -0.7 \\ 1.9 \end{array}$	$\begin{array}{r} -0.2 \\ 0.6 \end{array}$

Supplementary Figure 24.a Accurate Mass Report ot L2

Supplementary Figure 24.b HR-MS spectrum of L2

ESI-TOF Accurate Mass Report
File:22101804
Vial:1:F,1
Description: $\mathrm{MeOH} / 0.1 \% \mathrm{HCOOH}$ in $\mathrm{H} 2 \mathrm{O} 90: 10$

Sample Report:

ESI-TOF Accurate Mass Report
Results file: E:IProjectsI2210.PROISampleDBi2210.rpt
Last modified; Tuesday, October 18, 2022 12:53:13

Sample Summary:

Sample	File	Sample Name	User	Targel	Formula	Expected Mass	Observed Mass	Error PPM	ErrormDa
34	22101804	MDFM-016	Fernandez	259.1126	C15H18PON	260.1204	260.1205	0.4	0.1
						282.1018	282.1026	2.8	0.8

Supplementary Figure 25.a Accurate Mass Report of L3

Supplementary Figure 25.b HR-MS spectrum of L3

Results file: E:SProjects12210.PROSSampleDB12210.rp
Last modified: Tuesday, October 18, 2022 11:54:50

Sample Summary:

Sample	File	Sample Name	User	Targel	Formula	Expected Mass	Observed Mass	Error PPM	ErrormDa
31	22101801	MDFM-012	Fernandez	239.1439	C13H220NP	240.1517	240.1521	1.7	0.4
	Supplementary Figure 26.a Accurate Mass Report of L4								

Supplementary Figure 26.b HR-MS spectrum of L4

File : D: \Xcalibur \backslash data $\backslash 2211 \backslash 22112206$ eihr-av2. RAW Full ms [539.500-571.50 0]-Range: 539.500-571.500 Scan No. 1 of 1
Mass Absolute Relative Theoretical Intensity Intensity Mass Delta Delta $\begin{array}{llll}\text { Intensity } & \text { Mass } & \text { [ppm] } & \text { [mm] }\end{array}$ [mm]
0.0

Supplementary Figure 27.a Accurate Mass Report of L5

Supplementary Figure 27.b HR-MS spectrum of L5

| ESI-TOF Accurate Mass Report | |
| :--- | :--- | :--- |
| File:22110102 Sample Name:MDFM-018
 Vial:1:F,1 Date:01-Nov-2022
 Description:MeOH/0.1\%HCOOH in $\mathrm{H} 2 \mathrm{O} 90: 10$ | |

Sample Report:
(Time: 0.29) Combine (25:29-78:82) - Dead time test passed
1 : TOF MS ES +

ESI-TOF Accurate Mass Report

Results file: E\IProjectsl2211.PROISampleDBl2211.rpt
Last modified: Tuesday, November 01, 2022 16:50:36

Sample Summary:

Sample	File	Sample Name	User	Targel	Formula	Expected Mass	Observed Mass	Error PPM	Error mDa
2	22110102	MDFM-018	Fernandez	296.0715	C16H13PO2N2	$\begin{aligned} & 297.0793 \\ & 319.0607 \end{aligned}$	$\begin{aligned} & 297.0794 \\ & 319.0613 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.9 \end{aligned}$	0.1 0.6

Supplementary Figure 28.a Accurate Mass Report of L6

Supplementary Figure 28.b HR-MS spectrum of L6

ESI-TOF Accurate Mass Report		
File:22110103 Sample Name:MDFM-019		
Vial:1:F,2 Date:01-Nov-2022 Description:MeOH/0.1\%HCOOH in H2O 90:10	UserName:Fernandez	

Sample Report:

ESI-TOF Accurate Mass Report
Results file: E:IProjectsL2211.PROXSampleDB\2211.rpt Last modified: Tuesday, November 01, 2022 16:56:12

Sample Summary:

Sample	File	Sample Name	User	Targel	Formula	Expected Mass	Observed Mass	Error PPM	Error mDa
3	22110103	MDEM-019	Fernandez	313.0616	C15H12N303P	$\begin{aligned} & 314.0694 \\ & 336.0508 \end{aligned}$	$\begin{aligned} & 314.0699 \\ & 336.0517 \end{aligned}$	1.6	0.5 0.9

Supplementary Figure 29.a Accurate Mass Report of L7

Supplementary Figure 29.b HR-MS spectrum of L7

SI-E: Single Crystal X-ray Diffraction (SC-XRD) of new phosphine ligands

 (L2,L3,L4,L5)Data were collected on a Bruker Kappa APEX II Duo diffractometer. The structures were solved by intrinsic phasing (SHELXT: Sheldrick, G. M. Acta Cryst. 2015, A71, 3.) and refined by full-matrix least-squares procedures on F^{2} (SHELXL-2019: Sheldrick, G. M. Acta Cryst. 2015, C71, 3.). XP (Bruker AXS) was used for graphical representations.

Supplementary Figure 30. Molecular structure of ligand L2. Displacement ellipsoids correspond to 50\% probability. C-bound hydrogen atoms are omitted for clarity.

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NOP}$
Formula weight	291.36
Temperature	150(2) K
Wavelength	1.54178 Å
Crystal system	monoclinic
Space group	C2/c
Unit cell dimensions	$\begin{array}{ll} \hline a=28.2403(7) \AA & \alpha=90^{\circ} \\ b=12.1632(3) \AA & \beta=116.2798(10)^{\circ} \\ c=21.6308(5) \AA & \gamma=90^{\circ} \\ \hline \end{array}$
Volume	6662.1(3) \AA^{3}
Z	16
Density (calculated)	$1.162 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$1.418 \mathrm{~mm}^{-1}$
F(000)	2528
Crystal size	$0.27 \times 0.10 \times 0.06 \mathrm{~mm}$
Theta range for data collection	3.49 to 67.00°
Index ranges	$-33 \leq h \leq 31,-14 \leq k \leq 14,-25 \leq 1 \leq 25$
Reflections collected	35692
Independent reflections	5949 ($\mathrm{R}_{\text {int }}=0.0439$)
Completeness to theta $=67.00^{\circ}$	99.9 \%
Max. and min. transmission	0.92 and 0.70
Data / restraints / parameters	5949 / 0 / 369

Goodness-of-fit on F^{2}	1.030	
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0439$	$w R_{2}=0.1137$
R indices (all data)	$R_{1}=0.0501$	$w R_{2}=0.1201$
Largest diff. peak and hole	0.829 and $-0.536 \mathrm{e} \cdot \AA^{-3}$	
CCDC no.		

Supplementary Table 1. Crystal data for L2. Single crystals of the ligand L2 were obtained from the recrystallization in acetone.

Hydrogen-bond geometry ($\mathrm{A}, \underline{\circ}$)

$D-H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdot \cdots{ }^{\text {i }}$	0.84(2)	1.98(2)	2.805(2)	169(2)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{j}}$	0.88(2)	1.92(3)	2.798(2)	175(2)
C6-H6..O1i	1.00	2.26	3.223(2)	161
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 2^{\mathrm{j}}$	1.00	2.40	3.317(3)	152

Symmetry codes: (i) 1/2-x, 3/2-y, 1-z; (j) -x, 1-y, -z
Strong intermolecular $\mathrm{N}-\mathrm{H} . . \mathrm{O}$ hydrogen bonds are formed resulting in dimeric structures.
For L2 only dimers by strong intermolecular N-H $\cdots \mathrm{O}$ hydrogen bonds stabilized by additional weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds were found.

Supplementary Figure 32. Molecular structure of ligand L4. Displacement ellipsoids correspond to
50\% probability.

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NOP}$
Formula weight	239.28
Temperature	$110(2) \mathrm{K}$

Wavelength	0.71073 Å
Crystal system	triclinic
Space group	$P \overline{1}$
Unit cell dimensions	$\begin{array}{ll} \hline a=7.6695(7) \AA & \alpha=94.676(2)^{\circ} \\ b=13.2632(12) \AA & \beta=101.927(2)^{\circ} \\ c=14.0998(12) \AA & \gamma=93.562(2)^{\circ} \\ \hline \end{array}$
Volume	1394.0(2) \AA^{3}
Z	4
Density (calculated)	$1.140 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.179 \mathrm{~mm}^{-1}$
F(000)	520
Crystal size	$0.47 \times 0.29 \times 0.06 \mathrm{~mm}$
Theta range for data collection	1.48 to 28.99°
Index ranges	$-10 \leq h \leq 10,-18 \leq k \leq 18,-19 \leq 1 \leq 19$
Reflections collected	64917
Independent reflections	7434 ($R_{\text {int }}=0.0439$)
Completeness to theta $=25.24{ }^{\circ}$	100 \%
Max. and min. transmission	0.99 and 0.92
Data / restraints / parameters	7434 / 0/309
Goodness-of-fit on F^{2}	1.026
Final R indices [$/>2 \sigma(1)]$	$R_{1}=0.0373 \quad w R_{2}=0.0924$
R indices (all data)	$R_{1}=0.0502 \quad w R_{2}=0.1013$
Largest diff. peak and hole	0.405 and -0.186 e $\cdot \AA^{-3}$
CCDC no.	

Supplementary Table 3. Crystal data for L4. Single crystals of the ligand L4 were obtained from the recrystallization in acetone.

Hydrogen-bond geometry ($\mathrm{A}, ~$ ㅇ)

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-H \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(2)$	$2.01(2)$	$2.8437(14)$	$173.1(17)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{j}}$	$0.86(2)$	$1.94(2)$	$2.7915(13)$	$173.1(16)$
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{P}^{\mathrm{k}}$	0.95	2.81	$3.7295(14)$	163
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 2^{1}$	0.95	2.38	$3.3188(16)$	170

Symmetry codes: (i) 1-x, 1-y, 2-z; (j) 1-x, 2-y, 1-z; (k) 1+x,y,z; (I) 2-x, 2-y,1-z
Strong intermolecular N-H...O hydrogen bonds are formed resulting in dimeric structures.
For L4, for one molecule of the asymmetric unit, these dimers are linked by further weak intermolecular C$\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{P}$ hydrogen bonds.

Supplementary Figure 33. Molecular structure of one molecule of the asymmetric unit of $\mathbf{L 4}$ and two further molecules which are generated by symmetry (symmetry codes: 1-x, 2-y, 1-z; 2-x,2-y,1-z). The thermal ellipsoids correspond to 50\% probability. Intermolecular hydrogen bonds are depicted as dashed lines.

Supplementary Figure 34. Part of the packing diagram of L4. The thermal ellipsoids correspond to 50\% probability. Intermolecular hydrogen bonds are depicted as dashed lines. Hydrogen atoms which are not involved in hydrogen bonds are omitted for clarity.

Supplementary Figure 35. Molecular structure of ligand L5. Displacement ellipsoids correspond to 50\% probability.

Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{NOP}$
Formula weight	551.27
Temperature	110(2) K
Wavelength	0.71073 A
Crystal system	triclinic
Space group	$P \overline{1}$
Unit cell dimensions	$a=9.8822(10) \AA$ $\alpha=69.592(2)^{\circ}$ $b=10.1987(10) \AA$ $\beta=77.058(3)^{\circ}$ $c=11.9192(12) \AA$ $\gamma=89.014(3)^{\circ}$
Volume	1094.85(19) \AA^{3}
Z	2
Density (calculated)	$1.672 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.243 \mathrm{~mm}^{-1}$
F(000)	548
Crystal size	$0.39 \times 0.35 \times 0.33 \mathrm{~mm}$
Theta range for data collection	1.87 to 30.00°
Index ranges	$-13 \leq h \leq 13,-14 \leq k \leq 14,-16 \leq 1 \leq 16$
Reflections collected	57852
Independent reflections	6380 ($R_{\text {int }}=0.0279$)
Completeness to theta $=25.24^{\circ}$	100 \%
Max. and min. transmission	0.92 and 0.91

Data / restraints / parameters	$6380 / 0 / 329$	
Goodness-of-fit on F^{2}	1.044	
Final R indices $[/>2 \sigma(I)]$	$R_{1}=0.0443$	$w R_{2}=0.1158$
R indices (all data)	$R_{1}=0.0512$	$w R_{2}=0.1226$
Largest diff. peak and hole	0.792 and $-0.440 \mathrm{e} \cdot \AA^{\circ}{ }^{-3}$	
CCDC no.		

Supplementary Table 4. Crystal data for L5. Single crystals of the ligand L5 were obtained from the recrystallization in acetone.

Hydrogen-bond geometry (\AA, ϱ°)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-H \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{i}}$	$0.85(2)$	$1.98(2)$	$2.8211(16)$	$170(2)$
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.26	$3.1137(17)$	150
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{~F}^{\mathrm{j}}$	0.95	2.42	$3.345(2)$	163

Symmetry code: (i) 1-x, 2-y, -z; (j) 1-x,1-y,1-z
For L5, dimers are formed by strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which are linked by further weak intermolecular C-H \cdots F interactions. Furthermore, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed.

SI-F: General procedures for hydroformylation experiments

Under argon atmosphere, vials (15 mL) were charged with [$\mathrm{Rh}(\mathrm{CO})_{2}$ acac] ($0.2 \mathrm{mg}, 0.014 \mathrm{~mol} \%$), monodentate ligand ($0.071 \mathrm{~mol} \%$) and a stirring bar. Then $1 \mathbf{a}(6.0 \mathrm{mmol})$ and toluene $(4.3 \mathrm{~mL})$ were added. The vials were placed in an alloyed plate, which was then transferred into an argon-flushed autoclave (300 mL). The autoclave was flushed with syngas three times at room temperature and then pressurized with syngas to 10 bar. The reaction was performed at $120^{\circ} \mathrm{C}$ for 4 h . After the reaction finished, the autoclave was cooled to room temperature on an ice bath and the pressure was carefully released. Isooctane was added to the reaction mixture as an internal standard and yield and regioselectivity were measured by GC.

a) Influence of temperature

\#	Ligand	Conversion (\%)	Isomers (\%)	Octane (\%)	Lin. selec. (\%)	Yield 2 (\%)	Ligand
1	L1	40	1	-	-	>99	<1
2	L6	40	1	-	-	>99	<1
3	L7	40	1	<1	-	-	-
4	PPh_{3}	40	<1	-	-	-	-
6	-	40	<1	-	-	-	-
7	L1	60	31	1	1	99	29
8	L6	60	11	<1	<1	>99	10
9	L7	60	16	3	9	74	3
10	PPh_{3}	60	16	<1	<1	75	15
11	-	60	24	14	4	74	5
12	L1	80	95	4	6	92	85
13	L6	80	38	1	2	99	35
14	L7	80	93	40	37	59	15
15	PPh_{3}	80	99	10	11	54	77
16	-	80	99	44	32	53	21
17	L1	100	98	5	7	89	86
18	L6	100	58	3	3	99	52
19	L7	100	95	48	33	49	13
20	PPh_{3}	100	>99	10	9	58	80
21	-	100	98	51	35	44	13
22	L1	120	98	4	13	81	80
23	L6	120	90	4	13	99	73
24	L7	120	98	68	29	1	5
25	PPh_{3}	120	99	3	23	66	73
26	-	120	98	7	86	40	5
27	L1	140	98	16	24	81	58
28	L6	140	98	11	18	98	69
29	L7	140	97	65	32	53	4
30	PPh_{3}	140	98	50	25	62	23
31	-	140	98	59	28	39	11

Supplementary Table 5. Temperature screening for the hydroformylation of 1-octene
Variation from general conditions: Temperature was adjusted to the working temperature.

b) Variation of ligands

L2:

L6:

L4:

L7:

L5:

\#	Ligand	Conversion (\%)	Isomers (\%)	Octane (\%)	Lin. selec. (\%)	Yield 2 (\%)
1	L1	95	7	7	99	81
2	PPh_{3}	34	<1	1	74	33
3	PCy_{3}	61	<1	<1	57	60
4	ImidP*	33	<1	1	50	29
5	L2	12	4	<1	60	8
6	L3	6	<1	1	76	5
7	L4	11	<1	<1	74	11
8	L6	15	<1	1	99	14
9	L7	49	7	35	75	7
10	-	94	14	60	71	20

Supplementary Table 6. Preliminary ligand screening for the hydroformylation of 1-octene
Variation from general conditions: 1-octene (3.5 mmol), [Rh(COD)2BF4](0.05 mol\%),L:Rh (20:1), CO/H2 (10 bar), Toluene (2.5 mL), $65^{\circ} \mathrm{C}, 4 \mathrm{~h}$. The conversion, yields and regioselectivity of the products were measured by GC analysis using MeOH as solvent and isooctane as internal standard.
c) Ligand-Metal ratio influence

\#	Ligand	L:M	Conv. (\%)	L. selec. (\%)	Yield (\%)
1	L1	10:1	99	81	98
2	L6		90	99	73
3	L1	5:1	99	80	83
4	L6		95	98	77
5	L1	3:1	98	52	32
6	L6		95	98	75
7	L1	2:1	98	48	30
8	L6		71	76	10
9	L1	1:1	98	38	14
10	L6		54	78	7

Supplementary Table 7. Ligand-Metal ratio screening for the hydroformylation of 1-octene Variation from general conditions: Adjusted ligand loading.
d) Influence of pressure

\#	Ligand	$\mathrm{Pco}_{\mathrm{co}} \mathrm{H} 2$ (bar)	Conv. (\%)	L. selec. (\%)	Yield (\%)
1	L1	40	99	73	93
2	L6		98	96	94
3	L1	20	98	82	83
4	L6		98	98	87
5	L1	15	98	80	80
6	L6		98	98	85
7	L1	10	99	80	72
8	L6		95	98	77
9	L1	5	99	81	54
10	L6		92	98	54
11	L1	1	8	-	-
12	L6		35	-	-

Supplementary Table 8. Influence of syngas pressure on the hydroformylation of 1-octene
Variation from general conditions: Adjusted syngas pressure.
e) Solvent screening

$\#$	Ligand	solvent	Conv. (\%)	L. selec. (\%)	Yield (\%)
1	L6	Toluene	95	98	77
2	L6	Dioxane	78	93	57
3	L6	THF	73	92	57
4	L6	PC	82	93	55
5	L6	MeOH	30	75	7
6	L6	H2O	97	73	67
7	L6	NMP	21	79	13
8	L6	HFIP	66	81	33
9	L6	Heptane	49	88	35
10	L6	-	$[75-98]$	$[85-90]$	$[60-82]$

Supplementary Table 9. Influence of solvents on the hydroformylation of 1-octene
Variation from general conditions: Appropriate solvent used.

f) Ligand screening in optimized conditions

$\# \#$	Ligand	Conv. (\%)	Iso. (\%)	L. selec. (\%)	Yield (\%)
1	L1	95	7	84	81
2	L2	98	8	67	77
3	L3	98	14	66	70
4	L4	44	14	72	3
5	L5	78	18	90	34
6	L6	88	6	99	78
7	L7	98	57	33	1
8	PPh $_{3}$	98	49	6	39

[^0]
SI-G:Kinetic profile and gas consumption experiments

$\mathbf{t}(\mathrm{h})$	Conv. (\%)	Hydrog. (\%)	Iso. (\%)	Yield (\%)	L. selec. (\%)	nonanal (\%)
0	0	0	0	0	0	0
1	55	8	4	44	97	43
2	70	10	6	53	97	51
3	77	13	6	58	96	56
4	82	13	7	62	96	60
5	84	14	7	63	96	60

Supplementary Table 11. Kinetic profile experiment for the hydroformylation of 1-octene with Rh/L6

$\mathbf{t}(\mathrm{h})$	Conv. (\%)	Hydrog. (\%)	Iso. (\%)	Yield (\%)	L. selec. (\%)	nonanal (\%)
0	0	0	0	0	0	0
1	64	15	7	42	82	34
2	85	20	9	56	80	45
3	92	21	9	62	79	49
4	94	21	9	64	79	51
5	96	22	9	65	79	51

Supplementary Table 12. Kinetic profile experiment for the hydroformylation of 1-octene with Rh/L1
Variation from general conditions: $\mathrm{c}_{\mathrm{Rh}}=6 \cdot 10^{-5} \mathrm{~mol} . \mathrm{L}^{-1}, \mathbf{1 a}(10.0 \mathrm{mmol})$ and toluene $(24 \mathrm{~mL})$.
A 100 mL was used for those experiments. A pressure probe and a sampling cannula were adapted. The precursor, ligand and solvent were added as a solution along with 1 a under a strong flow of argon. The autoclave was first flushed with N_{2}, then pressurized to 10 bars of syngas, brought to working temperature $\left(120^{\circ} \mathrm{C}\right)$. Finally, the pressure was adjusted to 25 bars of syngas and stirring was turned on. Samples were collected hourly, including a first one at t $=0 \mathrm{~h}$ (approximately one to two minutes after the start of the reaction) and analyzed on GC. Pressure was monitored and provided data points every minute.

	L1		L6	
$\underset{(m n)}{t}$	(bar)	Gas consumption (\%)	(bar)	Gas consumption (\%)
0	25.3	0\%	24.1	0\%
1	25.2	0\%	24	0\%
2	25.2	0\%	24	0\%
3	25.1	1\%	24	0\%
4	25.1	1\%	24	0\%
5	25	1\%	24.1	0\%
6	24.9	2\%	24	0\%
7	24.9	2\%	24	0\%
8	24.8	2\%	24	0\%
9	24.8	2\%	23.9	1\%
10	24.7	2\%	23.8	1\%
11	24.7	2\%	23.8	1\%
12	24.6	3\%	23.7	2\%
13	24.6	3\%	23.7	2\%
14	24.6	3\%	23.5	2\%
15	24.6	3\%	23.5	2\%
16	24.5	3\%	23.4	3\%
17	24.5	3\%	23.3	3\%
18	24.4	4\%	23.3	3\%
19	24.4	4\%	23.2	4\%
20	24.4	4\%	23.1	4\%
21	24.3	4\%	23.1	4\%
22	24.3	4\%	23.1	4\%
23	24.3	4\%	23	5\%
24	24.2	4\%	22.9	5\%
25	24.2	4\%	23	5\%
26	24.2	4\%	22.9	5\%
27	24.2	4\%	22.8	5\%
28	24.2	4\%	22.8	5\%
29	24.1	5\%	22.7	6\%
30	24.1	5\%	22.7	6\%
31	24	5\%	22.7	6\%
32	24	5\%	22.7	6\%
33	24	5\%	22.7	6\%
34	24	5\%	22.6	6\%
35	24	5\%	22.6	6\%
36	23.9	6\%	22.6	6\%
37	23.9	6\%	22.6	6\%
38	23.9	6\%	22.6	6\%
39	23.8	6\%	22.5	7\%

40	23.9	6\%	22.6	6\%
41	23.9	6\%	22.5	7\%
42	23.9	6\%	22.5	7\%
43	23.8	6\%	22.5	7\%
44	23.7	6\%	22.5	7\%
45	23.7	6\%	22.5	7\%
46	23.7	6\%	22.4	7\%
47	23.7	6\%	22.4	7\%
48	23.7	6\%	22.4	7\%
49	23.6	7\%	22.4	7\%
50	23.6	7\%	22.3	7\%
51	23.6	7\%	22.3	7\%
52	23.5	7\%	22.3	7\%
53	23.6	7\%	22.3	7\%
54	23.5	7\%	22.2	8\%
55	23.5	7\%	22.2	8\%
56	23.5	7\%	22.2	8\%
57	23.5	7\%	22.2	8\%
58	23.4	8\%	22.2	8\%
59	23.3	8\%	22.2	8\%
60	23.3	8\%	22.2	8\%
61	23.2	8\%	22.1	8\%
62	23.3	8\%	22.1	8\%
63	23.2	8\%	22.2	8\%
64	23.2	8\%	22	9\%
65	23.2	8\%	21.9	9\%
66	23.2	8\%	21.9	9\%
67	23.1	9\%	21.9	9\%
68	23.1	9\%	21.8	10\%
69	23.1	9\%	21.8	10\%
70	23.1	9\%	21.9	9\%
71	23	9\%	21.9	9\%
72	23.1	9\%	21.8	10\%
73	23	9\%	21.8	10\%
74	23	9\%	21.8	10\%
75	23	9\%	21.8	10\%
76	23	9\%	21.8	10\%
77	23	9\%	21.8	10\%
78	23	9\%	21.7	10\%
79	23	9\%	21.7	10\%
80	23	9\%	21.7	10\%
81	22.9	9\%	21.7	10\%
82	22.9	9\%	21.8	10\%
83	22.9	9\%	21.7	10\%
84	22.8	10\%	21.7	10\%
85	22.9	9\%	21.7	10\%

86	22.8	10\%	21.7	10\%
87	22.9	9\%	21.6	10\%
88	22.9	9\%	21.7	10\%
89	22.8	10\%	21.7	10\%
90	22.9	9\%	21.6	10\%
91	22.8	10\%	21.6	10\%
92	22.8	10\%	21.6	10\%
93	22.8	10\%	21.6	10\%
94	22.8	10\%	21.7	10\%
95	22.8	10\%	21.6	10\%
96	22.7	10\%	21.6	10\%
97	22.7	10\%	21.6	10\%
98	22.7	10\%	21.6	10\%
99	22.7	10\%	21.5	11\%
100	22.7	10\%	21.5	11\%
101	22.7	10\%	21.6	10\%
102	22.7	10\%	21.5	11\%
103	22.7	10\%	21.5	11\%
104	22.7	10\%	21.5	11\%
105	22.6	11\%	21.5	11\%
106	22.7	10\%	21.5	11\%
107	22.7	10\%	21.5	11\%
108	22.7	10\%	21.5	11\%
109	22.6	11\%	21.5	11\%
110	22.6	11\%	21.4	11\%
111	22.6	11\%	21.4	11\%
112	22.6	11\%	21.4	11\%
113	22.7	10\%	21.4	11\%
114	22.6	11\%	21.4	11\%
115	22.6	11\%	21.4	11\%
116	22.6	11\%	21.3	12\%
117	22.6	11\%	21.3	12\%
118	22.6	11\%	21.3	12\%
119	22.6	11\%	21.2	12\%
120	22.5	11\%	21.2	12\%
121	22.5	11\%	21.2	12\%
122	22.5	11\%	21.2	12\%
123	22.6	11\%	21.2	12\%
124	22.5	11\%	21.2	12\%
125	22.6	11\%	21.1	12\%
126	22.6	11\%	21.1	12\%
127	22.5	11\%	21.2	12\%
128	22.6	11\%	21.1	12\%
129	22.5	11\%	21.2	12\%
130	22.5	11\%	21.1	12\%
131	22.5	11\%	21.1	12\%

132	22.5	11\%	21.1	12\%
133	22.5	11\%	21	13\%
134	22.5	11\%	21.1	12\%
135	22.5	11\%	21.1	12\%
136	22.5	11\%	21.1	12\%
137	22.5	11\%	21.1	12\%
138	22.5	11\%	21	13\%
139	22.4	11\%	21	13\%
140	22.4	11\%	21	13\%
141	22.4	11\%	21	13\%
142	22.5	11\%	21	13\%
143	22.4	11\%	21	13\%
144	22.5	11\%	21	13\%
145	22.4	11\%	21	13\%
146	22.4	11\%	21	13\%
147	22.4	11\%	21	13\%
148	22.4	11\%	20.9	13\%
149	22.4	11\%	21	13\%
150	22.4	11\%	20.9	13\%
151	22.5	11\%	21	13\%
152	22.4	11\%	21	13\%
153	22.4	11\%	20.9	13\%
154	22.5	11\%	21	13\%
155	22.4	11\%	20.9	13\%
156	22.4	11\%	20.9	13\%
157	22.3	12\%	20.9	13\%
158	22.3	12\%	21	13\%
159	22.4	11\%	20.9	13\%
160	22.3	12\%	21	13\%
161	22.4	11\%	21	13\%
162	22.4	11\%	20.9	13\%
163	22.4	11\%	20.9	13\%
164	22.3	12\%	20.9	13\%
165	22.2	12\%	20.9	13\%
166	22.2	12\%	20.8	14\%
167	22.2	12\%	20.8	14\%
168	22.2	12\%	20.9	13\%
169	22.2	12\%	20.9	13\%
170	22.2	12\%	20.8	14\%
171	22.2	12\%	20.8	14\%
172	22.2	12\%	20.8	14\%
173	22.2	12\%	20.8	14\%
174	22.3	12\%	20.8	14\%
175	22.2	12\%	20.8	14\%
176	22.2	12\%	20.8	14\%
177	22.1	13\%	20.8	14\%

178	22.2	12%	20.8	14%
179	22.2	12%	20.8	14%
180	22.1	13%	20.7	14%
181	22.2	12%	20.7	14%
182	22.2	12%	20.8	14%
183	22.1	13%	20.7	14%
184	22.2	12%	20.7	14%
185	22.2	12%	20.7	14%
186	22.2	12%	20.8	14%
187	22.2	12%	20.7	14%
188	22.2	12%	20.8	14%
189	22.2	12%	20.7	14%
190	22.3	12%	20.7	14%
191	22.2	12%	20.8	14%
192	22.2	12%	20.7	14%
193	22.3	12%	20.7	14%
194	22.2	12%	20.8	14%
195	22.2	12%	20.7	14%
196	22.2	12%	20.8	14%
2207	22.2	12%	12%	20.8

224	22.2	12\%	20.7	14\%
225	22.2	12\%	20.7	14\%
226	22.2	12\%	20.7	14\%
227	22.2	12\%	20.7	14\%
228	22.1	13\%	20.7	14\%
229	22.1	13\%	20.8	14\%
230	22	13\%	20.8	14\%
231	22	13\%	20.7	14\%
232	22	13\%	20.7	14\%
233	22	13\%	20.7	14\%
234	22	13\%	20.8	14\%
235	22	13\%	20.7	14\%
236	22	13\%	20.7	14\%
237	22	13\%	20.6	15\%
238	21.9	13\%	20.5	15\%
239	22	13\%	20.5	15\%
240	21.9	13\%	20.5	15\%
241	21.9	13\%	20.5	15\%
242	22	13\%	20.5	15\%
243	21.9	13\%	20.5	15\%
244	22	13\%	20.5	15\%
245	22	13\%	20.5	15\%
246	21.9	13\%	20.5	15\%
247	22	13\%	20.5	15\%
248	22	13\%	20.5	15\%
249	22	13\%	20.5	15\%
250	21.9	13\%	20.5	15\%
251	21.9	13\%	20.5	15\%
252	22	13\%	20.5	15\%
253	21.9	13\%	20.5	15\%
254	21.9	13\%	20.5	15\%
255	21.9	13\%	20.4	15\%
256	21.9	13\%	20.4	15\%
257	21.9	13\%	20.4	15\%
258	21.9	13\%	20.5	15\%
259	21.9	13\%	20.4	15\%
260	21.9	13\%	20.5	15\%
261	21.9	13\%	20.4	15\%
262	21.9	13\%	20.4	15\%
263	21.9	13\%	20.4	15\%
264	21.8	14\%	20.4	15\%
265	21.9	13\%	20.4	15\%
266	21.8	14\%	20.4	15\%
267	21.9	13\%	20.4	15\%
268	21.8	14\%	20.4	15\%
269	21.8	14\%	20.4	15\%

270	21.9	13\%	20.4	15\%
271	21.9	13\%	20.5	15\%
272	21.8	14\%	20.4	15\%
273	21.8	14\%	20.5	15\%
274	21.8	14\%	20.4	15\%
275	21.8	14\%	20.4	15\%
276	21.8	14\%	20.4	15\%
277	21.8	14\%	20.5	15\%
278	21.8	14\%	20.4	15\%
279	21.8	14\%	20.4	15\%
280	21.8	14\%	20.5	15\%
281	21.8	14\%	20.4	15\%
282	21.8	14\%	20.4	15\%
283	21.9	13\%	20.5	15\%
284	21.8	14\%	20.4	15\%
285	21.8	14\%	20.4	15\%
286	21.9	13\%	20.4	15\%
287	21.9	13\%	20.4	15\%
288	21.8	14\%	20.4	15\%
289	21.4	15\%	20.4	15\%
290	21.3	16\%	20.4	15\%
291	21.4	15\%	20.4	15\%
292	21.5	15\%	20.5	15\%
293	21.4	15\%	20.4	15\%
294	21.4	15\%	20.4	15\%
295	21.4	15\%	20.5	15\%
296	21.4	15\%	20.4	15\%
297	21.3	16\%	20.4	15\%
298	21.3	16\%	20.4	15\%
299	21.4	15\%	20.4	15\%
300	21.4	15\%	20.4	15\%
301	21.3	16\%	20.3	16\%
302	21.3	16\%	20.3	16\%
303	21.3	16\%	20.3	16\%
304	21.4	15\%	20.3	16\%
305	21.4	15\%	20.3	16\%
306	21.4	15\%	20.3	16\%
307	21.4	15\%	20.3	16\%
308	21.4	15\%	20.3	16\%
309	21.4	15\%	20.2	16\%
310	21.4	15\%	20.2	16\%
311	21.4	15\%	20.3	16\%
312	21.4	15\%	20.2	16\%
313	21.4	15\%	20.2	16\%
314	21.3	16\%	20.3	16\%
315	21.3	16\%	20.3	16\%

316	21.3	16%	20.3	16%
317	21.3	16%	20.3	16%
318	21.4	15%	20.3	16%
319	21.4	15%	20.3	16%
320	21.3	16%	20.3	16%
321	21.4	15%	20.3	16%
322	21.3	16%	20.3	16%
323	21.4	15%	20.3	16%
324	21.3	16%	20.3	16%
325	21.3	16%	20.3	16%

Supplementary Table 13. Gas consumption experiment for L1 and L6

SI-H:DFT and experimental IR spectra

a) Computational details

In our calculation, geometry optimization was carried out using the M06L [1] functional with all electron TZVP ${ }^{[2]}$ basis set in gas phase as well as in the solution of THF and toluene based on solute electron density (SMD ${ }^{[3]}$). All optimized structures were further characterized either as energy minimums without imaginary frequencies at the corresponding level, which provided zero-point vibrational energies and thermodynamic corrections to enthalpy and Gibbs free energy at 298.15 K under 1 atmosphere. We used the M06L/TZVP computed Gibbs free energies for comparison and discussion. All calculations were carried out using Gaussian 16 program. ${ }^{[4]}$

Supplementary Table 14. M06L/TZVP computed total electronic energies (HF, au), zero-point vibrational energies (ZPE, au), sum of electronic and thermal enthalpies (Htot, au), sum of electronic and thermal free energies (Gtot, au), number of Imaginary frequencies (NImag) in gas phase as well as in the solution of THF and toluene.

	M06L/TZVP gas phase	$\begin{aligned} & \text { M06L-SCRF/TZVP } \\ & \text { THF } \end{aligned}$	M06L-SCRF/TZVP toluene
	$\begin{aligned} & \mathrm{HF}=-1219.0098437 \\ & \mathrm{ZPE}=0.258939 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.732156 \\ & \text { Gtot }=-1218.799132 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0383712 \\ & \text { ZPE }=0.258935 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.760770 \\ & \text { Gtot }=-1218.827400 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0334687 \\ & \mathrm{ZPE}=0.259066 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.755706 \\ & \text { Gtot }=-1218.822559 \end{aligned}$

[1] Zhao, Y.; Truhlar, D. G. J. Chem. Phys., 125 (2006), 194101: 1-18
[${ }^{2}$] Schäfer, A., Huber, C., Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829-5835
[${ }^{3}$] Marenich, A. V., Cramer, C. J., Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 113, 6378-6396, doi:10.1021/jp810292n (2009)
[4] Frisch, M. J. et al. Gaussian 16, Revision A.03. Gaussian Inc. Gaussian, Inc., Wallingford CT, 2016

L-a			
 L-a1	$\begin{aligned} & \mathrm{HF}=-1219.0088966 \\ & \mathrm{ZPE}=0.258920 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.731107 \\ & \text { Gtot }=-1218.798952 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0385151 \\ & \mathrm{ZPE}=0.259030 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.760762 \\ & \text { Gtot }=-1218.827572 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0331181 \\ & \mathrm{ZPE}=0.259136 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.755213 \\ & \text { Gtot }=-1218.822400 \end{aligned}$
 L-b	$\begin{aligned} & \mathrm{HF}=-1219.0125129 \\ & \mathrm{ZPE}=0.259094 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.734830 \\ & \text { Gtot }=-1218.800966 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0348591 \\ & \mathrm{ZPE}=0.258553 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.757675 \\ & \text { Gtot }=-1218.824229 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0325556 \\ & \mathrm{ZPE}=0.258893 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.755036 \\ & \text { Gtot }=-1218.821567 \end{aligned}$
 L-b1	$\begin{aligned} & \mathrm{HF}=-1219.0027536 \\ & \mathrm{ZPE}=0.258743 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.725313 \\ & \text { Gtot }=-1218.792855 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0226262 \\ & \mathrm{ZPE}=0.258149 \\ & \mathrm{NImag}=0 \\ & \text { Htot }=-1218.745742 \\ & \text { Gtot }=-1218.812676 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0207315 \\ & \mathrm{ZPE}=0.258481 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.743520 \\ & \text { Gtot }=-1218.811180 \end{aligned}$
 L-b2	$\begin{aligned} & \mathrm{HF}=-1219.0027534 \\ & \text { ZPE }=0.258743 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.725313 \\ & \text { Gtot }=-1218.792863 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0226262 \\ & \text { ZPE }=0.258149 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.745742 \\ & \text { Gtot }=-1218.812676 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0207315 \\ & \text { ZPE }=0.258481 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.743520 \\ & \text { Gtot }=-1218.811180 \end{aligned}$
 L-b3	$\begin{aligned} & \mathrm{HF}=-1219.0066152 \\ & \text { ZPE }=0.258805 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.729021 \\ & \text { Gtot }=-1218.797023 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0310499 \\ & \mathrm{ZPE}=0.258475 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.753814 \\ & \text { Gtot }=-1218.821074 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-1219.0276058 \\ & \mathrm{ZPE}=0.258725 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.750109 \\ & \text { Gtot }=-1218.817563 \end{aligned}$

	$\begin{aligned} & \hline \mathrm{HF}=-2438.059633 \\ & \mathrm{ZPE}=0.520308 \\ & \text { NImag }=0 \\ & \text { Htot }=-2437.501994 \\ & \text { Gtot }=-2437.613112 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-2438.0935405 \\ & \mathrm{ZPE}=0.519303 \\ & \text { NImag }=0 \\ & \text { Htot }=-2437.536832 \\ & \text { Gtot }=-2437.647851 \end{aligned}$	$\begin{aligned} & \mathrm{HF}=-2438.0922235 \\ & \mathrm{ZPE}=0.519860 \\ & \text { NImag }=0 \\ & \text { Htot }=-2437.534959 \\ & \text { Gtot }=-2437.646144 \end{aligned}$

Supplementary Table 15. M06L/TZVP optimized Cartesian Coordinates in gas phase.

	M06L/TZVP gas phase
 L-a	P,0,-1.4998236555,-0.0090968569,-0.0364906546 C,0,-0.656695519,-1.2620956111,1.0360675978 C,0,-0.7496115108,1.5546763448,0.5770810162 C,0,-0.5570689886,-0.2755419315,-1.6066894467 C,0,0.3604937439,-3.3400808231,2.5916464873 C,0,0.2762110295,4.0238354804,1.3726591256 C,0,0.8851227174,-0.712348675,-3.9508397406 N,0,-0.1626346545,-2.3943904721,0.4720434692 C,0,0.5357454365,1.6470463748,1.1190694435 N,0,0.5614334751,0.4405484022,-1.892361842 C,0,-0.6582604161,-1.1498779211,2.3986127489 C,0,-1.511766743,2.7159905542,0.4437788373 C,0,-0.9801746998,-1.2240200502,-2.4964587924 C,0,-0.1292378204,-2.2099006135,3.167693738 C,0,-1.0005765606,3.9432657638,0.8380990972 C,0,-0.2244119264,-1.4438183057,-3.6737309222 C,0,0.3728040504,-3.5114374675,1.1628578922 C,0,1.0430399939,2.8753295002,1.5132799014 C,0,1.3564427706,0.3188296208,-3.059135441 H,0,-1.0549548968,-0.2616214894,2.8687213139 H,0,-2.5128074213,2.6537264899,0.0323781924 H,0,-1.8890311847,-1.7763443039,-2.3018414791 H,0,-0.1215229584,-2.1153294221,4.2478173015 H,0,-1.6026250662,4.8366006709,0.730674619 H,0,-0.5506456701,-2.2081372878,-4.3695105622 Н,0,0.7615771436,-4.1537582963,3.1787947543 H,0,0.674899477,4.9816564621,1.6820914297 H,0,1.4609894277,-0.8675785948,-4.8520792805 H,0,2.0410828761,2.9350783648,1.9285773901 0,0,2.3221740361,1.0443099768,-3.2096304029 0,0,0.7826528047,-4.4679696459,0.5291065408 H,0,1.135327025,0.7521689019,1.2425203063 H,0,0.8743165258,1.1534856442,-1.2431565305 H,0,-0.139939241,-2.4784286838,-0.5389731081

	0,0,-0.6781443565,-4.3515677825,-1.5977344847 C,0,0.1390206923,-2.0439853295,1.6617260295 H,0,0.3526610006,-1.4050542925,2.5056733417 C,0,-0.4430114523,-3.318482704,1.835770463 H,0,-0.6731925972,-3.6506799665,2.8422487649 C,0,-0.7221120734,-4.1355016919,0.783146616 H,0,-1.1696216387,-5.1097453394,0.9195653083 $\mathrm{N}, 0,0.4111461129,-0.3461205858,-2.5020509812$ C,0,-0.0995728696,0.0621636449,-3.655467787 O,0,-0.2371469462,-0.8432476349,-4.6366650998 H,0,0.0572264183,-1.695318152,-4.2848195064
 L-b1	P,0,-0.0769049993,1.0829638443,0.1332712978 C,0,-0.6776437053,0.1236983311,1.5971731291 C,0,-1.0340137878,0.3138388168,-1.2535650848 C,0,1.5714960724,0.309477536,-0.1440954288 C,0,-1.7304378684,-1.031630937,3.8524764825 C,0,-2.2874203089,-0.6088552748,-3.5089443909 C,0,4.1240256732,-0.7855874767,-0.4305558776 C,0,0.1190132846,-0.7257455534,2.3532626207 C,0,-2.1976533593,-0.427908015,-1.1157811417 C,0,1.7417156273,-0.9538459057,-0.7124278197 N,0,-1.946628748,0.4063476276,1.9430765159 $\mathrm{N}, 0,-0.509475042,0.6085268159,-2.4541555799$ C,0,2.6984386466,1.0159089664,0.2717764971 C,0,-2.4461207901,-0.1660670825,3.025946669 C,0,-1.1188609447,0.1521926403,-3.5349513679 C,0,3.9674199681,0.4700550203,0.1353783266 C,0,-0.4283273605,-1.3047227053,3.4941435694 C,0,-2.8211896828,-0.8916534111,-2.2703636164 C,0,3.0084796473,-1.4954500692,-0.8565488553 H,0,1.1372868722,-0.935812729,2.057632583 H,0,-2.6057967376,-0.6331219776,-0.1373872414 H,0,0.8750142556,-1.5166448956,-1.0405426485 0,0,-3.7251046485,0.1222369349,3.3393542518 0,0,-0.5652300756,0.4532086261,-4.7263547615 H,0,4.8338355982,1.0303823769,0.4645734841 H,0,0.1699463093,-1.9718744472,4.102941213 H,0,-3.7280882218,-1.4797475932,-2.1960556828 H,0,3.1271956067,-2.4765821789,-1.3001386434 H,0,-2.1955071228,-1.4561500007,4.7306901145 H,0,-2.7379058311,-0.9493155583,-4.4303072615 H,0,5.1135176455,-1.2109171473,-0.5442673287 H,0,-4.0217402724,0.7516323867,2.6667693062 H,0,0.2201747246,0.9797731853,-4.5203394851 H,0,2.5780848754,2.00310495,0.7040333552
 L-b2	P,0,0.283971468,1.3789682455,-0.1516510684 C,0,-1.3905073742,0.8410118548,-0.7267930484 C,0,0.3264489005,0.653553195,1.5408104936 C,0,1.3977447596,0.1954238736,-1.040310603 C,0,-3.8783447503,0.3136631498,-1.7573560919 C,0,0.2846799396,-0.3308547895,4.1534383888 C,0,3.3014074239,-1.3979359557,-2.2006405587 N,0,-1.638953653,1.1376462507,-2.0152745235 C,0,0.5125682436,-0.7071771804,1.7892050081 $\mathrm{N}, 0,2.6313199373,0.167177001,-0.5103576813$ C,0,-2.358396505,0.2868882326,0.1002460502 C,0,0.1255670042,1.5117028637,2.6202745332

	C,0,1.0578472475,-0.5416558721,-2.164776714 C,0,-3.6153401329,0.0245254238,-0.4361122756 C,0,0.0986281221,1.0226326423,3.9190902913 C,0,2.0347788565,-1.3480679335,-2.7411513129 C,0,-2.8385041357,0.8678344111,-2.5031433345 C,0,0.4942560487,-1.1945028739,3.0857409444 C,0,3.5395828613,-0.6104448468,-1.0743604558 H,0,-2.1369255547,0.0597425173,1.1335734364 H,0,-0.008569958,2.5723809486,2.4390104541 H,0,0.0624323168,-0.4840848526,-2.5792479249 H,0,-4.38981362,-0.4079873603,0.1858039152 Н,0,-0.0600247663,1.7015252437,4.7479121493 H,0,1.7987697894,-1.9414751438,-3.6163707639 H,0,-4.8397858282,0.1295026413,-2.2150482814 H,0,0.2708333469,-0.7139863267,5.1663299882 H,0,4.0892861841,-2.0104383039,-2.6151861864 H,0,0.64099507,-2.2526818506,3.2652126663 0,0,4.766093062,-0.628333217,-0.5158720984 0,0,-3.0541937167,1.1601030875,-3.801295736 H,0,4.7161262442,-0.0213001443,0.2361833529 H,0,-2.2299940396,1.5554999446,-4.1188783276 H,0,0.6694747081,-1.3881862758,0.9602406147
 L-b3	P,0,1.3265893962,-0.1920703921,0.0505100088 C,0,0.547116639,0.493733924,-1.478461218 C,0,0.7486888259,0.9958361389,1.3370333068 C,0,0.1859917836,-1.6005673535,0.4062885629 C,0,-0.1254144749,1.7046243569,-1.5335398661 H,0,-0.2848763987,2.2912181442,-0.6397702209 C,0,-0.5960295344,2.13773585,-2.7707670859 H,0,-1.1257850723,3.0792201467,-2.8495586879 C,0,-0.3902334166,1.3698721949,-3.8950001119 H,0,-0.7361813283,1.6670399983,-4.8746992439 C,0,1.6572555678,1.9554063788,1.7836558825 H,0,2.6681401413,1.9570559139,1.391003994 C,0,-0.5444213181,0.9928453477,1.8631770352 H,0,-1.2612993827,0.2528295239,1.5239258282 C,0,-0.917620933,1.9316221829,2.8116014477 C,0,1.2784635862,2.9021798014,2.7241881478 H,0,1.9924172597,3.6435588658,3.0606606053 C,0,-0.0084130113,2.8893626935,3.2407520884 H,0,-0.3023326173,3.6212245227,3.9827423211 H,0,-1.9219364936,1.9168376013,3.2165619868 N,0,0.4394827935,-2.2505369784,1.5795509788 H,0,1.1893819228,-1.9288965346,2.1786591278 C,0,-0.2596189231,-3.3671171884,2.0934756998 0,0,0.0664837296,-3.8428102604,3.16798603 C,0,-0.8287889481,-2.056594198,-0.3842956944 H,0,-1.0478729081,-1.5678580939,-1.3203724192 C,0,-1.5748657527,-3.1786992972,0.0450670544 H,0,-2.3800972445,-3.5388144164,-0.5859207597 C,0,-1.3157269049,-3.8096062935,1.2204765729 H,0,-1.8859631303,-4.6670296854,1.5484930732 N,0,0.7672028638,-0.2608001232,-2.5676660144 C,0,0.2984769001,0.1670638911,-3.7284669451 0,0,0.5139509681,-0.6105336808,-4.8053489363 H,0,1.0124177155,-1.3747896812,-4.4827106488

L6D

P,0,5.224376534,-0.1482336539,0.2776108794 P,0,-5.224376534,0.1482336539,-0.2776108794 C,0,3.9175720012,0.2780387115,-0.9605469744 C,0,-3.9175720012,-0.2780387115,0.9605469744 C,0,6.4323310111,1.2228181959,0.0670645532 C,0,-6.4323310111,-1.2228181959,-0.0670645532 C,0,4.4220382348,0.3699959836,1.8614674037 C,0,-4.4220382348,-0.3699959836,-1.8614674037 C,0,4.1986092007,0.9679827406,-2.1287323411
C,0,-4.1986092007,-0.9679827406,2.1287323411 H,0,5.1761331043,1.3960440727,-2.3027567858 H,0,-5.1761331043,-1.3960440727,2.3027567858 C,0,3.1731132338,1.0934739074,-3.062427178 C,0,-3.1731132338,-1.0934739074,3.062427178 H,0,3.3472605192,1.6283354043,-3.9886967078 Н, 0,-3.3472605192,-1.6283354043,3.9886967078 C,0,1.939934051,0.5358357984,-2.8169694356 C,0,-1.939934051,-0.5358357984,2.8169694356 H,0,1.1232249079,0.6048018909,-3.5229354855 H,0,-1.1232249079,-0.6048018909,3.5229354855 C,0,7.7515515001,0.8960883615,-0.2387948746 C,0,-7.7515515001,-0.8960883615,0.2387948746 H,0,8.0349328751,-0.1464063225,-0.3287366213 Н, 0,-8.0349328751,0.1464063225,0.3287366213 C,0,6.0764137883,2.5690764933,0.1819709096 C,0,-6.0764137883,-2.5690764933,-0.1819709096 H,0,5.0519979044,2.8350366436,0.4171737107 H,0,-5.0519979044,-2.8350366436,-0.4171737107 C,0,7.0225529202,3.5619380141,-0.0045795665 C,0,-7.0225529202,-3.5619380141,0.0045795665 C,0,8.7001050821,1.8930379046,-0.4273121416 C,0,-8.7001050821,-1.8930379046,0.4273121416 H,0,9.7226646357,1.6270620316,-0.6643460852 H,0,-9.7226646357,-1.6270620316,0.6643460852 C,0,8.3362377627,3.224627636,-0.3095311217 C,0,-8.3362377627,-3.224627636,0.3095311217 H,0,9.0746768875,4.003392158,-0.4547955792 H,0,-9.0746768875,-4.003392158,0.4547955792 H,0,6.7366587052,4.602581511,0.0863753923 H,0,-6.7366587052,-4.602581511,-0.0863753923 N,0,3.0917885402,0.1530947908,2.0269177542 N,0,-3.0917885402,-0.1530947908,-2.0269177542 H,0,2.5724484392,-0.169169887,1.1969658828 H,0,-2.5724484392,0.169169887,-1.1969658828 C,0,2.3755083712,0.3994570933,3.1950623544 C,0,-2.3755083712,-0.3994570933,-3.1950623544 0,0,1.1463615144,0.2264293116,3.2179257313 0,0,-1.1463615144,-0.2264293116,-3.2179257313 C,0,5.1589263833,0.8293845538,2.9239458777 C,0,-5.1589263833,-0.8293845538,-2.9239458777 H,0,6.2181676873,1.007830485,2.8090404531 H,0,-6.2181676873,-1.007830485,-2.8090404531 C,0,4.5080444625,1.0608732138,4.146660166 C,0,-4.5080444625,-1.0608732138,-4.146660166 H,0,5.0865589802,1.4201170341,4.9903421958 H,0,-5.0865589802,-1.4201170341,-4.9903421958 C,0,3.1677744791,0.8485268794,4.2926858293

	C,0,-3.1677744791,-0.8485268794,-4.2926858293
	H,0,2.6546361934,1.0299241292,5.2259113999
	H,0,-2.6546361934,-1.0299241292,-5.22591139999
	N,0,2.7232097525,-0.2728202108,-0.7007325991
	N,0,-2.7232097525,0.2728202108,0.7007325991
	C,0,1.7492545628,-0.1482754179,-1.6047275171
	C,0,-1.7492545628,0.1482754179,1.6047275171
	O,0,0.6055693476,-0.7310757371,-1.2837755681
	$0,0,-0.6055693476,0.7310757371,1.2837755681$
	H,0,-0.07499996648,-0.5298987647,-1.9769267977
	H,0,0.0749999648,0.5298987647,1.9769267977

Supplementary Table 16. M06L/TZVP optimized Cartesian Coordinates in THF

	M06L-SCRF/TZVP in THF
L-a	P,0,-1.4895014681,0.0010882126,-0.0509617867
	C,0,-0.6701158054,-1.2577128386,1.032702597
	C,0,-0.7305021166,1.5572365335,0.5673936671
	C, 0,-0.5568942447,-0.2862969026,-1.6228462669
	C,0,0.3617133277,-3.3099967509,2.6033103994
	C,0,0.2965525089,4.0087965737,1.4077696966
	C,0,0.8586627663,-0.7236680826,-3.9762788079
	N,0,-0.1071606324,-2.3621030718,0.4784532828
	C,0,0.554047815,1.6358500493,1.1135033331
	N,0,0.553347214,0.4369580523,-1.9259788328
	C,0,-0.7363097108,-1.1623654507,2.396096686
	C,0,-1.4920273623,2.72098575,0.4501474831
	C,0,-0.9837787294,-1.2447611129,-2.5001427953
	C,0,-0.1994992262,-2.2073392891,3.1741626372
	C,0,-0.9789615209,3.9404168476,0.8670104485
	C,0,-0.2428464274,-1.4649204785,-3.683217121
	C,0,0.4390256199,-3.4556245884,1.1785837707
	C,0,1.0619212854,2.8566227851,1.5302941201
	C,0,1.3278082465,0.3101043366,-3.0934384515
	H,0,-1.187121741,-0.2953264098,2.8576706922
	H,0,-2.4924112496,2.6689746209,0.035448131
	H,0,-1.879402021,-1.811410582,-2.2856627213
	H,0,-0.2410035046,-2.1283814194,4.2547198541
	H,0,-1.579585055,4.8366784633,0.7742075052
	H,0,-0.5713802524,-2.2341610633,-4.3724908184
	H,0,0.7695577722,-4.1134567499,3.2011237934
	H,0,0.6951740273,4.9603131614,1.737361996
	H,0,1.4214981711,-0.8798513953,-4.88637858
	H,0,2.0586914352,2.907335175,1.9506312147
	0,0,2.2951349643,1.0434968345,-3.2654336638
	0,0,0.9179523823,-4.3964768138,0.5524288758
	H,0,1.1560804599,0.7398293438,1.2165590298
	H,0,0.8650311946,1.1557228036,-1.280846648

	H,0,-0.0511745224,-2.4317844434,-0.5332297206
 L-a1	P,0,1.0597703333,0.0122395084,0.0953269675 C,0,0.1410320369,0.7605706651,1.5075154337 C,0,0.2619636345,-1.6369463696,-0.0428543111 C,0,0.2574034746,0.9016152176,-1.3120546419 C,0,-0.9763107227,2.0698579975,3.6944938466 C, $0,-0.8463840361,-4.1884161558,-0.1635736497$ C,0,-0.7079414384,2.0990979526,-3.6329869041 C,0,-0.8090305791,0.1286192141,2.2565438203 C,0,-0.9866534227,-1.8340753451,-0.6341825326 C,0,-0.7123099096,1.8591967862,-1.2228722174 $\mathrm{N}, 0,0.5287227539,2.0206577639,1.8613362316$ C,0,0.9527087343,-2.7306144335,0.4792297872 N,0,0.7335192117,0.5610225384,-2.54443869 C,0,0.0223832519,2.7715091746,2.9357662076 C,0,0.3957034518,-3.9999504873,0.4255075131 C,0,0.3078854311,1.0928034353,-3.7738471364 C,0,-1.3636233747,0.8087860243,3.3636029652 C,0,-1.5348093772,-3.105758853,-0.6951728129 C,0,-1.1862286827,2.4580100578,-2.411325818 H,0,-1.1282038957,-0.8705431625,2.0014452219 H,0,-1.5338448964,-0.9911235052,-1.0418910954 H,0,-1.1192437262,2.1413992039,-0.2633646426 H,0,1.2459424399,2.4892274274,1.319264118 H,0,1.9287340347,-2.5859674374,0.9288042655 H,0,1.4595859559,-0.1429395089,-2.6179358481 0,0,0.4466855075,3.9040685152,3.1427769271 H,0,0.9370049351,-4.8429178269,0.8368778742 0,0,0.8073689776,0.6888949631,-4.8192794208 H,0,-2.1186403474,0.3080362653,3.9590822723 H,0,-2.503686675,-3.2513069143,-1.1569093767 H,0,-1.9559813387,3.2182262314,-2.3405367615 H,0,-1.3995619203,2.5894381206,4.5432492518 H,0,-1.2774057962,-5.1808023348,-0.2130256024 H,0,-1.0721045255,2.5572936717,-4.542302342
 L-b	P,0,1.3569853073,-0.0761941728,0.0116084657 C,0,0.5015890298,0.5433480118,-1.5093586607 C,0,0.7158486483,1.0454142018,1.3145081424 C,0,0.4142955141,-1.6234150806,0.3806819602 C,0,0.0986123328,1.8622117011,-1.650467294 H,0,0.171330629,2.555582299,-0.8240976242 C,0,-0.405067753,2.2678867709,-2.8826238292 H,0,-0.7286111367,3.2917870517,-3.0239720029 C,0,-0.4961636453,1.3699077264,-3.9235069045 H,0,-0.8802751776,1.6467904473,-4.8951120095 C,0,1.6386170098,1.7561094253,2.0792614298 H,0,2.6993388353,1.627075806,1.8962384223 C,0,-0.6495684545,1.216144629,1.558984928 H,0,-1.3763810743,0.6676575607,0.9701923437 C,0,-1.0774706019,2.0830466959,2.5502378959 C,0,1.2067820982,2.6252770795,3.0730715347 H,0,1.931852108,3.1721019411,3.6631008317 C,0,-0.1493114525,2.7883072725,3.3084735573 H,0,-0.4873138095,3.4647226372,4.0840468414 H,0,-2.1374161445,2.209995388,2.7338187145 $\mathrm{N}, 0,0.1085496613,-2.4513009962,-0.650734365$ H,0,0.261206173,-2.0975238993,-1.5964909434

	C,0,-0.4825164191,-3.7203991984,-0.5451966558 0,0,-0.7342680783,-4.3596107564,-1.5656222709 C,0,0.1629929893,-2.0377304475,1.6623858139 H,0,0.4067997525,-1.4006451435,2.4998548198 C,0,-0.4168588621,-3.3067636675,1.856413328 H,0,-0.6194812245,-3.6382934494,2.8689421821 C,0,-0.7272648446,-4.1229728109,0.8092553341 H,0,-1.1711672021,-5.0973249664,0.9616916208 $\mathrm{N}, 0,0.4336813881,-0.3389043999,-2.5233829671$ C,0,-0.0651271749,0.0661501544,-3.6833067913 O,0,-0.1479535909,-0.8350011088,-4.6762582101 H,0,0.1985705694,-1.672769602,-4.3320826377
 L-b1	P,0,-0.0526533425,1.0783537384,0.1239024189 C,0,-0.6736835321,0.1518224828,1.5982081913 C,0,-1.0171110594,0.2966272479,-1.2488086128 C,0,1.5934330828,0.2988332926,-0.1464473427 C,0,-1.7837955959,-0.9774034297,3.8343819009 C,0,-2.2707959819,-0.6596510576,-3.4882229004 C,0,4.1417868642,-0.8048546486,-0.4309329068 C,0,0.0778616514,-0.7486472499,2.3371909679 C,0,-2.0856728885,-0.5721068394,-1.09613964 C,0,1.7624265474,-0.9441861867,-0.7590218028 $\mathrm{N}, 0,-1.9259622241,0.5000403837,1.9486151857$ $\mathrm{N}, 0,-0.581475613,0.6960144101,-2.4565763859$ C,0,2.7181909667,0.9825842589,0.3143965152 C,0,-2.4557234531,-0.0619351589,3.023420666 C,0,-1.1895135286,0.2210878279,-3.5314617308 C,0,3.9848182586,0.4309646581,0.1792715818 C,0,-0.4983114792,-1.3141031431,3.4720663477 C,0,-2.7135715716,-1.05016466,-2.2436165746 C,0,3.0287006046,-1.4899478022,-0.9018194951 H,0,1.0837543521,-1.0092852142,2.0382995168 H,0,-2.4202558901,-0.8751186933,-0.1145104035 H,0,0.8990878449,-1.4913510439,-1.1216815951 0,0,-3.7155606845,0.2856962299,3.3464780999 0,0,-0.7305750401,0.6241216038,-4.7312500653 H,0,4.8495486021,0.9718867253,0.5440855761 H,0,0.0636599371,-2.020562245,4.0708712076 H,0,-3.5483713034,-1.7353178457,-2.1585913318 H,0,3.1473603102,-2.4551886429,-1.379376759 H,0,-2.2668428379,-1.3925751884,4.7079694347 H,0,-2.7296612947,-1.0096987076,-4.4024287973 H,0,5.1302214148,-1.2333877176,-0.543761219 H,0,-3.9992049809,0.9307729328,2.6800449863 H,0,0.0095677688,1.2244529784,-4.5511138303 H,0,2.599919396,1.9539418041,0.7822759963
 L-b2	P,0,0.2916389029,1.3732199309,-0.1270773748 C,0,-1.3835209612,0.8684323248,-0.7243592888 C,0,0.3257550058,0.6438815808,1.5632609724 C,0,1.3883416687,0.1812599349,-1.0226694276 C,0,-3.8455888736,0.3575700212,-1.8130347345 C,0,0.2792941718,-0.348548876,4.1721092302 C,0,3.2672598173,-1.4397005894,-2.1816881725 N,0,-1.6177343174,1.2298962858,-1.9997926723 C,0,0.5599800584,-0.7100381316,1.8101286465 $\mathrm{N}, 0,2.6587613214,0.2463252537,-0.5870179108$ C,0,-2.34944507,0.2583305587,0.0608337564

	C,0,0.0752439013,1.4929030646,2.6409341068 C,0,0.9979390973,-0.6679163008,-2.045565488 C,0,-3.596766407,0.005647247,-0.5048502808 C,0,0.0452698348,0.9984895595,3.937677928 C,0,1.9640517155,-1.4862433269,-2.6256231016 C,0,-2.8065779223,0.9661696509,-2.518222568 C,0,0.5390265607,-1.2010364064,3.1063456647 C,0,3.5561086042,-0.5473170956,-1.1487503087 H,0,-2.1391913317,-0.0186955801,1.0846199879 H,0,-0.0974518785,2.5486435501,2.4619842732 H,0,-0.0285286358,-0.6990169999,-2.3813551162 H,0,-4.3727686688,-0.4691838325,0.0832139541 H,0,-0.1530788628,1.6688008653,4.7651953298 H,0,1.690056873,-2.1655401226,-3.4237693676 H,0,-4.7999366147,0.180057166,-2.2890252458 H,0,0.2635296441,-0.7346130429,5.1840774197 H,0,4.0456211632,-2.0598064914,-2.6041635396 H,0,0.7227370723,-2.253639714,3.2855318 0,0,4.8198566441,-0.4751765096,-0.6901769034 0,0,-3.0147145977,1.3188970655,-3.800667954 H,0,4.8157449979,0.1926317003,0.0131533829 H,0,-2.1919434849,1.7316228749,-4.1063086409 H,0,0.7544880715,-1.3856370152,0.9842969432
 L-b3	P,0,1.3092847636,-0.1826531302,0.0625773566 C,0,0.5424554037,0.4946728536,-1.475171298 C,0,0.7434635665,1.0060993397,1.3501500431 C,0,0.1727420497,-1.596757487,0.4100366706 C,0,-0.149612099,1.6921996865,-1.5403964447 H,0,-0.3299842402,2.2803865222,-0.6513612314 C,0,-0.6121837338,2.1151215024,-2.7848346951 H,0,-1.1565071468,3.0473535868,-2.8728191103 C,0,-0.3796444402,1.3476502268,-3.9039106753 H,0,-0.7204031295,1.6407085946,-4.8871988387 C,0,1.6531217761,1.9751093373,1.7745017305 H,0,2.6563049916,1.9866609821,1.3624435039 C,0,-0.5399551611,0.99258619,1.899408058 H,0,-1.2599149306,0.2476233228,1.5778370389 C,0,-0.9037807387,1.9331097298,2.8506611267 C,0,1.28259709,2.9226607652,2.7180017695 H,0,1.9960679581,3.6726598933,3.0367432229 C,0,0.0051688371,2.9007003994,3.258944838 H,0,-0.2819374536,3.6344636598,4.00214025 H,0,-1.9013662371,1.9124321092,3.2723596904 N,0,0.4391860791,-2.2662756785,1.56910544 H,0,1.2026596298,-1.9509818821,2.1570531722 C,0,-0.2567026754,-3.3816562352,2.064529796 0,0,0.0776851735,-3.8846651424,3.1336839855 C,0,-0.8520204555,-2.0368185832,-0.3787641125 H,0,-1.0884226568,-1.5285888106,-1.3008040918 C,0,-1.5962131209,-3.161374825,0.0388128998 H,0,-2.4107038954,-3.5088184995,-0.5871466509 C,0,-1.3226903975,-3.8104464645,1.2033436401 H,0,-1.8944596036,-4.6711770535,1.5223207812 N,0,0.7907314037,-0.25969033,-2.5602825134 C,0,0.3280342147,0.1570429261,-3.7282663382 0,0,0.5685156424,-0.6163410928,-4.802190963 H,0,1.0730658366,-1.3804531131,-4.4822761509

L6D

P,0,5.2341276093,-0.1249499177,0.2838921654
P,0,-5.2341276093,0.1249499177,-0.2838921654
C,0,3.9284133034,0.2923688031,-0.9579967827
C,0,-3.9284133034,-0.2923688031,0.9579967827
C,0,6.455011888,1.229368174,0.068518433
C,0,-6.455011888,-1.229368174,-0.068518433
C,0,4.4334002505,0.3933897075,1.8677024369
C,0,-4.4334002505,-0.3933897075,-1.8677024369
C,0,4.1986963568,1.0178426237,-2.1070641666
C,0,-4.1986963568,-1.0178426237,2.1070641666
H,0,5.1677871486,1.4694036248,-2.2681683336
Н, 0,-5.1677871486,-1.4694036248,2.2681683336
C,0,3.1769313485,1.1469879912,-3.0433025531
C,0,-3.1769313485,-1.1469879912,3.0433025531
H,0,3.3447756351,1.7090661521,-3.9543685461
Н, 0,-3.3447756351,-1.7090661521,3.9543685461
C,0,1.9537648019,0.5571482792,-2.8178294771
C,0,-1.9537648019,-0.5571482792,2.8178294771
H,0,1.1428995065,0.6299942286,-3.5302366418 H,0,-1.1428995065,-0.6299942286,3.5302366418 C,0,7.7648996694,0.8856288637,-0.2593693865 C,0,-7.7648996694,-0.8856288637,0.2593693865 H,0,8.0347786425,-0.1590925405,-0.3646227682 H,0,-8.0347786425,0.1590925405,0.3646227682 C,0,6.1168624966,2.5785731347,0.2040421771 C,0,-6.1168624966,-2.5785731347,-0.2040421771 H,0,5.0998460768,2.8573181871,0.4570107199 H,0,-5.0998460768,-2.8573181871,-0.4570107199 C,0,7.0745840777,3.560420794,0.0147079424 C,0,-7.0745840777,-3.560420794,-0.0147079424 C, $0,8.7237555873,1.872543235,-0.4501498278$ C,0,-8.7237555873,-1.872543235,0.4501498278 H,0,9.7394771565,1.5951460641,-0.7038248251 H,0,-9.7394771565,-1.5951460641,0.7038248251 C,0,8.37944599,3.2080694606,-0.3124381296 C,0,-8.37944599,-3.2080694606,0.3124381296 H,0,9.1266983094,3.9784477447,-0.4589492151 Н, 0,-9.1266983094,-3.9784477447,0.4589492151 H,0,6.804290926,4.6039453971,0.1212842213 H,0,-6.804290926,-4.6039453971,-0.1212842213 N,0,3.0986795876,0.2009527404,2.0299875766 N,0,-3.0986795876,-0.2009527404,-2.0299875766 H,0,2.5762738826,-0.1265337197,1.2074677711 H,0,-2.5762738826,0.1265337197,-1.2074677711 C, $0,2.3876765772,0.4512873956,3.1969409713$ C,0,-2.3876765772,-0.4512873956,-3.1969409713 0,0,1.1530517775,0.2831727162,3.2215899671 0,0,-1.1530517775,-0.2831727162,-3.2215899671 C,0,5.1755317727,0.8376099712,2.9325646631
C,0,-5.1755317727,-0.8376099712,-2.9325646631 H,0,6.2390868014,0.9941072071,2.8234305479 H,0,-6.2390868014,-0.9941072071,-2.8234305479 C,0,4.5259352227,1.0821910056,4.1524251657 C,0,-4.5259352227,-1.0821910056,-4.1524251657 H,0,5.1079439061,1.4316184301,4.9975894617 H,0,-5.1079439061,-1.4316184301,-4.9975894617 C,0,3.1803644944,0.8933665638,4.2936295091

	C,0,-3.1803644944,-0.8933665638,-4.2936295091
	H,0,2.6717404698,1.0841888648,5.2281719791
	H,0,-2.6717404698,-1.0841888648,-5.2281719791
	N,0,2.7436463328,-0.2938582898,-0.7214819065
	N,0,-2.7436463328,0.2938582898,0.7214819065
	C,0,1.7743179246,-0.165141063,-1.6287190146
	C,0,-1.7743179246,0.165141063,1.6287190146
	O,0,0.6413313026,-0.7901671153,-1.332908711
	$0,0,-0.6413313026,0.7901671153,1.332908711$
	H,0,-0.0498744686,-0.5791688069,-2.0148760652
	H,0,0.0498744686,0.5791688069,2.0148760652

Supplementary Table 17. M06L/TZVP optimized Cartesian Coordinates in toluene.

	M06L-SCRF/TZVP in toluene
	P,0,-1.4915631564,-0.0020982304,-0.0418852146
	C,0,-0.6649908197,-1.2598850233,1.0376439834
	C,0,-0.7358317399,1.5578140072,0.5723418907
	C, 0,-0.5560934355,-0.282687855,-1.6137052143
	C,0,0.357795041,-3.3276989536,2.5974747251
	C,0,0.291257497,4.017693432,1.3888742191
	C, $0,0.8677432122,-0.7175028357,-3.9653969159$
	N,0,-0.1261058422,-2.3731968091,0.477129876
L-a	C,0,0.5498085947,1.6429583725,1.1150633453
	N,0,0.5542203423,0.4410075023,-1.9130961713
	C,0,-0.7109301787,-1.1630179235,2.401169371
	C,0,-1.4980423243,2.7202081629,0.4474468849
	C,0,-0.9793098078,-1.2402462248,-2.4937826969
	C,0,-0.1782860779,-2.216545839,3.1730442213
	C,0,-0.9852635421,3.9434035637,0.8523819181
	C,0,-0.2332134403,-1.4590456436,-3.6753117037
	C,0,0.4140348518,-3.4784897892,1.1705448141
	C,0,1.0575689495,2.8675511414,1.5200448805
	C,0,1.3342931838,0.3192416731,-3.0822176771
	H,0,-1.1430168793,-0.2897441451,2.8684852024
	H,0,-2.4991906974,2.6630198934,0.0354037728
	H,0,-1.8786533105,-1.8033817249,-2.2856950397
	H,0,-0.2038319655,-2.1355046511,4.2539772085
	H,0,-1.5863168763,4.8384593914,0.7525179231
	H,0,-0.5583437855,-2.229032778,-4.3653419995
	H,0,0.7620703282,-4.136867775,3.1893006047
	H,0,0.6904141144,4.9724426574,1.7077360342
	H,0,1.4347612274,-0.8725820913,-4.8726544049
	H,0,2.0553971015,2.9230522928,1.9368450003
	0,0,2.2968444832,1.0539727948,-3.2480490538
	0,0,0.8688227009,-4.4223816252,0.5382908646
	H,0,1.151137764,0.7476113127,1.2272340353
	H,0,0.8640261041,1.1602694065,-1.2685296603

	H,0,-0.0786880167,-2.4440235861,-0.5346120235
 L-a1	P,0,1.0560289831,0.0153859884,0.0977415175 C,0,0.1375915365,0.7610229419,1.5112006469 C,0,0.2627851137,-1.6361699008,-0.0426641411 C,0,0.2523159666,0.9029688864,-1.3094761537 C,0,-0.9804230431,2.071840886,3.6999456292 C, $0,-0.8370662712,-4.1907817689,-0.1693594863$ C,0,-0.7097258788,2.0972902333,-3.6359809401 C,0,-0.8180064076,0.1333206845,2.2558072132 C,0,-0.9851896281,-1.836459862,-0.6341890073 C,0,-0.7062749499,1.8712419289,-1.2233455459 $\mathrm{N}, 0,0.529464993,2.0189880075,1.8690284395$ C,0,0.9569930247,-2.7292318601,0.4759874983 $\mathrm{N}, 0,0.7193937547,0.5495698604,-2.5418369992$ C,0,0.024559196,2.7736340091,2.9464815271 C,0,0.4042818264,-3.9998886288,0.4195468975 C,0,0.2953381462,1.0777563313,-3.7775359719 C,0,-1.3719288431,0.8144549582,3.3640253055 C,0,-1.5289768571,-3.1094937967,-0.6981532185 C,0,-1.1778513767,2.468270466,-2.4152410292 H,0,-1.1411824208,-0.8632633615,1.9962039469 H,0,-1.5336284477,-0.9938579694,-1.0407234126 H,0,-1.1052345729,2.1638804829,-0.2637258083 H,0,1.2537194381,2.4861273627,1.3364005905 H,0,1.9331521135,-2.5821152798,0.9244113575 H,0,1.4376316494,-0.1612539517,-2.6169731181 O,0,0.4541066848,3.8998628848,3.1541756331 H,0,0.9484281968,-4.8422195989,0.8280979178 0,0,0.7860073894,0.6608604785,-4.8173857513 H,0,-2.1306262366,0.3155421972,3.9563885884 H,0,-2.4967983172,-3.2574464162,-1.1610198222 H,0,-1.9378173558,3.2383830043,-2.3456992532 H,0,-1.4016127677,2.5918802258,4.54904419 H,0,-1.2643838391,-5.1844705113,-0.2217359049 H,0,-1.0706212995,2.5535794881,-4.5471724349
 L-b	P,0,1.3564435174,-0.0737787173,0.0131920341 C,0,0.4995351646,0.5446572163,-1.509002831 C,0,0.7098127429,1.0495114295,1.3137929405 C,0,0.4178897318,-1.6225866945,0.3847284412 C,0,0.1285455022,1.8721994652,-1.6606987614 H,0,0.2231039807,2.5700624952,-0.8403402271 C,0,-0.3722129249,2.2792336748,-2.8932024265 H,0,-0.6701943624,3.3098755332,-3.0419169991 C,0,-0.4940296494,1.3746701825,-3.9248238008 H,0,-0.8784040956,1.6500157304,-4.8965214619 C,0,1.6307716244,1.7520799358,2.088228946 H,0,2.6916716088,1.6167297314,1.9110298434 C,0,-0.6559021128,1.2272150071,1.551169768 H,0,-1.3815399648,0.6835987696,0.9566877642 C,0,-1.0852838398,2.092399955,2.5429248026 C,0,1.1977919058,2.6191239571,3.0829417382 H,0,1.9219140312,3.1589768968,3.6803443784 C,0,-0.1584791429,2.7890712719,3.3099835206 H,0,-0.4977134252,3.4638009874,4.0863578555 H,0,-2.145570312,2.2240132128,2.7205480413 $\mathrm{N}, 0,0.130053532,-2.4546726522,-0.6477404352$ H,0,0.2784998452,-2.0964779005,-1.5915607666

	$\begin{aligned} & \hline \text { C,0,-0.454510738,-3.7293656914,-0.5500750088 } \\ & \text { O,O,-0.6938865788,-4.3645003608,-1.5723584523 } \\ & \text { C,0,0.1579702797,-2.0372990581,1.6639716837 } \\ & \text { H,0,0.3868452677,-1.396997252,2.5030389247 } \\ & \text { C,0,-0.4121633263,--3.3128798671,1.8523484791 } \\ & \text { H,0,-0.6208246602,--3.6455282112,2.8633374861 } \\ & \text { C,0,-0.7054853616,-4.1330695388,0.8046531642 } \\ & \text { H,0,-1.1418222811,-5.1111655994,0.952592596 } \\ & \text { N,0,0.4014620837,-0.3435158572,-2.5148138537 } \\ & \text { C,0,-0.0964407684,0.0619097587,-3.6748113069 } \\ & \text { O,0,-0.213843523,-0.8450599833,-4.6570509342 } \\ & \text { H,0,0.100831649,-1.6915807273,-4.3064001427 HF=-1219.0325556 } \\ & \text { ZPE }=0.258893 \\ & \text { NImag }=0 \\ & \text { Htot }=-1218.755036 \\ & \text { Gtot }=-1218.821567 \end{aligned}$
 L-b1	P,0,-0.0700403309,1.0673043332,0.1351251176 С,0,-0.6767283612,0.1216282542,1.60418471 C,0,-1.0323662599,0.3010303049,-1.2489427307 C,0,1.580429711,0.300553723,-0.1447989668 C,0,-1.750909829,-1.0161762589,3.8561516629 C,0,-2.2868403345,-0.6166835885,-3.5051301227 C,0,4.1376777702,-0.7785287632,-0.4443152653 C,0,0.1050334859,-0.740934455,2.3591264092 C,0,-2.1827229236,-0.4600103543,-1.1109327401 C,0,1.7560637693,-0.9542009862,-0.730681366 N,0,-1.9413269515,0.425935441,1.9480982272 N,0,-0.5201926769,0.6156095065,-2.4503046497 C,0,2.7037078276,1.0073887021,0.2817733928 C,0,-2.4525288522,-0.138279652,3.0300713906 C,0,-1.1296283859,0.1617387071,-3.5324345975 C,0,3.9749878648,0.4686692111,0.1390428563 C,0,-0.4532312239,-1.3109501093,3.4997005903 C,0,-2.8077696548,-0.9206156823,-2.2662873708 C,0,3.0259007939,-1.4877528803,-0.8810477258 H,0,1.1204520818,-0.9682043629,2.0657659016 H,0,-2.5813706333,-0.6863031722,-0.1329211383 H,0,0.893385831,-1.5179267851,-1.0679490062 0,0,-3.7254649307,0.1697638524,3.3422656609 0,0,-0.5897856357,0.48235079,-4.723379993 H,0,4.838658469,1.0285233993,0.4765913563 H,0,0.1330228237,-1.9880389472,4.1091958005 H,0,-3.7051396637,-1.523138338,-2.19218775 H,0,3.1492068722,-2.462189552,-1.338226098 H,0,-2.2216230244,-1.434699934,4.734601081 H,0,-2.7410063038,-0.9555798026,-4.4256376463 H,0,5.1293774983,-1.1976086358,-0.5633190383 H,0,-4.0191588565,0.8016019307,2.6688212557 H,0,0.1919142808,1.0191500676,-4.5237473854 H,0,2.5796110529,1.9882891368,0.7274453779
	P,0,0.2777807398,1.3648301395,-0.1440449914 C,0,-1.397814484,0.8410433621,-0.7258843967 C,0,0.3246902411,0.6452546826,1.5501590635 C,0,1.3897545185,0.1845682724,-1.0381302902 C,0,-3.8775436767,0.3284841243,-1.7785223521 C,0,0.2996117932,-0.327369062,4.166840487 C,0,3.2957025605,-1.404262133,-2.1997093851

L-b2	N,0,-1.6382323199,1.1579351238,-2.0111348969 C,0,0.5299726492,-0.7119636064,1.8037975219 $\mathrm{N}, 0,2.6297848862,0.1746089927,-0.5216251492$ C,0,-2.3683555045,0.2734644464,0.0871388963 C,0,0.1136006693,1.5065869816,2.6257434205 C,0,1.0441625381,-0.5703055233,-2.1482122875 C,0,-3.6224767289,0.0190479859,-0.4605282431 C,0,0.0945734736,1.0226350949,3.9265783921 C,0,2.0227750027,-1.3739911241,-2.7262191525 C,0,-2.8346272535,0.8951497047,-2.511049617 C,0,0.519737183,-1.1932129503,3.1030543157 C,0,3.5400582,-0.6010039419,-1.085755713 H,0,-2.153958957,0.030487734,1.1185376384 H,0,-0.0350780562,2.5648433747,2.4408723819 H,0,0.0430862588,-0.5326245728,-2.5520209968 H,0,-4.4004524675,-0.4232612912,0.1499991739 H,0,-0.0722516002,1.7032900603,4.7525207643 Н,0,1.7828533921,-1.9808306671,-3.5910778852 H,0,-4.8375328023,0.1498410613,-2.2421104118 H,0,0.2924478605,-0.7059453533,5.1816738984 H,0,4.0832598404,-2.0152083056,-2.6179793291 H,0,0.6812845134,-2.248584927,3.2869991494 0,0,4.7717460728,-0.6006675912,-0.5421401375 0,0,-3.0435499071,1.2061607312,-3.8042416388 H,0,4.7308117667,0.0141998718,0.2057392791 H,0,-2.2177890673,1.6036575723,-4.1190716537 H,0,0.695426165,-1.3961896671,0.9790494451
 L-b3	P,0,1.2981789121,-0.1864399027,0.0372380345 C,0,0.5179261491,0.5035399541,-1.4889631406 C,0,0.7431061987,0.996974783,1.3358973563 C,0,0.1701123851,-1.6032582399,0.3999789938 C,0,-0.1375115471,1.7229562471,-1.5457843007 H,0,-0.2903925075,2.3143109672,-0.6538836669 C,0,-0.5980121606,2.1624492403,-2.7846168053 H,0,-1.1132335187,3.111790529,-2.8651251417 C,0,-0.3992635924,1.3919937409,-3.908303148 H,0,-0.7378359332,1.6972883172,-4.8883833879 C,0,1.6690616536,1.9368663121,1.788995656 H,0,2.6777308718,1.9295712513,1.3906051249 C,0,-0.5476739143,1.0059126881,1.8687810505 H,0,-1.2792728739,0.2824320431,1.5253475595 C,0,-0.9013350199,1.9379716076,2.831277944 C,0,1.3091325478,2.8766839572,2.7440081587 H,0,2.0359326741,3.6031300382,3.0859444404 C,0,0.0250287277,2.8760514158,3.2677534259 H,0,-0.2539944481,3.6026475821,4.0208360319 H,0,-1.9040445009,1.9334475611,3.2407988524 $\mathrm{N}, 0,0.3776488395,-2.193337622,1.6131544938$ H,0,1.0797848136,-1.812561045,2.2366328703 C,0,-0.308729252,-3.3092323611,2.1302029137 0,0,-0.030648283,-3.7305948856,3.2456978597 C, $0,-0.779164552,-2.1307340202,-0.4276847279$ H,O,-0.9589863336,-1.6919124227,-1.3964229218 C,0,-1.5093219923,-3.2587070244,0.007660933 H,0,-2.2641457573,-3.6749815241,-0.6504383399 C, $,--1.2957178611,-3.8289078895,1.2239010113$ H, $,-1.8558257485,-4.6919551723,1.5559219456$

	$\begin{aligned} & \hline N, 0,0.7300475686,-0.2544456643,-2.5779299254 \\ & C, 0,0.2710757837,0.1792802762,-3.7407711531 \\ & 0,0,0.4780209602,-0.6010829764,-4.8160565885 \\ & H, 0,0.9669040112,-1.3746044615,-4.4970395085 \\ & \hline \end{aligned}$
 L6D	P,0,5.224376534,-0.1482336539,0.2776108794 P,0,-5.224376534,0.1482336539,-0.2776108794 C,0,3.9175720012,0.2780387115,-0.9605469744 C,0,-3.9175720012,-0.2780387115,0.9605469744 C,0,6.4323310111,1.2228181959,0.0670645532 C,0,-6.4323310111,-1.2228181959,-0.0670645532 C,0,4.4220382348,0.3699959836,1.8614674037 C,0,-4.4220382348,-0.3699959836,-1.8614674037 C,0,4.1986092007,0.9679827406,-2.1287323411 C,0,-4.1986092007,-0.9679827406,2.1287323411 H,0,5.1761331043,1.3960440727,-2.3027567858 H,0,-5.1761331043,-1.3960440727,2.3027567858 C,0,3.1731132338,1.0934739074,-3.062427178 C,0,-3.1731132338,-1.0934739074,3.062427178 H,0,3.3472605192,1.6283354043,-3.9886967078 H,0,-3.3472605192,-1.6283354043,3.9886967078 C,0,1.939934051,0.5358357984,-2.8169694356 C,0,-1.939934051,-0.5358357984,2.8169694356 H,0,1.1232249079,0.6048018909,-3.5229354855 H,0,-1.1232249079,-0.6048018909,3.5229354855 C,0,7.7515515001,0.8960883615,-0.2387948746 C,0,-7.7515515001,-0.8960883615,0.2387948746 H,0,8.0349328751,-0.1464063225,-0.3287366213 H,0,-8.0349328751,0.1464063225,0.3287366213 C,0,6.0764137883,2.5690764933,0.1819709096 C,0,-6.0764137883,-2.5690764933,-0.1819709096 H,0,5.0519979044,2.8350366436,0.4171737107 H,0,-5.0519979044,-2.8350366436,-0.4171737107 C,0,7.0225529202,3.5619380141,-0.0045795665 C,0,-7.0225529202,-3.5619380141,0.0045795665 C,0,8.7001050821,1.8930379046,-0.4273121416 C,0,-8.7001050821,-1.8930379046,0.4273121416 H,0,9.7226646357,1.6270620316,-0.6643460852 H,0,-9.7226646357,-1.6270620316,0.6643460852 C, $0,8.3362377627,3.224627636,-0.3095311217$ C,0,-8.3362377627,-3.224627636,0.3095311217 H,0,9.0746768875,4.003392158,-0.4547955792 H,0,-9.0746768875,-4.003392158,0.4547955792 H,0,6.7366587052,4.602581511,0.0863753923 H,0,-6.7366587052,-4.602581511,-0.0863753923 $\mathrm{N}, 0,3.0917885402,0.1530947908,2.0269177542$ N,0,-3.0917885402,-0.1530947908,-2.0269177542 H,0,2.5724484392,-0.169169887,1.1969658828 H,0,-2.5724484392,0.169169887,-1.1969658828 C,0,2.3755083712,0.3994570933,3.1950623544 C,0,-2.3755083712,-0.3994570933,-3.1950623544 0,0,1.1463615144,0.2264293116,3.2179257313 0,0,-1.1463615144,-0.2264293116,-3.2179257313 C,0,5.1589263833,0.8293845538,2.9239458777 C,0,-5.1589263833,-0.8293845538,-2.9239458777 H,0,6.2181676873,1.007830485,2.8090404531 H,0,-6.2181676873,-1.007830485,-2.8090404531 C,0,4.5080444625,1.0608732138,4.146660166

[${ }^{1}$] Zhao, Y.; Truhlar, D. G. J. Chem. Phys., 125 (2006), 194101: 1-18
[${ }^{2}$] Schäfer, A., Huber, C., Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829-5835
[${ }^{3}$] Marenich, A. V., Cramer, C. J., Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 113, 6378-6396, doi:10.1021/jp810292n (2009)
[4] Frisch, M. J. et al. Gaussian 16, Revision A.03. Gaussian Inc. Gaussian, Inc., Wallingford CT, 2016
b) IR data

Supplementary Figure 36. Computed IR spectrum for L6-a

IR Spectrum

Supplementary Figure 37. Computed IR spectrum for L6-b

Supplementary Figure 38. Computed IR spectrum of the M06L/TZVP optimized L6D dimer structure via N-H and O-H hydrogen bonding

We investigated the structure of the L6-L6 dimer (L6D). For this purpose, IR spectroscopy is a powerful tool as it allows for the determination of hydrogen-bonding moieties. In general, upon hydrogen bonding $\mathrm{N}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$ bonds will display a "red shift" or "bond lengthening", ${ }^{1}$ and a broadening of their signals. ${ }^{2}$ Indeed, this was proven for the 6-DPPON dimer by Breit et al. ${ }^{3}$ In agreement with those results, the ATR IR spectrum of $\mathbf{L 6}$ at room temperature showed broad peaks for the stretching of the bond of the donating group O-H ($v_{\mathrm{O}-\mathrm{H}}=2765 \mathrm{~cm}^{-1}$) and of the accepting C=O group ($\mathrm{v}_{\mathrm{C}=\mathrm{O}}=1641 \mathrm{~cm}^{-1}$) as well as the stretching of the accepting group $\mathrm{C}=\mathrm{N}$ $\left(v_{N=H}=1582 \mathrm{~cm}^{-1}\right)^{4-6}$ Notably, no $v_{N-н}$ peak is observed, which was rationalized by DFT calculations for 6-DPPON. ${ }^{3}$ To confirm the
structural hypothesis of the L6-L6 dimer, we performed similar DFT studies. Surprisingly, calculations on the free ligand showed an equilibrium of two tautomers L6-a and L6-b, the latter being intramolecularly hydrogen-bonded via its nitrogen atoms ($\mathrm{N} \cdots \mathrm{H}-\mathrm{N}$). Interestingly, both the tautomerization and the dimerization energy are very dependent on the solvent choice (Supplementary Figure $39 \mathrm{c}-\mathrm{d}$). While a transition from L6-bto L6-a is energetically disfavored in solution (endergonic by 2.1 and $0.62 \mathrm{kcal} / \mathrm{mol}$ in THF and toluene, respectively), the formation of the dimer L6Doccurs spontaneously in toluene according to calculations (exergonic by 1.88 $\mathrm{kcal} / \mathrm{mol}$ in toluene). In general, the calculations agree with the observed yields, namely a more energetically favored formation of the catalytically active ligand dimer in toluene than THF leads to better yields and regioselectivities. (Supplementary Table 9, entries 1, 3). Furthermore, the IR vibrational profiles of L6-a, L6-b and L6D were calculated using M06L/TZVP and compared to their experimental counterparts. As usual, DFT obtained vibrations were scaled by a factor of $0,9500 .{ }^{7,8}$ By comparison, in solid-state $\mathbf{L 6}$ exists mainly as the $\mathbf{L 6 D}$ dimer. Calculated $\mathrm{v}_{\mathrm{C}=0}$ fit very well to the experimental data, and the lowering of its wavelength provides a strong proof for $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{X}$ hydrogen bonds. Similar lowering of $\mathrm{v}_{\mathrm{C}=\mathrm{N}}$ to values close to the experimental ones, confirmed the presence of $\mathrm{C}=\mathrm{N} \cdots \mathrm{H}-\mathrm{X}$ hydrogen bonds, too. Moreover, the absence of a non-hydrogen-bonding $\mathrm{C}=\mathrm{O}$ stretching vibration at $\sim_{1700 \mathrm{~cm}^{-1} \text { and of }}$ "free" N-H stretching vibrations at $\sim 3500 \mathrm{~cm}^{-1}$ disproved the existence of a hypothetical $\mathbf{L 6 D 2}$ species. ${ }^{3}$ Finally, we could explain the virtual lack of a N-H stretching vibration in the investigated samples as calculations for L6D situated it at the same wavelength as the broad O-H stretching vibration, most likely resulting in a coalescence of the two peaks.
It is important to note that the $[\mathrm{Rh}(\mathrm{L6D})(\mathrm{CO}) \mathrm{CI}]$ ATR-IR spectrum showed similar vibrations as the free dimer, except for a strong shift of the v_{co} band all the way to $1992 \mathrm{~cm}^{-1}$ testifying for stronger π-accepting properties than Xantphos ($1978 \mathrm{~cm}^{-1}$) and $\mathrm{PPh}_{3}(1968 \mathrm{~cm}$ ${ }^{1}$), but weaker than 6-DPPON $\left(2003 \mathrm{~cm}^{-1}\right) .{ }^{9}$

Supplementary Figure 39. Computed IR spectrum of the M06L/TZVP optimized L6D dimer structure via N-H and O-H hydrogen bonding a) Calculated 3D structures for L6-a. b) Calculated 3D structure for L6-b. c) Calculated $\Delta \mathrm{G}$ and equilibrium between L6-a and L-6b in gas-phase, THF and toluene. d) Calculated dimer L6D structure and dimerization energy in gas-phase, THF and toluene.

	Exp.	L6-a $^{\text {b }}$		L6-b $^{\text {b }}$
L6D $^{\text {b }}$				
N-H bending	$1582 / 1540^{\text {a }}$			
C=O stretching	$1641^{\text {a }}$	$1706 / 1700^{\text {a }}$	$\mathbf{1 6 9 0}^{\text {a }}$	$\mathbf{1 6 3 9}^{\text {a }}$
C=N stretching	$1250 / 1315^{\text {a }}$	1500^{a}	1520^{a}	1305^{a}
N-H stretching	$2600-$	$3485 / 3499^{a}$	3250^{a}	3075^{a}
O-H stretching	3150^{a}		3613^{a}	3095^{a}

Supplementary Table 18. Calculated and experimental vibrations. ${ }^{a}$ Vibrations are given in cm^{-1}. ${ }^{\mathrm{b}}$ DFT calculations were ran with M06L/TZVP and scaled by a factor of 0,9500. ${ }^{7,8}$

Figure 40. Hypothetical structure of the L6D2 dimer.

Supplementary Figure 41. ATR IR spectrum of L6, at room temperature.

Supplementary Figure 42. ATR IR spectrum of the [Rh(L6D)(CO)CI]

1. J. Joseph and E. D. Jemmis, J Am Chem Soc, 2007, 129, 4620-4632.
2. A. A. Howard, G. S. Tschumper and N. I. Hammer, J Phys Chem A, 2010, 114, 6803-6810.
3. U. Gellrich, J. Huang, W. Seiche, M. Keller, M. Meuwly and B. Breit, J Am Chem Soc, 2011, 133, 964-975.
4. M. E. Benmalti, A. Krallafa, N. Rekik and M. Belhakem, Spectrochim Acta A, 2009, 74, 58-66.
5. H. I. Abdulla and M. F. El-Bermani, Spectrochim Acta A, 2001, 57, 2659-2671.
6. M. Chevrier, O. Bensaude, J. Guillerez and J. E. Dubois, Tetrahedron Lett, 1980, 21, 3359-3362.
7. J. L. B. S. Kanchanakungwankul, J. Zheng, I. M. Alecu, B. J. Lynch, Y. Zhao, and D. G. Truhlar, Database of Frequency Scale Factors for Electronic Model Chemistries,
https://comp.chem.umn.edu/freqscale/210722 Database of Freq Scale Factors v5.pdf, (accessed 17/08/2023, 2023).
8. K. K. Irikura, R. D. Johnson and R. N. Kacker, J Phys Chem A, 2005, 109, 8430-8437.
9. F. Bauer, N. Dierenbach and B. Breit, Asian J Org Chem, 2023.

SII: Addendum to the scope : unreacted olefins

Supplementary Table 18. Rh/L6-catalysed hydroformylation of diverse olefins. All shown yields are isolated yields. The regioselectivity is determined by NMR. Displayed in green are the results of the Rh/L6 system, in orange the ones obtained applying Rh/L1 (6-DPPON)

Conditions: olefin (6.0 mmol), [$\left.\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{acac}\right]\left(0.014 \mathrm{~mol} \%\right.$), monodentate ligand ($0.071 \mathrm{~mol} \%$), $\mathrm{CO}: \mathrm{H}_{2}$ ($10 \mathrm{bar}, 1: 1$), toluene (4.3 mL), $120^{\circ} \mathrm{C}, 4 \mathrm{~h} .{ }^{a} \mathrm{CO}: \mathrm{H}_{2}(30 \mathrm{bar}, 1: 1)^{\mathrm{b}}$ monodentate ligand ($\left.0.142 \mathrm{~mol} \%\right)^{\mathrm{c}}$ monodentate ligand (0.284 mol\%).

SI-J: NMR attribution and spectra of hydroformylation products

Nonanal (2a) and 2-methyloctanal (2b):
(2a) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{td}, \mathrm{J}=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{td}, \mathrm{J}=7.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.32-$ $1.21(\mathrm{~m}, 9 \mathrm{H}), 0.92-0.66(\mathrm{~m}, 3 \mathrm{H})$.

(2a) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 202.96,43.91,31.78,29.30,29.16,29.08,22.62,22.08,14.06$.

Tridecanal (5a) and 2-methyldodecanal (5b):

(5a) ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{td}, \mathrm{J}=7.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.19(\mathrm{~m}$, 18H), $0.86-0.78$ (m, 3H).

(5a) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.95,43.92,31.92,29.64,29.63,29.58,29.43,29.36,29.35,29.17,22.69,22.09$, 14.11.

3-phenylpropanal (7a) and 2-phenylpropanal (7b):
(7a) ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$) $\delta 9.85(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.02(\mathrm{~m}, 5 \mathrm{H}), 2.99(\mathrm{ddt}, \mathrm{J}=8.2,7.1,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-$ 2.67 (m, 2H).

(7a) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.60,140.36,129.11,128.63,128.35,127.56,126.33,45.30,28.14$.

4-phenylbutanal (9a) and 2-methyl-3-phenylpropanal (9b):

(9a) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.13(\mathrm{~m}, 5 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=8.2,6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.48 (td, J = 7.3, 1.6 Hz, 2H), 2.08-1.92 (m, 2H).

(9a) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 202.31, 141.23, 128.48, 126.12, 43.15, 35.02, 23.66.

3-(4-methoxyphenyl)propanal (11a) and 2-(4-methoxyphenyl)propanal (11b):
(11a) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.80(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.54(\mathrm{~m}, 4 \mathrm{H})$.

(11a) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.83,158.11,132.35,129.25,114.52,114.02,55.28,45.56,27.29$.

3-(cyclohex-3-en-1-yl)propanal (13a) and 2-(cyclohex-3-en-1-yl)propanal (13b):

(13a) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.21(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{ddd}, \mathrm{J}=8.0,7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.02$ $-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.17$ (dddd, J = 12.7, 10.2, 8.7, $7.4 \mathrm{~Hz}, 1 \mathrm{H})$.

(13a) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.84,127.06,126.04,41.56,33.10,31.55,28.61,28.56,25.06$.

Norbornane-2-carboxaldehyde (15):

(15) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.90-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.16(\mathrm{~m}, 3 \mathrm{H})$.

(15) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.42,54.60,40.91,38.14,36.19,34.06,30.21,29.06$.

3-(1,3-dioxolan-2-yl)propanal (17a) and 2-(1,3-dioxolan-2-yl)propanal (17b):

(17a) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, \mathrm{J}=8.1,3.8,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81-3.72$ (m, 2H), 2.47 (td, J = 7.1, 1.7 Hz, 2H), 1.98 (td, J = 7.1, 3.9 Hz, 2H).

(17a) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.70, 102.93, 65.05, 37.59, 26.26.

4-oxobutyl methacrylate (19a) and 2-methyl-3-oxopropyl methacrylate (19b):
(19a) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.73(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{dt}, \mathrm{J}$ $=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{p}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 3 \mathrm{H})$.

(19a) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.9,167.3,136.2,125.7,63.7,40.6,21.4,18.3$.

non-8-enal (21a) and 2-methyloct-7-enal (21b):
(21a) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{q}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.21(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{tt}, \mathrm{J}$ $=7.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.19(\mathrm{~m}, 4 \mathrm{H})$.

(21a) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.88,131.16,124.99,43.89,32.33,29.27,28.64,26.58,21.97$.

Decanedial (22):

(22) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76(\mathrm{td}, \mathrm{J}=1.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{td}, \mathrm{J}=7.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31$ ($\mathrm{s}, 5 \mathrm{H}$).

(22) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.83,43.85,29.10,29.03,21.99$.

undec-10-enal (24a) and 2-methyldec-9-enal (24b):
(24a) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.22(\mathrm{~m}, 2 \mathrm{H}), 2.35\left(\mathrm{tdd}, \mathrm{J}=7.4,1.9,1.0 \mathrm{~Hz}, 2^{\prime} 3 \mathrm{H}\right), 2.02-1.82(\mathrm{~m}$, 2H), $1.66-1.46(m, 3 H), 1.39-1.08(m, 10 H)$.

(24a) ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 202.96, 131.51, 124.68, 43.92, 32.54, 29.50, 29.22, 29.13, 28.92, 22.07, 17.93.

dodecanedial (25):

(25) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{td}, \mathrm{J}=7.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{dd}, \mathrm{J}=9.2,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30$ -1.17 (m, 9H).

(25) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.94, 43.90, 29.31, 29.13, 22.06 .

4-(4-hydroxy-3-methoxyphenyl)butanal (27a) and 3-(4-hydroxy-3-methoxyphenyl)-2-methylpropanal (27b):
(27a) ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.68(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.53(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.51$ (dd, J = 8.3, 6.9 Hz, 2H), 2.37 (td, J = 7.3, 1.6 Hz, 2H), 1.93-1.77 (m, 2H).

(27a) ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.52,146.49,143.92,133.15,121.04,114.29,110.99,55.90,43.13,34.71,23.93$.

[^0]: Supplementary Table 10. Ligand screening for the hydroformylation of 1-octene in optimized conditions

