Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Electrochemical Promoted thio-Michael Addition of *N*-Substituted Maleimides with Thiols in Aqueous Medium

Run Wu[#], Haojian Xu[#], Haiping Zhou, Pingbing Yu, Zhaoyue Wen and Wei Chen*

Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of

Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China

*Corresponding Author, email: chenweicstq@163.com

Contents

1. General methods	S1
2. General procedures	S1
3. Optimization of reaction conditions	S2
4. Mechanistic investigation	S7
5. Characterization data of products	S9
6. NMR spectra of products	S21

1. General methods

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purified. Reactions were monitored by thin layer chromatography (TLC). Yields refer to products isolated after purified by column chromatography. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AV 400 MHz spectrometer using CDCl₃ or DMSO- d_6 as the solvent with TMS as the internal standard. Chemical shifts are reported in parts per million. Multiplicity was indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (*J*) were reported in Hz. Electrolysis experiments were performed using MESTEK DC power supply. Cyclic voltammetry was obtained from CHI 660E (Shanghai Chenhua Instrument Factory, Shanghai, China).

2. General procedure

General procedure for the synthesis of 3

In an oven-dried undivided three-necked bottle (25.0 mL) equipped with a stir bar, *N*-benzylmaleimide **1** (0.3 mmol, 1.0 *eq*.), 4-fluorobenzenethiol **2** (0.6 mmol, 2.0 *eq*.), *n*-Bu₄NBF₄ (0.6 mmol, 2.0 *eq*.), MeOH (8.0 mL) and H₂O (2.0 mL) were combined and added. Two graphite rod (ϕ 5 mm) were used as anode and cathode respectively (the electrodes were immersed 1 cm in the reaction solution). The reaction mixture was stirred and electrolyzed at a constant current of 8.0 mA under room temperature for 2 h. After reaction completion, the solvents were removed in vacuum, the products **3** were obtained by silica gel column chromatography.

General procedure for the synthesis of 4 and 5

Sulfide **3aa** (0.3 mmol) was placed in a round-bottom flask, followed by t-BuOH (0.5 mL), 2,2,2-trifluoroacetophenone (5.2 mg, 0.03 mmol), and 30% aq H₂O₂ (0.06 mL, 0.45 mmol). The reaction mixture was stirred for 6 h. The crude residue was purified using flash column chromatography (40–60% EtOAc in PE) to afford the desired sulfoxide **4**. Sulfide **3aa** (0.3 mmol) was placed in a round-bottom flask, followed by t-

BuOH (0.5 mL), 2,2,2-trifluoroacetophenone (10.2 mg, 0.06 mmol), CH₃CN (31 uL, 2.0 eq.), K_2CO_3 (82.8 mg, 2.0 eq.) and 30% aq H₂O₂ (0.11 mL, 0.9 mmol). The reaction mixture was stirred for 6 h. The crude residue was purified using flash column chromatography (40–60% EtOAc in PE) to afford the desired sulfone **5**.

Procedure for gram scale synthesis of 3aa

In an oven-dried undivided three-necked bottle (50.0 mL) equipped with a stir bar, *N*-benzylmaleimide **1a** (5 mmol, 1.0 *eq.*), 4-fluorobenzenethiol **2a** (10 mmol, 2.0 *eq.*), *n*-Bu₄NBF₄ (5 mmol, 1.0 *eq.*), MeOH (16.0 mL) and H₂O (4.0 mL) were added. Two graphite rods (ϕ 10 mm) were used as anode and cathode, respectively (the electrodes were immersed 3 cm in the reaction solution). The reaction mixture was stirred and electrolyzed at a constant current of 24.0 mA under room temperature for 24 h. After reaction completion, the reaction mixture was diluted with water, and extracted with ethyl acetate. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude was purified by silica gel column (petroleum ether/ethyl acetate = 8:1) to obtain the product **3aa** (1.47g, 93%).

3. Optimization of reaction conditions

		- I	-
Bn N O	+ F SH	C(+) $I = 8 \text{ mA}$ <i>n</i> -Bu ₄ NBF ₄ (1.0 <i>eq.</i>) Solvent <i>r.t.</i> , air, 2 h undivided cell	Bn-N O
1a	2a		3aa
En	try	Solvent	Yield $(\%)^b$
1		MeCN	61
2	2	MeOH	91
3	3	THF	n.d.

Table S1 Optimization of solvents^a

4	H_2O	59
5	H ₂ O/Tween 20 (8:1)	62
6	H ₂ O/Tween 20 (10:1)	72
7	H ₂ O/Tween 20 (15:1)	65
8	H ₂ O/Tween 20 (20:1)	68
9	MeCN/H ₂ O (4:1, v/v)	80
10	EtOH/H ₂ O (2:1, v/v)	47
11	THF/H ₂ O (4:1, v/v)	75
12	DMSO/H ₂ O (4:1, v/v)	87
13	DMF/H ₂ O (4:1, v/v)	60
14	Diox/H ₂ O (4:1)	91
15	MeOH/H ₂ O (8:1, v/v)	92
16	MeOH/H ₂ O (4:1, v/v)	96
17	MeOH/H ₂ O (2:1, v/v)	91
18	MeOH/H ₂ O (1:1, v/v)	85
19	MeOH/H ₂ O (1:2, v/v)	90
20	MeOH/H ₂ O (1:4, v/v)	88
21	MeOH/H ₂ O (1:8, v/v)	86
22	MeOH/H ₂ O/Tween 20 $(3:6:1)$	82
23	MeOH/H ₂ O/Tween 20 (2:8:1)	86

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a** (0.6 mmol, 2.0 *eq.*), *n*-Bu₄NBF₄ (0.3 mmol, 1.0 *eq.*), solvent (10.0 mL), constant current (8.0 mA), under air, room temperature, 2 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

Table S2 Optimization of electrode materials^a

1	C(+) C(-)	96
2	Pt(+) Pt(-)	93
3	C(+) Pt(-)	88
4	Pt(+) ∥ C(-)	84
5	Pt(+) Ni(-)	38
6	C(+) Ni(-)	77

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a** (0.6 mmol, 1.0 *eq.*), *n*-Bu₄NBF₄ (0.3 mmol, 1.0 *eq.*), MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (8.0 mA), air, room temperature, 2 h, undivided cell. ^{*b*}Isolated yields.

Bn N N O N O + 1a	F 2a	C(+) I = 8 mA electrolyte MeOH/H ₂ O (4:1) r.t., air, 2 h undivided cell	Bn-N O 3aa
Entry		electrolyte	Yield $(\%)^b$
1		<i>n</i> -Bu ₄ NBF ₄	96
2		<i>n</i> -Bu ₄ NPF ₆	85
3		<i>n</i> -Bu ₄ NI	77
4		<i>n</i> -Bu ₄ NBr	87
5		<i>n</i> -Bu ₄ NF	65
6		NaI	84
7		KI	96
8		NH ₄ I	93
9		KBr	81
10		NaBr	86

Table S3 Optimization of electrolytes^a

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a** (0.6 mmol, 2.0 *eq.*), electrolyte, MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (8.0 mA), under air, room temperature, 2 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

Table S4 Optimization of the amount of *n*-Bu₄NBF₄^{*a*}

Bn N O +	F	$C(+) \blacksquare C(-)$ $I = 8 \text{ mA}$ $n-Bu_4 \text{NBF}_4$ $MeOH/H_2O (4:1)$ $r.t., air, 2 \text{ h}$ $undivided cell$	o S S
1a	2a		3aa
Entry	Amoun	t of n -Bu ₄ NBF ₄ (eq.)	Yield $(\%)^b$
1		1	96
2		2	85
3		3	61

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a** (0.3 mmol, 1.0 *eq.*), *n*-Bu₄NBF₄, MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (8.0 mA), air, room temperature, 2 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

Bn N N	O + SH	C(+) $I = 8 \text{ mA}$ <i>n</i> -Bu ₄ NBF ₄ (1.0 eq.) MeOH/H ₂ O (4:1) r.t., air, 2 h undivided cell	Bn-N O	F
1a	2a		3aa	
	Entry	ratio	Yield $(\%)^b$	
	1	1:2	96	
	2	1:3	89	
	3	1:1.5	92	
	4	1:1.2	64	
	5	1:1	62	

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a**, *n*-Bu₄NBF₄ (0.3 mmol, 1.0 *eq.*), MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (8.0 mA), under air, room temperature, 2 h, undivided cell.Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

Table S6 Optimization of current^a

Bn O N 1a	=0 +SH F2a	C(+) C(-) <i>n</i> -Bu ₄ NBF ₄ (1.0 <i>eq.</i>) MeOH/H ₂ O (4:1) r.t., air, 2 h undivided cell	Bn-N O 3aa
-	Entry	Current (mA)	Yield $(\%)^b$
-	1	8.0	96
	2	4.0	85
	3	6.0	87
	4	10.0	85
	5	12.0	86
	6	0	56

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a** (0.6 mmol, 2.0 *eq.*), *n*-Bu₄NBF₄ (0.3 mmol, 1.0 *eq.*), MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current electrolysis, air, room temperature, 2 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

	Table S7 Optimization of reaction time ^a				
Bn O N	FO + SH	C(+) $I = 8 \text{ mA}$ <i>n</i> -Bu ₄ NBF ₄ (1.0 eq.) MeOH/H ₂ O (4:1) r.t., air undivided cell	Bn-N O	F	
1a	2a		3aa		
	Entry	Time (h)	Yield $(\%)^b$		
_	1	1	84		
	2	2	96		
	3	3	79		
	4	4	83		
	5	5	68		
	6	6	75		

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a** (0.6 mmol, 2.0 *eq.*), *n*-Bu₄NBF₄ (0.3 mmol, 1.0 *eq.*), MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (8.0 mA), air, room temperature, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

^{*a*}Reaction conditions: **1a** (0.3 mmol, 1.0 *eq.*), **2a** (0.6 mmol, 2.0 *eq.*), *n*-Bu₄NBF₄ (0.3 mmol, 1.0 *eq.*), MeOH/H₂O (v/v = 4:1, 10.0 mL), constant current (8.0 mA), room temperature, 2 h, undivided cell. Anode: graphite rod, cathode: graphite rod. ^{*b*}Isolated yields.

4. Mechanistic investigation

Cyclic voltammetry experiments

Cyclic voltammetry was performed in a 25.0 mL three-electrode cell under air at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. 8.0 mL of methanol and 2.0 mL of water containing 0.1 M *n*-Bu₄NBF₄ were poured into the electrochemical cell in all experiments. The scan rate is 0.1 V/s, ranging from 0 V to 3.0 V. Background (nBu_4NBF_4 , 0.1 M in the mixed solvent); *N*-Benzylmaleimide (**1a**, 0.1 M in the mixed solvent); 4-Fluorobenzenethiol (**2a**, 0.1 M in the mixed solvent) and the mixture of **1a**, **2a** and *n*-Bu₄NBF₄ (0.1 M in the mixed solvent).

Figure S1 CV measurements. n-Bu₄NBF₄ was used as the electrolyte for the CV measurements.

In order to confirm whether the reaction undergoes a radical mechanism, commonly used radical scavengers such as 2,2,6,6-tetramethylpiperidinooxy (TEMPO), 1,1diphenylethylene (DPE) and butylated hydroxytoluene (BHT) was used respectively in radical capture and suppression experiments. Under the standard conditions, the radical scavenger (2.0 eq. to 2a) was added to the model reaction system at the beginning of the reaction. Additionally, after 2 h, a small amount of the reaction mixture added with TEMPO was used to measurement. The radical trapping product 7 can be observed by

Radical trapping experiment

Figure S2. Mass spectrometry (LCMS) data of possible intermediate (with TEMPO).

Control experiments

In order to investigate the possible mechanism of this electrochemical vulcanization, a series of controlled experiments were carried out.

5. Characterization data of the products

Figure S3. Structure of 3aa

1-benzyl-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (**3aa**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3aa** as a white solid (90.8 mg, 96% yield); m.p.: 74~76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.32 – 7.26 (m, 5H), 6.89 – 6.81 (m, 2H), 4.61 – 4.52 (d, 2H), 3.91 (dd, J = 9.3, 4.1 Hz, 1H), 3.14 (dd, J = 18.8, 9.3 Hz, 1H), 2.65 (dd, J = 18.8, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.23, 174.06, 163.68 (d, ¹ $J_{FC} = 250.8$ Hz), 137.40 (d, ³ $J_{FC} = 8.5$ Hz), 135.35, 129.07, 128.79, 128.22, 124.86 (d, ⁴ $J_{FC} = 3.6$ Hz), 116.66 (d, ² $J_{FC} = 21.9$ Hz), 44.21, 42.88, 35.83. ¹⁹F NMR (375 MHz, CDCl₃) δ -110.51. HRMS m/z (ESI) calcd. for C₁₇H₁₅FNO₂S ([M+H]⁺): 316.0808, Found: 316.0826.

Figure S4. Structure of 3ba

3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3ba). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded 3ba as a yellow solid (60.1 mg, 89% yield); m.p.: 90~92 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (br, 1H), 7.58 – 7.49 (m, 2H), 7.09 – 6.99 (m, 2H), 3.99 (dd, J = 9.2, 4.2 Hz, 1H), 3.17 (dd, J = 18.8, 9.2 Hz, 1H), 2.69 (dd, J = 18.8, 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 176.16, 174.97, 163.75 (d, ¹ $J_{FC} = 250.8$ Hz), 137.26 (d, ³ $J_{FC} = 8.6$ Hz), 125.44 (d, ⁴ $J_{FC} = 3.5$ Hz), 116.84 (d, ² $J_{FC} = 22.0$ Hz), 45.77, 37.08. HRMS m/z (ESI) calcd. for C₁₀H₉FNO₂S ([M+H]⁺): 226.0338, Found: 226.0345.

Figure S5. Structure of 3ca

3-((4-fluorophenyl)thio)-1-methylpyrrolidine-2,5-dione (**3ca**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ca** as a white solid (55.7 mg, 78% yield); m.p.: 88~90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.46 (m, 2H), 7.09 – 6.98 (m, 2H), 3.95 (dd, J = 9.1, 3.0 Hz, 1H), 3.14 (dd, J = 18.7, 9.1 Hz, 1H), 2.89 (s, 3H), 2.67 (dd, J = 18.7, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.62, 174.43, 163.80 (d, ¹ $J_{FC} = 250.9$ Hz), 137.26 (d, ³ $J_{FC} = 8.6$ Hz), 125.52 (d, ⁴ $J_{FC} = 3.6$ Hz), 116.74 (d, ² $J_{FC} = 21.9$ Hz), 44.57, 36.16, 25.22. HRMS m/z (ESI) calcd. for C₁₁H₁₁FNO₂S ([M+H]⁺): 240.0495, Found: 240.0484.

Figure S6. Structure of 3da 1-ethyl-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3da). Purified by column

chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3da** as a white solid (66.8 mg, 88% yield); m.p.: 38~40 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.45 (m, 2H), 7.12 – 6.93 (m, 2H), 3.91 (dd, *J* = 9.6, 4.9 Hz, 1H), 3.44 (q, *J* = 6.5 Hz, 2H), 3.11 (dd, *J* = 16.6, 8.2 Hz, 1H), 2.65 (dd, *J* = 18.8, 5.0 Hz, 1H), 1.02 (t, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.28, 174.22, 163.71 (d, ¹*J*_{FC} = 250.9 Hz), 137.41 (d, ³*J*_{FC} = 8.6 Hz), 125.28 (d, ⁴*J*_{FC} = 3.5 Hz), 116.64 (d, ²*J*_{FC} = 21.8 Hz), 44.27, 36.05, 34.13, 12.85. HRMS m/z (ESI) calcd. for C₁₂H₁₃FNO₂S ([M+H]⁺): 254.0651, Found: 254.0668.

Figure S7. Structure of 3ea

l-(tert-butyl)-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (**3ea**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ea** as a white solid (71.2 mg, 85% yield); m.p.: 48~50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.48 (m, 2H), 7.08 – 6.99 (m, 2H), 3.78 (dd, *J* = 9.5, 4.2 Hz, 1H), 3.01 (dd, *J* = 18.6, 9.5 Hz, 1H), 2.56 (dd, *J* = 18.6, 4.2 Hz, 1H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.37, 175.44, 163.70 (d, ¹*J*_{FC} = 250.6 Hz), 137.42 (d, ³*J*_{FC} = 8.5 Hz), 125.68 (d, ⁴*J*_{FC} = 3.5 Hz), 116.62 (d, ²*J*_{FC} = 21.9 Hz), 59.06, 44.40, 36.33, 28.31. HRMS m/z (ESI) calcd. for C₁₄H₁₇FNO₂S ([M+H]⁺): 282.0964, Found: 282.0980.

Figure S8. Structure of 3fa

1-cyclohexyl-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (**3fa**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3fa** as a white solid (77.3 mg, 84% yield); m.p.: 70~72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.02 (t, *J* = 8.6 Hz, 2H), 3.87 (ddd, *J* = 17.0, 8.5, 3.9 Hz, 2H), 3.08 (dd, *J* = 18.8, 9.3 Hz, 1H), 2.60 (dd, *J* = 18.8, 4.0 Hz, 1H), 2.01 (p, *J* = 11.5, 10.9 Hz, 2H), 1.77 (d, *J* = 11.3 Hz, 2H), 1.62 (d, *J* = 11.0 Hz, 1H), 1.39 (d, *J* = 11.4 Hz, 2H), 1.21 (dq, *J* = 22.6, 12.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.52, 174.49, 163.72 (d, ¹*J*_{FC} = 250.8 Hz), 137.48 (d, ³*J*_{FC} = 8.5 Hz), 125.34 (d, ⁴*J*_{FC} = 3.4 Hz), 116.62 (d, ²*J*_{FC} = 21.9 Hz), 52.18, 43.97, 35.78, 28.56, 25.83, 24.99. HRMS m/z (ESI) calcd. for C₁₆H₁₉FNO₂S ([M+H]⁺): 308.1121, Found: 308.1138.

Figure S9. Structure of 3ga

3-((4-fluorophenyl)thio)-1-phenylpyrrolidine-2,5-dione (**3ga**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ga** as a white solid (74.9 mg, 89% yield); m.p.: 130~132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 2H), 7.47 – 7.35 (m, 3H), 7.12 – 7.03 (m, 4H), 4.08 (dd, J = 9.3, 3.9 Hz, 1H), 3.33 (dd, J = 18.9, 9.4 Hz, 1H), 2.87 (dd, J = 18.9, 3.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.51, 173.43, 163.96 (d, ¹ J_{FC} = 251.3 Hz), 137.80 (d, ³ J_{FC} = 8.5 Hz), 131.56, 129.32, 128.99, 126.37, 125.10 (d, ⁴ J_{FC} = 3.3 Hz), 116.85 (d, ² J_{FC} = 22.0 Hz), 44.52, 36.29. HRMS m/z (ESI) calcd. for C₁₆H₁₃FNO₂S ([M+H]⁺): 302.0651, Found: 302.0662.

Figure S10. Structure of 3ha

l-(4-bromophenyl)-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (**3ha**)¹. Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ha** as a white solid (94.7 mg, 83% yield); m.p.: 157~159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 4H), 7.09 – 7.02 (m, 2H), 6.99 – 6.94 (m, 2H), 4.07 (dd, *J* = 9.3, 3.8 Hz, 1H), 3.31 (dd, *J* = 19.0, 9.3 Hz, 1H), 2.84 (dd, *J* = 19.0, 3.8 Hz, 1H). HRMS m/z (ESI) calcd. for C₁₆H₁₂BrFNO₂S ([M+H]⁺): 378.9678 Found: 378.9687.

Figure S11. Structure of 3ia

3-((4-fluorophenyl)thio)-1-(4-hydroxyphenyl)pyrrolidine-2,5-dione (**3ia**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ia** as a white solid (82.8 mg, 87% yield); m.p.: 145~147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.11 – 7.03 (m, 2H), 6.94 – 6.82 (m, 4H), 5.19 (s, 1H), 4.08 (dd, J = 9.3, 3.9 Hz, 1H), 3.32 (dd, J = 18.9, 9.3 Hz, 1H), 2.86 (dd, J = 18.9, 3.9 Hz, 1H). HRMS m/z (ESI) calcd. for C₁₆H₁₃FNO₃S ([M+H]⁺): 318.0600, Found: 318.0613.

Figure S12. Structure of 3ja

3-((4-fluorophenyl)thio)cyclopentan-1-one (**3ja**)². Purified by column chromatography on silica gel (10:1 petroleum ether/ethyl acetate) afforded **3ja** as a yellow liquid (39.7 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 2H), 7.07 – 6.99 (m, 2H), 3.80 (p, *J* = 6.1 Hz, 1H), 2.61 – 2.40 (m, 2H), 2.37 – 2.15 (m, 3H), 2.05 – 1.92 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 216.36, 162.77 (d, ¹*J*_{FC} = 248.4 Hz), 135.26 (d, ³*J*_{FC} = 8.2 Hz), 129.07 (d, ⁴*J*_{FC} = 3.6 Hz), 116.42 (d, ²*J*_{FC} = 21.9 Hz), 45.23, 44.48, 36.87, 29.41. HRMS m/z (ESI) calcd. for C₁₁H₁₂FOS ([M+H]⁺): 211.0593, Found:

Figure S13. Structure of 3ka

3-((4-fluorophenyl)thio)cyclohexan-1-one(**3ka**). Purified by column chromatography on silica gel (10:1 petroleum ether/ethyl acetate) afforded **3ja** as a yellow liquid (43.7 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.35 (m, 2H), 7.07 – 6.95 (m, 2H), 3.31 (dtd, J = 10.4, 5.1, 4.5, 3.2 Hz, 1H), 2.70 – 2.60 (m, 1H), 2.39 – 2.27 (m, 3H), 2.16 – 2.08 (m, 2H), 1.74 – 1.65 (m, 2H). HRMS m/z (ESI) calcd. for C₁₂H₁₄FOS ([M+H]⁺): 225.0746, Found: 225.0758.

Figure S14. Structure of 3ab

1-benzyl-3-((4-chlorophenyl)thio)pyrrolidine-2,5-dione (**3ab**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ab** as a white solid (93.8 mg, 95% yield); m.p.: 76~78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 8H), 7.15 – 7.09 (m, 2H), 4.58 (s, 2H), 3.96 (dd, J = 9.3, 4.1 Hz, 1H), 3.15 (dd, J = 18.8, 9.3 Hz, 1H), 2.64 (dd, J = 18.8, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.17, 173.99, 135.91, 135.29, 129.65, 129.04, 128.81, 128.43, 128.25, 43.93, 42.92, 35.84. HRMS m/z (ESI) calcd. for C₁₇H₁₅ClNO₂S ([M+H]⁺): 332.0512, Found: 332.0505.

Figure S15. Structure of 3ac

1-benzyl-3-((4-bromophenyl)thio)pyrrolidine-2,5-dione (**3ac**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ac** as a white solid (97.1 mg, 90% yield); m.p.: 68~70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 5H), 7.28 – 7.26 (m, 2H), 7.26 – 7.22 (m, 2H), 4.58 (d, *J* = 1.3 Hz, 2H), 3.97 (dd, *J* = 9.3, 4.2 Hz, 1H), 3.15 (dd, *J* = 18.8, 9.3 Hz, 1H), 2.64 (dd, *J* = 18.8, 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.14, 173.96, 135.99, 135.28, 132.60, 129.16, 129.03, 128.82, 128.25, 124.06, 43.81, 42.93, 35.84. HRMS m/z (ESI) calcd. for C₁₇H₁₅BrNO₂S ([M+H]⁺): 376.0007, Found: 376.0010.

Figure S16. Structure of 3ad

1-benzyl-3-((3-fluorophenyl)thio)pyrrolidine-2,5-dione (**3ad**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ad** as a white solid (83.3 mg, 88% yield); m.p.: 66~68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 5H), 7.21 – 7.15 (m, 3H), 7.03 – 6.95 (m, 1H), 4.61 (s, 2H), 4.05 (dd, J = 9.2, 4.3 Hz, 1H), 3.17 (dd, J = 18.8, 9.2 Hz, 1H), δ 2.66 (dd, J = 18.8, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.11, 173.94, 162.64 (d, ¹ $J_{FC} = 250.3$ Hz), 132.95 (d, ³ $J_{FC} = 7.7$ Hz), 130.74 (d, ³ $J_{FC} = 8.4$ Hz), 129.26 (d, ⁴ $J_{FC} = 3.0$ Hz), 129.00, 128.84, 128.25, 120.56 (d, ² $J_{FC} = 22.3$ Hz), 116.26 (d, ² $J_{FC} = 21.0$ Hz), 43.83, 42.99, 36.01. HRMS m/z (ESI) calcd. for C₁₇H₁₅FNO₂S ([M+H]⁺): 316.0808, Found: 316.0821.

Figure S17. Structure of 3ae

1-benzyl-3-((2-chlorophenyl)thio)pyrrolidine-2,5-dione (**3ae**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ae** as a colorless liquid (83.6 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, J = 7.8, 1.6 Hz, 1H), 7.41 (dd, J = 8.0, 1.3 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.32 – 7.26 (m, 3H), 7.24 (td, J = 7.7, 1.6 Hz, 1H), 7.12 (td, J = 7.6, 1.4 Hz, 1H), 4.63 (s, 2H), 4.20 (dd, J = 9.1, 4.0 Hz, 1H), 3.12 (dd, J = 18.8, 9.1 Hz, 1H), 2.65 (dd, J = 18.8, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.00, 174.02, 137.28, 135.39, 134.93, 130.83, 130.27, 130.06, 128.98, 128.77, 128.17, 127.56, 42.87, 42.38, 35.71. HRMS m/z (ESI) calcd. for C₁₇H₁₅CINO₂S ([M+H]⁺): 332.0512, Found: 332.0534.

Figure S18. Structure of 3af

1-benzyl-3-((4-(trifluoromethyl)phenyl)thio)pyrrolidine-2,5-dione (**3af**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3af** as a white solid (72.3 mg, 66% yield); m.p.: 110~112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.36 – 7.28 (m, 5H), 4.63 (s, 2H), 4.10 (dd, *J* = 9.3, 4.3 Hz, 1H), 3.21 (dd, *J* = 18.8, 9.3 Hz, 1H), 2.65 (dd, *J* = 18.8, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.08, 173.73, 136.13, 135.27, 132.89, 129.14, 128.89, 128.37, 126.22 (q, ³*J*_{FC} = 3.7 Hz), 123.83 (q, ¹*J*_{FC} = 272.0 Hz), 43.26, 43.07, 35.94. HRMS m/z (ESI) calcd. for C₁₈H₁₅F₃NO₂S ([M+H]⁺): 366.0776, Found: 366.0796.

Figure S19. Structure of 3ag

1-benzyl-3-((4-nitrophenyl)thio)pyrrolidine-2,5-dione (**3ag**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ag** as a yellow liquid (79.5 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.01 (m, 2H), 7.55 – 7.49 (m, 2H), 7.38 – 7.33 (m, 2H), 7.33 – 7.28 (m, 3H), 4.65 (s, 2H), 4.22 (dd, *J* = 9.4, 4.3 Hz, 1H), 3.28 (dd, *J* = 18.8, 9.4 Hz, 1H), 2.67 (dd, *J* = 18.8, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.74, 173.42, 147.17, 141.31, 135.14, 131.24, 129.15, 128.88, 128.45, 124.23, 43.15, 42.58, 35.92. HRMS m/z (ESI) calcd. for C₁₇H₁₅N₂O₄S ([M+H]⁺): 343.0753, Found: 343.0738.

Figure S20. Structure of 3ah

1-benzyl-3-(p-tolylthio)pyrrolidine-2,5-dione (**3ah**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ah** as a white solid (73.1 mg, 82% yield); m.p.: 74~76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 7H), 6.98 (d, J = 7.9 Hz, 2H), 4.56 (s, 2H), 3.93 (dd, J = 9.2, 4.1 Hz, 1H), 3.10 (dd, J = 18.8, 9.2 Hz, 1H), 2.66 (dd, J = 18.8, 4.1 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.51, 174.36, 139.81, 135.39, 135.09, 130.23, 129.01, 128.69, 128.05, 126.03, 44.14, 42.80, 35.77, 21.33. HRMS m/z (ESI) calcd. for C₁₈H₁₈NO₂S ([M+H]⁺): 312.1058, Found: 312.1052.

Figure S21. Structure of 3ai

1-benzyl-3-((4-(tert-butyl)phenyl)thio)pyrrolidine-2,5-dione (**3ai**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ai** as a white solid (98.7 mg, 93% yield); m.p.: 104~106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 7H), 7.19 (t, J = 8.0 Hz, 2H), 4.56 (s, 2H), 3.95 (dd, J = 9.1, 4.3 Hz, 1H), 3.08 (dd, J = 18.7, 9.1 Hz, 1H), 2.63 (dd, J = 18.7, 4.3 Hz, 1H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 175.67, 174.34, 152.79, 135.43, 134.52, 129.10, 128.76, 128.13, 126.51, 126.46, 44.12, 42.85, 35.78, 34.79, 31.27. HRMS m/z (ESI) calcd. for C₂₁H₂₄NO₂S ([M+H]⁺): 354.1528, Found: 354.1505.

Figure S22. Structure of 3aj

1-benzyl-3-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (**3aj**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3aj** as a white solid (82.7 mg, 88% yield); m.p.: 84~86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.29 – 7.24 (m, 5H), 6.72 – 6.65 (m, 2H), 4.55 (s, 2H), 3.86 (dd, J = 9.2, 4.1 Hz, 1H), 3.77 (s, 3H), 3.09 (dd, J = 18.8, 9.2 Hz, 1H), 2.67 (dd, J = 18.8, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.57, 174.39, 161.02, 137.44, 135.44, 129.01, 128.72, 128.06, 119.73, 115.01, 55.42, 44.47, 42.81, 35.69. HRMS m/z (ESI) calcd. for C₁₈H₁₈NO₃S ([M+H]⁺): 328.1007, Found: 328.1021.

Figure S23. Structure of 3ak

methyl 2-((1-benzyl-2,5-dioxopyrrolidin-3-yl)thio)benzoate (**3ak**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ak** as a colorless liquid (76.7 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 5.5 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.46 – 7.33 (m, 3H), 7.33 – 7.21 (m, 4H), 4.73 – 4.59 (d, 2H), 4.34 (dd, *J* = 9.2, 3.9 Hz, 1H), 3.89 (s, 3H), 3.23 (dd, *J* = 18.8, 9.2 Hz, 1H), 2.70 (dd, *J* = 18.8, 3.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.51, 174.08, 166.89, 136.97, 135.40, 132.59, 131.19, 130.00, 129.53, 128.98, 128.79, 128.16, 126.38, 52.45, 42.95, 41.88, 36.16. HRMS m/z (ESI) calcd. for C₁₉H₁₈NO₄S ([M+H]⁺): 356.0957, Found: 356.0946.

Figure S24. Structure of 3al

1-benzyl-3-((2,4-dimethylphenyl)thio)pyrrolidine-2,5-dione (**3al**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3al** as a white solid (86.4 mg, 89% yield); m.p.: 94~96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 5H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.00 (s, 1H), 6.80 (d, *J* = 7.8 Hz, 1H), 4.58 (s, 2H), 3.93 (dd, *J* = 9.0, 3.9 Hz, 1H), 2.58 (dd, *J* = 18.7, 3.9 Hz, 1H), 2.35 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.47, 174.42, 141.69, 139.57, 135.42, 135.25, 131.73, 128.92, 128.67, 128.03, 127.68, 126.42, 43.47, 42.73, 35.68, 21.18, 20.90. HRMS m/z (ESI) calcd. for C₁₉H₂₀NO₂S ([M+H]⁺): 326.1215, Found: 326.1208.

Figure S25. Structure of 3am

1-benzyl-3-((2,6-dimethylphenyl)thio)pyrrolidine-2,5-dione (**3am**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3am** as a white solid (71.5 mg, 74% yield); m.p.: 56~58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.33 – 7.27 (m, 3H), δ 7.22 – 7.14 (m, 1H), 7.11 (d, *J* = 7.5 Hz, 2H), 4.65 (s, 2H), 3.87 (dd, *J* = 8.9, 3.5 Hz, 1H), 3.03 (dd, *J* = 18.7, 8.9 Hz, 1H), 2.57 (dd, *J* = 18.7, 3.5 Hz, 1H), 2.45 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 175.29, 174.53, 143.91, 135.47, 130.04, 129.81, 128.99, 128.79, 128.59, 128.17, 42.81, 42.43, 35.79, 22.18. HRMS m/z (ESI) calcd. for C₁₉H₂₀NO₂S ([M+H]⁺): 326.1215, Found: 326.1222.

Figure S26. Structure of 3an

1-benzyl-3-(naphthalen-2-ylthio)pyrrolidine-2,5-dione (**3an**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3an** as a white solid (84.3 mg, 81% yield); m.p.: 100~102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.82 – 7.77 (m, 1H), 7.75 – 7.70 (m, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.41 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.25 – 7.18 (m, 5H), 4.58 (s, 2H), 4.11 (dd, *J* = 9.2, 4.3 Hz, 1H), 3.16 (dd, *J* = 18.8, 9.2 Hz, 1H), 2.75 (dd, *J* = 18.8, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.39, 174.23, 135.31, 134.30, 133.24, 130.63, 129.24, 128.89, 128.76, 128.13, 127.98, 127.89, 127.59, 127.27, 126.98, 44.14, 42.93, 36.02. HRMS m/z (ESI) calcd. for C₂₁H₁₈NO₂S ([M+H]⁺): 348.1058, Found: 348.1076.

Figure S27. Structure of 3ao

1-benzyl-3-(pyridin-2-ylthio)pyrrolidine-2,5-dione (**3ao**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ao** as a yellow solid (68.4 mg, 77% yield); m.p.: 60~62 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 3H), 7.46 – 7.40 (m, 1H), 7.35 – 7.28 (m, 3H), 7.12 (d, J = 8.1 Hz, 1H), 6.83 (dd, J = 6.9, 5.4 Hz, 1H), 4.80 – 4.69 (d, 2H), 4.15 (dd, J = 9.4, 5.6 Hz, 1H), 3.19 (dd, J = 18.3, 9.4 Hz, 1H), 2.94 (dd, J = 18.3, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.83, 175.19, 155.56, 149.11, 136.55, 135.78, 129.71, 128.73, 128.03, 122.00, 120.10, 43.19, 40.95, 36.53. HRMS m/z (ESI) calcd. for C₁₆H₁₅N₂O₂S ([M+H]⁺): 299.0854, Found: 299.0876.

Figure S28. Structure of 3ap

1-benzyl-3-(pyridin-4-ylthio)pyrrolidine-2,5-dione (**3ap**). Purified by column chromatography on silica gel (2:1 petroleum ether/ethyl acetate) afforded **3ap** as a yellow liquid (67.5 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.36 (m, 2H), 7.39 – 7.27 (m, 5H), 7.24 – 7.19 (m, 2H), 4.70 – 4.60 (d, 2H), 4.25 (dd, J = 9.4, 4.6 Hz, 1H), 3.25 (dd, J = 18.8, 9.4 Hz, 1H), 2.64 (dd, J = 18.8, 4.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.71, 173.42, 149.84, 144.61, 135.09, 129.00, 128.84, 128.32, 123.12, 43.09, 41.22, 35.97. HRMS m/z (ESI) calcd. for C₁₅H₁₄F₂NO₂S ([M+H]⁺): 299.0854, Found: 299.0870.

Figure S29. Structure of 3aq

1-benzyl-3-(thiophen-2-ylthio)pyrrolidine-2,5-dione (**3aq**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3aq** as a yellow solid (68.6 mg, 76% yield); m.p.: 60~62 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, J = 5.4, 1.3 Hz, 1H), 7.30 – 7.22 (m, 5H), 7.07 (dd, J = 3.7, 1.2 Hz, 1H), 6.87 (dd, J = 5.4, 3.6 Hz, 1H), 4.58 – 4.49 (d, 2H), 3.82 (dd, J = 9.2, 4.1 Hz, 1H), 3.13 (dd, J = 18.8, 9.2 Hz, 1H), 2.79 (dd, J = 18.9, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.86, 174.10, 137.89, 135.34, 132.51, 129.04, 128.70, 128.25, 128.06, 126.52, 45.47, 42.91, 35.70. HRMS m/z (ESI) calcd. for C₁₅H₁₄NO₂S₂ ([M+H]⁺): 304.0466, Found: 304.0472.

Figure S30. Structure of 3ar

1-benzyl-3-(benzylthio)pyrrolidine-2,5-dione (**3ar**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3ar** as a colorless liquid (70.7 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 10H), 4.72 – 4.60 (d, 2H), 4.20 (d, *J* = 13.5 Hz, 1H), 3.84 (d, *J* = 13.5 Hz, 1H), 3.51 (dd, *J* = 9.2, 3.7 Hz, 1H), 2.97 (dd, *J* = 18.8, 9.2 Hz, 1H), 2.41 (dd, *J* = 18.8, 3.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 176.52, 174.41, 136.85, 135.50, 129.24, 128.77, 128.10, 127.60, 42.63, 37.47, 35.91, 35.54. HRMS m/z (ESI) calcd. for C₁₈H₁₈NO₂S ([M+H]⁺): 312.1058, Found: 312.1069.

Figure S31. Structure of 3as

1-benzyl-3-((furan-2-ylmethyl)thio)pyrrolidine-2,5-dione (**3as**). Purified by column chromatography on silica gel (8:1 petroleum ether/ethyl acetate) afforded **3as** as a yellow liquid (79.4 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 3H), 7.35 – 7.27 (m, 3H), 6.30 (t, *J* = 2.6 Hz, 1H), 6.21 (d, *J* = 3.2 Hz, 1H), 4.72 – 4.61 (d, 2H), 4.29 (d, *J* = 14.9 Hz, 1H), 3.81 (d, *J* = 14.9 Hz, 1H), 3.67 (dd, *J* = 9.2, 3.9 Hz, 1H), 3.03 (dd, *J* = 18.8, 9.2 Hz, 1H), 2.41 (dd, *J* = 18.8, 3.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 176.37, 174.39, 150.00, 142.80, 135.51, 128.89, 128.83, 128.20, 110.67, 108.85, 42.78, 38.08, 35.60, 28.27. HRMS m/z (ESI) calcd. for C₁₆H₁₆NO₃S ([M+H]⁺): 302.0851, Found: 302.0876.

Figure S32. Structure of 3at

1-benzyl-3-(butylthio)pyrrolidine-2,5-dione (**3at**). Purified by column chromatography on silica gel (20:1 petroleum ether/ethyl acetate) afforded **3at** as a colorless liquid (66.2 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.33 – 7.25 (m, 3H), 4.71 – 4.61 (d, 2H), 3.70 (dd, *J* = 9.1, 3.6 Hz, 1H), 3.12 (dd, *J* = 18.7, 9.1 Hz, 1H), 2.85 – 2.65 (m, 2H), 2.52 (dd, *J* = 18.7, 3.6 Hz, 1H), 1.64 – 1.48 (m, 2H), 1.38 (h, *J* = 6.9 Hz, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.44, 174.54, 135.57, 128.77, 128.75, 128.09, 42.66, 39.18, 36.26, 31.31, 31.10, 21.95, 13.66. HRMS m/z (ESI) calcd. for C₁₅H₂₀NO₂S ([M+H]⁺): 278.1215, Found: 278.1226.

Figure S33. Structure of 3au

1-Benzyl-3-(isobutylthio)pyrrolidine-2,5-dione (**3au**). Purified by column chromatography on silica gel (20:1 petroleum ether/ethyl acetate) afforded **3au** as a colorless liquid (69.1 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.34 – 7.24 (m, 3H), 4.74 – 4.59 (d, 2H), 3.68 (dd, J = 9.0, 3.6 Hz, 1H), 3.12 (dd, J = 18.7, 9.1 Hz, 1H), 2.70 (dd, J = 12.4, 6.4 Hz, 1H), 2.61 – 2.47 (m, 2H), 1.81 (dt, J = 13.5, 6.7 Hz, 1H), 0.97 (dd, J = 6.6, 1.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.47, 174.54, 135.63, 128.83, 128.80, 128.14, 42.71, 40.44, 39.57, 36.38, 28.39, 22.18, 21.89. HRMS m/z (ESI) calcd. for C₁₅H₁₉NO₂S ([M+H]⁺): 277.1136, Found: 277.3820.

Figure S34. Structure of 3av

1-Benzyl-3-(isopentylthio)pyrrolidine-2,5-dione (**3av**). Purified by column chromatography on silica gel (20:1 petroleum ether/ethyl acetate) afforded **3av** as a colorless liquid (65.6 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.33 – 7.24 (m, 3H), 4.73 – 4.59 (d, 2H), 3.70 (dd, *J* = 9.1, 3.6 Hz, 1H), 3.12 (dd, *J* = 18.7, 9.1 Hz, 1H), 2.89 – 2.65 (m, 2H), 2.53 (dd, *J* = 18.7, 3.6 Hz, 1H), 1.73 – 1.56 (m, 1H), 1.47 (dtd, *J* = 8.8, 6.6, 5.0 Hz, 2H), 0.88 (dd, *J* = 6.6, 1.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.43, 174.53, 135.62, 128.80, 128.13, 42.72, 39.26, 37.97, 36.29, 29.74, 27.52, 22.40, 22.21.HRMS m/z (ESI) calcd. for C₁₆H₂₁NO₂S ([M+H]⁺): 291.1293, Found: 291.4090.

Figure S35. Structure of 3aw

1-Benzyl-3-(cyclopentylthio)pyrrolidine-2,5-dione (**3aw**). Purified by column chromatography on silica gel (20:1 petroleum ether/ethyl acetate) afforded **3aw** as a colorless liquid (63.5 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 7.9, 1.5 Hz, 2H), 7.35 – 7.24 (m, 3H), 4.76 – 4.59 (d, 2H), 3.76 (dd, J = 9.1, 3.7 Hz, 1H), 3.54 – 3.43 (m, 1H), 3.13 (dd, J = 18.7, 9.1 Hz, 1H), 2.56 (dd, J = 18.7, 3.7 Hz, 1H), 2.14 – 1.87 (m, 2H), 1.82 – 1.65 (m, 2H), 1.63 – 1.49 (m, 4H), 1.45 (dt, J = 13.7, 6.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 176.49, 174.58, 135.59, 128.83, 128.74, 128.08, 43.82, 42.71, 39.75, 36.57, 34.24, 33.30, 24.91, 24.79.HRMS m/z (ESI) calcd. for C₁₆H₁₉NO₂S ([M+H]⁺): 289.1136, Found: 289.3930.

Figure S36. Structure of 3ax

1-benzyl-3-(cyclohexylthio)pyrrolidine-2,5-dione (**3ax**). Purified by column chromatography on silica gel (20:1 petroleum ether/ethyl acetate) afforded **3ax** as a colorless liquid (62.8 mg, 70% yield); m.p.: 84~86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.34 – 7.24 (m, 3H), 4.72 – 4.59 (d, 2H), 3.79 (dd, J = 9.1, 3.8 Hz, 1H), 3.20 – 3.06 (m, 2H), 2.52 (dd, J = 18.7, 3.7 Hz, 1H), 2.12 – 2.02 (m, 1H), 1.95 – 1.84 (m, 1H), 1.80 – 1.69 (m, 2H), 1.65 – 1.56 (m, 1H), 1.41 – 1.20 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 176.65, 174.61, 135.56, 128.79, 128.75, 128.07, 43.84, 42.69, 37.87, 36.64, 33.62, 33.08, 25.72. HRMS m/z (ESI) calcd. for C₁₇H₂₂NO₂S ([M+H]⁺):

Figure S37. Structure of 4

1-benzyl-3-((4-fluorophenyl)sulfinyl)pyrrolidine-2,5-dione (4). Purified by column chromatography on silica gel (4:1 petroleum ether/ethyl acetate) afforded 4 as a yellow solid (88.5 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H), 7.23 – 7.15 (m, 5H), 6.85 (t, *J* = 8.5 Hz, 2H), 4.60 (d, *J* = 1.1 Hz, 2H), 4.41 (dd, J = 9.0, 3.1 Hz, 1H), 2.77 (dd, *J* = 19.5, 9.0 Hz, 1H), 2.35 (dd, *J* = 18.5, 9.1 Hz, 1H).

Figure S38. Structure of 5

1-benzyl-3-((4-fluorophenyl)sulfonyl)pyrrolidine-2,5-dione (**5**)³. Purified by column chromatography on silica gel (4:1 petroleum ether/ethyl acetate) afforded **5** as a yellow solid (95.8 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.80 (m, 2H), 7.38 – 7.24 (m, 5H), 7.23 –7.11 (m, 2H), 4.61 (d, *J* = 3.4 Hz, 2H), 4.32 (dd, *J* = 9.6, 3.8 Hz, 1H), 3.34 (dd, *J* = 19.1, 3.8 Hz, 1H), 3.09 (dd, *J* = 19.1, 9.6 Hz, 1H).

references

 Varun Kumar, Rangan Mitra, Sanjay Bhattarai & Vipin A. Nair, *Synthetic Communications*, 2011, 41, 392-404.

2. Giuseppe Gentile, Martina Mamone, Cristian Rosso, Francesco Amato, Chiara Lanfrit, Giacomo Filippini, and Maurizio Prato, *ChemSusChem*, 2023, **16**, e202202399.

3. Sandrine M. Hell, Claudio F. Meyer, Antonio Misale, Jeroen B. I. Sap, Kirsten E. Christensen, Michael C. Willis, Andres A. Trabanco, and Veronique Gouverneur, Angewandte Chemie International Edition 2020, **59**, 11620-11626

6. NMR Spectra of Products

1-benzyl-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3aa)

¹H NMR (400 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (100 MHz, CDCl₃) spectrum of 3aa

¹⁹F NMR (375 MHz, CDCl₃) spectrum of 3aa

3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3ba)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ba

3-((4-fluorophenyl)thio)-1-methylpyrrolidine-2,5-dione (3ca)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ca

1-ethyl-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3da)

¹H NMR (400 MHz, CDCl₃) spectrum of 3da

1-(tert-butyl)-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3ea)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ea

1-cyclohexyl-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3fa)

¹H NMR (400 MHz, CDCl₃) spectrum of 3fa

3-((4-fluorophenyl)thio)-1-phenylpyrrolidine-2,5-dione (3ga)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ga

1-(4-bromophenyl)-3-((4-fluorophenyl)thio)pyrrolidine-2,5-dione (3ha)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ha

3-((4-fluorophenyl)thio)-1-(4-hydroxyphenyl)pyrrolidine-2,5-dione (3ia)

3-((4-fluorophenyl)thio)cyclopentan-1-one (3ja)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ja

3-((4-fluorophenyl)thio)cyclohexan-1-one (3ka)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ka

1-benzyl-3-((4-chlorophenyl)thio)pyrrolidine-2,5-dione (3ab)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ab

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ab

1-benzyl-3-((4-bromophenyl)thio)pyrrolidine-2,5-dione (3ac)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ac

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ac

1-benzyl-3-((3-fluorophenyl)thio)pyrrolidine-2,5-dione (3ad)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ad

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ad

1-benzyl-3-((2-chlorophenyl)thio)pyrrolidine-2,5-dione (3ae)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ae

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ae

1-benzyl-3-((4-(trifluoromethyl)phenyl)thio)pyrrolidine-2,5-dione (3af)

1-benzyl-3-((4-nitrophenyl)thio)pyrrolidine-2,5-dione (3ag)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ag

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ag

1-benzyl-3-(p-tolylthio)pyrrolidine-2,5-dione (3ah)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ah

1-benzyl-3-((4-(tert-butyl)phenyl)thio)pyrrolidine-2,5-dione (3ai)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ai

1-benzyl-3-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3aj)

¹H NMR (400 MHz, CDCl₃) spectrum of 3aj

methyl 2-((1-benzyl-2,5-dioxopyrrolidin-3-yl)thio)benzoate (3ak)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ak

1-benzyl-3-((2,4-dimethylphenyl)thio)pyrrolidine-2,5-dione (3al)

¹H NMR (400 MHz, CDCl₃) spectrum of 3al

1-benzyl-3-((2,6-dimethylphenyl)thio)pyrrolidine-2,5-dione (3am)

¹H NMR (400 MHz, CDCl₃) spectrum of 3am

¹³C NMR (100 MHz, CDCl₃) spectrum of 3am

1-benzyl-3-(naphthalen-2-ylthio)pyrrolidine-2,5-dione (3an)

¹H NMR (400 MHz, CDCl₃) spectrum of 3an

¹³C NMR (100 MHz, CDCl₃) spectrum of 3an

1-benzyl-3-(pyridin-2-ylthio)pyrrolidine-2,5-dione (3ao)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ao

1-benzyl-3-(pyridin-4-ylthio)pyrrolidine-2,5-dione (3ap)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ap

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ap

1-benzyl-3-(thiophen-2-ylthio)pyrrolidine-2,5-dione (3aq)

¹H NMR (400 MHz, CDCl₃) spectrum of 3aq

¹³C NMR (100 MHz, CDCl₃) spectrum of 3aq

1-benzyl-3-(benzylthio)pyrrolidine-2,5-dione (3ar)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ar

1-benzyl-3-((furan-2-ylmethyl)thio)pyrrolidine-2,5-dione (3as)

¹H NMR (400 MHz, CDCl₃) spectrum of 3as

1-benzyl-3-(butylthio)pyrrolidine-2,5-dione (3at)

¹H NMR (400 MHz, CDCl₃) spectrum of 3at

1-Benzyl-3-(isobutylthio)pyrrolidine-2,5-dione (3au)

¹H NMR (400 MHz, CDCl₃) spectrum of 3au

¹³C NMR (100 MHz, CDCl₃) spectrum of 3au

1-Benzyl-3-(isopentylthio)pyrrolidine-2,5-dione (3av)

¹H NMR (400 MHz, CDCl₃) spectrum of 3av

¹³C NMR (100 MHz, CDCl₃) spectrum of 3av

1-benzyl-3-(cyclohexylthio)pyrrolidine-2,5-dione (3ax)

¹H NMR (400 MHz, CDCl₃) spectrum of 3ax

1-benzyl-3-((4-fluorophenyl)sulfonyl)pyrrolidine-2,5-dione (5)

¹H NMR (400 MHz, CDCl₃) spectrum of 5