Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Chromic Properties of Dibenzo[*j*,*l*]fluoranthenes Exhibiting Different Resonance Contribution

Kazuma Kurokawa,^a Naoki Ogawa,^a Yusuke Kuroda,^a Yousuke Yamaoka,^a Hiroshi Takikawa,^a Kazunori Tsubaki^b and Kiyosei Takasu^{*a}

^aGraduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

^bGraduate School for Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan

E-mail: takasu.kiyosei.6r@ kyoto-u.ac.jp; Fax: +81 75 753 4604; Tel: +81 75 753 4553

Table of Contents

1. Synthesis of Hydroxyfluoranthenes 2 and 3	S2
2. X-ray crystallographic data	S10
3. UV-vis absorption spectra of 2 and 3 in CH_2Cl_2 under acidic conditions	S12
4. Solvatochromic properties of 2c and 3c in EtOH	S15
5. HOMA Calculation	S17
6. Computational results	
6-1. Frontier molecular orbitals and energy levels of 2b and 3b	S18
6-2. TD-DFT calculations	S19
6-3. NICS calculations	S22
6-4. Calculated bond lengths	S25
7. ¹ H and ¹³ C NMR spectra	S73
8. References	S101

1. Synthesis of Hydroxydibenzofluoranthenes 2 and 3

General

All non-aqueous reactions were carried out in dried glassware under an atmosphere of dry argon unless otherwise noted. For reactions that require heating, oil bath was used as a heat source. *N*,*N*-Dimethylformamide (DMF) for reaction solvent was dried over molecular sieves 4Å prior to use. All other dehydrated solvents for the reactions were purchased and used without further desiccation. All reagents were purchased and used without further purifications. Analytical TLC was performed on pre-coated silica gel plate (Wako Silicagel 70 F₂₅₄). Column chromatography was performed on Wakogel 60 N unless otherwise stated. ¹H, ¹³C NMR spectra were recorded on a JEOL JNM ECZ600R at 600 and 151 MHz, respectively. Chemical shifts (δ) and coupling constants (*J*) are presented in parts per million and hertz, respectively. Tetramethylsilane (δ 0.0 ppm), acetone-d6 (δ 2.04 ppm) and DMSO-d6 (δ 29.8 ppm) and DMSO-d6 (δ 39.5 ppm) were used as internal standard for ¹H NMR. Residual CDCl₃ (δ 77.0 ppm), acetone-d6 (δ 29.8 ppm) and DMSO-d6 (δ 39.5 ppm) were used as internal standard for ¹³C NMR. Multiplicities are indicated as s (singlet), d (doublet), t (triplet), sep (septet), m (multiplet), and br (broad). High-resolution mass spectra (HRMS) were recorded on a Shimadzu LCMS-IT-TOF fitted with an electrospray ionization (ESI) source. IR spectra were recorded on a Shimadzu UV-2600. Fluorescence spectra were recorded on a JASCO FP-8600.

Preparation of Substrate 1b

To a solution of 3-bromoanisole (12.5 mL, 99.6 mmol) and AlCl₃ (16.0 g, 120 mmol) in dry CH₂Cl₂ (110 mL) was added dropwise isobutyryl chloride (12.5 mL, 118 mmol) at 0 °C. After stirring for 18 h at room temperature, the reaction mixture was poured into ice/10% HCl aq. The mixture was extracted three times with Et₂O. The combined organic extracts were washed with water, sat. NaHCO₃ and brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (hexane/EtOAc = 7/1-5/1) to afford **S1** (4.59 g, 18%) as pale yellow oil.

S1: $R_f 0.58$ (hexane/EtOAc = 3.5/1); ¹H NMR (600 MHz, CDCl₃) δ 1.18 (d, 6H, J = 7.2 Hz), 3.39 (sep, 1H, J = 7.2 Hz), 3.83 (s, 3H), 6.87 (dd, 1H, J = 8.4, 3.0 Hz), 7.14 (d, 1H, J = 3.0 Hz), 7.35 (d, 1H, J = 8.4 Hz) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 18.4, 39.4, 55.6, 113.1, 119.0, 120.4, 130.0, 133.5, 161.2, 207.3 ppm; IR (film) 3970, 2936, 2870, 2839, 1693, 1593 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₁H₁₄BrO₂, 257.0172; found, 257.0156.

To a stirred solution of **S1** (1.30 g, 5.06 mmol), K₂CO₃ (2.98 g, 21.6 mmol), and Pd(PPh₃)₄ (637 mg, 551 μ mol) in a mixture of toluene (10 mL) and EtOH (40 mL) was added **S2**¹ (1.67 g, 5.00 mmol). After stirring for 5 h at 95 °C, the reaction was quenched with water, phases were separated, and the aqueous layer was extracted three times with Et₂O. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (hexane/EtOAc = 5/1-4/1) to afford **1b** (1.83 g, 84%) as pale yellow amorphous.

1b: $R_f 0.48$ (hexane/EtOAc = 3.5/1); ¹H NMR (600 MHz, CDCl₃) δ 0.67–1.16 (m, 6H), 2.79 (brs, 1H), 3.45–3.85 (m, 6H), 5.36 (d, 1H, J = 1.0 Hz), 5.68 (brs, 1H), 6.28–7.01 (m, 2H), 7.04–7.60 (m, 8H), 7.60–7.81 (m, 2H), 7.95 (brs, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 18.4, 19.9, 38.0, 55.1, 56.1, 112.1, 113.6, 116.3, 116.5, 123.0, 123.2, 125.5, 125.9, 126.0, 126.6, 127.3, 127.5, 128.9, 129.0, 130.1, 130.4, 131.7, 133.2, 139.2, 153.7, 160.2, 208.3 ppm (3 signals missing); IR (film) 3055, 3009, 2967, 2932, 2835, 1678, 1593 cm⁻¹; HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₃₀H₂₉O₃, 437.2111; found, 437.2129.

Synthesis of 2b

To a stirred solution of **1b** (1.83 g, 4.20 mmol) and *cis*-1,2-cyclohexanediol (99.1 mg, 853 µmol) in dry diglyme (170 mL) was added KHMDS (1.0 M in THF, 12.5 mL, 12.5 mmol). The reaction mixture was evacuated for 15 min to degass the solvent, refilled with Ar and heated to reflux for 24 h with vigorous stirring. After cooling to room temperature, the reaction was quenched with 10% HCl aq. The aqueous layer was extracted three times with Et₂O and the combined organic layer was washed with water and brine, dried over Na₂SO₄ and evaporated. The residue was purified by silica gel column chromatography (hexanes/EtOAc = 3/1-1/1) to afford **2b** (900 mg, 62%) as yellow solids. Single crystals of **2b** suitable for X-ray crystallographic analysis were successfully grown by slow diffusion of hexane into the solution of **2b** in AcOEt at room temperature.

2b: $R_{\rm f}$ 0.10 (hexane/EtOAc = 4/1); mp. >250 °C; ¹H NMR (600 MHz, acetone-d6) δ 4.10 (s, 3H), 7.43 (dd, 1H, J = 8.4, 2.4 Hz), 7.48 (d, 1H, J = 8.4 Hz), 7.62–7.74 (m, 3H), 7.94 (d, 2H, J = 8.4 Hz), 8.34 (d, 1H, J = 1.8 Hz), 8.79 (d, 1H, J = 7.2 Hz), 8.88 (d, 1H, J = 7.2 Hz), 9.05 (d, 1H, J = 9.0 Hz), 10.18 (dd, 1H, J = 8.4, 1.2 Hz), 10.40 (brs, 1H) ppm; ¹³C NMR (151 MHz, acetone-d6) δ 55.8, 105.6, 118.3, 118.9, 122.7, 124.2, 125.3, 125.88, 125.94, 126.6, 127.2, 127.3, 127.4, 130.0, 130.6, 131.0, 131.6, 132.4, 133.2, 134.3, 134.4, 136.8, 153.7, 158.9 ppm (1 signal missing); IR (film) 3275, 2936, 1686, 1620 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₅H₁₇O₂, 349.1223; found, 349.1236.

Synthesis of 5

To a solution of **2b** (201 mg, 576 μ mol) and DIPEA (150 μ L, 859 μ mol) in dry CH₂Cl₂ (15 mL) was added dropwise Tf₂O (140 μ L, 864 μ mol) at 0 °C. After stirring for 1 h at room temperature, the reaction was quenched with 10% HCl. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give **5** (236 mg, 86%) as orange solids.

5: $R_{\rm f}$ 0.45 (hexane/EtOAc = 3.5/1); mp. 172–173 °C; ¹H NMR (600 MHz, CDCl₃) δ 4.06 (s, 3H), 7.33 (dd, 1H, J = 9.0, 3.0 Hz), 7.54 (d, 1H, J = 9.0 Hz), 7.63–7.74 (m, 3H), 7.85 (d, 1H, J = 8.4 Hz), 7.89 (d, 1H, J = 9.0 Hz), 8.10 (d, 1H, J = 2.4 Hz), 8.49 (d, 1H, J = 7.2 Hz), 8.64 (d, 1H, J = 8.4 Hz), 8.72 (d, 1H, J = 9.0 Hz), 8.89 (d, 1H, J = 8.4 Hz) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 55.5, 104.9, 117.4, 118.6 ($J_{\rm C-F}$ = 322 Hz), 122.9, 123.4, 123.7, 126.1, 126.4, 126.5, 127.1, 127.2, 127.4, 128.26, 128.30, 128.70, 128.72, 129.9, 130.2, 130.9, 133.67, 133.73, 135.3, 138.1, 142.0, 158.6 ppm; IR (neat) 3001, 2936, 1612, 1412, 1207 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₆H₁₆O₄S, 481.0716; found, 481.0719.

Synthesis of S3

To a solution of **5** (400 mg, 833 μ mol), Pd(OAc)₂ (19.0 mg, 84.6 μ mol) and dppp (34.8 mg, 84.4 μ mol) in dry DMF (14 mL) was added Et₃SiH (350 μ L, 2.20 mmol) at 60 °C and stirred for 2 h. After cooling to room temperature, the reaction was quenched with water. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give **S3** (251 mg, 91%) as yellow solids.

S3: $R_f 0.65$ (hexane/EtOAc = 3.5/1); mp. 137–139 °C; ¹H NMR (600 MHz, CDCl₃) δ 4.04 (s, 3H), 7.32 (d, 1H, J = 7.8 Hz), 7.58–7.71 (m, 4H), 7.80 (d, 1H, J = 7.8 Hz), 7.83 (d, 1H, J = 7.8 Hz), 8.06 (s, 1H), 8.37–8.44 (m, 2H), 8.62 (d, 1H, J = 8.4 Hz), 8.71 (dd, 1H, J = 8.4, 4.8 Hz), 8.88 (dd, 1H, J = 8.4, 3.0 Hz) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 55.4, 104.9, 117.1, 123.6, 124.3, 124.4, 124.7, 124.9, 125.7, 126.3, 127.0, 127.2, 127.4, 127.8, 127.9, 129.3, 130.1, 131.5, 131.9, 132.5, 133.9, 137.8, 138.0, 157.9 ppm (1 signal missing); IR (neat) 2920, 2851, 1612 cm⁻¹; HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₂₅H₁₇O, 333.1274; found, 333.1278.

Synthesis of 3a

To a solution of **S3** (89.7 mg, 270 μ mol) in dry CH₂Cl₂ (5.0 mL) was added dropwise BBr₃ (1.0 M in CH₂Cl₂, 0.54 mL, 0.54 mmol) at 0 °C. After stirring for 3.5 h at room temperature, the reaction was quenched with ice water. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. Trituration (hexane) afforded **3a** (85.6 mg, 77%) as yellow solids.

3a: $R_f 0.10$ (hexane/EtOAc = 4/1); mp. >250 °C; ¹H NMR (600 MHz, acetone-d6) δ 7.40 (dd, 1H, J = 9.0, 3.0 Hz), 7.67 (td, 1H, J = 7.2, 1.2 Hz), 7.70–7.78 (m, 3H), 7.93 (d, 1H, J = 8.4 Hz), 7.96 (d, 1H, J = 7.8 Hz), 8.25 (d, 1H, J = 2.4 Hz), 8.64 (d, 1H, J = 7.8 Hz), 8.67 (d, 1H, J = 7.2 Hz), 8.73 (d, 1H, J = 7.8 Hz), 8.91 (d, 1H, J = 9.0 Hz), 8.94 (s, 1H), 8.95 (d, 1H, J = 7.2 Hz) ppm; ¹³C NMR (151 MHz, acetone-d6) δ 108.5, 118.9, 124.4, 124.7, 125.4, 125.8, 125.9, 126.9, 127.6, 127.9, 128.4, 128.5, 128.9, 129.0, 130.4, 130.9, 131.0, 131.6, 132.5, 133.9, 134.8, 138.5, 138.7, 157.3 ppm; IR (neat) 3267, 3051, 1609 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₄H₁₅O, 319.1117; found, 319.1135.

Synthesis of S4

The solution of **5** (480 mg, 1.00 mmol), Pd(PPh₃)₄ (116 mg, 100 μ mol) and Zn(CN)₂ (353 mg, 3.01 mmol) in dry DMF (30 mL) was heated at 80 °C and stirred for 4 h. After cooling to room temperature, the reaction was quenched with water. The mixture was extracted three times with CHCl₃. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give **S4** (284 mg, 80%) as red solids.

S4: $R_{\rm f}$ 0.52 (CHCl₃); mp. >250 °C; ¹H NMR (600 MHz, DMSO-d6) δ 4.06 (s, 3H), 7.40 (dd, 1H, J = 9.0, 3.0 Hz), 7.71 (dd, 1H, J = 7.8, 1.2 Hz), 7.74 (dd, 1H, J = 7.8, 1.8 Hz), 7.81 (t, 1H, J = 7.8 Hz), 7.97 (d, 1H, J = 8.4 Hz), 8.03 (d, 1H, J = 9.0 Hz), 8.10 (d, 1H, J = 8.4 Hz), 8.26 (d, 1H, J = 2.4 Hz), 8.71 (d, 1H, J = 6.6 Hz), 8.82 (d, 1H, J = 9.0 Hz), 8.92 (d, 1H, J = 8.4 Hz), 9.15 (d, 1H, J = 8.4 Hz) ppm; ¹³C NMR (151 MHz, DMSO-d6) δ 55.6, 105.2, 118.4, 120.5, 122.6, 124.5, 126.6, 126.7, 127.1, 127.4, 127.7, 128.3, 128.5, 129.4, 129.9, 130.4, 130.9, 131.0, 131.7, 133.6, 135.7, 136.6, 140.4, 159.1 ppm (2 signals missing); IR (neat) 3009, 2967, 2843, 2210, 1609 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₆H₁₆NO, 358.1226; found, 358.1229.

Synthesis of 3c

To a solution of S4 (20.3 mg, 56.8 μ mol) and sodium 1-dodecanethiolate ² (64.8 mg, 284 μ mol) in dry DMF (1 mL) was heated at 130 °C and stirred for 7.5 h. After cooling to room temperature, the reaction was quenched with 10% HCl. The mixture was extracted twice with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (EtOAc) to give 3c (15.2 mg, 78%) as dark purple solids.

3c: $R_f 0.10$ (CHCl₃); mp. >250 °C; ¹H NMR (600 MHz, DMSO-d6) δ 7.34 (dd, 1H, J = 9.0, 1.8 Hz), 7.70 (t, 1H, J = 6.6 Hz), 7.73 (td, 1H, J = 6.6, 1.2 Hz), 7.82 (t, 1H, J = 7.8 Hz), 7.96 (d, 1H, J = 7.8 Hz), 8.04 (d, 1H, J = 7.8 Hz), 8.09 (d, 1H, J = 8.4 Hz), 8.13 (d, 1H, J = 2.4 Hz), 8.69 (d, 1H, J = 7.8 Hz), 8.75 (d, 1H, J = 7.8 Hz), 8.82 (d, 1H, J = 9.0 Hz), 9.15 (dd, 1H, J = 7.8, 1.2 Hz), 10.3 (brs, 1H) ppm; ¹³C NMR (151 MHz, DMSO-d6) δ 105.0, 107.5, 118.8, 120.6, 121.7, 124.0, 126.6, 126.68, 126.74, 127.3, 127.4, 127.7, 128.1, 128.5, 128.7, 129.7, 130.3, 131.0, 131.7, 133.8, 136.0, 136.8, 140.6, 157.7 ppm (1 signal missing); IR (neat) 3248, 3075, 3048, 2214, 1609 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₅H₁₄NO, 344.1070; found, 344.1093.

Synthesis of 6

To a solution of **2b** (149 mg, 428 μ mol) and K₂CO₃ (183 mg, 1.32 mmol) in acetone (15 mL) was added dropwise MeI (80.0 μ L, 1.29 mmol) at room temperature. After refluxing for 1.5 h, the reaction was quenched with water. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give **6** (142 mg, 91%) as yellow solids.

6: $R_f 0.70$ (CHCl₃); mp. 164–166 °C; ¹H NMR (600 MHz, DMSO-d6) δ 4.05 (s, 3H), 4.28 (s, 3H), 7.42 (dd, 1H, J = 9.0, 2.4 Hz), 7.64–7.77 (m, 4H), 8.02 (d, 1H, J = 7.8 Hz), 8.13 (d, 1H, J = 9.0 Hz), 8.30 (s, 1H, J = 3.0 Hz), 8.81 (d, 1H, J = 7.2 Hz), 8.93 (d, 1H, J = 7.8 Hz), 8.99 (d, 1H, J = 9.0 Hz), 9.75 (d, 1H, J = 8.4 Hz) ppm; ¹³C NMR (151 MHz, DMSO-d6) δ 55.5, 56.8, 105.1, 117.1, 117.8, 119.8, 123.6, 123.9, 124.8, 125.78, 125.82, 126.0, 126.5, 126.8, 127.2, 128.3, 129.1, 129.8, 131.3, 131.5, 132.0, 132.1, 132.5, 135.1, 154.7, 157.8 ppm; IR (neat) 3005, 2928, 2839, 1620 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₆H₁₉O₂, 363.1380; found, 363.1375.

Synthesis of 3b

To a solution of **6** (324 mg, 893 μ mol) in dry CH₂Cl₂ (10 mL) was added dropwise BBr₃ (1.0 M in CH₂Cl₂, 1.20 mL, 1.20 mmol) at 0 °C. After stirring for 2.5 h at room temperature, the reaction was quenched with ice water. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give **3b** (158 mg, 51%) as orange solids.

3b: $R_f 0.11$ (CHCl₃); mp. 198–200 °C; ¹H NMR (600 MHz, CDCl₃) δ 4.26 (s, 3H),5.08 (brs, 1H), 7.30 (dd, 1H, J = 9.0, 3.0 Hz), 7.48 (d, 1H, J = 7.8 Hz), 7.62–7.67 (m, 2H), 7.70 (t, 1H, J = 7.8 Hz), 7.88 (d, 1H, J = 7.8 Hz), 8.14 (d, 1H, J = 9.0 Hz), 8.16 (d, 1H, J = 2.4 Hz), 8.62 (d, 1H, J = 7.2 Hz), 8.64 (d, 1H, J = 7.8 Hz), 8.90 (d, 1H, J = 9.0 Hz), 9.77 (d, 1H, J = 8.4 Hz) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 56.8, 107.8, 116.6, 117.0, 121.6, 123.1, 124.7, 125.2, 125.5, 125.7, 126.5, 126.66, 126.72, 128.8, 129.8, 130.0, 130.8, 132.2, 132.7, 133.1, 133.7, 136.4, 153.6, 154.6 ppm (1 signal missing); IR (neat) 3425, 3246, 2963, 2916, 2847, 1616 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₅H₁₇O₂, 349.1223; found, 349.1247.

Synthesis of 7

To a solution of **3b** (147 mg, 422 μ mol) and DIPEA (110 μ L, 631 μ mol) in dry CH₂Cl₂ (10 mL) was added dropwise Tf₂O (110 μ L, 655 μ mol) at 0 °C. After stirring for 2.5 h at room temperature, the reaction was quenched with 10% HCl. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give 7 (182 mg, 88%) as yellow solids.

7: $R_{\rm f}$ 0.85 (CHCl₃); mp. 150–151 °C; ¹H NMR (600 MHz, DMSO-d6) δ 4.28 (s, 3H), 7.66–7.72 (m, 2H), 7.73–7.82 (m, 3H), 8.04 (d, 1H, J = 8.4 Hz), 8.18 (d, 1H, J = 9.0 Hz), 8.80 (d, 1H, J = 7.8 Hz), 8.93 (d, 1H, J = 8.4 Hz), 9.02 (d, 1H, J = 2.4 Hz), 9.16 (d, 1H, J = 9.0 Hz), 9.75 (d, 1H, J = 7.8 Hz) ppm; ¹³C NMR (151 MHz, DMSO-d6) δ 56.7, 116.6, 116.8, 118.4 ($J_{\rm C-F}$ = 321 Hz), 118.9, 120.4, 124.0, 124.7, 125.8, 126.0, 126.9, 127.5, 127.6, 127.7, 128.5, 128.6, 129.1, 129.6, 130.2, 131.4, 131.9, 132.7, 134.2, 135.8, 147.3, 155.6 ppm; IR (neat) 2940, 2843, 1577, 1416, 1211, 1130 cm⁻¹; HRMS–ESI (m/z): [M+K]⁺ calcd for C₂₆H₁₅KO₄S, 519.0275; found, 519.0302.

Synthesis of S5

The solution of **7** (177 mg, 368 μ mol), Pd(PPh₃)₄ (43.0 mg, 37.2 μ mol) and Zn(CN)₂ (129 mg, 1.10 mmol) in dry DMF (7.5 mL) was heated to 80 °C and stirred for 1 h. After cooling to room temperature, the reaction was quenched with water. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give **S5** (122 mg, 92%) as yellow solids.

S5: $R_{\rm f}$ 0.59 (CHCl₃); mp. >250 °C; ¹H NMR (600 MHz, DMSO-d6) δ 4.31 (s, 3H), 7.69–7.80 (m, 3H), 7.82 (t, 1H, J = 7.8 Hz), 8.04 (s, 1H, J = 8.4 Hz), 8.08 (d, 1H, J = 8.4 Hz), 8.24 (d, 1H, J = 9.0 Hz), 8.85 (d, 1H, J = 7.8 Hz), 9.04 (d, 1H, J = 7.8 Hz), 9.15 (d, 1H, J = 8.4 Hz), 9.47 (s, 1H), 9.78 (d, 1H, J = 8.4 Hz) ppm; ¹³C NMR (151 MHz, DMSO-d6) δ 56.9, 108.2, 116.9, 118.8, 119.5, 124.0, 124.7, 125.9, 126.0, 126.3, 127.3, 127.67, 127.71, 128.5, 129.0, 129.4, 129.6, 129.8, 130.1, 131.3, 132.0, 133.2, 134.0, 137.4, 156.1 ppm (1 signal missing); IR (neat) 3055, 2920, 2843, 2218, 1605 cm⁻¹; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₆H₁₆NO, 358.1226; found, 358.1214.

Synthesis of 2c

To a solution of **S5** (111 mg, 311 μ mol) and sodium 1-dodecanethiolate (352 mg, 1.57 mmol) in dry DMF (6 mL) was heated at 120 °C and stirred for 4 h. After cooling to room temperature, the reaction was quenched with 10% HCl. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (EtOAc) to give **2c** (104 mg, 98%) as yellow solids.

2c: $R_{\rm f}$ 0.09 (CHCl₃); mp. >250 °C; ¹H NMR (600 MHz, DMSO-d6) δ 7.48 (d, 1H, J = 8.4 Hz), 7.69 (t, 1H, J = 7.8 Hz), 7.77 (t, 1H, J = 7.8 Hz), 7.82 (t, 1H, J = 7.8 Hz), 8.02 (d, 1H, J = 7.8 Hz), 8.05 (d, 1H, J = 9.0 Hz), 8.85 (d, 1H, J = 7.2 Hz), 9.05 (d, 1H, J = 8.4 Hz), 9.18 (d, 1H, J = 9.0 Hz), 9.49 (s, 1H), 10.14 (d, 1H, J = 7.8 Hz), 12.02 (brs, 1H) ppm; ¹³C NMR (151 MHz, DMSO-d6) δ 107.9, 116.2, 119.6, 122.1, 123.9, 124.3, 125.2, 125.7, 125.9, 127.19, 127.24, 127.6, 128.9, 129.1, 129.39, 129.43, 129.6, 131.6, 132.6, 132.7, 133.7, 137.7, 155.3 ppm (2 signals missing); IR (neat) 3310, 2943, 2862, 2226, 1701, 1605 cm⁻¹; HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₂₅H₁₄NO, 344.1070; found, 344.1077.

Synthesis of 4

To a solution of **2a** (50.5 mg, 159 μ mol) and K₂CO₃ (67.0 mg, 485 μ mol) in acetone (6.0 mL) was added dropwise MeI (30.0 μ L, 483 μ mol) at room temperature. After refluxing for 3 h, the reaction was quenched with water. The mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃) to give **4** (51.9 mg, 98%) as yellow solids.

4: $R_{\rm f}$ 0.79 (CHCl₃); mp. 190–192 °C; ¹H NMR (600 MHz,CDCl₃) δ 4.27 (s, 3H), 7.49 (d, 1H, J = 9.0 Hz), 7.64–7.75 (m, 5H), 7.89 (d, 1H, J = 7.8 Hz), 7.99 (d, 1H, J = 8.4 Hz), 8.70 (d, 1H, J = 7.2 Hz), 8.81 (t, 2H, J = 7.2 Hz), 9.00 (d, 1H, J = 8.4 Hz), 9.80 (dd, 1H, J = 7.8, 1.8 Hz) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 56.8, 116.5, 121.5, 123.0, 123.5, 124.9, 125.2, 125.4, 125.6, 125.7, 126.1, 126.3, 126.7, 127.0, 128.7, 129.4, 129.9, 130.9, 131.3, 132.1, 133.2, 135.7, 136.5, 155.0 ppm (1 signal missing); IR (neat) 3005, 2962, 2936, 2839, 1574 cm⁻¹; HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₂₅H₁₇O, 333.1274; found, 333.1261.

2. X-ray crystallographic data

CCDC2251568 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>

Table S1. Summary of crystallographic data

Empirical formula	$C_{25}H_{16}O_2$
Formula weight	348.38
Temperature/K	93.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	15.6918(3)
b/Å	5.05931(11)
c/Å	21.7368(5)
$\alpha /^{\circ}$	90
eta /°	108.000(2)
γ /°	90
Volume/Å ³	1641.22(6)
Z	4
$ ho { m calc} { m g/cm^3}$	1.410
μ /mm ⁻¹	0.699
F(000)	728.0
Crystal size/mm ³	$0.02 \ \times \ 0.02 \ \times \ 0.01$
Radiation	$CuK \alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.554 to 146.784
Index ranges	$-19 \ \le \ h \ \le \ 19, -6 \ \le \ k \ \le \ 3, -27 \ \le \ l \ \le \ 22$
Reflections collected	11768
Independent reflections	3238 [$R_{int} = 0.0333$, $R_{sigma} = 0.0362$]
Data/restraints/parameters	3238/0/247
Goodness-of-fit on F ²	1.071
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0384, wR_2 = 0.1067$
Final R indexes [all data]	$R_1 = 0.0433, wR_2 = 0.1095$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.20

Fig. S1 X-ray crystallographic structure of 2b

Fig. S2 Comparison with bond lengths of 2b from crystallographic data (left) and calculation (right, see Fig. S12).

3. UV-vis absorption spectra of 2 and 3 in CH₂Cl₂ under acidic conditions

The UV-vis spectra of **2** and **3** in CH₂Cl₂ was unchanged under acidic conditions (left, blue line) with the addition of an excess amount of trifluoroacetic acid (TFA) compared to neutral conditions (right, black line). The spectra of **2a**, **2b**, **2c**, **3a**, **3b**, and **3c** are shown in Figs. S3-S8, respectively.

Fig. S3 UV-vis absorption spectra of 2a (5.0 × 10⁻⁵ M) at 296 K, added with TFA (left) or DBU (right).

Fig. S4 UV-vis absorption spectra of 2b (5.0×10^{-5} M) at 296 K, added with TFA (left) or DBU (right).

Fig. S5 UV-vis absorption spectra of 2c (5.0 × 10⁻⁵M) at 296 K, added with TFA (left) or DBU (right).

Fig. S6 UV-vis absorption spectra of 3a (5.0 × 10⁻⁵ M) at 296 K, added with TFA (left) or DBU (right).

Fig. S7 UV-vis absorption spectra of 3b $(5.0 \times 10^{-5} \text{ M})$ at 296 K, added with TFA (left) or DBU (right).

Fig. S8 UV-vis absorption spectra of 3c (5.0 × 10⁻⁵M) at 296 K, added with TFA (left) or DBU (right).

4. Solvatochromic properties of 2c and 3c in EtOH

The effect of solvent on halochromism was investigated for compounds 2c and 3c. CH₂Cl₂ as a nonpolar solvent, dimethylsulfoxide (DMSO) as an aprotic polar solvent, and EtOH as a protic polar solvent were selected (Fig. S9). The chromic properties (UV-vis spectra) of 2c and 3c in CH₂Cl₂ and DMSO were depicted in the main text. The chromic properties of 2c and 3c in EtOH were similar to those in DMSO.

Fig. S9 UV-vis absorption spectra of **2c** and **3c** $(5.0 \times 10^{-5} \text{M})$ in EtOH, CH₂Cl₂ or DMSO at 296 K, added with TFA or DBU. (a) 2c in EtOH, (b) **3c** in EtOH, (c) **2c** in CH₂Cl₂, (d) **3c** in CH₂Cl₂, (e) **2c** in DMSO, (d) **3c** in DMSO.

	Compound	$\lambda_{Abs} \text{ [nm]} (\varepsilon \text{ [10}^3 \text{ L/(mol cm)]})$
2.	Neutral form (no additive)	443 (5.60)
20	Anionic form (in the presence of DBU) ^b	455 (17.3)
2.	Neutral form	488 (2.58)
30	Anionic form	680 (4.96)

Table S2. Photophysical properties of hydroxydibenzofluoranthenes 2c and 3c in EtOH.^a

a) Absorption spectra was recorded in solution at room temperature at $c = 5.0 \times 10^{-5}$ M. b) Each hydroxydibenzofluoranthene (anionic form) was studied in the presence of DBU (for 2c: 5.0 eq.; 3c: 40 eq.)

Table S3. Photophysical properties of hydroxydibenzofluoranthenes 2c and 3c in DMSO.^a

	Compound	$\lambda_{\text{Abs}} \text{ [nm]} (\varepsilon \text{ [10}^3 \text{ L/(mol cm)]})$
) a	Neutral form (no additive)	471 (3.14), 503 (3.48)
20	Anionic form (in the presence of DBU) ^b	503 (21.1)
2.0	Neutral form	421 (4.42), 492 (2.66)
30	Anionic form	680 (7.22)

a) Absorption spectra was recorded in solution at room temperature at $c = 5.0 \times 10^{-5}$ M. b) Each hydroxydibenzofluoranthene (anionic form) was studied in the presence of DBU (for 2c: 1.0 eq.; 3c: 150 eq.)

5. HOMA Calculation

Harmonic Oscillator Model of Aromaticity (HOMA) ³ values for **2b** was calculated from a following equation:

$$HOMA = 1 - \frac{1}{n} \{\alpha_{CC} \sum [(R(CC)_{opt} - R_i)]^2$$

where *n* is the number of bonds taken into summation, α is an empirical constant, R_{opt} is an optimal bond length, R_i is an experimental bond length from X-ray crystallographic structure. For HOMA, $\alpha_{CC} = 257.7$, $R(CC)_{opt} = 1.388$ Å were used.

Table S4. HOMA values for 2b

Ring	А	В	С	D	Е	F
HOMA	0.846	0.506	0.862	-0.0328	0.885	0.807

6. Computational results

All the calculations were performed using Gaussian 16 program.³ Electronic transitions were simulated by timedependent DFT (TD-DFT) calculations at the B3LYP/CPCM(DCM)/6-31+G(d,p) level of theory for the structure optimized at the B3LYP/CPCM(DCM)/6-31+G(d,p) level of theory. NICS values were calculated using the standard GIAO (GIAO=NMR) at the level of B3LYP/6-31+G(d,p) for the structure optimized at the B3LYP/6-31+G(d,p) theoretical level.

6-1. Frontier molecular orbitals and energy levels of 2b and 3b

Fig. S10 Calculated frontier molecular orbitals and energy levels of 2b (neutral, anion) and 3b (neutral, anion) at the B3LYP/6-31+G(d,p)-CPCM(DCM).

6-2. TD-DFT calculations

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.7350	453.33	0.0920	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69246 \right)$
2 3.1955	2 1055	288.00	0.2430	$H-1 \rightarrow L(0.67573)$
	3.1955	388.00		$H \rightarrow L+1 (0.16702)$
				$H-2 \rightarrow L(0.63426)$
3	3.5506	349.20	0.1494	H-1 \rightarrow L (0.12719)
				$H \rightarrow L+1 (-0.25744)$

Table S5. Major theoretical electronic transitions of 2a (neutral).

Table S6. Major theoretical electronic transitions of 2a (anion).

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.6916	460.64	0.2392	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69029 \right)$
2 2 0 7 0 1	405.40	0.1072	H-1 \rightarrow L (0.64837)	
2	2 3.0581	405.42	0.1073	$H \rightarrow L+1 (-0.25335)$
3	2 2242	384.54	0.1755	$H-1 \rightarrow L(0.24434)$
	3.2242			$H \rightarrow L+1 (0.64787)$

Table S7. Major theoretical electronic transitions of 2b (neutral).

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.5942	477.93	0.1133	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69523 \right)$
2 3.207	2 2070	286.40	0.2274	H–1 → L (0.67714)
	3.2079	386.49	0.2274	$H \rightarrow L+1 (-0.22317)$
				$H-2 \rightarrow L(0.45751)$
3	3.4950	354.75	0.2374	H-1 \rightarrow L (0.20340)
				$H \rightarrow L+1 (0.48061)$

Table S8. Major theoretical electronic transitions of 2b (anion).

-				
Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.6069	475.60	0.2245	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69253 \right)$
2 3.0125	2 0125	411.56	0.0484	H-1 \rightarrow L (0.56199)
	3.0123	411.50		$H \rightarrow L+1 (-0.41699)$
3 3.	2 1 2 2 0	411 56	0.0494	$H-1 \rightarrow L(0.41074)$
	5.1250	411.50	0.0484	$H \rightarrow L+1 (0.56026)$

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.7470	451.34	0.1319	$\mathrm{H} \rightarrow \mathrm{L} \left(0.68950 \right)$
2 3.1460	2 1460	204.10	0 2122	H-1 \rightarrow L (0.67675)
	394.10	0.3123	$H \rightarrow L+1 (0.15874)$	
3 3.5131			0.1795	$H-2 \rightarrow L(0.58354)$
	2 5 1 2 1	252.02		H-1 \rightarrow L (0.14905)
	5.5151	552.92		$H \rightarrow L+1 (-0.29864)$
				$H \rightarrow L+2 (-0.17114)$

Table S9. Major theoretical electronic transitions of 2c (neutral).

Table S10. Major theoretical electronic transitions of 2c (anion).

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.6422	469.25	0.4327	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69146 \right)$
2 2.97	2 0708	416.08	0.0665	H-1 \rightarrow L (0.65007)
	2.9798			$H \rightarrow L+1 (-0.24816)$
				H-1 \rightarrow L (0.24310)
3	3.1481	393.84	0.1867	$H \rightarrow L+1 (0.63015)$
				$H \rightarrow L+2 (-0.15109)$

Table S11. Major theoretical electronic transitions of 3a (neutral).

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.5635	483.65	0.0912	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69633 \right)$
				$H-2 \rightarrow L(0.11089)$
2	3.2232	384.66	0.1817	H-1 \rightarrow L (0.63200)
				$H \rightarrow L+1 (0.27733)$
				$H-2 \rightarrow L(0.43514)$
3	3.5218	352.04	0.3411	H-1 \rightarrow L (-0.27657)
				$H \rightarrow L+1 (0.46801)$

Table S12. Wajor theoretical electronic transitions of 5a (among	Table 8	S12.	Major	theoretical	electronic	transitions	of 3a	(anion)
--	---------	------	-------	-------------	------------	-------------	--------------	---------

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	1.9012	652.15	0.2027	$\mathrm{H} \rightarrow \mathrm{L} \left(0.70014 \right)$
2	2.9292	423.27	0.0088	$H-2 \rightarrow L (-0.26954)$ $H \rightarrow L+1 (0.64752)$
3	3.0910	401.11	0.0000	H–1 → L (0.70127)

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.5884	479.01	0.1098	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69431 \right)$
2	2 1547	202.01	0.2550	H-1 \rightarrow L (0.66952)
2	3.1347	393.01	0.2339	$H \rightarrow L+1 (0.18404)$
				$H-2 \rightarrow L(0.42991)$
3	3.4694	357.37	0.1949	H-1 \rightarrow L (-0.16862)
				$H \rightarrow L+1 (0.51965)$

Table S13. Major theoretical electronic transitions of 3b (neutral).

Table S14. Major theoretical electronic transitions of 3b (anion).

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	1.8902	655.93	0.1877	$\mathrm{H} \rightarrow \mathrm{L} \left(0.70123 \right)$
				$H-2 \rightarrow L(0.11956)$
2	2.9583	419.10	0.0027	H-1 \rightarrow L (-0.32687)
				$H \rightarrow L+1 (0.21909)$
				$H-1 \rightarrow L(0.57851)$
3	3.1089	398.80	0.2693	$H \rightarrow L+1 (0.31021)$
				$H \rightarrow L+2 (0.21909)$

Table S15. Major theoretical electronic transitions of 3c (neutral).

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	2.2528	550.35	0.0936	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69573 \right)$
2	2.0551	410.56	0 1942	$H-1 \rightarrow L(0.67867)$
2	2.9551	419.30	0.1842	$H \rightarrow L+1 (-0.16235)$
2	2 2007	276 79	0 1120	$H-2 \rightarrow L(0.68838)$
3	3.2907	3/0./8	0.1120	$H \rightarrow L+2 (-0.11204)$

Table S16. Major th	eoretical e	lectronic t	ransitions	of 3c ((anion)).
---------------------	-------------	-------------	------------	----------------	---------	----

Excited states	Energy (eV)	Wavelength (nm)	Oscillator strength (f)	description
1	1.7179	721.71	0.2833	$\mathrm{H} \rightarrow \mathrm{L} \left(0.69659 \right)$
				$H-2 \rightarrow L(-0.13334)$
2	2.7672	448.05	0.0233	H-1 \rightarrow L (0.48521)
				$H \rightarrow L+1 (0.48180)$
				$H-2 \rightarrow L(0.61892)$
3	2.8245	438.96	0.0009	H-1 \rightarrow L (0.30295)
				$H \rightarrow L+1 (-0.13193)$

6-3. NICS calculations

	······································):				
Ring	А	В	С	D	Ε	F
NICS (1)	-10.01	-6.77	-9.74	+0.25	-8.85	-7.94
NICS (0)	-7.68	-4.51	-7.91	+3.63	-7.13	-7.15
NICS (-1)	-9.33	-7.12	-10.22	+0.22	-9.03	-7.74
Sable S18. NICS	values of 2a (a	nion).				
Ring	А	В	С	D	Е	F
NICS (1)	-9.07	-6.58	-9.98	-6.02	-9.96	-3.07
NICS (0)	-7.25	-4.09	-7.91	-4.71	-8.83	-0.17
NICS (-1)	-9.07	-6.58	-9.98	-6.02	-9.96	-3.07
able S19. NICS	values of 2b (n	eutral).				
Ring	А	В	С	D	E	F
NICS (1)	-10.08	-6.24	-9.76	+0.32	-8.82	-7.87
NICS (0)	-8.95	-3.98	-7.91	+3.67	-7.15	-7.10
NICS (-1)	-9.51	-6.65	-10.18	+0.31	-9.07	-7.66
able S20. NICS	values of 2b (a	nion).				
Ring	А	В	С	D	Е	F
NICS (1)	-9.53	-6.27	-9.92	+6.00	-9.97	-3.13
NICS (0)	-8.92	-3.75	-7.85	+4.75	-8.83	-6.25
NICS (-1)	-9.53	-6.27	-9.92	+6.00	-9.97	-3.13
able S21. NICS	values of 2c (n	eutral).				
Ring	А	В	С	D	Е	F
NICS (1)	-9.92	-6.74	-9.93	-0.26	-8.84	-7.97
NICS (0)	-8.24	-4.34	-8.07	+3.09	-7.13	-7.12
		- ^ 2				

 Table S17. NICS values of 2a (neutral).

	· · · · · · · · · · · · · · · · · · ·	,				
Ring	А	В	С	D	Е	F
NICS (1)	-8.61	-6.30	-10.12	-6.23	-10.04	-2.84
NICS (0)	-7.40	-3.69	-8.02	-4.85	-8.85	+0.24
NICS (-1)	-8.61	-6.30	-10.12	-6.23	-10.04	-2.84
Table S23. NICS	values of 3a (n	eutral).				
Ring	А	В	С	D	Е	F
NICS (1)	9.54	-6.82	-9.69	+2.23	-8.50	-8.35
NICS (0)	8.94	-4.56	-7.72	+6.44	-6.55	-6.41
NICS (-1)	9.54	-6.82	-9.69	+2.23	-8.50	-8.35
Table S24. NICS	values of 3a (a	nion).				
Ring	А	В	С	D	Е	F
NICS (1)	-5.63	-4.70	-8.81	+3.39	-8.35	-6.53
NICS (0)	-2.92	-2.51	-6.91	+7.62	-6.50	-4.46
NICS (-1)	-5.63	-4.70	-8.81	+3.39	-8.35	-6.53
Table S25. NICS	values of 3b (r	neutral).				
Ring	А	В	С	D	Е	F
NICS (1)	-9.80	-6.43	-9.62	+0.46	-8.83	-8.23
NICS (0)	-8.85	-4.13	-7.85	+3.77	-7.14	-7.12
NICS (-1)	-9.16	-6.81	-10.20	+0.39	-9.03	-7.87
Table S26. NICS	values of 3b (a	nion).				
Ring	А	В	С	D	Е	F
NICS (1)	-5.91	-4.59	-8.56	+2.41	-8.55	-7.13
NICS (0)	-2.86	-2.47	-6.81	+5.98	-6.93	-6.04

Table S22. NICS values of 2c (anion).

Ring	А	В	С	D	E	F
NICS (1)	-9.59	-6.21	-9.32	+3.20	-7.79	-8.56
NICS (0)	-8.58	-4.01	-7.74	+7.83	-5.61	-6.91
NICS (-1)	-9.05	-6.69	-10.27	+3.33	-7.75	-7.98
Table S28. NICS	values of 3c (at	nion).				
Ring	A	В	С	D	E	F
NICS (1)	-4.94	-3.70	-8.47	+3.86	-7.43	-5.20
NICS (0)	-1.50	-1.59	-6.82	+8.39	-5.51	-3.43

-9.18

+4.02

-7.66

-4.95

 Table S27. NICS values of 3c (neutral).

-4.43

-4.33

NICS (-1)

6-4. Calculated bond lengths

Fig. S11 Calculated bond lengths of neutral (left) and anionic (right) form for 2a.

Fig. S12 Calculated bond lengths of neutral (left) and anionic (right) form for 2b.

Fig. S13 Calculated bond lengths of neutral (left) and anionic (right) form for 2c.

Fig. S14 Calculated bond lengths of neutral (left) and anionic (right) form for 3a.

Fig. S15 Calculated bond lengths of neutral (left) and anionic (right) form for 3b.

Fig. S16 Calculated bond lengths of neutral (left) and anionic (right) form for 3c.

Optimized structure for 2a (neutral, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	3.93805200	-2.67873700	0.21707800
С	3.81931300	-1.30217800	0.13588800
С	2.55702300	-0.66356500	0.04683800
С	1.38298300	-1.47885900	0.04278900
С	1.53510000	-2.88675900	0.14037900
С	2.78165400	-3.47995700	0.22284800
С	2.42935200	0.78731600	-0.04320700
С	1.13328400	1.40250700	-0.04909300
С	-0.04020400	0.55838100	0.01871000
С	0.09297700	-0.83962400	-0.01916100
С	3.57171700	1.61991700	-0.14305000
С	3.46992400	2.99527600	-0.25477200
С	2.19937100	3.59632000	-0.27930100
С	1.06272100	2.81391300	-0.17988700
С	-2.17260200	-0.36717400	-0.03717700
С	-3.56727800	-0.54502700	-0.06140800
С	-4.05955600	-1.87036200	-0.19410500
С	-3.16829500	-2.92710500	-0.28729800
С	-1.76393200	-2.72966100	-0.23733200
С	-1.24866600	-1.44498100	-0.09702900
С	-1.49368400	0.88282700	0.06220800
С	-2.31580200	2.00000200	0.22063500
С	-3.73889300	1.85238800	0.20030900
С	-4.35848300	0.63288500	0.05567800
Н	4.92130600	-3.13417300	0.28705000
0	-1.80735100	3.24855800	0.42080900
Н	4.72617100	-0.71036400	0.15196200
Н	0.66066900	-3.51905500	0.17750300
Н	2.86297400	-4.55993000	0.30266800
Н	4.56102100	1.17957300	-0.14662900
Н	4.36808700	3.60071800	-0.33323600
Н	2.10488400	4.67358500	-0.38188300
Н	0.09502200	3.28883400	-0.20578800
Н	-5.13096900	-2.04812800	-0.22509500
Н	-3.54579300	-3.93909200	-0.39854100
Н	-1.13347100	-3.60499600	-0.32478500
Н	-4.34211800	2.75032200	0.31076800

Н	-5.44275100	0.57057800	0.04314000
Н	-2.52268500	3.89720400	0.49315900

Optimized structure for 2a (neutral, B3LYP/6-31+G(d,p))

С	3.93448600	-2.67786700	0.22492100
С	3.81670900	-1.30292900	0.13156100
С	2.55601900	-0.66304500	0.04283600
С	1.38238600	-1.47739700	0.04922200
С	1.53277900	-2.88337300	0.16360200
С	2.77795600	-3.47724300	0.24650000
С	2.42875300	0.78661900	-0.05241900
С	1.13389400	1.40291200	-0.04753100
С	-0.03773200	0.55862400	0.02319400
С	0.09439300	-0.83754200	-0.01641300
С	3.56958800	1.61812200	-0.16448400
С	3.46767900	2.99266600	-0.27377000
С	2.19824500	3.59446100	-0.28223400
С	1.06258300	2.81378700	-0.17310800
С	-2.17211300	-0.36673900	-0.03639100
С	-3.56572200	-0.54598300	-0.06414100
С	-4.05610200	-1.87125900	-0.20782700
С	-3.16415500	-2.92417000	-0.30984800
С	-1.75994800	-2.72448000	-0.25587800
С	-1.24684200	-1.44272900	-0.10074600
С	-1.49208100	0.88221000	0.06845300
С	-2.31444300	1.99544800	0.23061300
С	-3.73623100	1.84746100	0.20880700
С	-4.35720800	0.62943000	0.05829700
Н	4.91766600	-3.13384100	0.29493600
0	-1.81070100	3.25002700	0.43443900
Н	4.72343400	-0.71064300	0.14049600
Н	0.65562800	-3.51095000	0.21917300
Н	2.85888000	-4.55625400	0.34077000
Н	4.55792300	1.17559600	-0.18050500
Н	4.36540600	3.59771000	-0.36213500
Н	2.10358500	4.67219400	-0.38059900
Н	0.09571300	3.28973200	-0.18770100
Н	-5.12737000	-2.05077000	-0.24176600

Н	-3.54012800	-3.93567300	-0.43207000
Н	-1.12499900	-3.59551400	-0.35533200
Н	-4.34024600	2.74624600	0.32063700
Н	-5.44174200	0.56726000	0.04359000
Н	-2.53550500	3.88279400	0.52569600

Optimized structure for 2a (anion, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	-3.92868100	-2.69284300	-0.03226800
С	-3.80515900	-1.31283900	-0.01641700
С	-2.54329000	-0.66899000	-0.00402500
С	-1.36230400	-1.47870100	-0.00740700
С	-1.52192600	-2.89079300	-0.02733900
С	-2.76971500	-3.48973600	-0.03891600
С	-2.41984800	0.78762600	0.00990800
С	-1.12559400	1.40471800	0.00471000
С	0.06160200	0.57236500	-0.00550800
С	-0.07020700	-0.83972000	0.00237000
С	-3.56276600	1.62561200	0.02943300
С	-3.46156400	3.00723500	0.04262800
С	-2.19112400	3.60966100	0.03692400
С	-1.05162600	2.82225300	0.01846000
С	2.18033900	-0.32577800	0.00348100
С	3.58100300	-0.50086400	0.00835700
С	4.08693000	-1.81502600	0.03054300
С	3.20796800	-2.90079500	0.04752500
С	1.80986700	-2.71836300	0.03969000
С	1.26931700	-1.42580100	0.01457800
С	1.49130900	0.91805200	-0.01174400
С	2.28213900	2.12528200	-0.03669400
С	3.74339000	1.91956100	-0.03059200
С	4.36412600	0.70370000	-0.00916800
0	1.85974500	3.32664500	-0.06507400
Н	-4.91348000	-3.15086100	-0.04214600
Н	-4.71296400	-0.72126000	-0.01601500
Н	-0.64816200	-3.52515800	-0.03931700
Н	-2.84858900	-4.57332000	-0.05532400
Н	-4.55374200	1.18764600	0.03620500
Н	-4.36190700	3.61547800	0.05792400

Н	-2.09963000	4.69280000	0.04739500
Н	-0.06393900	3.27379300	0.01170700
Н	5.16190500	-1.98123200	0.03587300
Н	3.60449400	-3.91223700	0.06745200
Н	1.19117600	-3.60726500	0.05748200
Н	4.33096400	2.83455500	-0.04566300
Н	5.45080700	0.63900600	-0.00614200

Optimized structure for 2a (anion, B3LYP/6-31+G(d,p))

С	3.93786700	-2.68351400	0.00000400	
С	3.80557900	-1.30374700	0.00000000	
С	2.54387600	-0.66331800	-0.00000100	
С	1.36374000	-1.47697700	0.00000200	
С	1.53237300	-2.88882300	0.00000800	
С	2.78151700	-3.48354500	0.00000900	
С	2.41524000	0.79286700	-0.00000300	
С	1.11882900	1.40446800	0.00000000	
С	-0.06513100	0.56878000	0.00000200	
С	0.07185300	-0.84647300	0.00000000	
С	3.55363500	1.63590200	-0.00000700	
С	3.44546700	3.01679600	-0.00000700	
С	2.17220600	3.61212900	-0.00000400	
С	1.03554900	2.82142300	0.00000000	
С	-2.17565700	-0.33093100	0.00000000	
С	-3.57639500	-0.50656000	-0.00000100	
С	-4.08106500	-1.81837000	-0.00000600	
С	-3.20285200	-2.90692900	-0.00001000	
С	-1.80651400	-2.72458800	-0.00000800	
С	-1.26427400	-1.43241500	-0.00000200	
С	-1.48732700	0.91052500	0.00000300	
С	-2.27634500	2.12654800	0.00000500	
С	-3.74293900	1.91589400	0.00000500	
С	-4.35954300	0.70084000	0.00000200	
0	-1.86117400	3.31830200	0.00000800	
Н	4.92571100	-3.13715200	0.00000400	
Н	4.70989400	-0.70573200	-0.00000300	
Н	0.65835800	-3.52334900	0.00001400	
Н	2.86344500	-4.56805300	0.00001400	

Н	4.54678200	1.20094500	-0.00001000	
Н	4.34402900	3.62997700	-0.00001000	
Н	2.07278900	4.69513700	-0.00000400	
Н	0.04480000	3.26985800	0.00000200	
Н	-5.15719200	-1.98396600	-0.00000700	
Н	-3.60122300	-3.91887100	-0.00001400	
Н	-1.18559100	-3.61300000	-0.00001300	
Н	-4.32314200	2.83557100	0.00000700	
Н	-5.44739300	0.63233600	0.00000200	

Optimized structure for 2b (neutral, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	4.10015700	-0.81289400	0.09644200
С	3.45281600	0.41548600	0.04321700
С	2.04734300	0.51488000	-0.01510800
С	1.27202200	-0.68738400	-0.01729700
С	1.96170700	-1.92093700	0.05242800
С	3.34311500	-2.00100100	0.10579900
С	1.36898800	1.80762300	-0.07770800
С	-0.06372000	1.87638900	-0.05704800
С	-0.82426300	0.64593100	0.01056300
С	-0.16494700	-0.59221800	-0.04853000
С	2.10268500	3.01492700	-0.17631900
С	1.47997900	4.24810500	-0.26079100
С	0.07622200	4.31495100	-0.25745600
С	-0.67152000	3.15454100	-0.15944700
С	-2.43855400	-1.02800000	-0.03081000
С	-3.65741400	-1.72912300	-0.03993300
С	-3.60291700	-3.14121100	-0.18075900
С	-2.37510800	-3.77282600	-0.29653700
С	-1.15449400	-3.04975500	-0.26308600
С	-1.17193800	-1.66669600	-0.11557000
С	-2.29038800	0.38665600	0.07421800
С	-3.47691600	1.09951600	0.25195600
С	-4.73397500	0.41581800	0.24682800
С	-4.83975800	-0.94741900	0.09840500
0	-3.48809000	2.44798600	0.45593000
0	5.46663800	-0.77310800	0.14801600
С	6.18712700	-2.00640100	0.21271900

Н	4.07851000	1.29885900	0.05743800	
Н	1.40629900	-2.84614000	0.09050400	
Н	3.81762100	-2.97274800	0.16509300	
Н	3.18513800	2.98684500	-0.20004200	
Н	2.07584100	5.15265000	-0.33892500	
Н	-0.42668400	5.27452900	-0.33740100	
Н	-1.74770800	3.22236300	-0.16371500	
Н	-4.52324100	-3.71842900	-0.20029600	
Н	-2.33559500	-4.85161600	-0.41365900	
Н	-0.23698000	-3.61436800	-0.36799600	
Н	-5.63375600	1.01354100	0.37190600	
Н	-5.81679300	-1.42177800	0.09791900	
Н	-4.39831400	2.76679400	0.54216600	
Н	7.24134900	-1.73069000	0.24074700	
Н	5.93297600	-2.56763700	1.11886700	
Н	5.99546000	-2.62493400	-0.67122400	

Optimized structure for 2b (neutral, B3LYP/6-31+G(d,p))

С	4.09586200	-0.81730800	0.10113900
С	3.45108700	0.41058800	0.03844500
С	2.04695900	0.51237400	-0.02094100
С	1.27044200	-0.68867800	-0.01626200
С	1.95654200	-1.92194200	0.06675200
С	3.33774800	-2.00355200	0.12185600
С	1.37033700	1.80490100	-0.08790900
С	-0.06124800	1.87623900	-0.05828700
С	-0.82112800	0.64679400	0.01267600
С	-0.16505300	-0.59066500	-0.05023800
С	2.10441900	3.00975000	-0.19736000
С	1.48303800	4.24256900	-0.28126100
С	0.08038800	4.31150600	-0.26549500
С	-0.66832100	3.15371800	-0.15829600
С	-2.43928700	-1.02553900	-0.03113700
С	-3.65749400	-1.72581900	-0.04149500
С	-3.60392100	-3.13694100	-0.19447300
С	-2.37821700	-3.76642600	-0.32175000
С	-1.15751600	-3.04300300	-0.28592400
С	-1.17316100	-1.66354000	-0.12318900

С	-2.28755000	0.38813200	0.08070700
С	-3.47117800	1.09886800	0.26732600
С	-4.72795600	0.41680300	0.26282800
С	-4.83763600	-0.94516600	0.10644400
0	-3.48433400	2.45026600	0.47886600
0	5.46345700	-0.77666300	0.15269300
С	6.18020700	-2.00217600	0.22917900
Н	4.08075500	1.29081500	0.04898800
Н	1.39596600	-2.84364700	0.11945600
Н	3.81140000	-2.97528000	0.19332500
Н	3.18651600	2.97795100	-0.23100300
Н	2.07943400	5.14616700	-0.36820000
Н	-0.42176500	5.27174900	-0.34348200
Н	-1.74386900	3.22352300	-0.15384600
Н	-4.52469600	-3.71383700	-0.21538900
Н	-2.33958200	-4.84413800	-0.45053400
Н	-0.23861600	-3.60311300	-0.40431900
Н	-5.62829100	1.01480000	0.39354600
Н	-5.81544500	-1.41860200	0.10577800
Н	-4.39503700	2.75543500	0.58577300
Н	7.23548100	-1.72732500	0.25458600
Н	5.92909700	-2.55861100	1.14110300
Н	5.99148600	-2.63360700	-0.64827100

Optimized structure for 2b (anion, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	-4.09019100	-0.81995100	0.00000100
С	-3.43997700	0.40737000	0.00000000
С	-2.03228400	0.50919400	0.00000000
С	-1.25171500	-0.69145000	0.00000000
С	-1.94866400	-1.92374300	0.00000100
С	-3.33342100	-2.00590100	0.00000100
С	-1.35610900	1.80681700	0.00000000
С	0.07606500	1.87615300	0.00000000
С	0.85254200	0.65129300	0.00000000
С	0.18843400	-0.59932100	0.00000000
С	-2.08840800	3.01943400	0.00000000
С	-1.46342000	4.25613400	-0.00000100
С	-0.05903600	4.32192100	-0.00000100

С	0.68968100	3.15617800	-0.00000100
С	2.46374300	-0.99248100	0.00000000
С	3.68820400	-1.69513200	0.00000000
С	3.64671000	-3.10310600	0.00000000
С	2.41650100	-3.76542600	0.00000000
С	1.19715300	-3.05694400	0.00000000
С	1.19815500	-1.65606900	0.00000000
С	2.30741400	0.42011200	0.00000000
С	3.50139200	1.22911100	-0.00000100
С	4.77026900	0.47583400	-0.00000100
С	4.87528400	-0.88577500	0.00000000
0	3.57508500	2.50175200	-0.00000100
0	-5.46458100	-0.77973300	0.00000100
С	-6.17908500	-2.01493600	0.00000200
Н	-4.06499000	1.29189600	0.00000000
Н	-1.39520100	-2.85108700	0.00000100
Н	-3.80760100	-2.98006100	0.00000100
Н	-3.17178700	2.99588200	0.00000000
Н	-2.06002100	5.16431600	-0.00000100
Н	0.44280200	5.28625800	-0.00000100
Н	1.77536400	3.19228500	-0.00000100
Н	4.57382800	-3.67208000	0.00000000
Н	2.39171800	-4.85175100	0.00000000
Н	0.28272700	-3.63785200	0.00000000
Н	5.66499800	1.09394400	-0.00000100
Н	5.85332800	-1.36384900	0.00000000
Н	-7.23614400	-1.74699100	0.00000200
Н	-5.95423700	-2.60647300	-0.89531200
Н	-5.95423700	-2.60647300	0.89531500

Optimized structure for 2b (anion, B3LYP/6-31+G(d,p))

С	4.08954100	-0.81541000	-0.00000100
С	3.43790400	0.40870100	0.00000200
С	2.03066200	0.50949700	0.00000200
С	1.25087100	-0.69356600	-0.00000100
С	1.95212500	-1.92302900	-0.00000700
С	3.33809300	-2.00221600	-0.00000700
С	1.35216200	1.80533600	0.00000300

С	-0.07975700	1.87096400	0.00000000
С	-0.85399900	0.64557100	-0.00000100
С	-0.18636900	-0.60700000	0.00000000
С	2.08096500	3.01914800	0.00000700
С	1.45175600	4.25326800	0.00000600
С	0.04748400	4.31380000	0.00000300
С	-0.69958800	3.14780300	-0.00000100
С	-2.45947100	-0.99342300	-0.00000100
С	-3.68494500	-1.69449700	0.00000000
С	-3.64581600	-3.09954100	0.00000500
С	-2.41633200	-3.76700900	0.00000900
С	-1.19741700	-3.06161300	0.00000800
С	-1.19409600	-1.66042100	0.00000200
С	-2.30056600	0.41613400	-0.00000300
С	-3.49482400	1.23606600	-0.00000500
С	-4.76831900	0.47829600	-0.00000500
С	-4.87182000	-0.88055600	-0.00000300
0	-3.56862900	2.49642100	-0.00000700
0	5.47427800	-0.77038700	0.00000000
С	6.17718700	-1.99707700	-0.00000400
Н	4.06259200	1.29352800	0.00000500
Н	1.39599900	-2.84905300	-0.00001300
Н	3.81382600	-2.97659900	-0.00001200
Н	3.16499200	2.99665600	0.00001000
Н	2.04621100	5.16423300	0.00000900
Н	-0.45988800	5.27581800	0.00000200
Н	-1.78675100	3.18194200	-0.00000300
Н	-4.57537200	-3.66652100	0.00000600
Н	-2.39527800	-4.85438600	0.00001400
Н	-0.28210000	-3.64275600	0.00001300
Н	-5.65715700	1.10482100	-0.00000700
Н	-5.85012500	-1.36126100	-0.00000200
Н	7.23844700	-1.73778800	-0.00000200
Н	5.95341900	-2.59614100	0.89412200
Н	5.95342100	-2.59613400	-0.89413500

Optimized structure for 2c (neutral, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	3.57567000	-0.00141600	0.06586700
С	2.18689900	0.23216300	-0.01025500
С	1.30411100	-0.89394400	-0.01441700
С	1.86371800	-2.19706300	0.06786300
С	3.22344500	-2.40705800	0.13705900
С	1.64129400	1.58368700	-0.08802300
С	0.22228200	1.78809900	-0.07116100
С	-0.64890300	0.63547600	0.00768300
С	-0.11348900	-0.66417200	-0.05671400
С	2.48700600	2.71380700	-0.20068800
С	1.98114600	3.99746600	-0.30448000
С	0.58991700	4.19681900	-0.30858300
С	-0.26450100	3.11479400	-0.19566900
С	-2.41492800	-0.87336300	-0.03455100
С	-3.69779500	-1.44908400	-0.04185800
С	-3.78530400	-2.85778200	-0.19485800
С	-2.62682300	-3.60789700	-0.32149900
С	-1.34035500	-3.01129400	-0.28642200
С	-1.21965600	-1.63420800	-0.12789100
С	-2.12879200	0.51865100	0.08133600
С	-3.23644800	1.34590600	0.28309600
С	-4.55459900	0.79090100	0.27740200
С	-4.79413600	-0.55379100	0.11236000
0	-3.10554200	2.68051200	0.51239800
С	5.51143900	-1.48765100	0.21152000
Ν	6.66323500	-1.65373100	0.27464100
Н	4.27179400	0.82636300	0.08385500
Н	1.21439200	-3.05825900	0.10359600
Н	3.62432800	-3.41225600	0.20551100
Н	3.56225000	2.58732800	-0.22329900
Н	2.65909700	4.84085700	-0.39377000
Н	0.18094200	5.19813800	-0.40653600
Н	-1.32943900	3.28313600	-0.20644300
Н	-4.75869100	-3.33987900	-0.21502200
Н	-2.69564100	-4.68399000	-0.44808500
Н	-0.48450300	-3.66413100	-0.40019500
Н	-5.39058100	1.47218500	0.41596900
Н	-5.81342000	-0.92882600	0.11306400
Н

-3.97510200 3.09079000

Optimized structure for 2c (neutral, B3LYP/6-31+G(d,p))

С	4.09714400	-1.29147600	0.13103200
С	3.57545500	-0.00327200	0.05612600
С	2.18621300	0.23274900	-0.01374400
С	1.30334800	-0.89165100	-0.00725900
С	1.86258600	-2.19309500	0.08829600
С	3.22262800	-2.40269600	0.15272700
С	1.64047300	1.58333000	-0.09136000
С	0.22204300	1.78966500	-0.06598700
С	-0.64833900	0.63740700	0.01016000
С	-0.11369600	-0.66032500	-0.05150600
С	2.48583700	2.71256800	-0.20700700
С	1.98157600	3.99647600	-0.30176900
С	0.59146200	4.19756000	-0.29182600
С	-0.26337100	3.11718400	-0.17793600
С	-2.41582000	-0.87383300	-0.03112200
С	-3.69638800	-1.45298500	-0.04003500
С	-3.78033600	-2.86195200	-0.19541500
С	-2.62160500	-3.60725100	-0.32638100
С	-1.33691100	-3.00616200	-0.29081000
С	-1.21880100	-1.63152700	-0.12498100
С	-2.13041300	0.51864000	0.08187000
С	-3.23955400	1.34167600	0.27452300
С	-4.55526800	0.78351800	0.27246700
С	-4.79409200	-0.56171500	0.11270800
0	-3.11910700	2.68448100	0.48960500
С	5.51557600	-1.48829600	0.20155300
Ν	6.66689000	-1.65429600	0.25778900
Н	4.27283800	0.82380800	0.06472800
Н	1.21011900	-3.05140600	0.14270900
Н	3.62555800	-3.40657500	0.23226800
Н	3.56062700	2.58303200	-0.23825700
Н	2.66007800	4.83937500	-0.39335900
Н	0.18312400	5.20019700	-0.37963100
Н	-1.32747000	3.28765400	-0.17811800
Н	-4.75254400	-3.34685000	-0.21565300

Н	-2.68773900	-4.68309600	-0.45766600
Н	-0.47771000	-3.65333400	-0.41315500
Н	-5.39402200	1.46394500	0.40763200
Н	-5.81293500	-0.93870000	0.11416900
Н	-3.99378100	3.07895700	0.60702300

Optimized structure for 2c (anion, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	-4.08679300	-1.30250900	-0.00000300
С	-3.55965300	-0.00936500	0.00000000
С	-2.17268100	0.22798600	0.00000100
С	-1.27999600	-0.89640800	-0.00000100
С	-1.84998100	-2.20141400	-0.00000500
С	-3.21070100	-2.41460400	-0.00000600
С	-1.62867100	1.58591900	0.00000300
С	-0.21101100	1.79261600	0.00000100
С	0.67849400	0.64652400	-0.00000100
С	0.13470000	-0.66951700	0.00000100
С	-2.47528200	2.72107900	0.00000700
С	-1.97111200	4.01141200	0.00000800
С	-0.58021900	4.21251900	0.00000600
С	0.27743800	3.12484800	0.00000200
С	2.43308000	-0.83967500	0.00000000
С	3.72097700	-1.41570800	0.00000000
С	3.82094500	-2.81967800	0.00000500
С	2.66277800	-3.60157900	0.00000800
С	1.37996200	-3.01915400	0.00000700
С	1.24214400	-1.62414700	0.00000200
С	2.13868700	0.55390200	-0.00000300
С	3.25245900	1.47709200	-0.00000600
С	4.58893100	0.85132400	-0.00000600
С	4.82340400	-0.49266900	-0.00000300
0	3.20021900	2.74623900	-0.00001000
С	-5.50217500	-1.49828500	-0.00000400
Ν	-6.65711800	-1.66531500	-0.00000400
Н	-4.25670400	0.81841100	0.00000200
Н	-1.20280100	-3.06475100	-0.00000900
Н	-3.61054200	-3.42307900	-0.00001000
Н	-3.55152300	2.59683800	0.00000900

Н	-2.65230900	4.85769700	0.00001100
Н	-0.17391300	5.22053600	0.00000700
Н	1.35388100	3.26625500	0.00000000
Н	4.80023200	-3.29276500	0.00000500
Н	2.74651100	-4.68476400	0.00001200
Н	0.52936100	-3.68957400	0.00001100
Н	5.41878100	1.55382300	-0.00000800
Н	5.84273500	-0.87438800	-0.00000300

Optimized structure for 2c (anion, B3LYP/6-31+G(d,p))

С	4.09594400	-1.29351400	0.00000700
С	3.55724300	-0.00364400	-0.00000200
С	2.17138500	0.23160100	-0.00000300
С	1.27914300	-0.89569700	0.00000300
С	1.85805800	-2.19802600	0.00001700
С	3.21924900	-2.40553300	0.00001900
С	1.62209400	1.58788900	-0.00000800
С	0.20412300	1.79002600	-0.00000100
С	-0.68209700	0.64206600	0.00000300
С	-0.13232300	-0.67567000	-0.00000100
С	2.46347900	2.72608600	-0.00001800
С	1.95364400	4.01390900	-0.00001900
С	0.56238700	4.20860100	-0.00001000
С	-0.29215300	3.11912900	-0.00000100
С	-2.42875800	-0.84399000	0.00000100
С	-3.71637900	-1.42030300	-0.00000100
С	-3.81554400	-2.82183500	-0.00001300
С	-2.65746000	-3.60602800	-0.00002400
С	-1.37627100	-3.02405100	-0.00002100
С	-1.23729200	-1.62925600	-0.00000600
С	-2.13415000	0.54776400	0.00000700
С	-3.24916000	1.47902300	0.00001500
С	-4.58915000	0.84709600	0.00001500
С	-4.81976600	-0.49481500	0.00000700
0	-3.20058400	2.73748600	0.00002200
С	5.51190800	-1.48564400	0.00000700
Ν	6.66762900	-1.65164900	0.00000700
Н	4.25080200	0.82772000	-0.00000800

Н	1.21013100	-3.06140100	0.00003100
Н	3.62414100	-3.41280000	0.00003000
Н	3.54067900	2.60423300	-0.00002500
Н	2.63225900	4.86357800	-0.00002700
Н	0.14936000	5.21437300	-0.00001000
Н	-1.37034900	3.25725700	0.00000600
Н	-4.79583700	-3.29495000	-0.00001500
Н	-2.74268200	-4.68990800	-0.00003600
Н	-0.52329300	-3.69261000	-0.00003400
Н	-5.41384800	1.55537700	0.00002100
Н	-5.83901900	-0.88030400	0.00000700

Optimized structure for 3a (neutral, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	-3.86417800	-1.91478600	0.00001300
С	-3.57568600	-0.56030700	0.00001000
С	-2.24276700	-0.09010000	0.00000600
С	-1.17601800	-1.04636800	0.00000500
С	-1.51162900	-2.42364700	0.00000700
С	-2.82157400	-2.86130800	0.00001100
С	-1.93670500	1.33838600	0.00000200
С	-0.57357600	1.77886900	-0.00000400
С	0.47608000	0.79400100	-0.00000500
С	0.18236000	-0.57496300	0.00000200
С	-2.95902100	2.31937100	0.00000400
С	-2.67333300	3.67368600	0.00000000
С	-1.33405700	4.10533500	-0.00000600
С	-0.31219900	3.17379900	-0.00000800
С	2.49003200	-0.35362400	-0.00000500
С	3.86301100	-0.64850300	-0.00000700
С	4.22225100	-2.02749500	0.00000000
С	3.23113700	-2.99325900	0.00001000
С	1.84537400	-2.66398300	0.00001100
С	1.45926700	-1.33140300	0.00000300
С	1.95005800	0.96112200	-0.00001100
С	2.84995900	2.01709200	-0.00002000
С	4.24935200	1.74808100	-0.00002300
С	4.75754500	0.46139700	-0.00001700
0	-5.18433900	-2.28453900	0.00001800

Н	2.54139300	3.05495000	-0.00002500
Н	-4.41316600	0.12558600	0.00001100
Н	-0.72881300	-3.16772600	0.00000400
Н	-3.04405400	-3.92498200	0.00001100
Н	-3.99915900	2.01708600	0.00000800
Н	-3.48255300	4.39764300	0.00000100
Н	-1.10018300	5.16580000	-0.00000900
Н	0.70911500	3.52550400	-0.00001200
Н	5.26982700	-2.31572600	-0.00000100
Н	3.50937500	-4.04300200	0.00001600
Н	1.13785900	-3.48360400	0.00002000
Н	4.93356000	2.59146100	-0.00003000
Н	5.83103100	0.29387300	-0.00001900
Н	-5.26362400	-3.24892100	0.00002000

Optimized structure for 3a (neutral, B3LYP/6-31+G(d,p))

3.86304000	-1.91399400	0.00011200
3.57415700	-0.56087800	0.00005100
2.24222500	-0.09079100	0.00000300
1.17514900	-1.04637900	0.00000600
1.51029900	-2.42256700	0.00010200
2.82051100	-2.85911700	0.00015000
1.93637200	1.33692400	-0.00004500
0.57411300	1.77727300	-0.00003300
-0.47520700	0.79311200	0.00002000
-0.18246300	-0.57485900	-0.00003500
2.95798100	2.31727100	-0.00010700
2.67350100	3.67088400	-0.00016600
1.33516600	4.10252200	-0.00018300
0.31391900	3.17160200	-0.00012200
-2.49014300	-0.35313400	0.00000500
-3.86247700	-0.64708600	0.00001200
-4.22195200	-2.02519900	-0.00014300
-3.23221400	-2.99089700	-0.00029400
-1.84709300	-2.66170100	-0.00027800
-1.45960200	-1.33056000	-0.00010300
-1.94898600	0.96056900	0.00010100
-2.84820900	2.01569300	0.00027800
	3.86304000 3.57415700 2.24222500 1.17514900 1.51029900 2.82051100 1.93637200 0.57411300 -0.47520700 -0.18246300 2.95798100 2.67350100 1.33516600 0.31391900 -2.49014300 -3.86247700 -4.22195200 -3.23221400 -1.84709300 -1.45960200 -1.94898600 -2.84820900	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-4.24723300	1.74838100	0.00030900
С	-4.75568800	0.46296500	0.00017000
0	5.18397800	-2.28338900	0.00014900
Н	-2.53677800	3.05277600	0.00041300
Н	4.41361500	0.12209600	0.00004900
Н	0.72546100	-3.16460200	0.00017100
Н	3.04311700	-3.92388300	0.00023200
Н	3.99752000	2.01298500	-0.00011500
Н	3.48311400	4.39457700	-0.00021300
Н	1.10179600	5.16327700	-0.00025500
Н	-0.70792800	3.52177000	-0.00017300
Н	-5.26987800	-2.31308000	-0.00015000
Н	-3.51168500	-4.04056200	-0.00042900
Н	-1.13826700	-3.48050800	-0.00042700
Н	-4.93143100	2.59207100	0.00044600
Н	-5.82954800	0.29641600	0.00018900
Н	5.25807900	-3.24643700	0.00020400

Optimized structure for 3a (anion, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	-3.92334800	-2.04316700	0.00000300
С	-3.59607200	-0.65398900	0.00000200
С	-2.28240600	-0.15775500	0.00000100
С	-1.17933900	-1.08634900	0.00000100
С	-1.49512600	-2.47629000	0.00000300
С	-2.78838800	-2.94045600	0.00000400
С	-1.99389900	1.28214000	0.00000000
С	-0.63845700	1.75342200	-0.00000100
С	0.43246300	0.79477900	0.00000000
С	0.15668900	-0.58510800	0.00000000
С	-3.03298600	2.24441100	-0.00000100
С	-2.78052900	3.60709700	-0.00000200
С	-1.45098100	4.06744200	-0.00000200
С	-0.40999500	3.15583300	-0.00000200
С	2.46696400	-0.31790900	-0.00000100
С	3.84563900	-0.58540600	-0.00000100
С	4.23101500	-1.95720700	-0.00000200
С	3.25895200	-2.94262600	-0.00000300
С	1.86714600	-2.64039100	-0.00000200

С	1.45473200	-1.31540600	-0.00000100
С	1.89643000	0.98849300	0.00000000
С	2.78062100	2.06026900	0.00000000
С	4.18580200	1.81669400	0.00000000
С	4.72173100	0.54183800	-0.00000100
0	-5.13164600	-2.48029700	0.00000300
Н	-4.44198000	0.02502700	0.00000100
Н	-0.69285100	-3.20209300	0.00000400
Н	-2.98650100	-4.01015100	0.00000600
Н	-4.06527900	1.91541500	-0.00000100
Н	-3.60674300	4.31227800	-0.00000200
Н	-1.23826100	5.13292300	-0.00000300
Н	0.60439900	3.52918300	-0.00000200
Н	5.28436300	-2.22499400	-0.00000200
Н	3.55823300	-3.98693200	-0.00000300
Н	1.17355000	-3.47168200	-0.00000300
Н	2.45266500	3.09247600	0.00000000
Н	4.85327300	2.67414600	0.00000000
Н	5.79834300	0.39462700	-0.00000100

Optimized structure for 3a (anion, B3LYP/6-31+G(d,p))

С	3.92305900	-2.05323600	0.00000600
С	3.58950000	-0.65312900	0.00000700
С	2.28586600	-0.15829800	0.00000200
С	1.17334700	-1.08825100	-0.00000200
С	1.48901800	-2.48302500	-0.00000400
С	2.77560800	-2.95001700	0.00000000
С	1.99293900	1.28401900	0.00000000
С	0.63744600	1.75646400	-0.00000200
С	-0.43296300	0.80041200	0.00000000
С	-0.15059500	-0.58599200	-0.00000300
С	3.03062700	2.24365700	-0.00000200
С	2.78387200	3.60840000	-0.00000600
С	1.45631400	4.07012400	-0.00000900
С	0.41392300	3.15953000	-0.00000700
С	-2.46384800	-0.31745500	-0.00000100
С	-3.84281400	-0.58292300	0.00000100
С	-4.22760400	-1.95353400	-0.00000400

С	-3.25650300	-2.94023500	-0.00000800	
С	-1.86623800	-2.63963400	-0.00000800	
С	-1.45212300	-1.31477300	-0.00000500	
С	-1.88612100	0.99051800	0.00000300	
С	-2.77618500	2.06236900	0.00001100	
С	-4.17898900	1.81780600	0.00001300	
С	-4.71996600	0.54498400	0.00000700	
0	5.11125500	-2.48546100	0.00001000	
Н	4.44343600	0.01513700	0.00001100	
Н	0.68175600	-3.20383000	-0.00000800	
Н	2.98158100	-4.01803500	-0.00000100	
Н	4.06043000	1.90655900	-0.00000100	
Н	3.61331900	4.31099600	-0.00000700	
Н	1.24385500	5.13679600	-0.00001300	
Н	-0.60088000	3.53296300	-0.00001200	
Н	-5.28225000	-2.22033400	-0.00000300	
Н	-3.55805900	-3.98496400	-0.00001100	
Н	-1.16894500	-3.46771400	-0.00001100	
Н	-2.44559200	3.09386800	0.00001800	
Н	-4.84674400	2.67673900	0.00001900	
Н	-5.79737400	0.39882400	0.00000800	

Optimized structure for 3b (neutral, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	4.56613000	-1.06231900	0.24517900
С	3.93711500	0.16638000	0.13689100
С	2.53167500	0.26660500	0.01970100
С	1.75193100	-0.93127600	0.02114700
С	2.43087800	-2.16948700	0.14738800
С	3.80639600	-2.24709000	0.25368500
С	1.86203900	1.55724100	-0.11081300
С	0.42900900	1.63303900	-0.12916900
С	-0.34001300	0.40974200	-0.03266700
С	0.31767900	-0.83175500	-0.05586900
С	2.60521000	2.75591100	-0.24544600
С	1.99210900	3.98611000	-0.40489600
С	0.58883400	4.05870100	-0.44525200
С	-0.16763600	2.90793700	-0.31175300
С	-1.95687900	-1.25751300	-0.08397900

С	-3.17784100	-1.95518900	-0.10910800
С	-3.12575100	-3.36909900	-0.23966700
С	-1.89865500	-4.00563600	-0.32679500
С	-0.67541400	-3.28636200	-0.27172400
С	-0.69048800	-1.90291900	-0.13506300
С	-1.80815500	0.15434500	0.01265200
С	-2.99432300	0.88164000	0.18684300
С	-4.25309600	0.19942700	0.15894400
С	-4.35475100	-1.16673300	0.00576100
0	5.93389300	-1.07256400	0.35468900
0	-2.94212300	2.22096100	0.40615000
С	-4.14286900	2.97901600	0.60007100
Н	4.56397200	1.04875100	0.15626800
Н	1.86881100	-3.09043000	0.19040300
Н	4.29461500	-3.21252700	0.35649900
Н	3.68772900	2.72145800	-0.24233300
Н	2.59481500	4.88331500	-0.51052000
Н	0.09398400	5.01519600	-0.58801000
Н	-1.24339700	2.97561200	-0.34816000
Н	-4.04772200	-3.94313100	-0.27325800
Н	-1.86046300	-5.08530700	-0.43615700
Н	0.24210000	-3.85516400	-0.35308300
Н	-5.16244100	0.77632900	0.26650700
Н	-5.33415600	-1.63645200	-0.01241100
Н	6.25594700	-1.98142500	0.43512800
Н	-3.81063000	4.00548000	0.75448200
Н	-4.78815200	2.93247100	-0.28271900
Н	-4.68798000	2.63435800	1.48429000

Optimized structure for 3b (neutral, B3LYP/6-31+G(d,p))

С	4.55877400	-1.07033300	0.26064900
С	3.93432900	0.15802900	0.13768900
С	2.53064500	0.26202400	0.01674200
С	1.74738000	-0.93311600	0.02647600
С	2.41969600	-2.17122200	0.17304700
С	3.79456100	-2.25105700	0.28444500
С	1.86484200	1.55275300	-0.12275300
С	0.43283100	1.63297100	-0.13886200

С	-0.33801700	0.41239800	-0.03827100
С	0.31523500	-0.82919500	-0.05895500
С	2.61084700	2.74739800	-0.26596700
С	2.00168900	3.97772900	-0.43061100
С	0.59943700	4.05425600	-0.46740900
С	-0.16019700	2.90771200	-0.32597200
С	-1.95999700	-1.25195700	-0.09063100
С	-3.18080800	-1.94784200	-0.11628600
С	-3.13008700	-3.36130400	-0.25507900
С	-1.90530800	-3.99709900	-0.35047300
С	-0.68148900	-3.27839400	-0.29259800
С	-0.69458000	-1.89813100	-0.14401100
С	-1.80724800	0.15909500	0.00870200
С	-2.99055700	0.88527500	0.18738400
С	-4.24974200	0.20623100	0.16342200
С	-4.35496900	-1.15923200	0.00564200
0	5.92705900	-1.08285000	0.37179200
0	-2.93716100	2.22970500	0.40338800
С	-4.12548800	2.97080900	0.66680900
Н	4.56642500	1.03634700	0.15081900
Н	1.85026300	-3.08699600	0.23344500
Н	4.27871800	-3.21773900	0.40540100
Н	3.69318500	2.70749800	-0.26617400
Н	2.60688800	4.87255600	-0.54338000
Н	0.10759800	5.01176000	-0.61507600
Н	-1.23529000	2.97756400	-0.36175100
Н	-4.05288000	-3.93436300	-0.28985200
Н	-1.86854800	-5.07606600	-0.46903000
Н	0.23746800	-3.84371900	-0.38476700
Н	-5.15825600	0.78450200	0.27394100
Н	-5.33539300	-1.62759800	-0.01190700
Н	6.24135400	-1.99140600	0.46434800
Н	-3.79370300	3.99486700	0.84290100
Н	-4.80952800	2.95382300	-0.18967700
Н	-4.63816000	2.59735000	1.56055100

Optimized structure for 3b (anion, B3LYP/CPCM(DCM)/6-31+G(d,p))

C 4.66075900 -1.13866800 0.2703410	С	4.66075900	-1.13866800	0.27034100
------------------------------------	---	------------	-------------	------------

С	3.97486400	0.10656100	0.15873700	
С	2.57941100	0.22474000	0.03343400	
С	1.76864400	-0.96186800	0.02528400	
С	2.44177200	-2.21144600	0.15016900	
С	3.80905100	-2.30688900	0.26438300	
С	1.91447300	1.52438100	-0.10801600	
С	0.48048000	1.62126300	-0.13101800	
С	-0.30609500	0.41182400	-0.03167300	
С	0.34527600	-0.83886000	-0.05161300	
С	2.67013100	2.71442900	-0.24961900	
С	2.07758400	3.95488100	-0.41766000	
С	0.67509000	4.04698700	-0.46108500	
С	-0.09602300	2.90580900	-0.32376300	
С	-1.94244800	-1.23976600	-0.08594100	
С	-3.17218800	-1.92248200	-0.11420800	
С	-3.13495100	-3.33755900	-0.24821900	
С	-1.91533700	-3.98715900	-0.33463400	
С	-0.68300400	-3.28140800	-0.27526500	
С	-0.68206300	-1.89905700	-0.13524300	
С	-1.77411800	0.17212800	0.01276000	
С	-2.95347300	0.90848700	0.18984900	
С	-4.22007100	0.24302900	0.15830900	
С	-4.34167200	-1.12205400	0.00038400	
0	5.93966200	-1.23242400	0.38088200	
0	-2.88416600	2.25238300	0.41882800	
С	-4.07599500	3.01795900	0.61292500	
Н	4.60262300	0.99092500	0.18376600	
Н	1.86440600	-3.12536800	0.18783600	
Н	4.28193300	-3.28115600	0.36960500	
Н	3.75204700	2.65979300	-0.24442400	
Н	2.69452800	4.84229400	-0.52847400	
Н	0.19237100	5.00924700	-0.61076400	
Н	-1.17123500	2.98771400	-0.36414700	
Н	-4.06355800	-3.90123200	-0.28456800	
Н	-1.88904300	-5.06729300	-0.44625700	
Н	0.22952400	-3.85826200	-0.35436300	
Н	-5.12219100	0.83164400	0.26695200	
Н	-5.32671900	-1.57985900	-0.02134300	

Н	-3.73752100	4.04167500	0.77498400
Н	-4.72159700	2.98406600	-0.27115900
Н	-4.63010200	2.67457000	1.49297300

Optimized structure for 3b (anion, B3LYP/6-31+G(d,p))

С	4.65285000	-1.15498000	0.30909500
С	3.96278700	0.10078700	0.18301100
С	2.57989800	0.22276600	0.03990400
С	1.75804700	-0.96630800	0.02802400
С	2.42603500	-2.22208000	0.17206900
С	3.78560900	-2.32444900	0.30291600
С	1.91437600	1.52296600	-0.12407000
С	0.48106600	1.62552900	-0.15378700
С	-0.30802000	0.42080000	-0.04613200
С	0.34843000	-0.83515500	-0.06284500
С	2.67436100	2.70543400	-0.28203600
С	2.09072800	3.94785900	-0.46899800
С	0.68961800	4.04550600	-0.51729500
С	-0.08724700	2.90995000	-0.36749800
С	-1.94370900	-1.23380800	-0.09693600
С	-3.17583400	-1.91166600	-0.12609900
С	-3.13943300	-3.32615000	-0.27366100
С	-1.92206500	-3.97539200	-0.37417700
С	-0.68793000	-3.27286000	-0.31304300
С	-0.68455000	-1.89387700	-0.15356300
С	-1.76436000	0.18092000	0.00640000
С	-2.94603100	0.91226400	0.19544700
С	-4.21084200	0.25434500	0.16734500
С	-4.34378800	-1.11155100	-0.00082400
0	5.90876900	-1.25241200	0.43066500
0	-2.87062500	2.26705800	0.43122900
С	-4.04054000	3.00006700	0.73963900
Н	4.60263600	0.97568100	0.21480900
Н	1.83777900	-3.12931000	0.21969100
Н	4.26164200	-3.29464800	0.42745800
Н	3.75568300	2.63800300	-0.27560000
Н	2.71414300	4.83003800	-0.59286400
Н	0.21046700	5.00802400	-0.68418900

Н	-1.16154800	2.99599000	-0.41765900
Н	-4.06997200	-3.88843400	-0.31071600
Н	-1.89868900	-5.05514100	-0.49934900
Н	0.22687600	-3.84353400	-0.40838400
Н	-5.11090000	0.84677800	0.28345900
Н	-5.33105600	-1.56597000	-0.02245300
Н	-3.70428600	4.01967100	0.94029100
Н	-4.75046800	3.01569000	-0.09896900
Н	-4.54419800	2.60449100	1.63200300

Optimized structure for 3c (neutral, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	4.32923500	-1.40999600	0.31195100
С	3.81333600	-0.12882700	0.20048200
С	2.42889800	0.09319000	0.03471600
С	1.54929300	-1.03696700	-0.00039800
С	2.11382800	-2.33218300	0.12109200
С	3.47212600	-2.52755200	0.27065000
С	1.88162100	1.43630300	-0.13143800
С	0.46371600	1.62934300	-0.20428400
С	-0.40026800	0.48306000	-0.06619600
С	0.13470200	-0.81125800	-0.09234900
С	2.72249500	2.56715600	-0.27179400
С	2.21224100	3.83159700	-0.51008100
С	0.82361200	4.00805700	-0.64711500
С	-0.02472700	2.92554100	-0.50200700
С	-2.17387200	-1.01659900	-0.10954600
С	-3.46143100	-1.57400900	-0.11791800
С	-3.55560400	-2.98716300	-0.27725900
С	-2.40212300	-3.74021200	-0.38721400
С	-1.10458000	-3.15446800	-0.32981700
С	-0.98076600	-1.78292600	-0.17969600
С	-1.87809800	0.37152200	0.02362300
С	-2.97350700	1.20475000	0.28631300
С	-4.30445900	0.65908700	0.27390900
С	-4.55333400	-0.67670500	0.05656500
0	5.68255400	-1.53807600	0.46939300
С	-2.90465700	2.57937900	0.68497800
Ν	-2.95252600	3.68111400	1.06150300

Н	4.51271100	0.69595100	0.25123300
Н	1.47267700	-3.20139200	0.12501600
Н	3.87470200	-3.53201200	0.36927600
Н	3.79791700	2.45024000	-0.21801400
Н	2.88597100	4.67600100	-0.61884700
Н	0.41562100	4.98669100	-0.88125300
Н	-1.08304000	3.07481800	-0.65260000
Н	-4.53094900	-3.46377700	-0.30802000
Н	-2.47592100	-4.81619600	-0.51177100
Н	-0.25127900	-3.81496800	-0.41569100
Н	-5.12953200	1.33892000	0.45695200
Н	-5.57400500	-1.04660300	0.05001100
Н	5.92631800	-2.47158100	0.54504200

Optimized structure for 3c (neutral, B3LYP/6-31+G(d,p))

С	4.33678800	-1.39641800	0.29799600
С	3.81761400	-0.11866700	0.17915400
С	2.43187600	0.10067100	0.02589000
С	1.55401000	-1.03015300	0.00688800
С	2.11983800	-2.32199500	0.14345400
С	3.47998600	-2.51357100	0.28241400
С	1.87972700	1.44148900	-0.13434400
С	0.46084400	1.63374000	-0.18845000
С	-0.40083800	0.48417700	-0.05678400
С	0.13922600	-0.80710300	-0.08409800
С	2.71768700	2.57287800	-0.27772900
С	2.20439200	3.83936000	-0.49192600
С	0.81457500	4.01807900	-0.59758500
С	-0.03100300	2.93418800	-0.45562500
С	-2.16729400	-1.02720400	-0.09762400
С	-3.44936900	-1.59579600	-0.10887000
С	-3.53265100	-3.00800700	-0.27354200
С	-2.37464100	-3.75151400	-0.39297300
С	-1.08327300	-3.15504200	-0.33676000
С	-0.96910000	-1.78444700	-0.17305200
С	-1.88115700	0.36431900	0.03123900
С	-2.98358000	1.19135200	0.28047300
С	-4.30881600	0.63112600	0.27151200

С	-4.54779800	-0.70679800	0.06372700
0	5.69323500	-1.52001400	0.44072800
С	-2.94195900	2.57863300	0.64063600
Ν	-3.02515000	3.69168600	0.97362800
Н	4.51813900	0.70529600	0.21800000
Н	1.47651200	-3.18940200	0.17359500
Н	3.88332500	-3.51732900	0.39533400
Н	3.79370100	2.45378200	-0.24265500
Н	2.87660100	4.68520500	-0.60071100
Н	0.39976200	5.00071600	-0.80024700
Н	-1.09136100	3.09163700	-0.57338400
Н	-4.50464300	-3.49221900	-0.30410700
Н	-2.44139600	-4.82727100	-0.52621900
Н	-0.22278300	-3.80436900	-0.43854500
Н	-5.13768300	1.30846100	0.44772100
Н	-5.56595700	-1.08481700	0.05858400
Н	5.93545500	-2.45116800	0.52729300

Optimized structure for 3c (anion, B3LYP/CPCM(DCM)/6-31+G(d,p))

С	4.39943900	-1.51965600	0.34659300
С	3.83667600	-0.20940700	0.22978700
С	2.47188700	0.03739100	0.04885000
С	1.55358200	-1.07683700	-0.00261400
С	2.10473700	-2.38962500	0.11523900
С	3.44799900	-2.61102000	0.27801500
С	1.93781000	1.39361500	-0.12975600
С	0.52314700	1.61567600	-0.20140800
С	-0.36665900	0.48850100	-0.06527900
С	0.16043200	-0.82276400	-0.09358300
С	2.79888500	2.50637600	-0.28227800
С	2.31893500	3.78389600	-0.52434500
С	0.93403400	3.98948900	-0.65291400
С	0.06424000	2.92332800	-0.50115200
С	-2.15560000	-0.99052800	-0.10271100
С	-3.45241500	-1.52327200	-0.11606100
С	-3.57117400	-2.93258000	-0.27840300
С	-2.43122100	-3.70833200	-0.39294800
С	-1.12520500	-3.14657700	-0.33754700

С	-0.97744700	-1.77656900	-0.17975200
С	-1.82858000	0.39948900	0.02811900
С	-2.91865800	1.25113500	0.28509800
С	-4.26073300	0.72352000	0.26660800
С	-4.53456300	-0.60513500	0.05236700
0	5.65155700	-1.72799100	0.50715800
С	-2.83192600	2.61930400	0.68835800
Ν	-2.86452300	3.72198700	1.06943700
Н	4.54391400	0.61062100	0.29106300
Н	1.44251100	-3.24489100	0.10699900
Н	3.83086900	-3.62400600	0.37785800
Н	3.87146300	2.36069400	-0.23451100
Н	3.01215500	4.61175400	-0.64172300
Н	0.54390800	4.97593000	-0.88732800
Н	-0.99211000	3.09511100	-0.64577600
Н	-4.55538300	-3.39154900	-0.30975000
Н	-2.52617500	-4.78248900	-0.52182500
Н	-0.28193300	-3.81860700	-0.43156800
Н	-5.07460700	1.41948400	0.44259200
Н	-5.56112900	-0.95854000	0.04095600

Optimized structure for 3c (anion, B3LYP/6-31+G(d,p))

С	4.42005000	-1.49155300	0.32605100
С	3.83991500	-0.17651800	0.20539900
С	2.48034400	0.06093300	0.04277600
С	1.56191400	-1.06223200	0.01011600
С	2.12234700	-2.37548000	0.14266100
С	3.46291900	-2.59142200	0.28945800
С	1.92855400	1.41405800	-0.13063200
С	0.51209800	1.62902100	-0.17720800
С	-0.37260800	0.49438300	-0.05064600
С	0.17741900	-0.81734200	-0.08051300
С	2.78117800	2.52908500	-0.29203600
С	2.29433100	3.80955200	-0.50505100
С	0.90754900	4.01301800	-0.58861100
С	0.04484600	2.94107900	-0.43667900
С	-2.13529600	-1.01454000	-0.08177100
С	-3.42361900	-1.56704600	-0.10576000

С	-3.52107400	-2.97470100	-0.27391300
С	-2.37065500	-3.73594900	-0.39761700
С	-1.07660200	-3.15591700	-0.34294000
С	-0.94862200	-1.78430600	-0.16600000
С	-1.82209300	0.38720200	0.04035700
С	-2.93619000	1.22701300	0.27209200
С	-4.26583600	0.66937900	0.24935900
С	-4.52287300	-0.66360000	0.05014100
0	5.65728800	-1.68989600	0.46367600
С	-2.90428100	2.60845600	0.63255100
Ν	-3.00708300	3.72381700	0.96430400
Н	4.55155100	0.63992500	0.25392100
Н	1.45760000	-3.22888400	0.16651100
Н	3.85974200	-3.59710100	0.40494700
Н	3.85430600	2.38028600	-0.26996300
Н	2.98415100	4.64069100	-0.62673500
Н	0.50403800	5.00335300	-0.78279800
Н	-1.01496900	3.11874800	-0.53631000
Н	-4.50018100	-3.44673800	-0.30785700
Н	-2.45251100	-4.81085600	-0.53748200
Н	-0.21971100	-3.80724200	-0.45771900
Н	-5.09045700	1.35773200	0.40936300
Н	-5.54456900	-1.03289900	0.03510300

Input geometry for NICS(1) calculation of 2a (neutral)

С	3.93450000	-2.67790000	0.22490000
С	3.81670000	-1.30290000	0.13160000
С	2.55600000	-0.66300000	0.04280000
С	1.38240000	-1.47740000	0.04920000
С	1.53280000	-2.88340000	0.16360000
С	2.77800000	-3.47720000	0.24650000
С	2.42880000	0.78660000	-0.05240000
С	1.13390000	1.40290000	-0.04750000
С	-0.03770000	0.55860000	0.02320000
С	0.09440000	-0.83750000	-0.01640000
С	3.56960000	1.61810000	-0.16450000
С	3.46770000	2.99270000	-0.27380000
С	2.19820000	3.59450000	-0.28220000

С	1.06260000	2.81380000	-0.17310000
С	-2.17210000	-0.36670000	-0.03640000
С	-3.56570000	-0.54600000	-0.06410000
С	-4.05610000	-1.87130000	-0.20780000
С	-3.16420000	-2.92420000	-0.30980000
С	-1.75990000	-2.72450000	-0.25590000
С	-1.24680000	-1.44270000	-0.10070000
С	-1.49210000	0.88220000	0.06850000
С	-2.31440000	1.99540000	0.23060000
С	-3.73620000	1.84750000	0.20880000
С	-4.35720000	0.62940000	0.05830000
Н	4.91770000	-3.13380000	0.29490000
0	-1.81070000	3.25000000	0.43440000
Н	4.72340000	-0.71060000	0.14050000
Н	0.65560000	-3.51090000	0.21920000
Н	2.85890000	-4.55630000	0.34080000
Н	4.55790000	1.17560000	-0.18050000
Н	4.36540000	3.59770000	-0.36210000
Н	2.10360000	4.67220000	-0.38060000
Н	0.09570000	3.28970000	-0.18770000
Н	-5.12740000	-2.05080000	-0.24180000
Н	-3.54010000	-3.93570000	-0.43210000
Н	-1.12500000	-3.59550000	-0.35530000
Н	-4.34020000	2.74620000	0.32060000
Н	-5.44170000	0.56730000	0.04360000
Н	-2.53550000	3.88280000	0.52570000
Bq	2.66670000	-2.08030000	0.14310000
Bq	2.63090000	-2.01250000	1.14020000
Bq	2.70260000	-2.14810000	-0.85400000
Bq	1.25960000	-0.03830000	-0.00020000
Bq	2.31010000	2.20140000	-0.16560000
Bq	-0.97090000	-0.24120000	-0.01240000
Bq	-2.66080000	-1.64590000	-0.16250000
Bq	-2.93960000	0.74030000	0.07760000
Bq	1.27990000	-0.00370000	0.99900000
Bq	1.23940000	-0.07290000	-0.99940000
Bq	2.34650000	2.28770000	0.83000000
Bq	2.27380000	2.11520000	-1.16120000

Bq	-0.95900000	-0.16400000	-1.00930000
Bq	-0.98270000	-0.31850000	0.98460000
Bq	-2.64490000	-1.54390000	-1.15710000
Bq	-2.67670000	-1.74790000	0.83220000
Bq	-2.93550000	0.86090000	-0.91510000
Bq	-2.94370000	0.61970000	1.07030000

Input geometry for NICS(1) calculation of 2a (anion)

С	3.93790000	-2.68350000	0.00000000
С	3.80560000	-1.30370000	0.00000000
С	2.54390000	-0.66330000	0.00000000
С	1.36370000	-1.47700000	0.00000000
С	1.53240000	-2.88880000	0.00000000
С	2.78150000	-3.48350000	0.00000000
С	2.41520000	0.79290000	0.00000000
С	1.11880000	1.40450000	0.00000000
С	-0.06510000	0.56880000	0.00000000
С	0.07190000	-0.84650000	0.00000000
С	3.55360000	1.63590000	0.00000000
С	3.44550000	3.01680000	0.00000000
С	2.17220000	3.61210000	0.00000000
С	1.03550000	2.82140000	0.00000000
С	-2.17570000	-0.33090000	0.00000000
С	-3.57640000	-0.50660000	0.00000000
С	-4.08110000	-1.81840000	0.00000000
С	-3.20290000	-2.90690000	0.00000000
С	-1.80650000	-2.72460000	0.00000000
С	-1.26430000	-1.43240000	0.00000000
С	-1.48730000	0.91050000	0.00000000
С	-2.27630000	2.12650000	0.00000000
С	-3.74290000	1.91590000	0.00000000
С	-4.35950000	0.70080000	0.00000000
0	-1.86120000	3.31830000	0.00000000
Н	4.92570000	-3.13720000	0.00000000
Н	4.70990000	-0.70570000	0.00000000
Н	0.65840000	-3.52330000	0.00000000
Н	2.86340000	-4.56810000	0.00000000
Н	4.54680000	1.20090000	0.00000000

Н	4.34400000	3.63000000	0.00000000
Н	2.07280000	4.69510000	0.00000000
Н	0.04480000	3.26990000	0.00000000
Н	-5.15720000	-1.98400000	0.00000000
Н	-3.60120000	-3.91890000	0.00000000
Н	-1.18560000	-3.61300000	0.00000000
Н	-4.32310000	2.83560000	0.00000000
Н	-5.44740000	0.63230000	0.00000000
Bq	2.66080000	-2.08330000	0.00000000
Bq	1.24140000	-0.03680000	0.00000000
Bq	2.29010000	2.21390000	0.00000000
Bq	-0.98410000	-0.22610000	0.00000000
Bq	-2.68450000	-1.62000000	0.00000000
Bq	-2.93640000	0.80270000	0.00000000
Bq	2.66080000	-2.08330000	-1.00000000
Bq	2.66080000	-2.08330000	-1.00000000
Bq	2.66080000	-2.08330000	1.00000000
Bq	1.24140000	-0.03680000	-1.00000000
Bq	1.24140000	-0.03680000	1.00000000
Bq	2.29010000	2.21390000	-1.00000000
Bq	2.29010000	2.21390000	1.00000000
Bq	-0.98410000	-0.22610000	-1.00000000
Bq	-0.98410000	-0.22610000	1.00000000
Bq	-2.68450000	-1.62000000	-1.00000000
Bq	-2.68450000	-1.62000000	1.00000000
Bq	-2.93640000	0.80270000	-1.00000000
Bq	-2.93640000	0.80270000	1.00000000

Input geometry for NICS(1) calculation of 2b (neutral)

С	4.09590000	-0.81730000	0.10110000
С	3.45110000	0.41060000	0.03840000
С	2.04700000	0.51240000	-0.02090000
С	1.27040000	-0.68870000	-0.01630000
С	1.95650000	-1.92190000	0.06680000
С	3.33770000	-2.00360000	0.12190000
С	1.37030000	1.80490000	-0.08790000
С	-0.06120000	1.87620000	-0.05830000
С	-0.82110000	0.64680000	0.01270000

С	-0.16510000	-0.59070000	-0.05020000	
С	2.10440000	3.00970000	-0.19740000	
С	1.48300000	4.24260000	-0.28130000	
С	0.08040000	4.31150000	-0.26550000	
С	-0.66830000	3.15370000	-0.15830000	
С	-2.43930000	-1.02550000	-0.03110000	
С	-3.65750000	-1.72580000	-0.04150000	
С	-3.60390000	-3.13690000	-0.19450000	
С	-2.37820000	-3.76640000	-0.32170000	
С	-1.15750000	-3.04300000	-0.28590000	
С	-1.17320000	-1.66350000	-0.12320000	
С	-2.28750000	0.38810000	0.08070000	
С	-3.47120000	1.09890000	0.26730000	
С	-4.72800000	0.41680000	0.26280000	
С	-4.83760000	-0.94520000	0.10640000	
0	-3.48430000	2.45030000	0.47890000	
0	5.46350000	-0.77670000	0.15270000	
С	6.18020000	-2.00220000	0.22920000	
Н	4.08080000	1.29080000	0.04900000	
Н	1.39600000	-2.84360000	0.11950000	
Н	3.81140000	-2.97530000	0.19330000	
Н	3.18650000	2.97800000	-0.23100000	
Н	2.07940000	5.14620000	-0.36820000	
Н	-0.42180000	5.27170000	-0.34350000	
Н	-1.74390000	3.22350000	-0.15380000	
Н	-4.52470000	-3.71380000	-0.21540000	
Н	-2.33960000	-4.84410000	-0.45050000	
Н	-0.23860000	-3.60310000	-0.40430000	
Н	-5.62830000	1.01480000	0.39350000	
Н	-5.81540000	-1.41860000	0.10580000	
Н	-4.39500000	2.75540000	0.58580000	
Н	7.23550000	-1.72730000	0.25460000	
Н	5.92910000	-2.55860000	1.14110000	
Н	5.99150000	-2.63360000	-0.64830000	
Bq	2.69310000	-0.75140000	0.04850000	
Bq	0.60670000	0.59350000	-0.03680000	
Bq	0.71810000	3.06640000	-0.17480000	
Bq	-1.37720000	-0.44900000	-0.02220000	

Bq	-3.57020000	-0.29880000	0.10740000
Bq	-2.40160000	-2.39350000	-0.16630000
Bq	2.73720000	-0.78370000	-0.95000000
Bq	2.64900000	-0.71910000	1.04700000
Bq	0.57080000	0.55800000	-1.03550000
Bq	0.64270000	0.62890000	0.96190000
Bq	0.70110000	2.98510000	-1.17130000
Bq	0.73510000	3.14770000	0.82180000
Bq	-1.43410000	-0.38830000	-1.01880000
Bq	-1.32030000	-0.50960000	0.97430000
Bq	-2.44890000	-2.29660000	-1.16050000
Bq	-2.35430000	-2.49050000	0.82780000
Bq	-3.62990000	-0.18020000	-0.88370000
Bq	-3.51050000	-0.41740000	1.09860000

Input geometry for NICS(1) calculation of 2b (anion)

С	4.08950000	-0.81540000	0.00000000
С	3.43790000	0.40870000	0.00000000
С	2.03070000	0.50950000	0.00000000
С	1.25090000	-0.69360000	0.00000000
С	1.95210000	-1.92300000	0.00000000
С	3.33810000	-2.00220000	0.00000000
С	1.35220000	1.80530000	0.00000000
С	-0.07980000	1.87100000	0.00000000
С	-0.85400000	0.64560000	0.00000000
С	-0.18640000	-0.60700000	0.00000000
С	2.08100000	3.01910000	0.00000000
С	1.45180000	4.25330000	0.00000000
С	0.04750000	4.31380000	0.00000000
С	-0.69960000	3.14780000	0.00000000
С	-2.45950000	-0.99340000	0.00000000
С	-3.68490000	-1.69450000	0.00000000
С	-3.64580000	-3.09950000	0.00000000
С	-2.41630000	-3.76700000	0.00000000
С	-1.19740000	-3.06160000	0.00000000
С	-1.19410000	-1.66040000	0.00000000
С	-2.30060000	0.41610000	0.00000000
С	-3.49480000	1.23610000	0.00000000

С	-4.76830000	0.47830000	0.00000000
С	-4.87180000	-0.88060000	0.00000000
0	-3.56860000	2.49640000	0.00000000
0	5.47430000	-0.77040000	0.00000000
С	6.17720000	-1.99710000	0.00000000
Н	4.06260000	1.29350000	0.00000000
Н	1.39600000	-2.84910000	0.00000000
Н	3.81380000	-2.97660000	0.00000000
Н	3.16500000	2.99670000	0.00000000
Н	2.04620000	5.16420000	0.00000000
Н	-0.45990000	5.27580000	0.00000000
Н	-1.78680000	3.18190000	0.00000000
Н	-4.57540000	-3.66650000	0.00000000
Н	-2.39530000	-4.85440000	0.00000000
Н	-0.28210000	-3.64280000	0.00000000
Н	-5.65720000	1.10480000	0.00000000
Н	-5.85010000	-1.36130000	0.00000000
Н	7.23840000	-1.73780000	0.00000000
Н	5.95340000	-2.59610000	0.89410000
Н	5.95340000	-2.59610000	-0.89410000
Bq	2.68320000	-0.75270000	0.00000000
Bq	0.58560000	0.58850000	0.00000000
Bq	0.69220000	3.06840000	0.00000000
Bq	-1.39890000	-0.43980000	0.00000000
Bq	-2.43300000	-2.37940000	0.00000000
Bq	-3.59660000	-0.23970000	0.00000000
Bq	2.68320000	-0.75270000	1.00000000
Bq	2.68320000	-0.75270000	-1.00000000
Bq	0.58560000	0.58850000	-1.00000000
Bq	0.58560000	0.58850000	1.00000000
Bq	0.69220000	3.06840000	-1.00000000
Bq	0.69220000	3.06840000	1.00000000
Bq	-1.39890000	-0.43980000	-1.00000000
Bq	-1.39890000	-0.43980000	1.00000000
Bq	-2.43300000	-2.37940000	-1.00000000
Bq	-2.43300000	-2.37940000	1.00000000
Bq	-3.59660000	-0.23970000	-1.00000000
Bq	-3.59660000	-0.23970000	1.00000000

Input geometry for NICS(1) calculation of 2c (neutral)

С	4.09710000	-1.29150000	0.13100000
С	3.57550000	-0.00330000	0.05610000
С	2.18620000	0.23270000	-0.01370000
С	1.30330000	-0.89170000	-0.00730000
С	1.86260000	-2.19310000	0.08830000
С	3.22260000	-2.40270000	0.15270000
С	1.64050000	1.58330000	-0.09140000
С	0.22200000	1.78970000	-0.06600000
С	-0.64830000	0.63740000	0.01020000
С	-0.11370000	-0.66030000	-0.05150000
С	2.48580000	2.71260000	-0.20700000
С	1.98160000	3.99650000	-0.30180000
С	0.59150000	4.19760000	-0.29180000
С	-0.26340000	3.11720000	-0.17790000
С	-2.41580000	-0.87380000	-0.03110000
С	-3.69640000	-1.45300000	-0.04000000
С	-3.78030000	-2.86200000	-0.19540000
С	-2.62160000	-3.60730000	-0.32640000
С	-1.33690000	-3.00620000	-0.29080000
С	-1.21880000	-1.63150000	-0.12500000
С	-2.13040000	0.51860000	0.08190000
С	-3.23960000	1.34170000	0.27450000
С	-4.55530000	0.78350000	0.27250000
С	-4.79410000	-0.56170000	0.11270000
0	-3.11910000	2.68450000	0.48960000
С	5.51560000	-1.48830000	0.20160000
Ν	6.66690000	-1.65430000	0.25780000
Н	4.27280000	0.82380000	0.06470000
Н	1.21010000	-3.05140000	0.14270000
Н	3.62560000	-3.40660000	0.23230000
Н	3.56060000	2.58300000	-0.23830000
Н	2.66010000	4.83940000	-0.39340000
Н	0.18310000	5.20020000	-0.37960000
Н	-1.32750000	3.28770000	-0.17810000
Н	-4.75250000	-3.34680000	-0.21570000
Н	-2.68770000	-4.68310000	-0.45770000

Н	-0.47770000	-3.65330000	-0.41320000
Н	-5.39400000	1.46390000	0.40760000
Н	-5.81290000	-0.93870000	0.11420000
Н	-3.99380000	3.07900000	0.60700000
Bq	2.70790000	-1.09160000	0.06790000
Bq	0.76500000	0.44850000	-0.03660000
Bq	1.10970000	2.89950000	-0.18930000
Bq	-1.30540000	-0.40190000	-0.02310000
Bq	-3.47190000	-0.04080000	0.11180000
Bq	-2.51160000	-2.23900000	-0.16810000
Bq	2.75520000	-1.13440000	-0.93010000
Bq	2.66060000	-1.04880000	1.06580000
Bq	0.72690000	0.41120000	-1.03520000
Bq	0.80310000	0.48580000	0.96200000
Bq	1.08750000	2.81200000	-1.18520000
Bq	1.13180000	2.98700000	0.80660000
Bq	-1.33520000	-0.31500000	-1.01890000
Bq	-1.27560000	-0.48880000	0.97270000
Bq	-2.54500000	-2.12740000	-1.16130000
Bq	-2.47820000	-2.35050000	0.82510000
Bq	-3.52260000	0.08590000	-0.87890000
Bq	-3.42130000	-0.16750000	1.10240000

Input geometry for NICS(1) calculation of 2c (anion)

С	4.09590000	-1.29350000	0.00000000
С	3.55720000	-0.00360000	0.00000000
С	2.17140000	0.23160000	0.00000000
С	1.27910000	-0.89570000	0.00000000
С	1.85810000	-2.19800000	0.00000000
С	3.21920000	-2.40550000	0.00000000
С	1.62210000	1.58790000	0.00000000
С	0.20410000	1.79000000	0.00000000
С	-0.68210000	0.64210000	0.00000000
С	-0.13230000	-0.67570000	0.00000000
С	2.46350000	2.72610000	0.00000000
С	1.95360000	4.01390000	0.00000000
С	0.56240000	4.20860000	0.00000000
С	-0.29220000	3.11910000	0.00000000

С	-2.42880000	-0.84400000	0.00000000
С	-3.71640000	-1.42030000	0.00000000
С	-3.81550000	-2.82180000	0.00000000
С	-2.65750000	-3.60600000	0.00000000
С	-1.37630000	-3.02410000	0.00000000
С	-1.23730000	-1.62930000	0.00000000
С	-2.13410000	0.54780000	0.00000000
С	-3.24920000	1.47900000	0.00000000
С	-4.58920000	0.84710000	0.00000000
С	-4.81980000	-0.49480000	0.00000000
0	-3.20060000	2.73750000	0.00000000
С	5.51190000	-1.48560000	0.00000000
Ν	6.66760000	-1.65160000	0.00000000
Н	4.25080000	0.82770000	0.00000000
Н	1.21010000	-3.06140000	0.00000000
Н	3.62410000	-3.41280000	0.00000000
Н	3.54070000	2.60420000	0.00000000
Н	2.63230000	4.86360000	0.00000000
Н	0.14940000	5.21440000	0.00000000
Н	-1.37030000	3.25730000	0.00000000
Н	-4.79580000	-3.29500000	0.00000000
Н	-2.74270000	-4.68990000	0.00000000
Н	-0.52330000	-3.69260000	0.00000000
Н	-5.41380000	1.55540000	0.00000000
Н	-5.83900000	-0.88030000	0.00000000
Bq	2.69680000	-1.09410000	0.00000000
Bq	0.74370000	0.44670000	0.00000000
Bq	1.08560000	2.90760000	0.00000000
Bq	-1.32290000	-0.39180000	0.00000000
Bq	-3.48960000	0.01910000	0.00000000
Bq	-2.53860000	-2.22420000	0.00000000
Bq	2.69680000	-1.09410000	-1.00000000
Bq	2.69680000	-1.09410000	1.00000000
Bq	0.74370000	0.44670000	-1.00000000
Bq	0.74370000	0.44670000	1.00000000
Bq	1.08560000	2.90760000	-1.00000000
Bq	1.08560000	2.90760000	1.00000000
Bq	-1.32290000	-0.39180000	1.00000000

Bq	-1.32290000	-0.39180000	-1.00000000
Bq	-2.53860000	-2.22420000	-1.00000000
Bq	-2.53860000	-2.22420000	1.00000000
Bq	-3.48960000	0.01910000	1.00000000
Bq	-3.48960000	0.01910000	-1.00000000

Input geometry for NICS(1) calculation of 3a (neutral)

С	3.86300000	-1.91400000	0.00010000	
С	3.57420000	-0.56090000	0.00010000	
С	2.24220000	-0.09080000	0.00000000	
С	1.17510000	-1.04640000	0.00000000	
С	1.51030000	-2.42260000	0.00010000	
С	2.82050000	-2.85910000	0.00010000	
С	1.93640000	1.33690000	0.00000000	
С	0.57410000	1.77730000	0.00000000	
С	-0.47520000	0.79310000	0.00000000	
С	-0.18250000	-0.57490000	0.00000000	
С	2.95800000	2.31730000	-0.00010000	
С	2.67350000	3.67090000	-0.00020000	
С	1.33520000	4.10250000	-0.00020000	
С	0.31390000	3.17160000	-0.00010000	
С	-2.49010000	-0.35310000	0.00000000	
С	-3.86250000	-0.64710000	0.00000000	
С	-4.22200000	-2.02520000	-0.00010000	
С	-3.23220000	-2.99090000	-0.00030000	
С	-1.84710000	-2.66170000	-0.00030000	
С	-1.45960000	-1.33060000	-0.00010000	
С	-1.94900000	0.96060000	0.00010000	
С	-2.84820000	2.01570000	0.00030000	
С	-4.24720000	1.74840000	0.00030000	
С	-4.75570000	0.46300000	0.00020000	
0	5.18400000	-2.28340000	0.00010000	
Н	-2.53680000	3.05280000	0.00040000	
Н	4.41360000	0.12210000	0.00000000	
Н	0.72550000	-3.16460000	0.00020000	
Н	3.04310000	-3.92390000	0.00020000	
Н	3.99750000	2.01300000	-0.00010000	
Н	3.48310000	4.39460000	-0.00020000	

Н	1.10180000	5.16330000	-0.00030000
Н	-0.70790000	3.52180000	-0.00020000
Н	-5.26990000	-2.31310000	-0.00010000
Н	-3.51170000	-4.04060000	-0.00040000
Н	-1.13830000	-3.48050000	-0.00040000
Н	-4.93140000	2.59210000	0.00040000
Н	-5.82950000	0.29640000	0.00020000
Н	5.25810000	-3.24640000	0.00020000
Bq	2.53090000	-1.48230000	0.00010000
Bq	0.87830000	0.36590000	0.00000000
Bq	1.63190000	2.72940000	-0.00010000
Bq	-1.31130000	-0.10100000	0.00000000
Bq	-3.35880000	0.69790000	0.00020000
Bq	-2.85230000	-1.66810000	-0.00010000
Bq	2.53090000	-1.48230000	-0.99990000
Bq	2.53080000	-1.48230000	1.00010000
Bq	0.87830000	0.36590000	-1.00000000
Bq	0.87830000	0.36590000	1.00000000
Bq	1.63180000	2.72930000	-1.00010000
Bq	1.63190000	2.72950000	0.99990000
Bq	-1.31130000	-0.10090000	-1.00000000
Bq	-1.31130000	-0.10110000	1.00000000
Bq	-2.85230000	-1.66800000	-1.00010000
Bq	-2.85220000	-1.66820000	0.99990000
Bq	-3.35880000	0.69800000	-0.99980000
Bq	-3.35870000	0.69780000	1.00010000

Input geometry for NICS(1) calculation of 3a (anion)

С	3.92310000	-2.05320000	0.00000000
С	3.58950000	-0.65310000	0.00000000
С	2.28590000	-0.15830000	0.00000000
С	1.17330000	-1.08830000	0.00000000
С	1.48900000	-2.48300000	0.00000000
С	2.77560000	-2.95000000	0.00000000
С	1.99290000	1.28400000	0.00000000
С	0.63740000	1.75650000	0.00000000
С	-0.43300000	0.80040000	0.00000000
С	-0.15060000	-0.58600000	0.00000000

С	3.03060000	2.24370000	0.00000000
С	2.78390000	3.60840000	0.00000000
С	1.45630000	4.07010000	0.00000000
С	0.41390000	3.15950000	0.00000000
С	-2.46380000	-0.31750000	0.00000000
С	-3.84280000	-0.58290000	0.00000000
С	-4.22760000	-1.95350000	0.00000000
С	-3.25650000	-2.94020000	0.00000000
С	-1.86620000	-2.63960000	0.00000000
С	-1.45210000	-1.31480000	0.00000000
С	-1.88610000	0.99050000	0.00000000
С	-2.77620000	2.06240000	0.00000000
С	-4.17900000	1.81780000	0.00000000
С	-4.72000000	0.54500000	0.00000000
0	5.11130000	-2.48550000	0.00000000
Н	4.44340000	0.01510000	0.00000000
Н	0.68180000	-3.20380000	0.00000000
Н	2.98160000	-4.01800000	0.00000000
Н	4.06040000	1.90660000	0.00000000
Н	3.61330000	4.31100000	0.00000000
Н	1.24390000	5.13680000	0.00000000
Н	-0.60090000	3.53300000	0.00000000
Н	-5.28230000	-2.22030000	0.00000000
Н	-3.55810000	-3.98500000	0.00000000
Н	-1.16890000	-3.46770000	0.00000000
Н	-2.44560000	3.09390000	0.00000000
Н	-4.84670000	2.67670000	0.00000000
Н	-5.79740000	0.39880000	0.00000000
Bq	-2.85150000	-1.62480000	0.00000000
Bq	-3.31130000	0.75260000	0.00000000
Bq	-1.27710000	-0.08550000	0.00000000
Bq	0.91760000	0.33470000	0.00000000
Bq	1.71920000	2.68700000	0.00000000
Bq	2.53940000	-1.56430000	0.00000000
Bq	2.53940000	-1.56430000	-1.00000000
Bq	2.53940000	-1.56430000	1.00000000
Bq	0.91760000	0.33470000	-1.00000000
Bq	0.91760000	0.33470000	1.00000000

Вq	1./1920000	2.68/00000	-1.00000000
Bq	1.71920000	2.68700000	1.00000000
Bq	-1.27710000	-0.08550000	-1.00000000
Bq	-1.27710000	-0.08550000	1.00000000
Bq	-2.85150000	-1.62480000	1.00000000
Bq	-2.85150000	-1.62480000	-1.00000000
Bq	-3.31130000	0.75260000	1.00000000
Bq	-3.31130000	0.75260000	-1.00000000

Input geometry for NICS(1) calculation of 3b (neutral)

С	4.09590000	-0.81730000	0.10110000	
С	3.45110000	0.41060000	0.03840000	
С	2.04700000	0.51240000	-0.02090000	
С	1.27040000	-0.68870000	-0.01630000	
С	1.95650000	-1.92190000	0.06680000	
С	3.33770000	-2.00360000	0.12190000	
С	1.37030000	1.80490000	-0.08790000	
С	-0.06120000	1.87620000	-0.05830000	
С	-0.82110000	0.64680000	0.01270000	
С	-0.16510000	-0.59070000	-0.05020000	
С	2.10440000	3.00970000	-0.19740000	
С	1.48300000	4.24260000	-0.28130000	
С	0.08040000	4.31150000	-0.26550000	
С	-0.66830000	3.15370000	-0.15830000	
С	-2.43930000	-1.02550000	-0.03110000	
С	-3.65750000	-1.72580000	-0.04150000	
С	-3.60390000	-3.13690000	-0.19450000	
С	-2.37820000	-3.76640000	-0.32170000	
С	-1.15750000	-3.04300000	-0.28590000	
С	-1.17320000	-1.66350000	-0.12320000	
С	-2.28750000	0.38810000	0.08070000	
С	-3.47120000	1.09890000	0.26730000	
С	-4.72800000	0.41680000	0.26280000	
С	-4.83760000	-0.94520000	0.10640000	
0	-3.48430000	2.45030000	0.47890000	
0	5.46350000	-0.77670000	0.15270000	
С	6.18020000	-2.00220000	0.22920000	
Н	4.08080000	1.29080000	0.04900000	

Н	1.39600000	-2.84360000	0.11950000	
Н	3.81140000	-2.97530000	0.19330000	
Н	3.18650000	2.97800000	-0.23100000	
Н	2.07940000	5.14620000	-0.36820000	
Н	-0.42180000	5.27170000	-0.34350000	
Н	-1.74390000	3.22350000	-0.15380000	
Н	-4.52470000	-3.71380000	-0.21540000	
Н	-2.33960000	-4.84410000	-0.45050000	
Н	-0.23860000	-3.60310000	-0.40430000	
Н	-5.62830000	1.01480000	0.39350000	
Н	-5.81540000	-1.41860000	0.10580000	
Н	-4.39500000	2.75540000	0.58580000	
Н	7.23550000	-1.72730000	0.25460000	
Н	5.92910000	-2.55860000	1.14110000	
Н	5.99150000	-2.63360000	-0.64830000	
Bq	2.69310000	-0.75140000	0.04850000	
Bq	0.60670000	0.59350000	-0.03680000	
Bq	0.71810000	3.06640000	-0.17480000	
Bq	-1.37720000	-0.44900000	-0.02220000	
Bq	-3.57020000	-0.29880000	0.10740000	
Bq	-2.40160000	-2.39350000	-0.16630000	
Bq	2.73720000	-0.78370000	-0.95000000	
Bq	2.64900000	-0.71910000	1.04700000	
Bq	0.57080000	0.55800000	-1.03550000	
Bq	0.64270000	0.62890000	0.96190000	
Bq	0.70110000	2.98510000	-1.17130000	
Bq	0.73510000	3.14770000	0.82180000	
Bq	-1.43410000	-0.38830000	-1.01880000	
Bq	-1.32030000	-0.50960000	0.97430000	
Bq	-2.44890000	-2.29660000	-1.16050000	
Bq	-2.35430000	-2.49050000	0.82780000	
Bq	-3.62990000	-0.18020000	-0.88370000	
Bq	-3.51050000	-0.41740000	1.09860000	

Input geometry for NICS(1) calculation of 3b (anion)

С	4.08950000	-0.81540000	0.00000000
С	3.43790000	0.40870000	0.00000000
С	2.03070000	0.50950000	0.00000000

С	1.25090000	-0.69360000	0.00000000
С	1.95210000	-1.92300000	0.00000000
С	3.33810000	-2.00220000	0.00000000
С	1.35220000	1.80530000	0.00000000
С	-0.07980000	1.87100000	0.00000000
С	-0.85400000	0.64560000	0.00000000
С	-0.18640000	-0.60700000	0.00000000
С	2.08100000	3.01910000	0.00000000
С	1.45180000	4.25330000	0.00000000
С	0.04750000	4.31380000	0.00000000
С	-0.69960000	3.14780000	0.00000000
С	-2.45950000	-0.99340000	0.00000000
С	-3.68490000	-1.69450000	0.00000000
С	-3.64580000	-3.09950000	0.00000000
С	-2.41630000	-3.76700000	0.00000000
С	-1.19740000	-3.06160000	0.00000000
С	-1.19410000	-1.66040000	0.00000000
С	-2.30060000	0.41610000	0.00000000
С	-3.49480000	1.23610000	0.00000000
С	-4.76830000	0.47830000	0.00000000
С	-4.87180000	-0.88060000	0.00000000
0	-3.56860000	2.49640000	0.00000000
0	5.47430000	-0.77040000	0.00000000
С	6.17720000	-1.99710000	0.00000000
Н	4.06260000	1.29350000	0.00000000
Н	1.39600000	-2.84910000	0.00000000
Н	3.81380000	-2.97660000	0.00000000
Н	3.16500000	2.99670000	0.00000000
Н	2.04620000	5.16420000	0.00000000
Н	-0.45990000	5.27580000	0.00000000
Н	-1.78680000	3.18190000	0.00000000
Н	-4.57540000	-3.66650000	0.00000000
Н	-2.39530000	-4.85440000	0.00000000
Н	-0.28210000	-3.64280000	0.00000000
Н	-5.65720000	1.10480000	0.00000000
Н	-5.85010000	-1.36130000	0.00000000
Н	7.23840000	-1.73780000	0.00000000
Н	5.95340000	-2.59610000	0.89410000

Н	5.95340000	-2.59610000	-0.89410000
Bq	2.68320000	-0.75270000	0.00000000
Bq	0.58560000	0.58850000	0.00000000
Bq	0.69220000	3.06840000	0.00000000
Bq	-1.39890000	-0.43980000	0.00000000
Bq	-2.43300000	-2.37940000	0.00000000
Bq	-3.59660000	-0.23970000	0.00000000
Bq	2.68320000	-0.75270000	1.00000000
Bq	2.68320000	-0.75270000	-1.00000000
Bq	0.58560000	0.58850000	-1.00000000
Bq	0.58560000	0.58850000	1.00000000
Bq	0.69220000	3.06840000	-1.00000000
Bq	0.69220000	3.06840000	1.00000000
Bq	-1.39890000	-0.43980000	-1.00000000
Bq	-1.39890000	-0.43980000	1.00000000
Bq	-2.43300000	-2.37940000	-1.00000000
Bq	-2.43300000	-2.37940000	1.00000000
Bq	-3.59660000	-0.23970000	-1.00000000
Bq	-3.59660000	-0.23970000	1.00000000

Input geometry for NICS(1) calculation of 3c (neutral)

С	4.09710000	-1.29150000	0.13100000
С	3.57550000	-0.00330000	0.05610000
С	2.18620000	0.23270000	-0.01370000
С	1.30330000	-0.89170000	-0.00730000
С	1.86260000	-2.19310000	0.08830000
С	3.22260000	-2.40270000	0.15270000
С	1.64050000	1.58330000	-0.09140000
С	0.22200000	1.78970000	-0.06600000
С	-0.64830000	0.63740000	0.01020000
С	-0.11370000	-0.66030000	-0.05150000
С	2.48580000	2.71260000	-0.20700000
С	1.98160000	3.99650000	-0.30180000
С	0.59150000	4.19760000	-0.29180000
С	-0.26340000	3.11720000	-0.17790000
С	-2.41580000	-0.87380000	-0.03110000
С	-3.69640000	-1.45300000	-0.04000000
С	-3.78030000	-2.86200000	-0.19540000

С	-2.62160000	-3.60730000	-0.32640000
С	-1.33690000	-3.00620000	-0.29080000
С	-1.21880000	-1.63150000	-0.12500000
С	-2.13040000	0.51860000	0.08190000
С	-3.23960000	1.34170000	0.27450000
С	-4.55530000	0.78350000	0.27250000
С	-4.79410000	-0.56170000	0.11270000
0	-3.11910000	2.68450000	0.48960000
С	5.51560000	-1.48830000	0.20160000
Ν	6.66690000	-1.65430000	0.25780000
Н	4.27280000	0.82380000	0.06470000
Н	1.21010000	-3.05140000	0.14270000
Н	3.62560000	-3.40660000	0.23230000
Н	3.56060000	2.58300000	-0.23830000
Н	2.66010000	4.83940000	-0.39340000
Н	0.18310000	5.20020000	-0.37960000
Н	-1.32750000	3.28770000	-0.17810000
Н	-4.75250000	-3.34680000	-0.21570000
Н	-2.68770000	-4.68310000	-0.45770000
Н	-0.47770000	-3.65330000	-0.41320000
Н	-5.39400000	1.46390000	0.40760000
Н	-5.81290000	-0.93870000	0.11420000
Н	-3.99380000	3.07900000	0.60700000
Bq	2.70790000	-1.09160000	0.06790000
Bq	0.76500000	0.44850000	-0.03660000
Bq	1.10970000	2.89950000	-0.18930000
Bq	-1.30540000	-0.40190000	-0.02310000
Bq	-3.47190000	-0.04080000	0.11180000
Bq	-2.51160000	-2.23900000	-0.16810000
Bq	2.75520000	-1.13440000	-0.93010000
Bq	2.66060000	-1.04880000	1.06580000
Bq	0.72690000	0.41120000	-1.03520000
Bq	0.80310000	0.48580000	0.96200000
Bq	1.08750000	2.81200000	-1.18520000
Bq	1.13180000	2.98700000	0.80660000
Bq	-1.33520000	-0.31500000	-1.01890000
Bq	-1.27560000	-0.48880000	0.97270000
Bq	-2.54500000	-2.12740000	-1.16130000

Bq	-2.47820000	-2.35050000	0.82510000
Bq	-3.52260000	0.08590000	-0.87890000
Bq	-3.42130000	-0.16750000	1.10240000

Input geometry for NICS(1) calculation of 3c (anion)

С	4.09590000	-1.29350000	0.00000000
С	3.55720000	-0.00360000	0.00000000
С	2.17140000	0.23160000	0.00000000
С	1.27910000	-0.89570000	0.00000000
С	1.85810000	-2.19800000	0.00000000
С	3.21920000	-2.40550000	0.00000000
С	1.62210000	1.58790000	0.00000000
С	0.20410000	1.79000000	0.00000000
С	-0.68210000	0.64210000	0.00000000
С	-0.13230000	-0.67570000	0.00000000
С	2.46350000	2.72610000	0.00000000
С	1.95360000	4.01390000	0.00000000
С	0.56240000	4.20860000	0.00000000
С	-0.29220000	3.11910000	0.00000000
С	-2.42880000	-0.84400000	0.00000000
С	-3.71640000	-1.42030000	0.00000000
С	-3.81550000	-2.82180000	0.00000000
С	-2.65750000	-3.60600000	0.00000000
С	-1.37630000	-3.02410000	0.00000000
С	-1.23730000	-1.62930000	0.00000000
С	-2.13410000	0.54780000	0.00000000
С	-3.24920000	1.47900000	0.00000000
С	-4.58920000	0.84710000	0.00000000
С	-4.81980000	-0.49480000	0.00000000
0	-3.20060000	2.73750000	0.00000000
С	5.51190000	-1.48560000	0.00000000
N	6.66760000	-1.65160000	0.00000000
Н	4.25080000	0.82770000	0.00000000
Н	1.21010000	-3.06140000	0.00000000
Н	3.62410000	-3.41280000	0.00000000
Н	3.54070000	2.60420000	0.00000000
Н	2.63230000	4.86360000	0.00000000
Н	0.14940000	5.21440000	0.00000000

Н	-1.37030000	3.25730000	0.00000000
Н	-4.79580000	-3.29500000	0.00000000
Н	-2.74270000	-4.68990000	0.00000000
Н	-0.52330000	-3.69260000	0.00000000
Н	-5.41380000	1.55540000	0.00000000
Н	-5.83900000	-0.88030000	0.00000000
Bq	2.69680000	-1.09410000	0.00000000
Bq	0.74370000	0.44670000	0.00000000
Bq	1.08560000	2.90760000	0.00000000
Bq	-1.32290000	-0.39180000	0.00000000
Bq	-3.48960000	0.01910000	0.00000000
Bq	-2.53860000	-2.22420000	0.00000000
Bq	2.69680000	-1.09410000	-1.00000000
Bq	2.69680000	-1.09410000	1.00000000
Bq	0.74370000	0.44670000	-1.00000000
Bq	0.74370000	0.44670000	1.00000000
Bq	1.08560000	2.90760000	-1.00000000
Bq	1.08560000	2.90760000	1.00000000
Bq	-1.32290000	-0.39180000	1.00000000
Bq	-1.32290000	-0.39180000	-1.00000000
Bq	-2.53860000	-2.22420000	-1.00000000
Bq	-2.53860000	-2.22420000	1.00000000
Bq	-3.48960000	0.01910000	1.00000000
Bq	-3.48960000	0.01910000	-1.00000000
7. ¹H and ¹³C NMR spectra

S1: ¹H NMR, CDCl₃, 600 MHz

S1: ¹³C NMR, CDCl₃, 151 MHz

1b: ¹H NMR, CDCl₃, 600 MHz

1b: ¹³C NMR, CDCl₃, 151 MHz

2b: ¹H NMR, acetone-d6, 600 MHz

2b: ¹³C NMR, acetone-d6, 151 MHz

5: ¹H NMR, CDCl₃, 600 MHz

5: ¹³C NMR, CDCl₃, 151 MHz

S3: ¹H NMR, CDCl₃, 600 MHz

S3: ¹³C NMR, CDCl₃, 151 MHz

3a: ¹H NMR, acetone-d6, 600 MHz

3a: ¹³C NMR, acetone-d6, 151 MHz

S4: ¹H NMR, DMSO-d6, 600 MHz

S4: ¹³C NMR, DMSO-d6, 151 MHz

3c: ¹H NMR, DMSO-d6, 600 MHz

3c: ¹³C NMR, DMSO-d6, 151 MHz

6: ¹H NMR, DMSO-d6, 600 MHz

6: ¹³C NMR, DMSO-d6, 151 MHz

3b: ¹H NMR, CDCl₃, 600 MHz

3b: ¹³C NMR, CDCl₃, 151 MHz

7: ¹³C NMR, DMSO-d6, 151 MHz

S5: ¹³C NMR, DMSO-d6, 151 MHz

2c: ¹H NMR, DMSO-d6, 600 MHz

2c: ¹³C NMR, DMSO-d6, 151 MHz

4: ¹H NMR, CDCl₃, 600 MHz

4: ¹³C NMR, CDCl₃, 151 MHz

8. References

- 1. N. Ogawa, Y. Yamaoka, K. Yamada and K. Takasu, Org. Lett., 2017, 19, 3327-3330.
- 2. T. Scattolin, E. Senol, G. Yin, Q. Guo and F. Schoenebeck, Angew. Chem. Int. Ed., 2018, 57, 12425-12429.
- 3. J. Kruszewski and T. M. Krygowski, Tetrahedron Lett., 1972, 13, 3839-3842.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.