# Supporting Information

# Enantioselective Synthesis of 4-Aryl-3,4-Dihydrocoumarins via

# *N*-Heterocyclic Carbene Catalyzed β-Arylation/Cyclization of

## **α-Bromoenals**

## **Table of Contents**

| 1. General information                                                         | S2  |
|--------------------------------------------------------------------------------|-----|
| 2. General Procedure for the Synthesis of Products 3 and Characterization Data | S2  |
| 3. Product Transformation                                                      | S12 |
| 4. X-Ray Crystal Structure of Enantiopure 3ac                                  | S13 |
| 5. Reference                                                                   | S14 |
| 6. <sup>1</sup> H, <sup>19</sup> F, <sup>13</sup> C NMR Spectra                | S15 |

## 1. General information

Unless otherwise noted, all starting materials were obtained from commercial supplies and directly used without further purification unless otherwise stated. Unless otherwise indicated, all reactions were carried out under N<sub>2</sub> atmosphere with magnetic stirring. Column chromatography was performed on 300-400 mesh silica gel. Anhydrous toluene and diethyl ether were distilled from sodium and benzophenone.  $\alpha$ -Bromoenals<sup>[1]</sup> and chiral triazolium salts A-D<sup>[2]</sup> were synthesized according to literatures. All <sup>1</sup>H, <sup>13</sup>C, and <sup>19</sup>F NMR spectrometers were recorded on Bruker-400 MHz instruments internally referenced to tetramethylsilane (0.0 ppm) or residue of CDCl<sub>3</sub> (7.26 ppm) signal. <sup>1</sup>H NMR Spectroscopy splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q). Melting points were measured using a XT4A microscopic apparatus. IR spectra were obtained on a Bruker VECTOR22 spectrophotometer in KBr pellets. The substrates 1a-1x<sup>1</sup> were synthesized according to published procedures. Chiral high-performance liquid chromatography (HPLC) analysis was performed using an Agilent 1260 with commercial ChiralPak 4.6 × 250 mm columns.

#### 2. General Procedure for the Synthesis of Products 3 and Characterization Data



A mixture of phenol (1, 0.2 mmol),  $\alpha$ -bromoenals (2, 1.5 equiv.), PreNHC **D** (10 mol%), 2-OMeC<sub>6</sub>H<sub>4</sub>COOK (1.5 equiv.) and toluene (2.0 mL) were added to a 10 mL Schlenk reaction tube under a nitrogen atmosphere. The reaction mixture was stirred at room temperature. After the reaction was complete (monitored by TLC), the mixture was concentrated to dryness. The residue was purified by flash column chromatography to afford the desired product **3** (petroleum ether : ethyl acetate = 20 : 1).

#### Characterization data of the products.



(*R*)-7-(dimethylamino)-4-phenylchroman-2-one

49.7 mg, 93% yield. White solid, m.p. 109-110 °C.  $R_f = 0.3$  (petroleum ether/ethyl acetate 4:1). [ $\alpha$ ] <sup>25</sup><sub>D</sub> = -28.0 (c = 0.1 in CHCl<sub>3</sub>), 93:7 er, determined by HPLC analysis [Daicel CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 31.1 min, t (major) = 33.0 min]; <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 – 7.30 (m, 2H), 7.27 – 7.23 (m, 1H), 7.16 – 7.14 (m, 2H), 6.80 (d, *J* = 8.5, 1H), 6.45 (d, *J* = 2.5 Hz, 1H), 6.42 (dd, *J* = 8.5, 2.6 Hz, 1H), 4.29 – 4.18 (t, J = 6.8, 1H), 3.04 (dd, J = 15.8, 6.0 Hz, 1H), 2.98 – 2.93 (m, 7H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 152.7, 151.1, 141.5, 129.1, 128.7, 127.6, 127.4, 112.8, 108.7, 100.5, 40.5, 40.0, 37.8. **IR** (KBr) v 3028, 2917, 2849, 1765, 1633, 1133, 803, 703. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>18</sub>O<sub>2</sub>N ([M+H]<sup>+</sup>) 268.1338 found 268.1339.



(149, experiment #)

#### (R)-7-(dimethylamino)-4-(p-tolyl)chroman-2-one

43 mg, 77% yield. White solid, m.p. 83-84 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -3.1$  (c = 0.1 in CHCl<sub>3</sub>), 93:7 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 13.5 min, t (major) = 9.4 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.14 (d, *J* = 7.9 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.50 – 6.41 (m, 2H), 4.22 (t, *J* = 6.8 Hz, 1H), 3.03 (dd, *J* = 15.7, 6.0 Hz, 1H), 2.97 – 2.92 (m, 7H), 2.33 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 152.7, 151.1, 138.5, 137.1, 129.7, 128.7, 127.5, 113.2, 108.7, 100.6, 40.5, 39.7, 37.9, 21.1. IR (KBr) v 2917, 2851, 2815, 1755, 1130, 823, 797. HRMS (ESI) calcd for C18H2002N ([M+H]+) 282.1494 found 282.1492.



Br (138, experiment #) (*R*)-4-(4-bromophenyl)-7-(dimethylamino)chroman-2-one

56 mg, 82% yield. White solid, m.p. 86-87 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_{D}^{25} = -14.2$  (c = 0.1 in CHCl<sub>3</sub>), 93:7 er, determined by HPLC analysis [Daicel CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 33.3 min, t (major) = 31.6 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.2 Hz, 1H), 6.45 – 6.42 (m, 2H), 4.21 (t, J = 6.7 Hz, 1H), 3.03 (dd, J = 15.7, 6.0 Hz, 1H), 2.95 – 2.88 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 152.7, 151.3, 140.7, 132.2, 129.4, 128.6, 121.3, 112.1, 108.8, 100.6, 40.5, 39.6, 37.7. **IR** (KBr)  $\nu$  2922, 2852, 2806, 1749, 1630, 1113, 826, 809. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub>NBr ([M+H]<sup>+</sup>) 346.0443 found 346.0449.



(140, experiment #)

#### (R) - 4 - (4 - chlorophenyl) - 7 - (dimethylamino) chroman - 2 - one

54 mg, 87% yield. White solid, m.p. 92-93 °C.  $R_f = 0.3$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -31.1$  (c = 0.1 in CHCl<sub>3</sub>), 93:7 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 31.1 min, t (major) = 29.3 min];

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.1 Hz, 1H), 6.45 – 6.42 (m, 2H), 4.23 (t, J = 6.6 Hz, 1H), 3.03 (dd, J = 15.7, 6.0 Hz, 1H), 2.95 – 2.89 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 168.0, 152.6, 151.2, 140.1, 133.2, 129.2, 129.0, 128.6, 112.1, 108.7, 100.5, 40.5, 39.5, 37.7. **IR** (KBr) v 2986, 2916, 2814, 1766, 1628, 1132, 838, 805. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub>NCl ([M+H]<sup>+</sup>) 302.0948 found 302.0951.



(141, experiment #)

## (R) - 7 - (dimethylamino) - 4 - (4 - fluorophenyl) chroman - 2 - one

49 mg, 86% yield. White solid, m.p. 88-89 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -20.1$  (c = 0.1 in CHCl<sub>3</sub>), 87:13 er, determined by HPLC analysis [Daicel CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 31.3 min, t (major) = 29.2 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.12 (dd, J = 8.6, 5.4 Hz, 2H), 7.01 (t, J = 8.5 Hz, 2H), 6.80 (d, J = 8.2 Hz, 1H), 6.45 – 6.42 (m, 2H), 4.24 (t, J = 6.6 Hz, 1H), 3.04 (dd, J = 15.7, 6.0 Hz, 1H), 2..95 – 2.91 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.1, 162.1 (d, C-F,  $J_{C-F} = 245.9$  Hz), 152.6, 151.2, 137.3 (d, C-F,  $J_{C-F} = 3.9$  Hz), 129.2 (d, C-F,  $J_{C-F} = 8.1$  Hz), 128.6, 115.9 (d, C-F,  $J_{C-F} = 21.5$  Hz), 112.5, 108.8, 100.5, 40.5, 39.4, 38.0. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -115.2. **IR** (KBr)  $\nu$  2924, 2848, 2799, 1752, 1629, 1133, 837, 803. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub>NF ([M+H]<sup>+</sup>) 286.1243 found 286.1249.



(165, experiment #)

#### (R)-4-(7-(dimethylamino)-2-oxochroman-4-yl)benzonitrile

43 mg, 74% yield. White solid, m.p. 87-88 °C.  $R_f = 0.2$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -38.0$  (c = 0.1 in CHCl<sub>3</sub>), 88:12 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 33.8 min, t (major) = 31.0 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 – 7.60 (m, 2H), 7.27 – 7.25 (m, 2H), 6.79 (d, J = 9.5 Hz, 1H), 6.45 – 6.43 (m, 2H), 4.31 (t, J = 6.3 Hz, 1H), 3.08 (dd, J = 15.8, 6.2 Hz, 1H), 2.98 – 2.92 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.4, 152.7, 151.5, 147.2, 132.9, 128.6, 128.4, 118.7, 111.4, 110.8, 108.9, 100.6, 40.4, 40.2, 37.4. **IR** (KBr)  $\nu$  2921, 2851, 2226, 1765, 1628, 1108, 831, 800. **HRMS** (ESI) calcd for C<sub>18</sub>H<sub>17</sub>O<sub>2</sub>N<sub>2</sub> ([M+H]<sup>+</sup>) 293.1290 found 293.1287.



(R)-7-(dimethylamino)-4-(4-methoxyphenyl)chroman-2-one

49 mg, 82% yield. White solid, m.p. 92-93 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -20.8$  (c = 0.1 in CHCl<sub>3</sub>), 86:14 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 11.4 min, t (major) = 9.1 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.09 – 7.05 (m, 2H), 6.88 – 6.84 (m, 2H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.46 – 6.41 (m, 2H), 4.21 (dd, *J* = 7.8, 5.8 Hz, 1H), 3.79 (s, 3H), 3.02 (dd, *J* = 15.7, 5.9 Hz, 1H), 2.96 – 2.90 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 158.9, 152.6, 151.1, 133.5, 128.69, 128.67, 114.4, 113.3, 108.7, 100.6, 55.4, 40.6, 39.3, 38.1. **IR** (KBr) *v* 2918, 2841, 2808, 1748, 1633, 1123, 824, 801. **HRMS** (ESI) calcd for C<sub>18</sub>H<sub>20</sub>O<sub>3</sub>N ([M+H]<sup>+</sup>) 298.1443 found 298.1444.



 $\sim$  (171, experiment #)

#### (R)-4-(4-butoxyphenyl)-7-(dimethylamino)chroman-2-one

61 mg, 90% yield. Colorless oil.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -40.7$  (c = 0.1 in CHCl<sub>3</sub>), 81:19 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 14.9 min, t (major) = 10.7 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.07 – 7.04 (m, 2H), 6.87 – 6.83 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 2.5 Hz, 1H), 6.43 (dd, J = 8.4, 2.6 Hz, 1H), 4.19 (t, J = 6.8 Hz, 1H), 3.94 (t, J = 6.5 Hz, 2H), 3.01 (dd, J = 15.7, 5.9 Hz, 1H), 2.95 (s, 7H), 1.79 – 1.72 (m, 2H), 1.53 – 1.44 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 158.5, 152.6, 151.1, 133.2, 128.7, 128.6, 115.0, 113.4, 108.7, 100.6, 67.8, 40.5, 39.3, 38.0, 31.4, 19.3, 14.0. IR (KBr) *v* 2957, 2929, 2871, 1766, 1109, 831, 801. HRMS (ESI) calcd for C<sub>21</sub>H<sub>26</sub>O<sub>3</sub>N([M+H]<sup>+</sup>) 340.1913 found 340.1909.



> (150, experiment #)

#### (R)-7-(dimethylamino)-4-(m-tolyl)chroman-2-one

40 mg, 71% yield. White solid, m.p. 93-94 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -18.0$  (c = 0.1 in CHCl<sub>3</sub>), 94:6 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 9.4 min, t (major) = 8.3 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.22 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 8.9 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.47 (d, *J* = 2.5 Hz, 1H), 6.44 (dd, *J* = 8.4, 2.6 Hz, 1H), 4.21 (t, *J* = 6.8 Hz, 1H), 3.04 (dd, *J* = 15.7, 6.0 Hz, 1H), 2.99 – 2.92 (m, 7H), 2.33 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 152.7, 151.1, 141.5, 138.7, 129.0, 128.7, 128.3, 128.2, 124.7, 113.0, 108.7, 100.6, 40.5, 40.0, 37.8, 21.6. **IR** (KBr) *v* 2978, 2902, 2808, 1757, 1634, 1131, 800, 788. **HRMS** (ESI) calcd for C<sub>18</sub>H<sub>20</sub>O<sub>2</sub>N ([M+H]<sup>+</sup>) 282.1494 found 282.1488.



<sup>CN</sup>(163, experiment #)

## $(R) \hbox{-} 3 \hbox{-} (7 \hbox{-} (dimethylamino) \hbox{-} 2 \hbox{-} oxochroman \hbox{-} 4 \hbox{-} yl) benzon it rile$

47 mg, 81% yield. White solid, m.p. 49-50 °C.  $R_f = 0.2$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -14.6$  (c = 0.1 in CHCl<sub>3</sub>), 85:15 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 22.8 min, t (major) = 24.0 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (m, 1H), 7.45 – 7.39 (m, 3H), 6.81 – 6.78 (m, 1H), 6.45 (m, 2H), 4.30 (t, J = 6.2 Hz, 1H), 3.07 (dd, J = 15.8, 6.1 Hz, 1H), 2.96 – 2.91 (m,7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.4, 152.7, 151.5, 143.4, 132.1, 131.19, 131.16, 129.9, 128.6, 118.6, 113.1, 110.7, 108.9, 100.6, 40.4, 39.7, 37.6. **IR** (KBr)  $\nu$  2922, 2852, 2228, 1760, 1627, 1109, 800, 690. **HRMS** (ESI) calcd for C<sub>18</sub>H<sub>17</sub>O<sub>2</sub>N<sub>2</sub> ([M+H]<sup>+</sup>) 293.1290 found 293.1288.



<sup>F</sup> (168, experiment #)

## $(R) \hbox{-} 7 \hbox{-} (dimethylamino) \hbox{-} 4 \hbox{-} (3 \hbox{-} fluorophenyl) chroman \hbox{-} 2 \hbox{-} one$

38 mg, 67% yield. White solid, m.p. 65-66 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[α]_p^{25} = -31.2$  (c = 0.1 in CHCl<sub>3</sub>), 91:9 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t (minor) = 10.8 min, t (major) = 10.0 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.26 – 7.20 (m, 1H), 6.92 – 6.87 (m, 2H), 6.80 – 6.76 (m, 2H), 6.40 – 6.37 (m, 2H), 4.19 (t, J = 6.5 Hz, 1H), 3.00 (dd, J = 15.8, 6.0 Hz, 1H), 2.92 – 2.86 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.9, 163.3 (d, C-F,  $J_{C-F} = 246.9$  Hz), 152.7, 151.3, 144.3 (d, C-F,  $J_{C-F} = 6.7$  Hz), 130.7 (d, C-F,  $J_{C-F} = 8.5$  Hz), 128.7, 123.3 (d, C-F,  $J_{C-F} = 2.9$  Hz), 114.7 (q C-F,  $J_{C-F} = 21.0$  Hz), 114.4 (q, C-F,  $J_{C-F} = 20.3$  Hz), 111.9, 108.9, 100.6, 40.5, 39.9 (d, C-F,  $J_{C-F} = 1.5$  Hz), 37.7. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -112.13. **IR** (KBr) ν 2921, 2851, 2805, 1758, 1615, 1118, 817, 798. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub>NF([M+H]<sup>+</sup>) 286.1243 found 286.1242.



<sup>CI</sup>(151, experiment #)

#### (R) - 4 - (3 - chlorophenyl) - 7 - (dimethylamino) chroman - 2 - one

44 mg, 73% yield. White solid, m.p. 83-84 °C.  $R_f = 0.5$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -16.4$  (c = 0.1 in CHCl<sub>3</sub>), 90:10 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 10.6 min, t (major) = 9.9 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.20 (m, 2H), 7.12 (d, J = 1.9 Hz, 1H), 7.04 – 6.91 (m, 1H), 6.79 (d, J = 7.8 Hz, 1H), 6.43 – 6.41 (m, 2H), 4.21 (t, J = 6.6 Hz, 1H), 3.03 (dd, J = 15.8, 6.0 Hz, 1H), 2.95 – 2.90 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 152.7, 151.3, 143.7, 134.9, 130.4, 128.7, 127.9, 127.7, 125.8, 111.8, 108.8, 100.6, 40.5, 39.9, 37.7. **IR** (KBr) *v* 2993, 2923,

2804, 1756, 1628, 1132, 807, 798. **HRMS** (ESI) calcd for  $C_{17}H_{17}O_2NCl$  ([M+H]<sup>+</sup>) 302.0948 found 302.0947.



## (R)-4-(3-bromophenyl)-7-(dimethylamino)chroman-2-one

56 mg, 81% yield. White solid, m.p. 87-88 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -25.3$  (c = 0.1 in CHCl<sub>3</sub>), 89:11 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 12.1 min, t (major) = 11.1 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (d, J = 6.8 Hz, 1H), 7.26 – 7.14 (m, 2H), 7.04 (d, J = 6.5 Hz, 1H), 6.76 (d, J = 7.7 Hz, 1H), 6.41 (s, 2H), 4.18 (s, 1H), 3.02 – 2.92 (m, 8H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 152.7, 151.3, 144.0, 130.8, 130.7, 128.7, 126.3, 123.1, 111.8, 108.8, 100.6, 40.5, 39.8, 37.7. **IR** (KBr)  $\nu$  2920, 2849, 2811, 1754, 1627, 1131, 871, 808. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub>NBr ([M+H]<sup>+</sup>) 346.0443 found 346.0448.



(143, experiment #)

## $(R) \hbox{-} 7 \hbox{-} (dimethylamino) \hbox{-} 4 \hbox{-} (2 \hbox{-} methoxyphenyl) chroman \hbox{-} 2 \hbox{-} one$

48 mg, 80% yield. White solid, m.p. 111-112 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25}$ = -33.6 (c = 0.1 in CHCl<sub>3</sub>), 89:11 er, determined by HPLC analysis [Daicel CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 34.7 min, t (major) = 37.0 min]; <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.22 (m, 1H), 6.89 – 6.87 (m, 2H), 6.85 (d, *J* = 4.4 Hz, 2H), 6.47 – 6.44 (m, 2H), 4.59 (t, *J* = 5.8 Hz, 1H), 3.84 (s, 3H), 3.06 (dd, *J* = 16.0, 4.9 Hz, 1H), 3.00 – 2.96 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.8, 156.9, 153.1, 151.0, 130.0, 128.9, 128.5, 128.3, 120.9, 112.0, 110.6, 108.9, 100.5, 55.2, 40.6, 35.9, 34.7. **IR** (KBr) *v* 2917, 2836, 2801, 1765, 1624, 1130, 811, 765. **HRMS** (ESI) calcd for C<sub>18</sub>H<sub>20</sub>O<sub>3</sub>N ([M+H]<sup>+</sup>) 298.1443 found 298.1445.



(162, experiment #)

#### (R)-2-(7-(dimethylamino)-2-oxochroman-4-yl)benzonitrile

53 mg, 90% yield. White solid, m.p. 98-99 °C.  $R_f = 0.2$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -29.2$  (c = 0.1 in CHCl<sub>3</sub>), 73:27 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 17.7 min, t (major) = 15.5 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 7.2 Hz, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 7.9 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.47 – 6.45 (m, 2H), 4.73 (t, J = 5.7 Hz, 1H), 3.16 (dd, J = 16.0, 6.5 Hz, 1H), 3.03 (dd, J = 16.0, 5.0 Hz, 1H), 2.97 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 153.0, 151.6, 145.8, 133.7, 133.6, 128.8, 128.03, 127.98, 117.7,

111.9, 110.1, 109.1, 100.5, 40.5, 38.5, 37.1. **IR** (KBr) *v* 2917, 2851, 2810, 2221, 1744, 1628, 1156, 803, 765. **HRMS** (ESI) calcd for C<sub>18</sub>H<sub>17</sub>O<sub>2</sub>N<sub>2</sub> ([M+H]<sup>+</sup>) 293.1290 found 293.1293.



#### (S)-4-(2-bromophenyl)-7-(dimethylamino)chroman-2-one

40 mg, 58% yield. White solid, m.p. 116-117 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25}$ = -43.6 (c = 0.1 in CHCl<sub>3</sub>), 84:16 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 9.7 min, t (major) = 8.7 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (d, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.1 Hz, 1H), 6.88 (t, *J* = 8.6 Hz, 2H), 6.47 (d, *J* = 10.9 Hz, 2H), 4.75 (t, *J* = 5.9 Hz, 1H), 3.03 (d, *J* = 6.0 Hz, 2H), 2.97 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 153.2, 151.4, 140.6, 133.4, 129.0, 128.9, 128.3, 124.2, 111.3, 109.0, 100.5, 40.5, 39.4, 36.4. **IR** (KBr) *v* 2921, 2850, 2804, 1770, 1625, 1132, 807, 763. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub>NBr ([M+H]<sup>+</sup>) 346.0443 found 346.0445.



## (152, experiment #)

#### (S)-4-(2-chlorophenyl)-7-(dimethylamino)chroman-2-one

56 mg, 93% yield. White solid, m.p. 110-111 °C.  $R_f = 0.5$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25}$ = -48.4 (c = 0.1 in CHCl<sub>3</sub>), 89:11 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 9.2 min, t (major) = 8.2 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (dd, J = 7.6, 1.7 Hz, 1H), 7.21 – 7.10 (m, 2H), 6.95 – 6.70 (m, 2H), 6.59 – 6.41 (m, 2H), 4.76 (t, J = 5.9 Hz, 1H), 3.04 (d, J = 6.1 Hz, 2H), 2.97 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.0, 153.3, 151.4, 139.0, 133.6, 130.1, 128.9, 128.80, 128.75, 127.6, 111.2, 109.0, 100.5, 40.5, 36.9, 36.2. **IR** (KBr)  $\nu$  2921, 2849, 2809, 1773, 1625, 1132, 808, 765. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub>NCl ([M+H]<sup>+</sup>) 302.0948 found 302.0943.



<sup>OMe</sup>(144, experiment #)

#### (S)-4-(2-bromo-3-methoxyphenyl)-7-(dimethylamino)chroman-2-one

50 mg, 66% yield. White solid, m.p. 105-106 °C.  $R_f = 0.3$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25}$ = -21.1 (c = 0.1 in CHCl<sub>3</sub>), 92:8 er, determined by HPLC analysis [Daicel CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 30.2 min, t (major) = 24.4 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (d, J = 8.8 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.67 (dd, J = 8.8, 3.0 Hz, 1H), 6.54 – 6.38 (m, 3H), 4.68 (t, J = 6.0 Hz, 1H), 3.66 (s, 3H), 3.02 – 3.00 (m, 2H), 2.96 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 159.5, 153.1, 151.4, 141.6, 133.9, 128.9, 115.2, 114.4, 114.1, 111.0, 109.0, 100.5, 55.5, 40.5, 39.5, 36.3. IR (KBr) v 2919, 2841, 2812, 1761, 1633, 1141, 808, 795. **HRMS** (ESI) calcd for  $C_{18}H_{19}O_3Br$  ([M+H]<sup>+</sup>) 376.0548 found 376.0550.



## (S)-7-(dimethylamino)-4-(furan-2-yl)chroman-2-one

31 mg, 61% yield. White solid, m.p. 93-94 °C.  $R_f = 0.5$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -20.0$  (c = 0.1 in CHCl<sub>3</sub>), 87:13 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 11.9 min, t (major) = 9.4 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (dd, J = 1.9, 0.8 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 6.46 (dd, J = 8.5, 2.6 Hz, 1H), 6.41 (d, J = 2.6 Hz, 1H), 6.27 (dd, J = 3.3, 1.9 Hz, 1H), 6.00 (d, J = 3.3 Hz, 1H), 4.29 (t, J = 5.8 Hz, 1H), 3.15 (dd, J = 15.9, 5.5 Hz, 1H), 2.97 – 2.94 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.0, 154.2, 152.4, 151.4, 142.5, 128.5, 110.4, 110.4, 108.7, 106.6, 100.7, 40.5, 34.7, 34.1. **IR** (KBr) *v* 2921, 2359, 2341, 1750, 1635, 1134, 1119, 801, 748. **HRMS** (ESI) calcd for C<sub>15</sub>H<sub>16</sub>O<sub>3</sub>N ([M+H]<sup>+</sup>) 258.1130 found 258.1129.



#### (S)-7-(dimethylamino)-4-(thiophen-2-yl)chroman-2-one

35 mg, 64% yield. White solid, m.p. 86-87 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -25.1$  (c = 0.1 in CHCl<sub>3</sub>), 88:12 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 15.0 min, t (major) = 10.8 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.20 (dd, J = 5.1, 1.2 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 6.93 (dd, J = 5.1, 3.5 Hz, 1H), 6.81 – 6.80 (m, 1H), 6.47 (dd, J = 8.4, 2.6 Hz, 1H), 6.43 (d, J = 2.5 Hz, 1H), 4.51 (t, J = 6.0 Hz, 1H), 3.09 (d, J = 6.0 Hz, 2H), 2.96 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.8, 152.3, 151.4, 145.3, 128.5, 127.2, 125.0, 124.9, 112.6, 108.7, 100.6, 40.5, 38.3, 35.6. **IR** (KBr)  $\nu$  3087, 2904, 2808, 1751, 1635, 1119, 824, 707. **HRMS** (ESI) calcd for C<sub>15</sub>H<sub>16</sub>O<sub>2</sub>NS ([M+H]<sup>+</sup>) 274.0902 found 274.0899.



u (169, experiment #)

#### (S)-7-(dimethylamino)-4-methylchroman-2-one

26 mg, 64% yield. Colorless oil.  $R_f = 0.5$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -12.6$  (c = 0.1 in CHCl<sub>3</sub>), 90:10 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 99/1, 0.8 mL/min,  $\lambda = 254$  nm, t (minor) = 17.3 min, t (major) = 16.4 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7. 7 – 7.05 (m, 1H), 6.48 (dd, J = 8.5, 2.6 Hz, 1H), 6.40 (d, J = 2.6 Hz, 1H), 3.13 – 3.04 (m, 1H), 2.93 (s, 6H), 2.80 (dd, J = 15.7, 5.4 Hz, 1H), 2.51 (dd, J = 15.7, 7.6 Hz, 1H), 1.30 – 1.28 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.1, 152.2, 150.9, 126.8, 115.3, 108.7,

100.9, 40.6, 37.6, 28.7, 20.3. **IR** (KBr) *v* 2958, 2922, 2805, 1769, 1629, 1121, 827, 799. **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>16</sub>O<sub>2</sub>N([M+H]<sup>+</sup>) 206.1181 found 206.1180.



## $\sim$ (167, experiment #)

#### (R)-7-(diethylamino)-4-phenylchroman-2-one

44 mg, 74% yield. Colorless oil.  $R_f = 0.6$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -29.3$  (c = 0.1 in CHCl<sub>3</sub>), 86:14 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 7.7 min, t (major) = 7.2 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 – 7.28 (m, 2H), 7.27 – 7.22 (m, 1H), 7.17 – 7.15 (m, 2H), 6.75 (d, J = 8.5 Hz, 1H), 6.40 (d, J = 2.6 Hz, 1H), 6.36 (dd, J = 8.5, 2.6 Hz, 1H), 4.22 (t, J = 6.8 Hz, 1H), 3.32 (q, J = 7.1 Hz, 4H), 3.06 – 2.91 (m, 2H), 1.15 (t, J = 7.1 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 153.0, 148.4, 141.7, 129.0, 128.9, 127.7, 127.4, 111.7, 108.0, 99.7, 44.6, 40.1, 37.9, 12.6. **IR** (KBr) *v* 3027, 2970, 2927, 1765, 1627, 1114, 801, 699. **HRMS** (ESI) calcd for C<sub>19</sub>H<sub>22</sub>O<sub>2</sub>N ([M+H]<sup>+</sup>) 296.1651 found 296.1650.



(166, experiment #)

#### (R)-7-(dibenzylamino)-4-phenylchroman-2-one

36 mg, 43% yield. White solid, m.p. 51-52 °C.  $R_f = 0.5$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25} = -24.7$  (c = 0.1 in CHCl<sub>3</sub>), 90:10 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 13.9 min, t (major) = 12.0 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.34 (m, 6H), 7.32 – 7.26 (m, 7H), 7.21 – 7.18 (m, 2H), 6.73 (d, J = 8.6 Hz, 1H), 6.52 (d, J = 2.6 Hz, 1H), 6.47 (dd, J = 8.5, 2.7 Hz, 1H), 4.69 (s, 4H), 4.26 – 4.23 (m, 1H), 3.02 (qd, J = 15.8, 7.0 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 152.7, 149.8, 141.3, 138.0, 129.1, 128.9, 128.8, 127.7, 127.5, 127.2, 126.6, 113.5, 108.8, 100.8, 54.6, 40.1, 37.6. IR (KBr)  $\nu$  3026, 2918, 2849, 1763, 1626, 1116, 801, 695. HRMS (ESI) calcd for C<sub>29</sub>H<sub>26</sub>O<sub>2</sub>N ([M+H]<sup>+</sup>) 420.1964 found 420.1963.

(806, experiment #)

#### (R)-9-phenyl-8,9-dihydro-7H-[1,3]dioxolo[4,5-f]chromen-7-one

29.1 mg, 54% yield. White solid, m.p. 81-82 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1).  $[\alpha]_D^{25}$ = -14.0 (c = 0.1 in CHCl<sub>3</sub>), 91:9 er, determined by HPLC analysis [Daicel CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min,  $\lambda = 277$  nm, t (minor) = 13.9 min, t (major) = 15.2 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 – 7.33 (m, 2H), 7.31 – 7.29 (m, 1H), 7.14 (d, *J* = 7.2 Hz, 2H), 6.66 (s, 1H), 6.39 (s, 1H), 5.95 (d, *J* = 1.9 Hz, 2H), 4.22 (t, *J* = 6.7 Hz, 1H), 3.07 – 2.93 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.75, 147.67, 146.36, 144.57, 140.58, 129.30, 127.85, 127.62, 118.07, 107.44, 101.86, 99.29, 40.79, 37.15. **IR** (KBr) *v* 3395, 2923, 2851, 1760, 1647, 1149, 802, 703. **HRMS** (ESI) calcd for C<sub>16</sub>H<sub>13</sub>O<sub>4</sub> ([M+H]<sup>+</sup>) 269.0814 found 269.0804.



<sup>3ea</sup> OMe (804, experiment #)

#### (S)-5,7-dimethoxy-4-phenylchroman-2-one<sup>3</sup>

22.3 mg, 39% yield. White solid, m.p. 117-118 °C.  $R_f = 0.5$  (petroleum ether/ethyl acetate 4:1). [ $\alpha$ ]  $d_D^{25} = -21.0$  (c = 0.1 in CHCl<sub>3</sub>), 82:18 er, determined by HPLC analysis [Daicel CHIRALPAK OD-H column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 10.4 min, t (major) = 23.3 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 – 7.27 (m, 1H), 7.25 – 7.24 (m, 1H), 7.22 – 7.20 (m, 1H), 7.12 – 7.10 (m, 2H), 6.32 (dd, *J* = 21.0, 2.3 Hz, 2H), 4.55 (t, *J* = 4.4 Hz, 1H), 3.82 (s, 3H), 3.74 (s, 3H),3.01 (d, *J* = 4.5 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.80, 160.81, 157.57, 153.25, 141.68, 128.97, 127.24, 126.88, 106.16, 95.25, 94.06, 55.94, 55.71, 37.22, 34.63. **IR** (KBr) *v* 3031, 2923, 2851, 1773, 1623, 1130, 810, 706. **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>17</sub>O<sub>4</sub> ([M+H]<sup>+</sup>) 285.1127 found 285.1131.



(805, experiment #)

#### (R)-1-phenyl-1,2-dihydro-3H-benzo[f]chromen-3-one

44.8 mg, 82% yield. White solid, m.p. 115-116 °C.  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1). [ $\alpha$ ] <sup>25</sup><sub>D</sub> = -38.0 (c = 0.1 in CHCl<sub>3</sub>), 86:14 er, determined by HPLC analysis [Daicel CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min,  $\lambda$  = 277 nm, t (minor) = 10.3 min, t (major) = 9.2 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 – 7.86 (m, 2H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.35 (d, *J* = 8.9 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.26 – 7.25 (m, 1H), 7.23 – 7.19 (m, 1H), 7.14 – 7.12 (m, 2H), 4.95 (dd, *J* = 6.7, 2.3 Hz, 1H), 3.26 – 3.14 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.25, 149.91, 140.64, 131.21, 131.11, 130.05, 129.35, 128.87, 127.71, 127.58, 127.05, 125.38, 123.17, 117.71, 117.67, 37.76, 37.59. **IR** (KBr) *v* 3026, 2924, 2851, 1761, 1625, 1136, 814, 702. **HRMS** (ESI) calcd for C<sub>19</sub>H<sub>14</sub>O<sub>2</sub>Na ([M+Na]<sup>+</sup>) 297.0891 found 297.0892.



4ga

(802, experiment #)

#### 2,5-dimethoxyphenyl cinnamate

15.4 mg, 48% yield. White solid,  $R_f = 0.4$  (petroleum ether/ethyl acetate 4:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 16.0 Hz, 1H), 7.60 – 7.58 (m, 2H), 7.43 – 7.41 (m, 3H), 6.94 (d, J = 8.9 Hz, 1H), 6.78 – 6.73 (m, 2H), 6.67 (d, J = 16.0 Hz, 1H), 3.79 (d, J = 10.4 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.02, 153.90, 146.80, 145.61, 140.41, 134.37, 130.78, 129.10, 128.45, 117.05, 113.57, 111.62, 109.66, 56.73, 55.94.



(803, experiment #)

#### 2,4-dimethoxyphenyl cinnamate

50.0 mg, 88% yield. White solid, m.p.  $R_f = 0.3$  (petroleum ether/ethyl acetate 4:1). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.88 (d, J = 16.0 Hz, 1H), 7.60 – 7.58 (m, 2H), 7.42 – 7.41 (m, 3H), 7.03 (d, J = 8.7 Hz, 1H), 6.67 (d, J = 16.0 Hz, 1H), 6.58 (d, J = 2.6 Hz, 1H), 6.48 (dd, J = 8.7, 2.7 Hz, 1H), 3.82 (d, J = 2.3 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.50, 158.51, 151.97, 146.48, 134.39, 133.66, 130.66, 129.04, 128.38, 122.99, 117.19, 104.02, 100.34, 55.98, 55.71.

O P OMe 4ia

(808, experiment #)

#### 3-methoxyphenyl cinnamate

21.5 mg, 42% yield. White solid,  $R_f = 0.6$  (petroleum ether/ethyl acetate 4:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 16.1 Hz, 1H), 7.61 – 7.58 (m, 2H), 7.44 – 7.42 (m, 3H), 7.31 (t, J = 8.2 Hz, 1H), 6.82 – 6.79 (m, 2H), 6.74 (t, J = 2.3 Hz, 1H), 6.63 (d, J = 16.0 Hz, 1H), 3.82 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  187.16, 165.43, 160.67, 151.93, 149.15, 146.75, 134.33, 131.70, 131.08, 130.85, 129.96, 129.14, 128.90, 128.44, 117.44, 113.99, 111.87, 107.77, 55.57.

#### **3. Product Transformation**



To a 10 mL Schlenk tube,  $(CH_3)_2NH$  (2.0 M, 10.0 equiv.) was added to a mixture of **3aa** (0.2 mmol) in THF (4.0 mL) under a nitrogen atmosphere. Afte the reaction mixture was stirred at room temperature for 12 h, the reaction was complete (monitored by TLC), the mixture was concentrated to dryness. The residue was purified by flash column chromatography to afford the desired product **5** (petroleum ether : ethyl acetate = 6 : 1).



#### (R)-3-(5-(dimethylamino)-2-hydroxyphenyl)-N,N-dimethyl-3-phenylpropanamide

62 mg, 99% yield. White solid, m.p. 151-152 °C.  $R_f = 0.1$  (petroleum ether/ethyl acetate 2:1). [α]<sub>D</sub><sup>25</sup> = -38.0 (c = 0.1 in CHCl<sub>3</sub>), 91:9 er, determined by HPLC analysis [Daicel CHIRALPAK IA column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 30.2 min, t (major) = 27.1 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.30 – 7.29 (m,, 4H), 7.21 – 7.17 (m, 1H), 6.68 (d, *J* =

8.6 Hz, 1H), 6.36 (d, J = 2.7 Hz, 1H),6.18 (dd, J = 8.6, 2.7 Hz, 1H), 4.89 (dd, J = 8.1, 5.3 Hz, 1H), 3.12 – 3.10 (m, 2H), 3.01 (s, 3H), 2.94 (s, 3H), 2.86 (s, 6H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  173.1, 155.3, 150.4, 145.1, 129.4, 128.5, 128.1, 126.2, 120.8, 105.8, 102.3, 40.6, 40.1, 37.7, 37.3, 36.1.

#### 4. X-Ray Crystal Structure of Enantiopure 3ac

The crystal of **3ac** (**CCDC 2342120**) suitable for X-ray analysis was prepared by slow evaporation of the solvent of the solution of **3ac** in *n*-hexane/acetone at room temperature (Figure S1).



Figure S1. X-ray crystal structure of 3ac

| Table S1. Crystal data and structure refinement for 3ac |                      |  |
|---------------------------------------------------------|----------------------|--|
| Identification code                                     | MX10532              |  |
| Empirical formula                                       | $C_{17}H_{16}BrNO_2$ |  |
| Formula weight                                          | 346.22               |  |
| Temperature/K                                           | 170.00(10)           |  |
| Crystal system                                          | orthorhombic         |  |
| Space group                                             | $P2_12_12_1$         |  |
| a/Å                                                     | 5.7063(4)            |  |
| b/Å                                                     | 7.9223(4)            |  |
| c/Å                                                     | 32.7085(16)          |  |
| a/°                                                     | 90                   |  |
| β/°                                                     | 90                   |  |
| $\gamma/^{\circ}$                                       | 90                   |  |
| Volume/Å <sup>3</sup>                                   | 1478.65(15)          |  |
| Z                                                       | 4                    |  |
| $\rho_{calc}g/cm^3$                                     | 1.555                |  |
| $\mu/mm^{-1}$                                           | 2.784                |  |
| F(000)                                                  | 704.0                |  |
|                                                         |                      |  |

 $2\Theta$  range for data collection/° 4.982 to 61.38

Crystal size/mm<sup>3</sup>

Radiation

 $0.28 \times 0.04 \times 0.03$ 

Mo K $\alpha$  ( $\lambda = 0.71073$ )

| Index ranges                                | $-7 \le h \le 8, -11 \le k \le 10, -44 \le l \le 43$ |
|---------------------------------------------|------------------------------------------------------|
| Reflections collected                       | 16468                                                |
| Independent reflections                     | $4006 \; [R_{int} = 0.0444,  R_{sigma} = 0.0457]$    |
| Data/restraints/parameters                  | 4006/0/192                                           |
| Goodness-of-fit on F <sup>2</sup>           | 1.040                                                |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0406, wR_2 = 0.0789$                        |
| Final R indexes [all data]                  | $R_1 = 0.0540,  wR_2 = 0.0825$                       |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.97/-0.55                                           |
| Flack parameter                             | -0.004(6)                                            |

## **5. Reference**

- (a) H. Byeon, S. Ryu, E. J. Yoob and J. W. Yang., *Adv. Synth. Catal.*, **2021**, *363*, 5085. (b) L.-L. Shang, Y. F,
  X. -L. Gao, Z.-R. Chen, Y. Xia, W.-W. Jin and C. -J. Liu., *Chin. J. Chem.*, **2020**, *38*, 1595.
- [2] (a) C.-G. Zhao, F.-Y. Li and J. W, Angew. Chem. Int. Ed., 2016, 128, 1852. (b) S. Kobayashi, T. Kinoshita, H. Uehara, T. Sudo and I. Ryu., Org. Lett., 2009, 11, 3934. (c) C. D. Campbell, C. Concellon and A. D. Smith, Tetrahedron. Asymmetry, 2011, 22, 797.
- [3] G.-T. Li, Z.-K. Li, Q. Gu and S.-L. You, Org. Lett., 2017, 19, 1318.






















































S41









## 6. HPLC Charts of Chiral Products



1 30.986 BB 0.5454 892.83173 25.19432 49.9582 2 32.934 BB 0.5776 894.32654 23.78979 50.0418



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | %       |
|   |        |    |        |            |           |         |
| 1 | 9.356  | MM | 0.1707 | 3111.56323 | 303.85941 | 92.7665 |
| 2 | 13.478 | BB | 0.2182 | 242.62592  | 16.92815  | 7.2335  |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | %       |
|   |        |    |        |            |           |         |
| 1 | 9.382  | VV | 0.1497 | 3921.19727 | 398.75150 | 50.1569 |
| 2 | 13.411 | BB | 0.2127 | 3896.65723 | 277.64203 | 49.8431 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积       | 峰高         | 峰面积     |
|---|--------|----|--------|-----------|------------|---------|
| # | [min]  |    | [min]  | [mAU*s]   | [mAU]      | %       |
|   |        |    |        |           |            |         |
| 1 | 31.572 | MM | 0.5585 | 308.02609 | 9.19260    | 92.6796 |
| 2 | 33.251 | MM | 0.5256 | 24.32961  | 7.71558e-1 | 7.3204  |



S48

5.83816 50.1832

2 33.215 BB 0.5330 201.68523



| 峰 | 保留时间   | 类型  | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|-----|--------|------------|-----------|---------|
| # | [min]  |     | [min]  | [mAU*s]    | [mAU]     | %       |
|   |        |     |        |            |           |         |
| 1 | 29,349 | BB  | 0.4719 | 3104.30347 | 102.62521 | 93.4285 |
| 2 | 31.061 | BBA | 0.4957 | 218.34731  | 6.83510   | 6.5715  |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高       | 峰面积     |
|---|--------|----|--------|------------|----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]    | %       |
|   |        |    |        |            |          |         |
| 1 | 29.437 | BB | 0.4742 | 1122.75598 | 36.87444 | 50.0743 |
| 2 | 31.160 | BB | 0.5044 | 1119.42468 | 34.60501 | 49.9257 |



| 3 | 29.072 | BB | 0.4604 | 558.53485 | 18.92244 | 47.5208 |
|---|--------|----|--------|-----------|----------|---------|
| 4 | 31.223 | BB | 0.4940 | 556.06226 | 17.53439 | 47.3104 |



S51





| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | do      |
|   |        |    |        |            |           |         |
| 1 | 10.748 | VB | 0.1978 | 4164.28320 | 324.37350 | 81.2929 |
| 2 | 14.889 | VB | 0.2877 | 958.28662  | 49.97046  | 18.7071 |



| 1 | 10.861 | VV | 0.1954 | 2014.46899 | 155.25610 | 49.9855 |
|---|--------|----|--------|------------|-----------|---------|
| 2 | 15.048 | BV | 0.2885 | 2015.63611 | 106.65786 | 50.0145 |

S53



S54



| 峰<br># | 保留时间<br>[min]    | 奕型       | 峰宽<br>[min]      | 峰囬枳<br>[mAU*s]          | 峰尚<br>[mAU]         | 峰面积<br>%           |  |
|--------|------------------|----------|------------------|-------------------------|---------------------|--------------------|--|
| 1      | 22.772<br>24.014 | MM<br>MM | 0.4554<br>0.5019 | 212.01811<br>1238.84705 | 7.75949<br>41.13690 | 14.6132<br>85.3868 |  |



| # | [min]     | [min]  | [mau*s]  | [mau]   | 70      |
|---|-----------|--------|----------|---------|---------|
|   |           |        |          |         |         |
| 1 | 22.917 BB | 0.4394 | 77.05459 | 2.68051 | 49.4075 |
| 2 | 24.226 BB | 0.4424 | 78.90276 | 2.64188 | 50.5925 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |  |
|---|--------|----|--------|------------|-----------|---------|--|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | do      |  |
|   |        |    |        |            |           |         |  |
| 1 | 9.955  | MM | 0.2067 | 2855.42676 | 230.18752 | 91.2816 |  |
| 2 | 10.765 | MM | 0.2301 | 272.72491  | 19.75656  | 8.7184  |  |



| 峰 | 保留时间     | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|----------|----|--------|------------|-----------|---------|
| # | [min]    |    | [min]  | [mAU*s]    | [mAU]     | do      |
|   |          |    |        |            |           |         |
| 1 | 9.970    | BV | 0.1886 | 3612.25854 | 291.49619 | 50.0279 |
| 2 | 2 10.770 | VB | 0.2116 | 3608.22949 | 263.82230 | 49.9721 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |  |
|---|--------|----|--------|------------|-----------|---------|--|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | %       |  |
|   |        |    |        |            |           |         |  |
| 1 | 9,908  | MM | 0.1801 | 1691.49292 | 156.55855 | 89.9313 |  |
| 2 | 10.604 | MM | 0.1873 | 189.37907  | 16.84866  | 10.0687 |  |



| 1 | 9.896  | MM | 0.1753 | 451.43683 | 42.91893 | 49.5703 |
|---|--------|----|--------|-----------|----------|---------|
| 2 | 10.578 | MM | 0.1901 | 459.26288 | 40.26058 | 50,4297 |



| # | [min]  | XΞ | [min]  | [mAU*s]    | [mAU]    | ×=======<br>% |  |
|---|--------|----|--------|------------|----------|---------------|--|
|   |        |    |        |            |          |               |  |
| 1 | 11.122 | MM | 0.2257 | 1127.34790 | 83.23850 | 88.8382       |  |
| 2 | 12.100 | MM | 0.2447 | 141.64246  | 9.64810  | 11.1618       |  |



-



| # | [min]  |    | [min]  | [mAU*s]    | [mAU]    | %       |
|---|--------|----|--------|------------|----------|---------|
|   |        |    |        |            |          |         |
| 1 | 34.684 | MM | 0.6358 | 355.41727  | 9.31702  | 11.2888 |
| 2 | 37.007 | MM | 0.6752 | 2792.97998 | 68.93867 | 88.7112 |





| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | do      |
|   |        |    |        |            |           |         |
| 1 | 15.485 | BB | 0.2930 | 2532.69019 | 130.75598 | 73.2841 |
| 2 | 17.745 | BB | 0.3310 | 923.29987  | 42.07044  | 26.7159 |
|   |        |    |        |            |           |         |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高       | 峰面积     |
|---|--------|----|--------|------------|----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]    | 8       |
|   |        |    |        |            |          |         |
| 1 | 15.729 | BB | 0.3051 | 1718.01880 | 84.52218 | 49.7850 |
| 2 | 18.019 | BB | 0.3411 | 1732.85925 | 76.55825 | 50.2150 |



| 峰 | 保留时间  | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|-------|----|--------|------------|-----------|---------|
| # | [min] |    | [min]  | [mAU*s]    | [mAU]     | %       |
|   |       |    |        |            |           |         |
| 1 | 8.722 | MM | 0.1812 | 4554.45068 | 418.95493 | 83.7816 |
| 2 | 9.746 | MM | 0.1872 | 881.65118  | 78.49992  | 16.2184 |



| 峰 | 保留时间  | 类型 | 峰宽     | 峰面积       | 峰高       | 峰面积     |
|---|-------|----|--------|-----------|----------|---------|
| # | [min] |    | [min]  | [mAU*s]   | [mAU]    | %       |
|   |       |    |        |           |          |         |
| 1 | 8.701 | MM | 0.1711 | 264.77740 | 25.78514 | 50.0641 |
| 2 | 9.711 | BB | 0.1697 | 264.09961 | 23.94738 | 49.9359 |



| # | լաոսյ |    | [min]  | [mAU*s]    | [ MAU ]   | 76      |  |
|---|-------|----|--------|------------|-----------|---------|--|
|   |       |    |        |            |           |         |  |
| 1 | 8.210 | MM | 0.1781 | 3587.52759 | 335.79007 | 88.9391 |  |
| 2 | 9.210 | vv | 0.1655 | 446.16412  | 40.20618  | 11.0609 |  |



| 峰 | 保留时间  | 类型 | 峰宽     | 峰面枳       | 峰高       | 峰面枳     |
|---|-------|----|--------|-----------|----------|---------|
| # | [min] |    | [min]  | [mAU*s]   | [mAU]    | %       |
|   |       |    |        |           |          |         |
| 1 | 8.201 | VB | 0.1543 | 256.14182 | 24.84493 | 50.1059 |
| 2 | 9.185 | BB | 0.1612 | 255.05911 | 23.77225 | 49.8941 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积       | 峰高       | 峰面积     |  |
|---|--------|----|--------|-----------|----------|---------|--|
| # | [min]  |    | [min]  | [mAU*s]   | [mAU]    | %       |  |
|   |        |    |        |           |          |         |  |
| 1 | 24.178 | BB | 0.4099 | 425.42981 | 16.06873 | 50.5380 |  |
| 2 | 29,943 | BB | 0.5160 | 416.37149 | 12.52117 | 49.4620 |  |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积       | 峰高       | 峰面积     |
|---|--------|----|--------|-----------|----------|---------|
| # | [min]  |    | [min]  | [mAU*s]   | [mAU]    | %       |
|   |        |    |        |           |          |         |
| 1 | 9.438  | MM | 0.1768 | 931.71338 | 87.80967 | 87.1797 |
| 2 | 11.908 | MM | 0.2127 | 137.01357 | 10.73601 | 12.8203 |





| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | %       |
|   |        |    |        |            |           |         |
| 1 | 10.759 | BB | 0.1774 | 1847.10168 | 155.69687 | 88.1676 |
| 2 | 15.027 | BB | 0.2409 | 247.88731  | 15.47609  | 11.8324 |





| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | db      |
|   |        |    |        |            |           |         |
| 1 | 16.444 | BV | 0.3072 | 2398.81885 | 121.06214 | 90.2806 |
| 2 | 17.344 | VB | 0.3362 | 258.25137  | 11.76237  | 9.7194  |



| 1 | 16.414 | BV | 0.3031 | 4263.84424 | 215.25920 | 49.8747 |
|---|--------|----|--------|------------|-----------|---------|
| 2 | 17.219 | VB | 0.3361 | 4285.26416 | 195.23238 | 50.1253 |



| 峰 | 保留时间  | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|-------|----|--------|------------|-----------|---------|
| # | [min] |    | [min]  | [mAU*s]    | [mAU]     | 웡       |
|   |       |    |        |            |           |         |
| 1 | 7.154 | BV | 0.1404 | 2144.98975 | 232.93689 | 85.9566 |
| 2 | 7.689 | VB | 0.1569 | 350.44247  | 34.10397  | 14.0434 |



| 峰 | 保留时间  | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|-------|----|--------|------------|-----------|---------|
| # | [min] |    | [min]  | [mAU*s]    | [mAU]     | %       |
|   |       |    |        |            |           |         |
| 1 | 6.990 | BV | 0.1332 | 1956.85742 | 223.27641 | 49.8348 |
| 2 | 7.515 | VB | 0.1348 | 1969.82813 | 221.43661 | 50.1652 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | 99      |
|   |        |    |        |            |           |         |
| 1 | 11.955 | BV | 0.2268 | 1950.97095 | 130.19565 | 89.6829 |
| 2 | 13.913 | MM | 0.2855 | 224.43913  | 13.09992  | 10.3171 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积       | 峰高       | 峰面积     |
|---|--------|----|--------|-----------|----------|---------|
| # | [min]  |    | [min]  | [mAU*s]   | [mAU]    | dlo     |
|   |        |    |        |           |          |         |
| 1 | 11.676 | VB | 0.2230 | 851.83667 | 58.11563 | 50.1140 |
| 2 | 13.521 | BB | 0.2623 | 847.96136 | 49.89349 | 49.8860 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积       | 峰高       | 峰面积     |
|---|--------|----|--------|-----------|----------|---------|
| # | [min]  |    | [min]  | [mAU*s]   | [mAU]    | 96      |
|   |        |    |        |           |          |         |
| 1 | 13.905 | BB | 0.2544 | 55.80571  | 3.36636  | 9.4615  |
| 2 | 15.218 | BB | 0.2774 | 534.01392 | 29.61370 | 90.5385 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积       | 峰高       | 峰面积     |
|---|--------|----|--------|-----------|----------|---------|
| # | [min]  |    | [min]  | [mAU*s]   | [mAU]    | da      |
|   |        |    |        |           |          |         |
| 1 | 14.200 | BB | 0.2678 | 259.20071 | 14.69171 | 50.0468 |
| 2 | 15.538 | BB | 0.2945 | 258.71643 | 13.38516 | 49.9532 |



| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高       | 峰面积     |
|---|--------|----|--------|------------|----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]    | 00      |
|   | ·      |    |        |            |          |         |
| 1 | 10.430 | BB | 0.3984 | 428.48227  | 15.70181 | 18.3727 |
| 2 | 23.274 | BB | 0.9074 | 1903.68701 | 30.69971 | 81.6273 |









| 峰 | 保留时间   | 类型 | 峰宽     | 峰面积        | 峰高        | 峰面积     |
|---|--------|----|--------|------------|-----------|---------|
| # | [min]  |    | [min]  | [mAU*s]    | [mAU]     | da      |
|   |        |    |        |            |           |         |
| 1 | 27.104 | MM | 0.7419 | 1.53957e4  | 345.84125 | 91.1348 |
| 2 | 30.154 | MM | 0.7753 | 1497.61755 | 32.19588  | 8.8652  |