Electronic Supplementary Information

Accurate identification of 8-oxoguanine in RNA at single-nucleotide

resolution using ligase-dependent qPCR

Xidong Ye,^{‡a} Zengguang Li,^{‡a} Shangde Ye,^a Xinqi Liang,^a Chenyu Bao,^a Mingyang He,^a Hailan Wang,^a Laixin Xia^{*a} and Xin Cao^{*a}

Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.

Correspondence should be addressed to Xin Cao and Laixin Xia. E-mail: cx123@smu.edu.cn, xialx@smu.edu.cn

‡ These authors contributed equally.

* Corresponding authors

Supplementary tables and figures

Table S1. The sequences of the nucleic acids used in this assay.

Name	Sequence (5'-3' direction)
RNA-1-G	CUUGGUUUUGUUUGAAUGCAUGUAUAUAGUCAU
RNA-1-08G	CUUGGUUUUGUUUGAAU08GCAUGUAUAUAGUCAU
Probe L	/PO4/ATTCAAACAAAACCAAGCTCTATGGGCAGTCGGTGATA
	TCGACCTGTACCTCT
Probe R	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTATGACT
	ATATACATrGrC
DNA Probe R	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTATGACT
	ATATACATGC
Probe L2	/PO ₄ /AAAACCAAGCTCTATGGGCAGTCGGTGATATCGACCTG
	TACCTCT
Probe R2	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTATGACT
	ATATACATGCATTCAArArC
miR-124 probe	/PO ₄ /TTACTCTATGGGCAGTCGGTGATATCGACCTGTACCTCT
L1	
miR-124 probe	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTGGCATTC
R1	ACCGCGTGrCrC
miR-124 probe	/PO ₄ /CGCGTGCCTTACTCTATGGGCAGTCGGTGATATCGACCT
L2	GTACCTCT
miR-124 probe	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTGGCATTC
R2	rArC
Let7a probe L1	/PO ₄ /TCACTCTATGGGCAGTCGGTGATATCGACCTGTACCTCT
Let7a probe R1	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTAACTAT
	ACAACCTACTArCrC
Let7a probe L2	/PO4/CTACTACCTCACTCTATGGGCAGTCGGTGATATCGACCT
	GTACCTCT
Let7a probe R2	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTAACTAT

	ACArArC
miR-29a probe	/PO4/TACTCTATGGGCAGTCGGTGATATCGACCTGTACCTCT
L1	
miR-29a probe	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTTAACCG
R1	ATTTCAGATGGTrGrC
miR-29a probe	/PO ₄ /AGATGGTGCTACTCTATGGGCAGTCGGTGATATCGACCT
L2	GTACCTCT
miR-29a probe	CCATCTCATCCCTGCGTGTCCATCATCCGTACGTGTTAACCG
R2	ATTrTrC
universal primer	CCATCTCATCCCTGCGTGTC
F	
universal primer	AGAGGTACAGGTCGATATCA
R	

1 Optimization of the ligation ligation-based qPCR method.

Figure. S1 Optimization of the ligation ligation-based qPCR method.

(a) The relative ratios of pixel intensities between the RNA-1-G segment and the RNA-1- o^8G segment, determined using different ligases. (b) Comparison of two conditions prior to the ligation process. (c-e) Optimization of ligation reaction parameters, including temperature (c), ligation time (d), and T3 DNA ligase concentration (e), for the ligation-dependent qPCR assay. The bar graph displays the qPCR threshold cycle (C_T) values between RNA-1- o^8G and RNA-1-G under varied reaction conditions.

Figure S2 The ROS levels are increased by rotenone treatment in neuronal cells. (**a-b**) Flow cytometry analysis depicting ROS levels in SH-SY5Y cells (**a**) and HS683 cells (**b**) following treatment with DMSO (vehicle control) and 5 μM rotenone.

Figure S3 Identification of miRNA o^8G sites in HS683 cells with ROS damage. (a) Fluorescence immunostaining images displaying the presence of o^8G in control HS683 cells and cells treated with 5 µM rotenone. The scale bar represents 30 µm. (b-d) Real-time qPCR amplification curves and corresponding bar graphs showing the threshold cycle (C_T) values for the detection of o^8G and G sites (used as input control) in miR-124 (b), let-7a (c), and miR-29a (d) using the ligation-based qPCR assay.

4 Rotenone treatment decreases viability in SH-SY5Y cells

Figure S4 Rotenone treatment decreases viability in SH-SY5Y cells.