Electronic Supplementary Information

A synthetically useful catalytic system for aliphatic C–H oxidation with a nonheme cobalt complex and *m*-CPBA

Xiang Wen[†], Yidong Ma[†], Jie Chen* and Bin Wang*

School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022,

China

[†] These authors contributed equally

*To whom correspondence should be addressed. chm_chenj@ujn.edu.cn

chm_wangb@ujn.edu.cn

Table of Contents

Experimental Section	S3
Synthesis and Characterization of Nonheme Cobalt(II) Complexes	S5
Synthesis and Characterization of Substrates	S8
General Procedure for Catalytic C(sp ³)–H Oxidation	S9
Characterization of the Oxidation Products	S10
Scalable Oxidation Experiment	S25
Stoichiometric Oxidation of Adamantane	S26
Determination of Kinetic Isotope Effect	S27
References	S28
Table S1	S30
Table S2	S31
Figure S1	\$32
Figure S2	S33
Figure S3	S34
Figure S4	S35
Figure S5	S36
Additional Data: ¹ H and ¹³ C NMR spectra	S37

Experimental Section

Materials. All chemicals were purchased from Energy Chemical, Bidepharm, Aldrich, and TCI with the maximum purity available, and used as received unless otherwise indicated. Solvents were dried according to published procedures and distilled under argon prior to use.^{S1} Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash column chromatography was performed on silica gel (particle size 200–300 mesh) and eluted with petroleum ether/ethyl acetate. Co(CF₃SO₃)₂· 2CH₃CN was synthesized by reacting cobalt powder with trifluoromethanesulfonic acid (CF₃SO₃H) under an inert atmosphere in H₂O, and then recrystallized with CH₃CN/Et₂O.^{S2} Ligands MPP,^{S3} 6-Me₂-MPP,^{S3} BPMCN,^{S4} BQPN,^{S3} and BQCN^{S5} were prepared according to the reported procedures. Substrates **7a-8a**,^{S6} **10a-11a**,^{S7} **12a-14a**,^{S7} **15a**,^{S8} **16a**,^{S7} **17a**,^{S9} **18a-19a**,^{S10} **21a-23a**,^{S8} and **26a-28a**^{S11} were prepared using published protocols and were found to match reported physical properties.

Instrumentation. NMR spectra were recorded on Bruker AVQ-400 (400 MHz for ¹H; 101 MHz for ¹³C) or AVANCE III HD-600 (600 MHz for ¹H; 151 MHz for ¹³C). The chemical shifts (δ) are given in parts per million relative to Chloroform-d (7.26 ppm for ¹H) or TMS (0 ppm for ¹H) and Chloroform-d (77.0 ppm for ¹³C). Coupling constants are reported in Hertz (Hz). Abbreviations for splitting patterns are as follows: s, singlet; d, doublet; t, triplet; q, quartet; qt, quintet; sext, sextet; hept, heptet; m, multiplet; br., broad. Where coincident coupling constants have been observed, the apparent (app.) multiplicity of the proton resonance has been reported. High-resolution mass spectral (HRMS) data were obtained with Thermo LTQ-FTICR (ESI) mass spectrometers. X-band EPR spectra were taken at 5.0 K using an X-band Bruker EMX-plus spectrometer equipped with a dual mode cavity (ER 4116DM). Elemental analysis was performed on a Thermo Finnigan Italia SpA (Flash EA 1,112) CHN analyzer. For X-ray structural analysis, crystallographic data collections were carried out on a Bruker SMART AXS diffractometer equipped with a monochromator in the Mo $K\alpha$ ($\lambda = 0.71073$ Å) incident beam. Melting points were recorded using a **Electronic Supplementary Information S3**

X-5 Micro melting point instrument, Beijing Tech Instrument Co., LTD. GC-MS spectra were recorded on a GCMS-QP2010 SE.

Synthesis and Characterization of Nonheme Cobalt(II) Complexes

[Co(*R*,*R*-MPP)(OTf)(CH₃CN)](OTf) (1): Under nitrogen atmosphere, a solution of Co(CF₃SO₃)₂(CH₃CN)₂ (1.2 mmol, 527 mg) in anhydrous CH₃CN (2.0 mL) was added dropwise to a vigorously stirred solution of tetradentate N4 ligand (*R*,*R*)-MPP (1.0 mmol, 422 mg) in CH₃CN (1.5 mL) at room temperature. After stirring for 12 hours, anhydrous diethyl ether freshly taken from solvent delivery system was added to the resulting solution to precipitate out the complex. The resultant solid was washed thoroughly with ether, dried under vacuum, and recrystalized with CH₃CN/ether to yield the desired complex as a pink solid (755 mg, 0.92 mmol, 92% yield). **HRMS** (ESI+, Figure S1 in the Electronic Supplementary Information): *m*/*z* 240.5896 [Co^{II}(*R*,*R*-MPP)]²⁺, and 630.1317 [Co^{II}(*R*,*R*-MPP)(CF₃SO₃)]⁺. **Anal. Calcd.** for C₃₂H₃₃N₅O₆S₂F₆Co: C, 46.83; H, 4.05; N, 8.53. Found: C, 46.95; H, 4.08; N, 8.71. Single crystals suitable for X-ray crystallographic analysis were obtained by slow diffusion of anhydrous diethyl ether into an acetonitrile solution of [Co(MPP)(OTf)(CH₃CN)](OTf) (1).

[Co(6-Me₂-MPP)(OTf)₂ (2)

[Co(*R*,*R*-6-Me₂-MPP)(OTf)₂] (2): Following the general procedure for the preparation of complex **1** using (*R*,*R*)-6-Me₂-MPP ligand, provided the title complex as a pink solid (711 mg, 0.88 mmol, 88% yield). **HRMS** (ESI+, Figure S2 in the Electronic Supplementary Information): m/z 254.6051 [Co^{II}(*R*,*R*-6-Me₂-MPP)]²⁺, and 658.1630 [Co^{II}(*R*,*R*-6-Me₂-MPP)(CF₃SO₃)]⁺. **Anal. Calcd.** for C₃₂H₃₄N₄O₆S₂F₆Co: C, Electronic Supplementary Information S5

47.59; H, 4.24; N, 6.94. Found: C, 47.45; H, 4.38; N, 6.79.

[Co(*R*,*R*-BPMCN)(OTf)₂] (3): Following the general procedure for the preparation of complex **1** using (*R*,*R*)-BPMCN ligand, provided the title complex as a pink solid (545 mg, 0.80 mmol, 80% yield). **HRMS** (ESI+, Figure S3 in the Electronic Supplementary Information): m/z 191.5814 [Co^{II}(*R*,*R*-BPMCN)]²⁺, and 532.1161 [Co^{II}(*R*,*R*-BPMCN)(CF₃SO₃)]⁺. **Anal. Calcd.** for C₂₂H₂₈N₄O₆S₂F₆Co: C, 38.77; H, 4.14; N, 8.22. Found: C, 38.55; H, 4.30; N, 8.02.

[Co(*R*,*R*-BQPN)(OTf)₂] (4): Following the general procedure for the preparation of complex 1 using (*R*,*R*)-BQPN ligand, provided the title complex as a pink solid (664 mg, 0.78 mmol, 78% yield). HRMS (ESI+, Figure S4 in the Electronic Supplementary Information): m/z 276.5896 [Co^{II}(*R*,*R*-BQPN)]²⁺, and 702.1319 [Co^{II}(*R*,*R*-BQPN)(CF₃SO₃)]⁺. Anal. Calcd. for C₃₆H₃₀N₄O₆S₂F₆Co: C, 50.77; H, 3.55; N, 6.58. Found: C, 50.56; H, 3.68; N, 6.53.

[Co(R,R-BQCN)(OTf)₂] (5): Following the general procedure for the preparation of

complex **C1** using (*R*,*R*)-BQCN ligand, provided the title complex as a pink solid (678 mg, 0.90 mmol, 90% yield). **HRMS** (ESI+, Figure S5 in the Electronic Supplementary Information): m/z 227.5815 [Co^{II}(*R*,*R*-BQCN)]²⁺, and 604.1162 [Co^{II}(*R*,*R*-BQCN)(CF₃SO₃)]⁺. **Anal. Calcd.** for C₂₈H₂₈N₄O₆S₂F₆Co: C, 44.63; H, 3.75; N, 7.43. Found: C, 44.58; H, 3.78; N, 7.35.

Synthesis and Characterization of Substrates

3-((4-Bromophenyl)sulfonyl)-3-azabicyclo[3.1.0]hexane (29a)

Et₃N (11 mmol, 1.1 equiv) was added to a round bottom flask containing (1R,5S)-3-azabicyclo[3.1.0]hexane (10 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (30 mL) at room temperature. Then, the solution was cooled down to 0 °C, and 4-bromobenzene-1-sulfonyl chloride (12 mmol, 1.2 equiv) was added dropwise. After that the reaction mixture was warmed to room temperature and stirred for additional 16 h. The mixture was then washed with 1.0 M aqueous HCl solution, and extracted with CH₂Cl₂ (3 × 15 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and filtered. The solution was then concentrated under reduced pressure and purified by flash chromatography on silica gel to afford **29a** as a white solid (2.6 g, 8.6 mmol, 86%).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.73 – 7.60 (m, 4H), 3.51 (d, J = 9.2 Hz, 2H), 3.06 (d, J = 9.0 Hz, 2H), 1.47 – 1.39 (m, 2H), 0.63-0.54 (m, 1H), 0.38-0.30 (m, 1H).
¹³C NMR (151 MHz, Chloroform-*d*) δ 135.8, 132.4, 129.1, 127.7, 50.0, 15.7, 7.8.

HRMS (ESI+): m/z calculated for C₁₁H₁₃BrNO₂S [M+H]⁺: 301.9850, found 301.9842.

 $R_f: 0.20$ (Petroleum ether:EtOAc 40:1)

т.р.: 148.1 – 149.4 °С

General Procedure for Catalytic C(sp³)-H Oxidation

[Co(*R*,*R*-MPP)(OTf)(CH₃CN)](OTf) (1) (4.1 mg, 5.0×10^{-3} mmol) and substrate (0.50 mmol) were added to a Schlenk tube in CH₃CN (2.0 mL). Then *m*-CPBA (138 mg, 1.0 mmol, 2.0 equiv) was added in one batch under aerobic conditions. The final concentrations of reagents were 2.5 mM cobalt catalyst, 0.50 M *m*-CPBA and 0.25 M substrate. After stirring the reaction mixture for 8 h at room temperature, the resulting solution was concentrated to a minimum amount of solvent. The residue was dissolved in DCM (~15 mL) and washed sequentially with sat. aq. Na₂SO₃ and sat. aq. NaHCO₃ solution. The aqueous layer was extracted with DCM (3 × 10 mL) and the combined organic layer was dried over Na₂SO₄. The filtrate was concentrated and purified by flash chromatography on silica gel.

Characterization of the Oxidation Products

Isochroman-1-one (6b)

Following the general procedure for $C(sp^3)$ –H oxidation using isochroman **6a** (67 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 30:1) provided the title compound as a white solid (64 mg, 0.44 mmol, 87%). Spectral data are consistent with those reported in the literature.^{S12}

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.16-8.04 (m, 1H), 7.54 (td, *J* = 7.5, 1.5 Hz, 1H), 7.43 – 7.35 (m, 1H), 7.29 – 7.23 (m, 1H), 4.58-4.48 (m, 2H), 3.06 (t, *J* = 6.0 Hz, 2H).

 R_f : 0.30 (Petroleum ether: EtOAc 20:1).

7-Bromoisochroman-1-one (7b)

Following the general procedure for $C(sp^3)$ –H oxidation using 7-bromoisochroman **7a** (107 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 30:1) provided the title compound as a white solid (87.4 mg, 0.38 mmol, 77%). Spectral data are consistent with those reported in the literature.^{S12}

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.23 (d, *J* = 2.0 Hz, 1H), 7.65 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 4.53 (t, *J* = 6.0 Hz, 2H), 3.02 (t, *J* = 6.0 Hz, 2H). *R*_f: 0.30 (Petroleum ether:EtOAc 20:1).

4-Methylisochroman-1-one (8b)

Following the general procedure for C(sp³)–H oxidation using 4-methylisochroman **8a** (74.1 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 30:1) provided the title compound as a white solid (74.6 mg, 0.46 mmol, 92%). Spectral data are consistent with those reported in the literature.^{S12} **¹H NMR** (400 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 7.7 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.7 Hz, 1H), 4.52 (dd, *J* = 10.9, 4.1 Hz, 1H), 4.24 (dd, *J* = 10.9, 6.6 Hz, 1H), 3.23 – 3.10 (m, 1H), 1.37 (d, *J* = 7.1 Hz, 3H). *R_f*: 0.30 (Petroleum ether:EtOAc 20:1).

Isobenzofuran-1(3H)-one (9b)

Following the general procedure for $C(sp^3)$ –H oxidation using 1,3-dihydroisobenzofuran **9a** (60.1 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 25:1) provided the title compound as a white solid (57.0 mg, 0.43 mmol, 85%). Spectral data are consistent with those reported in the literature.^{S12}

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 7.7 Hz, 1H), 7.69 (td, *J* = 7.5, 1.0 Hz, 1H), 7.58 – 7.47 (m, 2H), 5.33 (s, 2H).

*R*_f: 0.33 (Petroleum ether:EtOAc 20:1).

2-((4-Methoxyphenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (10b)

Following for $C(sp^3)$ –H oxidation the general procedure using 2-((4-methoxyphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline **10a** (152 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 12:1) provided the title compound as a white solid (103 mg, 0.33 mmol, 65%). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.07 – 8.02 (m, 2H), 8.01 – 7.96 (m, 1H), 7.47 (td, J = 7.5, 1.3 Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.02 - 6.95 (m, 2H), 4.26 - 4.18 (m, 2H), 3.86 (s, 3H), 3.12 (t, J = 6.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.8, 163.6, 139.4, 133.6, 131.0, 130.6, 129.2, 128.4, 127.54, 127.47, 114.1, 55.8, 44.8, 29.1.

HRMS (ESI+): *m*/*z* calculated for C₁₆H₁₆NO₄S [M+H]⁺: 318.0800, found 318.0795. *R*_f: 0.30 (Petroleum ether:EtOAc 10:1).

m.p.: 121.4 – 122.6 °C.

2-Tosyl-3,4-dihydroisoquinolin-1(2H)-one (11b)

Following the general procedure for $C(sp^3)$ –H oxidation using 2-tosyl-1,2,3,4-tetrahydroisoquinoline **11a** (144 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 18:1) provided the title compound as a white solid (125 mg, 0.42 mmol, 83%).^{S13}

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.03-7.93 (m, 3H), 7.47 (td, *J* = 7.5, 1.3 Hz, 1H), 7.35-7.28 (m, 3H), 7.21 (d, *J* = 7.6 Hz, 1H), 4.24 (t, *J* = 6.2 Hz, 2H), 3.13 (t, *J* = 6.2 Hz, 2H), 2.42 (s, 3H).

*R*_f: 0.20 (Petroleum ether:EtOAc 10:1).

2-((4-Bromophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (12b)

Following the general procedure for $C(sp^3)$ –H oxidation using 2-((4-bromophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline **12a** (176 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (159 mg, 0.44 mmol, 87%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 – 7.92 (m, 3H), 7.70 – 7.63 (m, 2H), 7.49 (td, *J* = 7.5, 1.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 4.29 – 4.19 (t, *J* = 6.2 Hz, 2H), 3.14 (t, *J* = 6.2 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.6, 139.3, 138.1, 133.9, 132.2, 130.3, 129.3, 129.1, 128.0, 127.7, 127.6, 44.9, 29.0.

HRMS (ESI+): m/z calculated for C₁₅H₁₃BrNO₃S [M+H]⁺: 365.9800, found 365.9792.

 R_f : 0.20 (Petroleum ether: EtOAc 10:1).

m.p.: 164.2 – 165.5 °C.

2-((4-Chlorophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (13b)

Following the general procedure for $C(sp^3)$ –H oxidation using 2-((4-chlorophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline **13a** (154 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (127 mg, 0.39 mmol, 79%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.08 – 8.01 (m, 2H), 8.00 – 7.94 (m, 1H), 7.54 – 7.45 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 4.23 (t, *J* = 6.2 Hz, 2H), 3.14 (t, *J* = 6.2 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.6, 140.5, 139.3, 137.6, 133.8, 130.2, 129.3, 129.2, 128.0, 127.7, 127.6, 44.9, 29.0.

HRMS (ESI+): m/z calculated for C₁₅H₁₃ClNO₃S [M+H]⁺: 322.0305, found 322.0308.

*R*_f: 0.20 (Petroleum ether:EtOAc 10:1).

m.p.: 135.6 – 136.9 °C.

2-((4-Fluorophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (14b)

Following the general procedure for $C(sp^3)$ –H oxidation using 2-((4-fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline **14a** (146 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (130 mg, 0.42 mmol, 85%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.19-8.09 (m, 2H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.49 (td, *J* = 7.5, 1.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.28 – 7.16 (m, 3H), 4.23 (t, *J* = 6.2 Hz, 2H), 3.14 (t, *J* = 6.2 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.1, 164.6, 163.6, 139.4, 135.1 (d, *J* = 4.0 Hz), 133.8, 131.7 (d, *J* = 10.1 Hz), 129.3, 128.1, 127.6 (d, *J* = 10.1 Hz), 116.2 (d, *J* = 25.2 Hz), 44.9, 29.0.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -103.23.

HRMS (ESI+): m/z calculated for C₁₅H₁₃FNO₃S [M+H]⁺: 306.0600, found 306.0593.

Rf: 0.30 (Petroleum ether:EtOAc 10:1).

m.p.: 117.1 – 118.3 °C.

2-((4-Nitrophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (15b)

Following the general procedure for $C(sp^3)$ -H oxidation using 2-((4-nitrophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline **15a** (159 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 6:1) provided the title compound as a white solid (106 mg, 0.32 mmol, 64%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.42 – 8.35 (m, 2H), 8.32 – 8.24 (m, 2H), 7.99 – 7.90 (m, 1H), 7.51 (td, *J* = 7.5, 1.3 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 8.2 Hz, 1H), 4.27 (t, *J* = 6.2 Hz, 2H), 3.18 (t, *J* = 6.2 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.7, 150.7, 144.7, 139.3, 134.2, 130.2, 129.4, 127.8, 127.7, 127.7, 124.1, 45.1, 29.0.

HRMS (ESI+): *m*/*z* calculated for C₁₅H₁₃N₂O₅S [M+H]⁺: 333.0545, found 333.0555. *R_f*: 0.20 (Petroleum ether:EtOAc 5:1).

m.p.: 193.8 – 195.0 °C.

2-((3-Nitrophenyl)sulfonyl)-3,4-dihydroisoquinolin-1(2H)-one (16b)

Following the general procedure for $C(sp^3)$ –H oxidation using 2-((3-nitrophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline **16a** (159 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 7:1) provided the title compound as a white solid (115 mg, 0.34 mmol, 69%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.87 (t, *J* = 1.9 Hz, 1H), 8.53-8.42 (m, 2H), 7.99 – 7.93 (m, 1H), 7.78 (t, *J* = 8.1 Hz, 1H), 7.51 (td, *J* = 7.5, 1.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 1H), 4.29 (t, *J* = 6.2 Hz, 2H), 3.18 (t, *J* = 6.2 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.7, 148.2, 141.2, 139.4, 134.9, 134.2, 130.2, 129.4, 128.3, 127.8, 127.71, 127.69, 123.8, 45.1, 29.0.

HRMS (ESI+): *m*/*z* calculated for C₁₅H₁₃N₂O₅S [M+H]⁺: 333.0545, found 333.0552.

 R_{f} : 0.20 (Petroleum ether: EtOAc 5:1).

m.p.: 162.2 – 163.0 °C.

6-Bromo-2-tosyl-3,4-dihydroisoquinolin-1(2H)-one (17b)

Following the general procedure for $C(sp^3)$ –H oxidation using 6-bromo-2-tosyl-1,2,3,4-tetrahydroisoquinoline **17a** (183 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 10:1) provided the title compound as a white solid (167 mg, 0.44 mmol, 88%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.45 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.41-7.37 (m, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 4.26 – 4.15 (m, 2H), 3.10 (t, *J* = 6.2 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 162.9, 145.1, 141.1, 136.05, 131.0, 130.9, 130.53, 129.6, 128.74, 128.70, 127.3, 44.7, 28.8, 21.8.

HRMS (ESI+): m/z calculated for C₁₆H₁₅BrNO₃S [M+H]⁺: 379.9956, found 379.9948.

*R*_f: 0.33 (Petroleum ether:EtOAc 5:1).

m.p.: 173.2 – 174.2 °C.

2-Pivaloyl-3,4-dihydroisoquinolin-1(2H)-one (18b)

Following the general procedure for $C(sp^3)$ –H oxidation using 1-(3,4-dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1-one **18a** (109 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 20:1) provided the title compound as a white solid (95 mg, 0.41 mmol, 82%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.18 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.56 – 7.48 (m, 1H), 7.43 – 7.35 (m, 1H), 7.31 – 7.24 (m, 1H), 3.94 – 3.70 (m, 2H), 3.06 (t, *J* = 12 Hz, 2H), 1.40 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 189.3, 165.9, 140.1, 133.3, 129.3, 128.7, 127.6, 127.4, 46.0, 43.8, 28.8, 28.0.

HRMS (ESI+): *m*/*z* calculated for C₁₄H₁₈NO₂ [M+H]⁺: 232.1338, found 232.1346. *R*_f: 0.33 (Petroleum ether:EtOAc 5:1).

m.p.: 168.2 – 169.0 °C.

2-Benzoyl-3,4-dihydroisoquinolin-1(2H)-one (19b)

Following the general procedure for $C(sp^3)$ –H oxidation using *N*-benzoyl-1,2,3,4-tetrahydroisoquinoline **19a** (119 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 20:1) provided the title compound as a white solid (106 mg, 0.42 mmol, 84%). Spectral data are consistent with those reported in the literature.^{S12}

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.89 (d, *J* = 7.8 Hz, 1H), 7.66 – 7.56 (m, 3H), 7.56 – 7.49 (m, 1H), 7.48 – 7.37 (m, 4H), 4.0 (t, *J* = 6.1 Hz, 2H), 3.2 (d, *J* = 6.2 Hz, 2H).
¹³C NMR (151 MHz, DMSO-*d*₆) δ 174.0, 165.1, 141.0, 136.3, 133.7, 131.4, 128.6, 128.13, 128.08, 128.04, 127.7, 127.1, 44.2, 27.6.

N-acetylbenzamide (20b)

Following the general procedure for $C(sp^3)$ –H oxidation using *N*-benzylacetamide **20a** (74.6 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (75.1 mg, 0.46 mmol, 92%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.86 (s, 1H), 7.87 (d, *J* = 7.3 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 2.62 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.9, 165.9, 133.3, 132.8, 129.1, 127.9, 25.7.
HRMS (ESI+): *m/z* calculated for C₉H₁₀NO₂ [M+H]⁺: 164.0712, found 164.0705. *R_f*: 0.33 (Petroleum ether:EtOAc 10:1).

m.p.: 142.9 – 144.2 °C.

N-acetyl-2-chlorobenzamide (21b)

Following the general procedure for $C(sp^3)$ –H oxidation using *N*-(2-chlorobenzyl)acetamide **21a** (91.8 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (86.0 mg, 0.44 mmol, 87%).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 3.7 Hz, 2H), 7.42 – 7.36 (m, 1H), 2.58 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 172.3, 165.4, 133.8, 132.8, 131.0, 130.8, 130.2, 127.5, 25.7.

HRMS (ESI+): *m*/*z* calculated for C₉H₉ClNO₂ [M+H]⁺: 198.0322, found 198.0315.

*R*_f: 0.30 (Petroleum ether:EtOAc 10:1).

m.p.: 104 – 106 °C.

N-acetyl-3-chlorobenzamide (22b)

Following the general procedure for $C(sp^3)$ –H oxidation using N-(3-chlorobenzyl)acetamide **22a** (91.8 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (93.0 mg, 0.47 mmol, 94%).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 9.10 (s, 1H), 7.90 (s, 1H), 7.76 (d, *J* = 7.8 Hz,

1H), 7.60 – 7.55 (m, 1H), 7.45 (t, *J* = 7.9 Hz, 1H), 2.61 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 173.9, 164.8, 135.4, 134.5, 133.4, 130.4, 128.4, 125.9, 25.8.

HRMS (ESI+): *m*/*z* calculated for C₉H₉ClNO₂ [M+H]⁺: 198.0322, found 198.0318.

Rf: 0.33 (Petroleum ether:EtOAc 10:1).

m.p.: 105 – 106 °C

N-acetyl-4-chlorobenzamide (23b)

Following the general procedure for $C(sp^3)$ –H oxidation using *N*-(4-chlorobenzyl)acetamide **23a** (91.8 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (85.0 mg, 0.43 mmol, 86%). Spectral data are consistent with those reported in the literature.^{S14}

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.83 (s, 1H), 7.85 – 7.79 (m, 2H), 7.51 – 7.46 (m, 2H), 2.61 (s, 3H).

*R*_f: 0.33 (Petroleum ether:EtOAc 10:1).

tert-Butyl benzoylcarbamate (24b)

Following the general procedure for $C(sp^3)$ –H oxidation using *N-tert*-butoxycarbonylbenzylamine **24a** (104 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 10:1) provided the title compound as a white solid (80 mg, 0.325 mmol, 65%). Spectral data are consistent with those reported in the literature.^{S15}

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.83 – 7.81(m, 2H), 7.60 – 7.55 (m, 1H), 7.51 – 7.43 (m, 2H), 1.54 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 165.4, 149.9, 133.5, 132.9, 128.9, 127.7, 83.0, 28.1.

N-Benzoyl-benzamide (25b)

Following the general procedure for $C(sp^3)$ –H oxidation using *N*-benzylbenzamide **25a** (106 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 10:1) provided the title compound as a white solid (80 mg, 0.355 mmol, 71%). Spectral data are consistent with those reported in the literature.^{S16} **¹H NMR** (400 MHz, Chloroform-*d*) δ 9.11 (s, 1H), 7.93 – 7.76(m, 4 H), 7.64 – 7.56 (m, 2H), 7.54 – 7.44 (m, 4H).

¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.6, 133.5, 133.2, 129.0, 128.1.

1-((4-Bromophenyl)sulfonyl)pyrrolidin-2-one (26b)

Following the general procedure for $C(sp^3)$ –H oxidation using 1-((4-bromophenyl)sulfonyl)pyrrolidine **26a** (145 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (112 mg, 0.37 mmol, 74%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 – 7.87 (m, 2H), 7.73 – 7.64 (m, 2H), 3.90 (t, *J* = 7.0 Hz, 2H), 2.45 (t, *J* = 8.1 Hz, 2H), 2.14-2.02 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 137.1, 132.5, 129.7, 129.5, 47.4, 32.3, 18.4.

HRMS (ESI+): m/z calculated for C₁₀H₁₁BrNO₃S [M+H]⁺: 303.9643, found 303.9638.

 R_{f} : 0.20 (Petroleum ether: EtOAc 10:1).

m.p.: 168.1 – 169.1 °C.

Methyl (S)-1-((4-bromophenyl)sulfonyl)-5-oxopyrrolidine-2-carboxylate (27b)

Following the general procedure for $C(sp^3)$ –H oxidation using (*S*)-methyl 1-((4-bromophenyl)sulfonyl)pyrrolidine-2-carboxylate **27a** (174 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 6:1) provided the title compound as a white solid (112 mg, 0.31 mmol, 62%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 2H), 7.72 – 7.65 (m, 2H), 4.95 – 4.87 (m, 1H), 3.80 (s, 3H), 2.63 – 2.38 (m, 3H), 2.18 – 2.07 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 172.7, 171.2, 136.8, 132.1, 130.8, 129.8, 59.4, 53.1, 30.5, 23.5.

HRMS (ESI+): m/z calculated for C₁₂H₁₃BrNO₅S [M+H]⁺: 361.9698, found 361.9690.

Rf: 0.33 (Petroleum ether:EtOAc 3:1).

m.p.: 151.7 – 153.5 °C.

(S)-1-((4-Bromophenyl)sulfonyl)-5-methylpyrrolidin-2-one (28b)

Following the general procedure for C(sp³)–H oxidation using (S)-1-((4-bromophenyl)sulfonyl)-2-methylpyrrolidine **28a** (152 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 8:1) provided Electronic Supplementary Information S21

the title compound as a white solid (89.1 mg, 0.28 mmol, 56%).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 8.6 Hz, 2H), 4.56-4.49 (m, 1H), 2.61-2.52 (m, 1H), 2.37 (ddd, *J* = 17.5, 9.3, 2.5 Hz, 1H), 2.33 – 2.23 (m, 1H), 1.77 – 1.70 (m, 1H), 1.46 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.4, 138.1, 132.3, 129.9, 129.3, 56.6, 30.6, 26.7, 21.6.

HRMS (ESI+): m/z calculated for C₁₁H₁₃BrNO₃S [M+H]⁺: 317.9800, found 317.9792.

Rf: 0.33 (Petroleum ether:EtOAc 5:1).

m.p.: 142.9 – 144.2 °C.

(1*R*,5*S*)-3-((4-bromophenyl)sulfonyl)-3-azabicyclo[3.1.0]hexan-2-one (29b)

Following the general procedure for $C(sp^3)$ –H oxidation using (1*R*,5*S*)-3-((4-bromophenyl)sulfonyl)-3-azabicyclo[3.1.0]hexane **29a** (151 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 8:1) provided the title compound as a white solid (109 mg, 0.34 mmol, 69%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 – 7.84 (m, 2H), 7.72 – 7.63 (m, 2H), 3.99 – 3.92 (m, 1H), 3.83 (dd, *J* = 10.1, 5.6 Hz, 1H), 2.01 – 1.93 (m, 1H), 1.94-1.87 (m, 1H), 1.29 – 1.19 (m, 1H), 0.87 – 0.77 (m, 1H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 172.9, 137.0, 132.5, 129.6, 129.4, 48.8, 20.9, 12.9, 12.4.

HRMS (ESI+): m/z calculated for C₁₁H₁₁BrNO₃S [M+H]⁺: 315.9643, found 315.9639.

Rf: 0.33 (Petroleum ether:EtOAc 5:1).

m.p.: 165.4 – 166.5 °C.

tert-Butyl 2-oxopyrrolidine-1-carboxylate (30b)

Following the general procedure for $C(sp^3)$ –H oxidation using *N*-Boc-pyrrolidine **30a** (86 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 15:1) provided the title compound as a white solid (74 mg, 0.40 mmol, 80%). Spectral data are consistent with those reported in the literature.^{S17}

¹**H NMR** (400 MHz, Chloroform-*d*) δ 3.71 (t, *J* = 7.2 Hz, 2H), 2.47 (t, *J* = 8.1 Hz, 2H), 2.01 – 1.91 (m, 2H), 1.48 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.4, 150.3, 82.8, 46.6, 33.0, 28.1, 17.5.

N-Benzoyl-2-pyrrolidinon (31b)

Following the general procedure for C(sp³)–H oxidation using *N*-benzoylpyrrolidine **31a** (88 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 10:1) provided the title compound as a white solid (81 mg, 0.43 mmol, 86%). Spectral data are consistent with those reported in the literature.^{S18} **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.63 – 7.56 (m, 2H), 7.55 – 7.48 (m, 1H), 7.45 – 7.37 (m, 2H), 3.96 (t, *J* = 7.1 Hz, 2H), 2.61 (t, *J* = 8.0 Hz, 2H), 2.25 – 2.07 (m, 2H). **¹³C NMR** (151 MHz, Chloroform-*d*) δ 174.6, 170.8, 134.4, 132.0, 129.0, 127.9, 46.6, 33.4, 17.8.

N-Benzoyl-6-piperidone (32b)

Following the general procedure for C(sp3)–H oxidation using *N*-benzoylpiperidine Electronic Supplementary Information S23 **32a** (94 mg, 0.50 mmol) and purified by silica gel column chromatography (Petroleum ether:EtOAc 10:1) provided the title compound as a white solid (80 mg, 0.395 mmol, 79%). Spectral data are consistent with those reported in the literature.^{S19} ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.50 (m, 2H), 7.50 – 7.42 (m, 1H), 7.42 – 7.31 (m, 2H), 3.80 (t, *J* = 5.7 Hz, 2H), 2.56 (t, *J* = 6.4 Hz, 2H), 2.02 – 1.88 (m, 4H). ¹³**C** NMR (151 MHz, Chloroform-*d*) δ 174.8, 173.6, 136.2, 131.6, 128.20, 127.96, 46.2, 34.7, 22.9, 21.5.

Scalable Oxidation Experiment

[Co(MPP)(OTf)(CH₃CN)](OTf) (1) (65.6 mg, 8.0×10^{-2} mmol) and (1R,5S)-3-((4-bromophenyl)sulfonyl)-3-azabicyclo[3.1.0]hexane (**29a**, 2.42 g, 8.0 mmol) were added to a 25 mL Schlenk tube in CH₃CN (15 mL). Then *m*-CPBA (2.76 g, 16 mmol, 2.0 equiv) was added in one batch under aerobic conditions. The final concentrations of reagents were 5.3 mM cobalt catalyst, 1.1 M *m*-CPBA and 0.53 M substrate. After stirring the reaction mixture for 5 h, the resulting solution was concentrated to a minimum amount of solvent. The residue was dissolved in DCM (~20 mL) and washed sequentially with sat. aq. Na₂SO₃ and sat. aq. NaHCO₃. The aqueous layer was extracted with DCM (3 × 20 mL) and the combined organic layer was dried over Na₂SO₄. The filtrate was concentrated and purified by flash chromatography on silica gel.

Stoichiometric Oxidation of Adamantane

[Co(MPP)(OTf)(CH₃CN)](OTf) (1) $(5.0 \times 10^{-4} \text{ mmol}, 1.0 \text{ equiv})$ and adamantane (68 mg, 0.50 mmol, 1000 equiv) were added to a Schlenk tube in CH₃CN. Then *m*-CPBA (0.01 mmol, 20 equiv) was added in one batch under aerobic conditions. The final concentrations of reagents were 0.25 mM cobalt catalyst, 5.0 mM *m*-CPBA and 250 mM substrate. After stirring the reaction mixture for 8 h at room temperature, an internal standard (decane) was added. The reaction solution was filtered through a basic alumina plug and analyzed by GC. Products were identified by comparing with authentic samples, and product yields were determined by comparison with the internal standard integration. The $3^{\circ}/2^{\circ}$ ratio is derived from the amount of 1-adamantanol divided by the amounts of 2-adamantanol and 2-adamantanone and multiplied by 3 to correct for the higher number of secondary C–H bonds.

Determination of Kinetic Isotope Effect

[Co(MPP)(OTf)(CH₃CN)](OTf) (1) (0.60 mL, 1.0×10^{-3} mmol, 1.37 mg/mL in CH₃CN) and a mixture of cyclohexane and cyclohexane- d_{12} (total: 1.0 mmol) with various molar ratios (1/1, 1/2, 1/3, 1/4, 1/5 and 1/6) were added to a Schlenk tube in CH₃CN (1.4 mL). Then *m*-CPBA (2.0 × 10^{-2} mmol) was added in one batch under aerobic conditions. After stirring the reaction mixture for 8 h at room temperature, decane was added as an internal standard. The resulting solution was then filtered through a pad of silica gel washing with ethyl acetate, and yields of cyclohexanol and cyclohexanol- d_{12} were determined by GC and GC-MS. All the reactions were run three times, and the data reported was the average of three runs.

References

(S1) Armarego, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*. 6th edn, Pergamon Press, Oxford, U.K. 2009.

(S2) Hagen, K. S. Iron(II) Triflate Salts as Convenient Substitutes for Perchlorate Salts: Crystal Structures of $[Fe(H_2O)_6](CF_3SO_3)_2$ and $Fe(MeCN)_4(CF_3SO_3)_2$. *Inorg. Chem.* **2000**, *39*, 5867–5869.

(S3) Chen, J.; Zhang, J.; Sun, Y.; Xu, Y.; Wang, B. Mononuclear Non-Heme Manganese-Catalyzed Enantioselective *cis*-Dihydroxylation of Alkenes Modeling Rieske Dioxygenases. *J. Am. Chem. Soc.* **2023**, *145*, 27626–27638.

(S4) Chen, J.; Song, W.; Yao J.; Wang, B. Hydrogen Bonding-Assisted and Nonheme Manganese-Catalyzed Remote Hydroxylation of C–H Bonds in Nitrogen-Containing Molecules. *J. Am. Chem. Soc.* **2023**, *145*, 5456–5466.

(S5) England, J.; Britovsek, G.; Rabadia N. Ligand Topology Variations and the Importance of Ligand Field Strength in Non-Heme Iron Catalyzed Oxidations of Alkanes. *Inorg. Chem.* **2007**, *46*, 3752–3767.

(S6) Xia, Q.; Wang, Q.; Yan, C. Merging Photoredox with Brønsted Acid Catalysis: The Cross-Dehydrogenative C–O Coupling for sp³ C–H Bond Peroxidation. *Chem. Eur. J.* 2017, *23*, 10871–10877.

(S7) J. Pagliero R.; Mercado R.; McCracken V. Rapid and Facile Synthesis of N-benzenesulfonyl Derivatives of Heterocycles and their Antimicrobial Properties. *Lett. Drug. Des. Discov.* **2011**, *8*, 778–791.

(S8) Chang, Z.; Huang, J.; Wang, S.; Chen, G.; Zhao, H.; Wang, R.; Zhao, D. Copper Catalyzed Late-Stage C(sp³)–H Functionalization of Nitrogen Heterocycles. *Nat. Commun.* **2021**, *12*, No. 4342.

(S9) Shi, Z.; Zhao, Q.; Yin, D. Synthesis of Tetrahydroisoquinolines Through TiCl₄-Mediated Cyclization and Et₃SiH Reduction. *Chin. Chem. Lett.* **2020**, *31*, 729–732.

(S10) Huang J; Sun, F; Liu, W. Manganese-Catalyzed Deoxygenation of Secondary and Tertiary Amides Under Mild Conditions. *J. Catal.* **2023**, *423*, 19–25.

(S11) Ji, Y.; Li, J.; Li, C.; Qu, S.; Zhang, B. Manganese-Catalyzed N–F Bond Activation for Hydroamination and Carboamination of Alkenes. *Org. Let.* **2020**, *23*, 207–212.

(S12) Geng, P.; Tang, Y.; Pan, G.; Wang, W.; Hu, J.; Cai, Y. AgC₃N₄-Based Heterogeneous Photocatalyst for Visible Light Mediated Aerobic Benzylic C–H Oxygenations. *Green Chem.* **2019**, *21*, 6116–6122.

(S13) Morimoto, T.; Fujioka, M.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. Rh(I)-Catalyzed CO Gas-Free Carbonylative Cyclization of Organic Halides with Tethered Nucleophiles using Aldehydes as a Substitute for Carbon Monoxide. *J. Organomet. Chem.* **2007**, *692*, 625–634.

(S14) Hu, Y.; Zhou, L.; Lu, W. Transition-Metal and Halogen-Free Oxidation of Benzylic sp³ C–H Bonds to Carbonyl Groups using Potassium Persulfate. *Synthesis*. **2017**, *49*, 4007–4016.

(S15) Kanbayashi, N.; Takenaka, K.; Okamura, T.; Onitsuka, K. Asymmetric Auto-Tandem Catalysis with a Planar-Chiral Ruthenium Complex: Sequential Allylic Amidation and Atom-Transfer Radical Cyclization. *Angew. Chem., Int. Ed.* **2013**, *52*, 4897–4901.

(S16) Digwal, C. S.; Yadav, U.; Sri Ramya, P. V.; Sana, S.; Swain, B.; Kamal, A. Vanadium-Catalyzed Oxidative C(CO)–C(CO) Bond Cleavage for C–N Bond Formation: One-Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides. *J. Org. Chem.* **2017**, *82*, 7332–7345.

(S17) Laudadio, G.; Govaerts, S.; Wang, Y.; Ravelli, D.; Koolman, H. F.; Fagnoni,
M.; Djuric, S. W.; Noël, T. Selective C(sp³)–H Aerobic Oxidation Enabled by
Decatungstate Photocatalysis in Flow. *Angew. Chem., Int. Ed.* 2018, *57*, 4078–4082.

(S18) Zhang, J.; Hong, S. H. Direct *N*-Acylation of Lactams, Oxazolidinones, and Imidazolidinones with Aldehydes by Shvo's Catalyst. *Org. Lett.* **2012**, *14*, 4646–4649.

(S19) Gigant, N.; Chausset-Boissarie, L.; Belhomme, M.-C.; Poisson, T.; Pannecoucke, X.; Gillaizeau, I. Copper-Catalyzed Direct Arylation of Cyclic Enamides Using Diaryliodonium Salts. *Org. Lett.* **2013**, *15*, 278–281.

Table	S1 .	Crystallographic	Data	and	Structure	Refinement	for
[Co(MP	P)(OTf)(CH3CN)](OTf) (1)					

Identification code	(CCDC 2346530)		
Empirical formula	$C_{32}H_{33}CoF_6N_5O_6S_2$		
Formula weight	820.68		
Temperature (K)	293		
Wavelength (Å)	0.71073		
Crystal system	Orthorhombic		
Space group	<i>P</i> 2 ₁		
	$a = 8.7317(2)$ Å $\alpha = 90^{\circ}$		
Unit cell dimensions	$b = 20.2300(5) \text{ Å} \qquad \beta = 90^{\circ}$		
	$c = 21.9275(5) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume (Å)	3873.32(16)		
Z	4		
Calculated density (g cm ⁻³)	1.407		
Absorption coefficient (mm ⁻¹)	0.626		
F(000)	1684		
Crystal size (mm ³)	$0.600\times0.600\times0.400$		
θ range for data collection (°)	3.1 to 26.4°		
Miller index ranges	$-10 \le h \le 10, -25 \le k \le 25, -27 \le l \le 27$		
Reflections collected	51369		
Independent reflections	7891 [$R_{int} = 0.044$]		
Completeness to theta = 25.242°	99.5%		
Max. and min. transmission	0.8589 and 1.0000		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6781 / 25 / 484		
Goodness-of-fit on F ²	1.052		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0643, wR2 = 0.1088		
R indices (all data)	R1 = 0.0522, wR2 = 0.1022		
Largest diff. peak and hole (e $Å^{-3}$)	0.608 and -0.599		

Identification code	1 , CCDC 2346530
Bond Distances (Å)	
Co1-N1	2.181(4)
Co1-N2	2.156(4)
Co1-N3	2.129(5)
Co1-N4	2.114(4)
Co1-N5	2.126(5)
Co1-O1	2.109(4)
Bond Angles (°)	
N1-Co1-N2	83.55(15)
N1-Co1-N3	77.87(18)
N1-Co1-N4	96.92(17)
N1-Co1-N5	169.6(2)
N1-Co1-O1	94.78(16)
N2-Co1-N3	102.55(18)
N2-Co1-N4	78.73(17)
N2-Co1-N5	92.82(18)
N2-Co1-O1	167.79(17)
N3-Co1-N4	174.38(19)
N3-Co1-N5	93.4(2)
N3-Co1-O1	88.85(18)
N4-Co1-N5	91.95(19)
N4-Co1-O1	89.50(17)
N5-Co1-O1	90.80(18)

Table S2. Selected Bond Distances (Å) and Angles (°) for 1 (CCDC 2346530)

Figure S1. (a) ESI-MS spectrum of $[Co(R,R-MPP)(CH_3CN)(OTf)](OTf)$ (1) in CH₃CN. HRMS peaks at m/z = 240.5896 and 630.1317 correspond to $[Co^{II}(R,R-MPP)]^{2+}$ (calculated m/z of 240.5901) and $[Co^{II}(R,R-MPP)(CF_3SO_3)]^+$ (calculated m/z of 630.1323), respectively. Insets show the observed isotope distribution patterns for $[Co^{II}(R,R-MPP)]^{2+}$ at m/z = 240.5896 (left panel) and $[Co^{II}(R,R-MPP)(CF_3SO_3)]^+$ at m/z = 630.1317 (right panel). (b) X-band EPR spectrum of (1) (g values = 2.35, 2.31, 2.05) recorded in CH₃CN at 5 K.

Figure S2. (a) ESI-MS spectrum of $[Co(R,R-6-Me_2-MPP)(OTf)_2]$ (2) in CH₃CN. HRMS peaks 254.6051 and at m/z658.1630 correspond = to $[Co^{II}(R,R-6-Me_2-MPP)]^{2+}$ (calculated of and *m/z*, 254.6057) $[Co^{II}(R,R-6-Me_2-MPP)(CF_3SO_3)]^+$ (calculated m/z of 658.1636), respectively. Insets show the observed isotope distribution patterns for $[Co^{II}(R,R-6-Me_2-MPP)]^{2+}$ at m/z =254.6051 (left panel) and $[Co^{II}(R,R-6-Me_2-MPP)(CF_3SO_3)]^+$ at m/z = 658.1630 (right panel).

Figure S3. (a) ESI-MS spectrum of $[Co(R,R-BPMCN)(OTf)_2]$ (**3**) in CH₃CN. HRMS peaks at m/z = 191.5814 and 532.1161 correspond to $[Co^{II}(R,R-BPMCN)]^{2+}$ (calculated m/z of 191.5823) and $[Co^{II}(R,R-BPMCN)(CF_3SO_3)]^+$ (calculated m/z of 532.1166), respectively. Insets show the observed isotope distribution patterns for $[Co^{II}(R,R-BPMCN)]^{2+}$ at m/z = 191.5814 (left panel) and $[Co^{II}(R,R-BPMCN)(CF_3SO_3)]^+$ at m/z = 532.1161 (right panel).

Figure S4. (a) ESI-MS spectrum of $[Co(R,R-BQPN)(OTf)_2]$ (4) in CH₃CN. HRMS peaks at m/z = 276.5896 and 702.1319 correspond to $[Co^{II}(R,R-BQPN)]^{2+}$ (calculated m/z of 276.5901) and $[Co^{II}(R,R-BQPN)(CF_3SO_3)]^+$ (calculated m/z of 702.1323), respectively. Insets show the observed isotope distribution patterns for $[Co^{II}(R,R-BQPN)]^{2+}$ at m/z = 276.5896 (left panel) and $[Co^{II}(R,R-BQPN)(CF_3SO_3)]^+$ at m/z = 702.1319 (right panel).

Figure S5. (a) ESI-MS spectrum of $[Co(R,R-BQCN)(OTf)_2]$ (**5**) in CH₃CN. HRMS peaks at m/z = 227.5815 and 604.1162 correspond to $[Co^{II}(R,R-BQCN)]^{2+}$ (calculated m/z of 227.5823) and $[Co^{II}(R,R-BQCN)(CF_3SO_3)]^+$ (calculated m/z of 604.1166), respectively. Insets show the observed isotope distribution patterns for $[Co^{II}(R,R-BQCN)]^{2+}$ at m/z = 227.5815 (left panel) and $[Co^{II}(R,R-BQCN)(CF_3SO_3)]^+$ at m/z = 604.1162 (right panel).
Additional Data: ¹H and ¹³C NMR spectra

Electronic Supplementary Information S37

<pre>/ 135.78 / 122.73 / 127.73</pre>		—15.74 —7.78
		negermannantrana, becommensued have en
200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)	70 60 50 40 30	20 10 0

-103.23

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

 8.39

 8.39

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 8.33

 <t

—172.3 —165.4	133.8 132.8 131.0 130.8 130.2 127.5		
200 190 180 170	160 150 140 130 120	 70 60 50 40 30	20 10 0

-173.9		134.5 133.4 133.4 125.9 125.9		
	1			
ang anu ani ang	d 200.000,000,000,000,000,000,000,000,000,	al bi bi basan badi yana disananya manangkana mananya manana manana manana manana manana manana manana kawa man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	аналан жанан калан к Калан калан кала

		1 1		· 1		1		1 1	'	·	·		1	1 1	· ·	·	1	'	·	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)									

-172.9	- 137.0 - 132.5 - 129.6	7.02 7				−20.9 ≺12.9 12.4
		L.				
200 190 180 170) 160 150 140 13	0 120 110	100 90 80	70 60	50 40 30	D 20 10 0

110 100 f1 (ppm)

90

	—174.4		—150.3											—33.0 —28.1			
	\leftarrow																
									1								
			I														
																	-
200 190	180 1	70 16	0 150	140 13	0 120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	C

0 -174.6 -170.8	 134.4 132.0 129.0 127.9 	1	46.6	 -17.8

110 100 f1 (ppm)

√174.8 √173.6	 136.2 131.6 128.0 				
				. 1	
200 190 180 170 160	150 140 130 120	110 100 90 80 f1 (ppm)	70 60 50 4	40 30 20	10 0