Electronic Supplementary Information

PIFA-mediated intramolecular *N*-arylation of 2aminoquinoxalines to afford indolo[2,3-*b*]quinoxaline derivatives

Subhashini V. Subramaniam^a, Badal Singh^a, Natarajan Pradeep^a, and Saravanan Peruncheralathan^{*a}

School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda – 752050, INDIA.

Email: peru@niser.ac.in

Table of Contents

1	General Information	ESI-2
2	Table S1 : Synthesis of 3-arylquinoxalin-2-amine 3	ESI-3
3	Table S2: Synthesis of tosylated 3-arylquinoxalin-2-amine 4	ESI-4
4	Procedure for competitive reactions of $4a$ and $4v$ with toluene	ESI-4
5	Crude spectra for competitive reaction of $4a$ and $4v$ with toluene (¹ H NMR,	ESI-5
	ESI)	
6	General procedure for synthesis of 3-arylquinoxalin-2-amine 3	ESI-9
7	Procedure for synthesis of Suzuki coupling reaction of 5d with phenyl	ESI-43
	boronic acid	
8	General procedure for Detosylation of 5	ESI-43
9	Procedure for Chan-Lam coupling of 9a with phenyl boronic acid	ESI-45
10	Procedure for synthesis of target molecule 6,6'-(9-(p-tolyl)-9H-carbazole-	ESI-46
	3,6-diyl)bis(6 <i>H</i> -indolo[2,3- <i>b</i>]quinoxaline) 12	
11	X-Ray structure and crystal data of 5a and 6t	ESI-48
12	References	ESI-52
13	¹ H and ¹³ C Spectra copies	ESI-53
14	Mass spectra copies	ESI-112

General information

All reactions were performed by using standard vial technique with rubber septum. All solids were weighed in air. Chemicals like *o*-phenylene diamine, substituted aryl aldehydes, sodium cyanide, 4Å molecular sieves, p-tosyl chloride, DMAP (N,N- dimethyl amino pyridine), PIDA (phenyliodine(III) diacetate), PIFA (phenyliodine bis(trifluoroacetate) were purchased from Aldrich, spectrochem, alfa aesar, TCI and used as such. Solvents like HFIP, TFE, MeOH, dioxane and pyridine were purchased from TCI and spectrochem and used without drying. Dried DMF, toluene, THF, DCM and DCE were used. All other reagents were purchased from common suppliers and used without further purification. Flash chromatography was performed using a Merck silica gel (230-400 mesh). Fractions were monitored by thin-layer chromatography (TLC) on precoated silica gel 60 F_{254} plates (Merck & Co.) and were visualized by a UV light. Nuclear magnetic resonance (NMR) spectroscopy data were recorded using Bruker ARX 400 and 700 spectrometers. ¹³C and ¹H NMR spectra were recorded in CDCl₃ and DMSO-d₆ referenced according to signal of deutero solvent. Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) measurements were performed using a Bruker micrOTOF-Q II mass-spectrometer and Waters Xevo-G2-XS QTof. The ¹H and ¹³C spectra of the compounds **4** were recorded in various solvents such as CDCl₃, DMSO-d₆, methanol-d₄ and acetic acid-d₄, to get a good shimming. However, the spectra of these solvents were not clear. Hence HRMS was used to characterize the compounds 4. The corresponding mass spectra of the compounds 4 are attached below. The X-ray quality crystals for the compounds **5a** and **6t** were grown by slow diffusion of *n*-hexane over CH₂Cl₂ solution. Single-crystal X-ray diffraction data was collected on a Rigaku SuperNova fine-focused dual diffractometer, with Cu K α radiation ($\lambda = 1.54178$ Å) or Mo-K α radiation (0.71073 Å) equipped with a PILATUS200K detector.

Table S1: Synthesis of 3-arylquinoxalin-2-amine 3

Table S2: Synthesis of tosylated 3-arylquinoxalin-2-amine 4

Procedure for competitive reactions of 4a and 4v with toluene:

To an 8 mL vial, toluene (80 μ L, 1.5 equiv) along with HFIP (2mL) was taken, and the tosylated 3-arylquinoxalin-2-amine **4a** or **4v** (0.5 mmol) was added followed by PIFA (0.473 g, 2.2 equiv) and stirred at room temperature. After the completion of the starting material, the reaction mixture was added to water and extracted with EtOAc and the combined organic layers were dried over Na₂SO₄ and concentrated.

Crude ¹H NMR spectra (400 MHz, CDCl₃) for competitive reaction of 4a with toluene

Crude ¹H NMR spectra (400 MHz, CDCl₃) for competitive reaction of 4v with toluene

Overlay of the crude ¹H NMR spectra (400 MHz, CDCl₃) from the competitive reaction of 4a with toluene and Isolated 5a

Overlay of the crude ¹H NMR spectra (400 MHz, CDCl₃) from the competitive reaction of 4v with toluene and Isolated 7v

ESI Mass spectra for competitive reaction of 4a with toluene

ESI Mass spectra for competitive reaction of 4v with toluene

General procedure for synthesis of 3-arylquinoxalin-2-amine 3¹

Substituted 1,2-phenylenediamine **1** (5 mmol), aryl aldehyde **2** (5.5 mmol, 1.1 equiv) and the molecular sieves (0.25 g) were dissolved in dimethylformamide (20 mL). The reaction mixture was stirred at 80 °C in an open flask. The reaction was monitored by TLC. After the complete consumption of the reaction, NaCN (0.294, 5.5 mmol; 1.1 equiv) was added to the reaction mixture. After completion of the reaction, reaction mixture was cooled to room temperature, and poured into ice and extracted with EtOAc (3 x 200 mL). The combined organic layers were dried over Na_2SO_4 and concentrated. The crude product was purified by column chromatography on silica using hexane and ethyl acetate as eluent.

3-Phenylquinoxalin-2-amine (3a)¹

Reaction Time: 6 h; Yield: 72% (1.59 g); Nature of compound: Pale brown solid; Melting Point: 161 – 163 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3464, 2894, 2107, 1665, 1223, 786. ¹H NMR (400 MHz, DMSO) δ 7.82 – 7.76 (m, 3H), 7.58 – 7.53 (m, 5H), 7.39 – 7.35 (m, 1H), 6.55 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.9, 146.2, 141.8, 137.5, 137.3, 130.1, 129.8, 129.2, 128.9, 128.8, 125.5, 124.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₂N₃ 222.1031; Found 222.1029

3-(4-Fluorophenyl)quinoxalin-2-amine (3b)²

Reaction Time: 6 h; Yield: 60% (1.44 g); Nature of compound: Pale brown solid; Melting Point: $174 - 176 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3445, 3005, 2078, 1635, 1230, 780. ¹H NMR (400 MHz, DMSO) δ 7.83 – 7.79 (m, 3H), 7.57 – 7.56 (m, 2H), 7.38 – 7.34 (m, 3H), 6.60 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 163.1(d, *J* = 244.5 Hz), 151.9, 145.4, 141.8, 137.2, 133.9 (d, *J* = 3 Hz), 131.3 (d, *J* = 8.6 Hz), 130.1, 128.9, 125.5, 124.5, 116.1 (d, *J* = 21 Hz). ¹⁹F NMR (377 MHz, DMSO) δ -112.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₁FN₃ 240.0932; Found 240.0956

3-(4-Chlorophenyl)quinoxalin-2-amine (3c)¹

Reaction Time: 6 h; Yield: 41% (1.05 g); Nature of compound: Pale brown solid; Melting Point: 188 – 190 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3459, 2914, 2074, 1638, 1214, 777. ¹H NMR (400 MHz, DMSO) δ 7.82 – 7.78 (m, 3H), 7.60 – 7.57 (m, 4H), 7.39 – 7.35 (m, 1H), 6.64 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.9, 145.1, 141.9, 137.2, 136.4, 134.5, 130.9, 130.3, 129.2, 128.9, 125.5, 124.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₁ClN₃ 256.0641; Found 256.0652

3-(4-Bromophenyl)quinoxalin-2-amine (3d)²

Reaction Time: 6 h; Yield: 47% (1.41 g); Nature of compound: Pale brown solid; Melting Point: 204 – 206 °C; R_f : 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3432, 2856, 2087, 1635, 1220, 784. ¹H NMR (400 MHz, DMSO) δ 7.80 (d, *J* = 8 Hz, 1H), 7.73 (s, 4H), 7.58 – 7.57 (m, 2H), 7.39 – 7.36 (m, 1H), 6.64 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.9, 145.1, 141.9, 137.2, 136.8, 132.1, 131.1, 130.3, 128.9, 125.5, 124.5, 123.2. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₁N₃Br 300.0131 and 302.0111; Found 300.0104 and 302.0084

3-(p-Tolyl)quinoxalin-2-amine (3e)¹

Reaction Time: 6 h; Yield: 54% (1.10 g); Nature of compound: Pale brown solid; Melting Point: 167 – 169 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3438, 3021, 2093, 1631, 1217, 778. ¹H NMR (400 MHz, DMSO) δ 7.79 (d, *J* = 7.2 Hz, 1H), 7.67 (d, *J* = 6.8 Hz, 2H), 7.56 (s, 2H), 7.35 (d, *J* = 6 Hz, 3H), 6.56 (s, 2H), 2.40 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.9, 146.2, 141.7, 139.3, 137.3, 134.7, 129.9, 129.8, 128.9, 128.8, 125.5, 124.4, 21.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₄N₃ 236.1188; Found 236.1201

3-(4-Methoxyphenyl)quinoxalin-2-amine (3f)¹

Reaction Time: 10 h; Yield: 53% (1.34 g); Nature of compound: Pale brown solid; Melting Point: $152 - 154 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3484, 3010, 2063, 1637, 1234, 769. ¹H NMR (400 MHz, DMSO) δ 7.80 – 7.74 (m, 3H), 7.58 – 7.52 (m, 2H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 8.8 Hz, 2H), 6.56 (s, 2H), 3.83 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 160.6, 152.0, 145.9, 141.6, 137.4, 130.4, 129.8, 129.7, 128.8, 125.4, 124.4, 114.6, 55.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₄N₃O 252.1137; Found 252.1147

3-(2-Chlorophenyl)quinoxalin-2-amine (3g)¹

Reaction Time: 6 h; Yield: 57% (1.46 g); Nature of compound: Pale brown solid; Melting Point: $180 - 182 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3451, 3012, 2099, 1664, 1231, 777. ¹H NMR (400 MHz, DMSO) δ 7.80 (d, $J = 8.1 \,\text{Hz}$, 1H), 7.62 (d, $J = 7.5 \,\text{Hz}$, 3H), 7.58 – 7.46 (m, 3H), 7.40 – 7.32 (m, 1H), 6.50 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.6, 144.8, 141.9, 136.1, 135.7, 132.1, 130.9, 130.8, 129.9, 129.7, 128.5, 127.7, 125.2, 123.8. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₁ClN₃ 256.0641; Found 256.0618

3-(o-Tolyl)quinoxalin-2-amine (3h)

Reaction Time: 6 h; Yield: 61% (1.44 g); Nature of compound: Pale brown solid; Melting Point: 164 – 166 °C; R_f : 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3401, 3083, 2067, 1697, 1236, 771. ¹H NMR (400 MHz, DMSO) δ 7.78 (d, *J* = 8 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.40 – 7.33 (m, 5H), 6.37 (s, 2H), 2.15 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 152.2, 147.5, 142.1, 136.9, 136.8, 136.4, 131.0, 130.0, 129.4, 129.3, 128.9, 126.6, 125.6, 124.3, 19.4. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₄N₃ 236.1188; Found 236.1205

3-(2-Methoxyphenyl)quinoxalin-2-amine (3i)¹

Reaction Time: 9 h; Yield: 52% (1.31 g); Nature of compound: Pale brown solid; Melting Point: 186 – 188 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3445, 2919, 2088, 1638, 1227, 775. ¹H NMR (400 MHz, DMSO) δ 7.77 (d, *J* = 8.4 Hz, 1H), 7.58 – 7.57 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.18 (d, *J* = 8 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.27 (s, 2H), 3.77 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 157.4, 152.6, 145.9, 142.0, 136.9, 131.1, 131.0, 129.9, 128.8, 126.3, 125.5, 124.1, 121.2, 112.3, 55.9. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₄N₃O 252.1131; Found 252.1310

3-(3-Fluorophenyl)quinoxalin-2-amine (3j)

Reaction Time: 6 h; Yield: 64% (1.54 g); Nature of compound: Pale brown solid; Melting Point: 174 – 176 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3429, 2391, 2074, 1644, 1214, 768. ¹H NMR (400 MHz, DMSO) δ 7.81 (d, *J* = 8.4 Hz, 1H), 7.58 – 7.55 (m, 5H), 7.39 – 7.34 (m, 2H), 6.66 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 162.6 (d, *J* = 242.5 Hz), 151.8, 144.8, 141.9, 139.8 (d, *J* = 7.7 Hz), 137.1, 131.3 (d, *J* = 8.4 Hz), 130.3, 129.0, 125.6, 125.1 (d, *J* = 2.7 Hz), 124.6, 116.6 (d, *J* = 20.8 Hz), 115.9 (d, *J* = 21.9 Hz). ¹⁹F NMR (377 MHz, DMSO) δ -112.5. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₁FN₃ 240.0932; Found 240.0948

3-(3-Methoxyphenyl)quinoxalin-2-amine (3k)

Reaction Time: 10 h; Yield: 58% (1.46 g); Nature of compound: Pale brown solid; Melting Point: $168 - 170 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3442, 2929, 2049, 1631, 1217, 774. ¹H NMR (400 MHz, DMSO) δ 7.81 (d, *J* = 8 Hz, 1H), 7.59 – 7.57 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 6.4 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.08 (d, *J* = 8 Hz, 1H), 6.59 (s, 2H), 3.83 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 159.8, 151.9, 146.0, 141.9, 138.8, 137.2, 130.4, 130.1, 128.9, 125.5, 124.5, 121.1, 115.7, 114.1, 55.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₄N₃O 252.1131; Found 252.1106

3-(*m*-Tolyl)quinoxalin-2-amine (3l)

Reaction Time: 6 h; Yield: 74% (1.74 g); Nature of compound: Pale brown solid; Melting Point: $135 - 138 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3429, 2040, 1644, 1223, 819, 774. ¹H NMR (400 MHz, DMSO) δ 7.81 (d, *J* = 8 Hz, 1H), 7.57 – 7.54 (m, 4H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.38 – 7.32 (m, 2H), 6.56 (s, 2H), 2.40 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.9, 146.3, 141.8, 138.5, 137.4, 137.3, 130.4, 130.0, 129.4, 129.1, 128.9, 125.9, 125.5, 124.4, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₄N₃ 236.1188; Found 236.1173

3-(3,5-Dimethylphenyl)quinoxalin-2-amine (3m)

Reaction Time: 6 h; Yield: 67% (1.82 g); Nature of compound: Pale brown solid; Melting Point: $174 - 176 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3439, 3029, 2093, 1632, 1236, 770. ¹H NMR (400 MHz, DMSO) δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.56 (s, 2H), 7.34 (s, 3H), 7.13 (s, 1H), 6.57 (s, 2H), 2.35 (s, 6H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.5, 146.0, 141.3, 137.8, 136.9, 136.8, 130.7, 129.5, 128.4, 126.1, 125.0, 123.9, 21.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₆N₃ 272.1164; Found 272.1158

3-(2,3-Dimethoxyphenyl)quinoxalin-2-amine (3n)

Reaction Time: 12 h; Yield: 59% (1.66 g); Nature of compound: Pale white solid; Melting Point: $179 - 181 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3425, 2100, 1631, 1535, 1235, 1073, 772. ¹H NMR (400 MHz, DMSO) δ 7.77 (d, *J* = 8.1 Hz, 1H), 7.57 (d, *J* = 4.3 Hz, 2H), 7.40 - 7.31 (m, 1H), 7.25 - 7.15 (m, 2H), 6.92 (dd, *J* = 5.4, 3.7 Hz, 1H), 6.34 (s, 2H), 3.87 (s, 3H), 3.66 (s, 3H). ¹³C{¹H} NMR (175 MHz, DMSO) δ 153.0, 152.5, 147.0, 145.5, 142.1, 136.7, 131.6, 130.0, 128.9, 125.5, 124.9, 124.2, 121.9, 114.3, 61.1, 56.2. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₆H₁₆N₃O₂ 282.1242; Found 282.1224

3-(Naphthalen-2-yl)quinoxalin-2-amine (30)¹

Reaction Time: 6 h; Yield: 77% (2.09 g); Nature of compound: Pale brown solid; Melting Point: $202 - 204 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v(cm⁻¹) = 3448, 2087, 1638, 1226, 784. ¹H NMR (400 MHz, DMSO) δ 8.37 (s, 1H), 8.08 – 8.04 (m, 2H), 8.01 – 7.98 (m, 1H), 7.89 – 7.85 (m, 2H), 7.63 – 7.56 (m, 4H), 7.40 – 7.36 (m, 1H), 6.72 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 152.1, 146.1, 141.9, 137.4, 134.9, 133.7, 133.2, 130.1, 129.1, 128.9, 128.8, 128.3, 128.1, 127.4, 126.9, 126.6, 125.6, 124.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₄N₃ 272.1188; Found 272.1162

3-(Naphthalen-1-yl)quinoxalin-2-amine (3p)¹

Reaction Time: 6 h; Yield: 64% (1.73 g); Nature of compound: White solid; Melting Point: 170 – 172 °C; R_f: 0.20 in 30% ethyl acetate in hexanes; IR (KBr): v(cm⁻¹) = 3449, 2085, 1631, 1229, 780. ¹H NMR (400 MHz, DMSO) δ 8.14 – 8.01 (m, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.73 – 7.59 (m, 4H), 7.60 - 7.45 (m, 3H), 7.40 (t, *J* = 7.2 Hz, 1H), 6.42 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 152.3, 146.0, 141.8, 136.5, 134.1, 133.5, 130.9, 129.8, 129.3, 128.6, 128.5, 127.0, 126.7, 126.2, 125.8, 125.3, 124.9, 123.9. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₄N₃ 272.1188; Found 272.1172

6,7-Dichloro-3-phenylquinoxalin-2-amine (3q)¹

Reaction Time: 6 h; Yield: 57% (1.65 g); Nature of compound: Pale brown solid; Melting Point: 220 – 222 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3467, 3097, 2363, 1641, 1214, 778. ¹H NMR (400 MHz, DMSO) δ 8.03(s, 1H), 7.75(s, 3H), 7.54(s, 3H), 6.97(s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 152.2, 147.5, 140.9, 136.3, 135.7, 131.9, 129.8, 129.1, 128.8, 128.4, 125.7, 125.6. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₀Cl₂N₃ 290.0252; Found 290.0257

6,7-Dichloro-3-(o-tolyl)quinoxalin-2-amine (3r)

Reaction Time: 6 h; Yield: 49% (1.48 g); Nature of compound: Pale brown solid; Melting Point: $174 - 176 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3459, 2885, 2315, 1693, 1115, 783. ¹H NMR (400 MHz, DMSO) δ 8.02 (s, 1H), 7.77 (d, *J* = 14.6 Hz, 1H), 7.38 (ddd, *J* = 17.1, 10.5, 5.8 Hz, 4H), 6.71 (s, 2H), 2.14 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 152.5, 148.9, 141.2, 135.9, 135.6, 135.3, 131.9, 130.6, 129.3, 129.2, 128.7, 126.2, 125.8, 125.5, 18.9. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₂Cl₂N₃ 304.0408; Found 304.0421

6,7-Dichloro-3-(p-tolyl)quinoxalin-2-amine (3s)

Reaction Time: 6 h; Yield: 41% (1.25 g); Nature of compound: Pale brown solid; Melting Point: 209 – 211 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3468, 2887, 2319, 1656, 1125, 779. ¹H NMR (400 MHz, DMSO) δ 8.00 (s, 1H), 7.74 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 6.92 (s, 2H), 2.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 152.2, 147.5, 140.8, 139.4, 135.8, 133.5, 131.7, 129.3, 129.1, 128.3, 125.6, 125.5, 20.9. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₂Cl₂N₃ 304.0408; Found 304.0391

3-(Benzo[d][1,3]dioxol-5-yl)quinoxalin-2-amine (3t)

Reaction Time: 6 h; Yield: 68% (1.80 g); Nature of compound: Pale brown solid; Melting Point: $152 - 154 \,^{\circ}$ C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3419, 2093, 1641, 1528, 1223, 1069, 781. ¹H NMR (400 MHz, DMSO) δ 7.78 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 3.3 Hz, 2H), 7.36 (d, *J* = 3.7 Hz, 1H), 7.28 (s, 2H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.57 (s, 2H), 6.11 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.9, 148.6, 147.9, 145.8, 141.7, 137.2, 131.3, 129.9, 128.8, 125.4, 124.4, 123.1, 109.3, 109.0, 101.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₂N₃O₂ 266.0930; Found 266.0919

3-(benzo[d][1,3]dioxol-5-yl)-6,7-dichloroquinoxalin-2-amine (3u)

Reaction Time: 6 h; Yield: 42% (1.40 g); Nature of compound: Pale brown solid; Melting Point: 208-210 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3454, 2852, 2352, 1653, 1175, 783. ¹H NMR (700 MHz, DMSO) δ 8.00 (s, 1H), 7.73 (s, 1H), 7.27 (s, 2H), 7.06 (d, *J* = 7.3 Hz, 1H), 6.95 (s, 2H), 6.12 (s, 2H). ¹³C{¹H} NMR (175 MHz, DMSO) δ 152.7, 149.0, 147.9, 147.5, 141.2, 136.1, 132.1, 130.5, 129.5, 126.1, 125.9, 123.3, 109.3, 109.1, 101.9. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₀N₃Cl₂O₂ 334.0150; Found 334.0140

3-(4-(Trifluoromethyl)phenyl)quinoxalin-2-amine (3v)

Reaction Time: 6 h; Yield: 46% (1.32 g); Nature of compound: Pale white solid; Melting Point: 201 – 203 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3440, 2096, 1644, 1524, 1229, 1064, 770. ¹H NMR (400 MHz, DMSO) δ 7.99 (d, *J* = 8.1 Hz, 2H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 3.7 Hz, 2H), 7.39 (dt, *J* = 8.3, 4.2 Hz, 1H), 6.74 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 151.9, 144.8, 142.1, 141.6, 137.1, 130.5, 129.98 (q, *J* = 30 Hz), 129.1, 129.0, 126.1 (q, *J* = 3.4 Hz), 126.3 (q, *J* = 270 Hz) 125.6, 124.6. ¹⁹F NMR (377 MHz, DMSO) δ -61.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₁F₃N₃ 290.0905; Found 290.0919

3-(2,4,5-Trifluorophenyl)quinoxalin-2-amine (3w)

Reaction Time: 6 h; Yield: 39% (1.07 g); Nature of compound: Pale white solid; Melting Point: 216 – 218 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3425, 2102, 1643, 1534, 1223, 1069, 771. ¹H NMR (400 MHz, DMSO) δ 7.82 - 7.69 (m, 3H), 7.63 - 7.59 (m, 2H), 7.40 - 7.38 (m, 1H), 6.73 (s, 2H). ¹³C{¹H} NMR (175 MHz, DMSO) δ 155.4 (dd, *J* = 245, 10.3 Hz), 151.9, 149.9 (dt, *J* = 248, 13.3 Hz), 146.4 (ddd, *J* = 240, 11.5, 1.9 Hz), 141.9, 139.9, 136.1, 130.3, 128.6, 125.2, 124.0, 121.5 (dd, *J* = 18.2, 4.2 Hz), 119.3 (dd, *J* = 20.0, 4.2 Hz), 106.9 (dd, *J* = 28.5, 21.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -111.5 (dd, *J* = 15.5, 5.6 Hz), - 128.5 (dd, J = 23.4, 5.3 Hz), -138.1 (dd, J = 22.6, 15.1 Hz). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₉F₃N₃ 276.0749; Found 276.0725

4-Methyl-N-(3-phenylquinoxalin-2-yl)benzenesulfonamide (4a)

Reaction Time: 12 h; Yield: 76% (0.571 g); Nature of compound: White solid; Melting Point: 263 – 265 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3442, 2914, 2069, 1626, 1373, 1274, 808. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₈N₃O₂S 376.1120; Found 376.1122

N-(3-(4-Fluorophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4b)

Reaction Time: 12 h; Yield: 70% (0.551 g); Nature of compound: White solid; Melting Point: 194 – 196 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3439, 2919, 2360, 1648, 1218, 778. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇FN₃O₂S 394.1025; Found 394.1027

N-(3-(4-Chlorophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4c)

Reaction Time: 12 h; Yield: 64% (0.524 g); Nature of compound: White solid; Melting Point: 210 – 212 °C; R_f : 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3439, 2049, 1632, 1214, 774. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₁₇ClN₃O₂S 410.0725; Found 410.0708

N-(3-(4-Bromophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4d)

Reaction Time: 12 h; Yield: 59% (0.535 g); Nature of compound: White solid; Melting Point: 290 – 290 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3448, 2923, 2084, 1635, 1224, 771. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇BrN₃O₂S 454.0219 and 456.0199; Found 454.0218 and 456.0194.

4-Methyl-*N*-(3-(*p*-tolyl)quinoxalin-2-yl)benzenesulfonamide (4e)

Reaction Time: 12 h; Yield: 68% (0.531 g); Nature of compound: White solid; Melting Point: 295 - 297 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3442, 3005, 2407,

1644, 1271, 771. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₂H₁₉N₃O₂SNa 412.1096; Found 412.1093

N-(3-(4-Methoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4f)

Reaction Time: 12 h; Yield: 67% (0.543 g); Nature of compound: White solid; Melting Point: 184 – 186 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3445, 2993, 2398, 1641, 1221, 771. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀N₃O₃S 406.1220; Found 406.1231

N-(3-(2-Chlorophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4g)

Reaction Time: 12 h; Yield: 59% (0.483 g); Nature of compound: White solid; Melting Point: 215 – 217 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3436, 3002, 2322, 2084, 1638, 1382, 771. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇ClN₃O₂S 410.0730; Found 410.0721

4-Methyl-*N*-(3-(*o*-tolyl)quinoxalin-2-yl)benzenesulfonamide (4h)

Reaction Time: 12 h; Yield: 68% (0.529 g); Nature of compound: White solid; Melting Point: 214 – 216 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3435, 3002, 2081, 1644, 1217, 774. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀N₃O₂S 390.1276; Found 390.1306

N-(3-(2-Methoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4i)

Reaction Time: 12 h; Yield: 64% (0.519 g); Nature of compound: White solid; Melting Point: 170 – 172 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3429, 3017, 2354, 1644, 1223, 778. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀N₃O₃S 406.1220; Found 406.1209

N-(3-(3-Fluorophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4j)

Reaction Time: 12 h; Yield: 70% (0.582 g); Nature of compound: White solid; Melting Point: $189 - 191 \text{ }^{\circ}\text{C}$; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) =3439, 2071, 1638,

1221, 774. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₁H₁₆FNaN₃O₂S 416.0839; Found 416.0828

N-(3-(3-Methoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4k)

Reaction Time: 12 h; Yield: 76% (0.650 g); Nature of compound: White solid; Melting Point: 167 – 169 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3442, 2852, 2359, 1634, 1136, 782. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₉NaN₃O₃S 428.1039; Found 428.1011

4-Methyl-N-(3-(m-tolyl)quinoxalin-2-yl)benzenesulfonamide (4l)

Reaction Time: 12 h; Yield: 59% (0.459 g); Nature of compound: White solid; Melting Point: 182 – 184 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3432, 2959, 2366, 2081, 1631, 1217, 784. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀N₃O₂S 390.1276; Found 390.1266

N-(3-(3,5-Dimethylphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4m)

Reaction Time: 12 h; Yield: 60% (0.485 g); Nature of compound: White solid; Melting Point: 138 – 140 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3448, 2923, 1612, 1227, 775. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂N₃O₂S 404.1433; Found 404.1436

N-(3-(2,3-Dimethoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4n)

Reaction Time: 12 h; Yield: 54% (0.235 g); Nature of compound: White solid; Melting Point: 186 – 188 °C; R_f: 0.19 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3445, 2922, 1609, 1229, 782. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂N₃O₄S 436.1331; Found 436.1347

4-Methyl-N-(3-(naphthalen-2-yl)quinoxalin-2-yl)benzenesulfonamide (40)

Reaction Time: 12 h; Yield: 69% (0.588 g); Nature of compound: White solid; Melting Point: 120 - 122 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3512, 2265, 1694,

1298, 1201, 770. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₂₀N₃O₂S 426.1276; Found 426.1272

4-Methyl-N-(3-(naphthalen-1-yl)quinoxaliN-2-yl)benzenesulfonamide (4p)

Reaction Time: 12 h; Yield: 63% (0.537 g); Nature of compound: White solid; Melting Point: 166 – 168 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3449, 2927, 2359, 1996, 1611, 1076, 776. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₀N₃O₂S 426.1276; Found 426.1266

N-(6,7-Dichloro-3-phenylquinoxalin-2-yl)-4-methylbenzenesulfonamide (4q)

Reaction Time: 12 h; Yield: 50% (0.444 g); Nature of compound: White solid; Melting Point: 212 – 214 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3449, 2916, 2089, 1628, 1374, 1279, 801. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₆Cl₂N₃O₂S 444.0340; Found 444.0320

N-(6,7-Dichloro-3-(*o*-tolyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4r)

Reaction Time: 12 h; Yield: 52% (0.197 g); Nature of compound: White solid; Melting Point: 273 – 275 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3478, 2323, 1684, 1320, 1159, 786. HRMS (ESI) *m/z*: $[M+H]^+$ Calcd for C₂₂H₁₈Cl₂N₃O₂S 458.0497; Found 458.0474

N-(6,7-Dichloro-3-(*p*-tolyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4s)

Reaction Time: 12 h; Yield: 64% (0.586 g); Nature of compound: White solid; Melting Point: $289 - 291 \,^{\circ}C$; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): $\nu (\text{cm}^{-1}) = 3440, 2349, 1656, 1396, 1136, 785$. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₈Cl₂N₃O₂S 458.0497; Found 458.0490

N-(3-(Benzo[*d*][1,3]dioxol-5-yl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4t)

Reaction Time: 12 h; Yield: 68% (0.572 g); Nature of compound: White solid; Melting Point: $197 - 199 \text{ }^{\circ}\text{C}$; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3429, 2932, 2091,

1635, 1227, 781. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₈N₃O₄S 420.1018; Found 420.0994

N-(3-(benzo[d][1,3]dioxol-5-yl)-6,7-dichloroquinoxalin-2-yl)-4-

methylbenzenesulfonamide (4u)

Reaction Time: 12 h; Yield: 38% (0.370 g); Nature of compound: White solid; Melting Point: 244-246 °C; R_f: 0.23 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3415, 2320, 1689, 1392, 1165, 776. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₅Cl₂N₃O₄S 488.0239; Found 488.0222

4-Methyl-*N*-(3-(4-(trifluoromethyl)phenyl)quinoxalin-2-yl)benzenesulfonamide (4v)

Reaction Time: 12 h; Yield: 51% (0.226 g); Nature of compound: yellow solid; Melting Point: 277 - 279 °C; R_f: 0.20 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3442, 2361, 1646, 1378, 1140, 778. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₇F₃N₃O₂S 444.0994; Found 444.1009

4-Methyl-*N*-(3-(2,4,5-trifluorophenyl)quinoxalin-2-yl)benzenesulfonamide (4w)

Reaction Time: 12 h; Yield: 43% (0.180 g); Nature of compound: pale yellow solid; Melting Point: 259 – 261 °C; R_f : 0.26 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3430, 2352, 1657, 1396, 1129, 763. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₅F₃N₃O₂S 430.0837; Found 430.0859

6-Tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5a)³

Reaction time: 1 h; Yield: 90% (0.169 g, 0.5 mmol), 84% (0.626 g, 2 mmol); Nature of compound: White solid; Melting Point: 146 – 147 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3422, 2999, 2356, 1868, 1229, 776. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.5 Hz, 1H), 8.37 (d, *J* = 7.5 Hz, 1H), 8.27 (d, *J* = 8.1 Hz, 1H), 8.22 (d, *J* = 8.1 Hz, 1H), 8.12 (d, *J* = 8.3 Hz, 2H), 7.77 (tt, *J* = 8.4, 7.1 Hz, 3H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 8.2 Hz, 2H), 2.30 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.6, 144.7, 141.7, 140.6, 140.5, 140.1, 135.3, 132.1, 129.7, 129.5, 129.1, 129.0, 128.5, 127.9, 124.7, 122.4, 121.9, 115.2, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₆N₃O₂S 374.0963; Found 374.0944.

8-Fluoro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5b)

Reaction time: 1 h; Yield: 75% (0.147 g); Nature of compound: White solid; Melting Point: 293 – 295 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3445, 2922, 2362, 1606, 1154, 779. ¹H NMR (400 MHz, CDCl₃) δ 8.34 – 8.28 (m, 3H), 8.21 (d, *J* = 8 Hz, 1H), 8.17 (d, *J* = 8 Hz, 2H), 7.82 – 7.78 (m, 2H), 7.27 – 7.23 (m, 3H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.0 (d, *J* =249.3 Hz), 145.9, 144.8, 142.6 (d, *J* = 13.1 Hz), 140.7, 139.7 (d, *J* = 2.8 Hz), 135.1, 129.8, 129.5, 129.1, 129.0, 128.6, 128.1, 123.8 (d, *J* = 107 Hz), 118.2 (d, *J* = 2.1 Hz), 112.7 (d, *J* = 23.9 Hz), 103.4, 103.1, 21.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -103.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₅FN₃O₂S 392.0869; Found 392.0859

8-Chloro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5c)³

Reaction Time: 1 h; Yield: 67% (0.136 g); Nature of compound: White solid; Melting Point: 210 – 212 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3440, 2919, 2401, 1633, 1177, 775. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.31 – 8.29 (m, 2H), 8.26 – 8.17 (m, 3H), 7.84 – 7.79 (m, 2H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 2H), 2.35 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.9, 144.7, 142.0, 140.8, 140.0, 139.5, 138.1, 135.1, 129.8 (2C), 129.1 (2C), 128.7, 128.1, 125.3, 123.1, 120.5, 115.5, 21.6. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₁H₁₄ClNaN₃O₂S 430.0387; Found 430.0385

8-Bromo-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5d)

Reaction Time: 1 h; Yield: 70% (0.157 g); Nature of compound: White solid; Melting Point: $252 - 254 \,^{\circ}$ C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3425, 2362, 2335, 1173, 1703, 774. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.28 (d, *J* = 8 Hz, 1H), 8.22 (d, *J* = 8 Hz, 2H), 8.18 (d, *J* = 8 Hz, 2H), 7.85 - 7.77 (m, 2H), 7.66 (d, *J* = 8 Hz, 1H), 7.29 - 7.26 (m, 2H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.9, 144.5, 142.0, 140.8, 140.1, 139.6, 135.0, 129.78, 129.76, 129.15, 129.13, 128.7, 128.1, 128.0, 126.2, 123.3, 120.9, 118.4, 21.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₅BrN₃O₂S 452.0063 and 454.0043; Found 452.0077 and 454.0058

8-Methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5e)³

Reaction Time: 40 min; Yield: 89% (0.172 g); Nature of compound: White solid; Melting Point: 229 – 231 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3429, 2919, 2071, 1631, 1226, 778. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.25 – 8.17 (m, 3H), 8.13 (d, *J* = 8 Hz, 2H), 7.79 – 7.72 (m, 2H), 7.32 (d, *J* = 8 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 2H), 2.63 (s, 3H), 2.30 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.5, 144.9, 143.3, 142.1, 140.6(2C), 139.8, 135.4, 129.6, 129.16, 129.10, 128.9, 128.3, 127.9, 125.9, 122.1, 119.6, 115.4, 22.9, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₈N₃O₂S 388.1114; Found 388.1139

8-Methoxy-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5f)³

Reaction Time: 40 min; Yield: 94% (0.189 g); Nature of compound: White solid; Melting Point: 219 – 221 °C. 185–186 °C; R_f: 0.25 in 10% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3467, 2983, 2378, 1894, 1159, 773. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.20 (m, 2H), 8.15 – 8.10 (m, 3H), 8.06 (s, 1H), 7.74 – 7.71 (m, 2H), 7.20 (d, *J* = 8 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 1H), 4.02 (s, 3H), 2.30 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.3, 145.6, 144.9, 143.6, 140.6, 140.5, 139.2, 135.2, 129.7, 129.1, 128.8, 128.7, 128.3, 127.9, 123.4, 114.9, 112.6, 99.9, 56.0, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₈N₃O₃S 404.1063; Found 404.1091

10-Chloro-6-tosyl-6H-indolo[2,3-b]quinoxaline (5g)

Reaction Time: 1.5 h; Yield: 69% (0.141 g); Nature of compound: White solid; Melting Point: 231 – 233 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3457, 2961, 2359, 1869, 1214, 783. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 8.4 Hz, 1H), 8.30 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 2H), 7.83 – 7.77 (m, 2H), 7.64 (t, *J* = 8.4 Hz, 1H), 7.48 (d, *J* = 8 Hz, 1H), 7.21 (d, *J* = 8 Hz, 2H), 2.31 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.8, 144.2, 142.5, 140.8, 139.6, 139.4, 135.0, 131.8, 130.7, 130.1, 129.9, 129.7, 128.9, 128.4, 128.0, 125.9, 119.3, 113.3, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₅ClN₃O₂S 408.0568; Found 408.0568

10-Methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5h)

Reaction Time: 40 min; Yield: 89% (0.171 g); Nature of compound: White solid; Melting Point: 203 – 205 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3426, 2992, 2366, 1862, 1223, 780. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.4 Hz, 1H), 8.27 (d, 8 Hz, 1H), 8.23 (d, 8.4 Hz, 1H), 8.14 (d, *J* = 8 Hz, 2H), 7.81 – 7.73 (m, 2H), 7.61 (t, *J* = 8 Hz, 1H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 3.07 (s, 3H), 2.31 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.4, 144.5, 141.9, 141.8, 140.8, 139.2, 137.5, 135.4, 131.2, 129.6, 129.5, 129.2, 128.9, 128.0, 127.9, 126.2, 120.1, 112.2, 21.6, 19.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₈N₃O₂S 388.1114; Found 388.1121

10-Methoxy-6-tosyl-6H-indolo[2,3-b]quinoxaline (5i)

Reaction Time: 40 min; Yield: 77% (0.156 g); Nature of compound: White solid; Melting Point: $209 - 211 \,^{\circ}$ C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3465, 2989, 2363, 1896, 1268, 786. ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.23 (m, 4H), 7.97 (d, *J* = 7.2 Hz, 1H), 7.80 – 7.96 (m, 2H), 7.45 – 7.36 (m, 3H), 7.19 (d, *J* = 7.6 Hz, 1H), 3.93 (s, 3H), 2.44 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.1, 147.4, 144.5, 141.7, 140.8, 140.3, 137.7, 131.7, 129.5, 129.4, 129.3, 129.1, 128.6, 127.8, 126.2, 125.6, 115.5, 114.5, 56.1, 21.7. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₂H₁₇NaN₃O₃S 426.0883; Found 426.0859

9-Fluoro-6-tosyl-6H-indolo[2,3-b]quinoxaline (5j):

Reaction time: 1 h; Yield: 87% (0.162 g); Nature of compound: White solid; Melting Point: 241 – 243 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3439, 3012, 2069, 1641, 1221, 774. ¹H NMR (400 MHz, CDCl₃) δ 8.53-8.49 (m, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 7.6 Hz, 2H), 8.02 (d, *J* = 6.0 Hz, 1H), 7.84-7.75 (m, 2H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 2H), 2.30 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.9 (d, *J* = 243.4 Hz), 145.7, 145.1, 140.7, 140.3, 139.8 (d, *J* = 3.7 Hz), 137.7 (d, *J* = 1.4 Hz), 135.1, 129.9, 129.7, 129.3, 129.2, 128.6, 127.9, 123.4 (d, *J* = 9.2 Hz), 119.4 (d, *J* = 24.4 Hz), 116.6 (d, *J* = 8.2 Hz), 108.5 (d, *J* = 24.4 Hz), 21.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.05. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₁₅FN₃O₂S 392.0864; Found 392.0867

9-Methoxy-6-tosyl-6H-indolo[2,3-b]quinoxaline (5k)

Reaction Time: 1 h; Yield: 79% (0.159 g); Nature of compound: White solid; Melting Point: 174 – 176 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3426, 2926, 2401, 1873, 1189, 776. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.8 Hz, 1H), 8.27 (d, *J* = 7.2 Hz, 1H), 8.20 (d, *J* = 7.2 Hz, 1H), 8.06 (d, *J* = 7.2 Hz, 2H), 7.79 – 7.75 (m, 3H), 7.31 (d, *J* = 8 Hz, 1H), 7.17 (d, *J* = 6.8 Hz, 2H), 3.95 (s, 3H), 2.28 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.2, 145.4, 145.2, 140.6 (2C), 140.1, 135.9, 135.2, 129.6, 129.5, 129.2, 129.0, 128.4, 127.8, 122.9, 120.8, 116.5, 104.3, 55.9, 21.6. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₂H₁₈N₃O₃S 404.1063; Found 404.1078

7-Methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline/9-methyl-6-tosyl-6*H*-indolo[2,3*b*]quinoxaline (1:1) (5l)

Reaction Time: 1 h; Yield: 82% (1:1) (0.160 g); Nature of compound: White solid; Melting Point: 181 – 183 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3429, 2941, 2074, 1625, 1214, 771. ¹H NMR (400 MHz, CDCl₃) (1:1 regioisomers) δ 8.39 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8 Hz, 1H), 8.21 – 8.18 (m, 2H), 8.15 -8.07 (m, 5H), 7.80 – 7.71 (m, 6H), 7.53 (d, *J* = 8 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8 Hz, 2H), 2.81 (s, 3H), 2.53 (s, 3H), 2.28 (s, 3H), 2.25 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (1:1 regioisomers) δ 148.4, 145.4, 144.9, 143.2, 142.5, 141.0, 140.6, 140.6, 140.0, 139.9, 139.8, 135.3 (2C), 135.3, 134.8, 134.6, 133.2 (2C), 130.5, 129.6, 129.5, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.3, 127.9, 127.8, 126.2, 126.1, 122.3, 122.1, 119.7, 114.9, 22.0, 21.6, 21.5, 21.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₈N₃O₂S 388.1114; Found 388.1104

7,9-Dimethyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5m)

Reaction Time: 1 h; Yield: 74% (0.148 g); Nature of compound: White solid; Melting Point: $244 - 246 \text{ }^{\circ}\text{C}$; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3442, 2999, 1648,
1230, 774. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 7.6 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.73 (t, J = 7.3 Hz, 2H), 7.76 – 7.69 (m, 2H), 7.33 (s, 1H), 7.02 (d, J = 8.0 Hz, 2H), 2.76 (s, 3H), 2.48 (s, 3H), 2.22 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.9, 144.9, 143.4, 141.1, 140.7, 140.0, 136.5, 136.3, 134.7, 130.3, 129.5, 129.3, 129.2, 129.0, 128.9, 127.9, 126.4, 119.9, 21.9, 21.6, 21.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₀N₃O₂S 402.1271; Found 402.1292

7-Tosyl-7*H*-benzo[4,5]indolo[2,3-*b*]quinoxaline (50)³

Reaction Time: 40 min; Yield: 89% (0.188 g); Nature of compound: brown solid; Melting Point: 241 - 243 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3435, 3005, 2081, 1638, 1214, 774. ¹H NMR (700 MHz, CDCl₃) δ 8.93 (d, *J* = 8.4 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 7.7 Hz, 1H), 7.97(d, *J* = 8.4 Hz, 1H), 7.79 - 7.76 (m, 2H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 2.16 (s, 3H). ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 148.6, 145.2, 143.1, 141.4, 141.3, 139.7, 136.3, 133.2, 129.5, 129.3, 129.2, 129.1, 128.9, 128.6, 128.3, 128.0, 127.8, 127.7, 126.5, 125.6, 123.4, 117.9, 21.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₁₈N₃O₂S 424.1120; Found 424.1113

13-Tosyl-13*H*-benzo[6,7]indolo[2,3-b]quinoxaline (5p)³

Reaction Time: 40 min; Yield; 83% (0.175 g); Nature of compound: brown solid; Melting Point: $209 - 211 \,^{\circ}$ C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3433, 3012, 2075, 1638, 1219, 780. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (d, *J* = 8.1 Hz, 1H), 8.73 (d, *J* = 9.1 Hz, 1H), 8.32 (dd, *J* = 8.8, 6.4 Hz, 2H), 8.17 (d, *J* = 9.2 Hz, 1H), 8.12 (d, *J* = 8.3 Hz, 2H), 8.01 (d, *J* = 8.1 Hz, 1H), 7.85 - 7.73 (m, 3H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 8.2 Hz, 2H), 2.27 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.6, 144.2, 141.4, 141.1, 139.1, 135.3, 133.0, 130.5, 129.7, 129.4, 129.2, 129.1, 128.9 (2C), 128.8, 128.6, 128.4, 127.9, 125.9, 125.2, 115.4, 114.4, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₁₈N₃O₂S 424.1120; Found 424.1130

2,3-Dichloro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5q)³

Reaction Time: 1.5 h; Yield: 73% (0.161 g); Nature of compound: White solid; Melting Point: $260 - 262 \,^{\circ}$ C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3543, 2351, 1691, 1221, 775. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 8.5 Hz, 1H), 8.41 (s, 1H), 8.36 (d, *J* = 8.4 Hz, 2H), 8.13 (d, *J* = 8.1 Hz, 2H), 7.80 (t, *J* = 7.7 Hz, 1H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.28 (s, 2H), 2.35 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 145.9, 144.9, 142.1, 141.4, 139.3, 138.7, 135.1, 133.9, 132.8(2C), 129.8, 129.6, 129.5, 127.9, 124.9, 122.8, 121.4, 115.2, 21.7. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₁₄Cl₂N₃O₂S 442.0184; Found 442.0180

2,3-Dichloro-10-methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5r)

Reaction Time: 1.5 h; Yield: 72% (0.165 g); Nature of compound: White solid; Melting Point: 229 – 231 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3501, 2963, 2375, 1861, 1198, 778. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (t, *J* = 9.7 Hz, 3H), 8.09 (d, *J* = 8.3 Hz, 2H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.24 – 7.19 (m, 3H), 2.99 (s, 3H), 2.32 (s, 3H). ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 145.7, 144.8, 142.8, 142.1, 139.3, 137.9, 137.8, 135.2, 133.6, 132.3, 131.9, 129.9, 129.7, 129.4, 127.9, 126.4, 119.4, 112.3, 21.6, 19.6. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₆Cl₂N₃O₂S 456.0340; Found 456.0323

2,3-Dichloro-8-methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5s)

Reaction Time: 1.5 h; Yield: 67% (0.152 g); Nature of compound: White solid; Melting Point: 240 – 242 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3439, 2967, 2297, 1810, 1268, 773. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 2H), 8.28 (s, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 8.13 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 8 Hz, 1H), 7.27 (d, *J* = 8.8 Hz, 2H), 2.66 (s, 3H), 2.43 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.8, 144.2, 142.5, 141.7, 141.5, 139.2, 138.4, 135.2, 133.5, 132.5, 129.8, 129.5, 129.4, 127.9, 126.2, 122.4, 118.9, 115.4, 22.9, 21.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₆Cl₂N₃O₂S 456.0340; Found 456.0336

5-Tosyl-5*H*-[1,3]dioxolo[4',5':5,6]indolo[2,3-*b*]quinoxaline (5t)³

Reaction Time: 40 min; Yield: 79% (0.164 g); Nature of compound: white solid; Melting Point: 243 – 244 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3439, 2963, 2389, 1898, 1253, 772. ¹H NMR (400 MHz, CDCl3) δ 8.24 (d, *J* = 7.7 Hz, 1H), 8.15 (d, *J* = 7.4 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 3H), 7.75 (s, 2H), 7.68 (s, 1H), 7.19 (d, *J* = 7.8 Hz, 2H), 6.16 (s, 2H), 2.30 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.9, 146.0, 145.7, 144.9, 140.8, 140.6, 139.4, 138.2, 135.2, 129.8, 129.3, 128.9, 128.8, 128.6, 127.9, 115.8, 102.5, 101.0, 97.5, 21.8. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₂H₁₆N₃O₄S 418.0862; Found 418.0874

2-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-5-tosyl-5*H*-[1,3]dioxolo[4',5':5,6]indolo[2,3*b*]quinoxaline (6t)

Reaction Time: 40 min; Yield: 78% (0.227 g); Nature of compound: yellow solid; Melting Point: $228 - 230 \,^{\circ}$ C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3448, 2369, 2078, 1638, 1223, 780. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.6 Hz, 2H), 8.17 (d, *J* = 7.9 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 2H), 7.88 (s, 1H), 7.83 - 7.71 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.14 (s, 1H), 4.68 (dt, *J* = 11.2, 5.5 Hz, 1H), 2.31 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.2, 145.8, 144.6, 142.6, 140.7, 139.8, 139.5, 138.2, 134.9, 129.7, 129.4, 129.1, 128.9, 128.6, 127.9, 122.1 (q, *J* = 289), 122.0, 118.4, 116.9, 102.2, 98.1, 69.8 (q, *J* = 33.9 Hz), 21.6. ¹⁹F

NMR (377 MHz, CDCl₃) δ -73.37. HRMS (ESI) *m/z*: [M+ H]⁺ Calcd for C₂₅H₁₆F₆N₃O₅S 584.0715; Found 584.0709

8,9-dichloro-2-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-5-tosyl-5H-

[1,3]dioxolo[4',5':5,6]indolo[2,3-b]quinoxaline (6u)

Reaction Time: 40 min; Yield: 48% (0.312 g); Nature of compound: Yellow solid; Melting Point: 248-250 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3521, 2823, 2331, 1821, 1297, 783. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.27 (s, 1H), 8.24 (s, 1H), 8.09 (d, *J* = 8.3 Hz, 2H), 7.86 (s, 1H), 7.27 – 7.25 (m, 2H), 7.15 (s, 1H), 4.69 – 4.64 (m, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 146.1, 144.8, 142.8, 140.7, 139.3, 138.7, 138.1, 134.8, 133.7, 132.9, 129.9, 129.5, 129.4, 127.9, 118.5, 116.3, 102.5, 98.1, 21.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -73.37. HRMS (ESI) *m*/*z*: [M+ H]⁺ Calcd for C₂₅H₁₃Cl₂F₆N₃O₅S 651.9935; Found 651.9916

N-(4-Iodophenyl)-4-methyl-N-(3-(4-(trifluoromethyl)phenyl)quinoxalin-2-

yl)benzenesulfonamide (7v)

Reaction Time: 1 h; Yield: 49% (0.158 g); Nature of compound: White solid; Melting Point: 173 - 175 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3427, 2934, 2366,

1862, 1231, 782. ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.07 (m, 1H), 8.05 – 7.95 (m, 1H), 7.83 - 7.81 (m, 4H), 7.74 - 7.71 (m, 4H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 6.57 (d, *J* = 8.5 Hz, 2H), 2.47 (s, 3H). ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 151.9, 147.6, 144.3, 141.2, 140.3, 140.1, 138.2, 137.9, 135.8, 131.3 (q, *J* = 34 Hz), 130.9, 130.8, 130.3, 129.7, 129.4, 129.3, 129.0, 128.6, 125.5 (q, *J* = 270 Hz), 125.4 (q, *J* = 3.1 Hz), 93.8, 21.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.8. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₈H₂₀F₃IN₃O₂S 646.0273; Found 646.0289

N-(4-Iodophenyl)-4-methyl-N-(3-(2,4,5-trifluorophenyl)quinoxalin-2-

yl)benzenesulfonamide (7w)

Reaction Time: 1 h; Yield: 42% (0.132 g); Nature of compound: White solid; Melting Point: 219 – 221 °C; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3427, 2934, 2366, 1862, 1231, 782. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.6 Hz, 1H), 8.05 – 7.99 (m, 1H), 7.89 – 7.79 (m, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.25 – 7.18 (m, 1H), 6.98 (dd, *J* = 15.8, 9.1 Hz, 1H), 6.16 (d, *J* = 8.5 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (175 MHz, CDCl₃) δ 155.3 (dd, *J* = 251.1, 9.7 Hz), 150.9 (dd, *J* = 253.9, 11.2 Hz), 148.1, 147.0, 146.9 (dd, *J* = 246.7, 12.2 Hz), 144.3, 140.8, 140.4, 138.4, 138.0, 135.6, 131.3, 130.8, 130.1, 129.4, 129.3, 129.0, 128.6, 121.1 (dd, *J* = 22.5, 4.1 Hz), 119.1 (d, *J* = 21.5 Hz), 105.9 (dd, *J* = 27.1, 21.0 Hz), 93.8, 21.7. ¹⁹F NMR (377 MHz, CDCl₃) δ 114.9 (dd, *J* = 14.7 Hz, 4.5 Hz), 130.6 (dd, *J* = 21.5 Hz, 5.3 Hz), 141.7 (dd, *J* = 21.0 MHz, 14.7 Hz). HRMS (ESI) *m*/z: [M+H]⁺ Calcd for C₂₇H₁₈F₃IN₃O₂S 632.0117; Found 632.0105

Procedure for synthesis of Suzuki coupling reaction of 5d with phenyl boronic acid³:

To a sealed tube containing bis(triphenylphosphine)palladium dichloride (8 mg, 6 mol%), potassium carbonate (0.083 g, 0.6 mmol, 3 equiv), and phenyl boronic acid (0.029 g, 0.24 mmol, 1.2 equiv) in 3:1 dioxane:water as solvent, 8-bromo-6-tosyl-6*H*-indolo[2,3-b]quinoxaline **5d** (0.090 g, 0.2 mmol) was added and kept at 100 °C for 24 h. After the completion of the reaction, the reaction mixture was diluted with ethyl acetate, washed with water, brine, and dried over Na₂SO₄. The solvent was evaporated and the crude product was purified by flash chromatography on silica gel.

Reaction Time: 24 h; Yield: 78% (0.069 g); Nature of compound: yellow solid; Melting Point: 219 – 220 °C; R_f : 0.2 in 5% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3427, 2934, 2366, 1862, 1231, 782. ¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.54 (m, 2H), 8.29 (d, *J* = 8.0 Hz, 1H), 8.27 – 8.19 (m, 1H), 8.14 (d, *J* = 8.3 Hz, 2H), 7.98 (dd, *J* = 8.8, 1.7 Hz, 1H), 7.89 – 7.75 (m, 2H), 7.73 (d, *J* = 7.4 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 7.4 Hz, 1H), 7.22 (d, *J* = 8.2 Hz, 2H), 2.31 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.6, 145.0, 140.9, 140.7, 140.5, 140.1, 139.9, 138.1, 135.2, 131.1, 129.7, 129.6, 129.2, 129.1, 129.0, 128.5, 127.9, 127.7, 127.3, 122.6, 120.5, 115.5, 21.6. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₇H₂₀N₃O₂S 450.1276; Found 450.1260

General procedure for Detosylation of 5

To a mixture of sodium metal (0.023 g, 1 mmol, 2 equiv) in ethanol (2 mL) was added *N*-tosyl indolo[2,3-*b*]quinoxaline **5** (0.5 mmol) and refluxed for 3 hours. After the completion of reaction, the reaction mixture was evaporated. Water was added to the resultant and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and evaporated

under reduced pressure. The crude product is purified in column chromatography using 70% hexane, 30% ethyl acetate and 0.5% triethylamine as eluent.

6H-Indolo[2,3-b]quinoxaline (9a)³

Reaction Time: 3 h; Yield: 84% (0.092 g); Nature of compound: yellow solid; Melting Point: 295-297 °C; R_f: 0.35 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) =3439, 2951, 2088, 1645, 1227, 775. ¹H NMR (400 MHz, DMSO) δ 12.05 (s, 1H), 8.34 (d, *J* = 7.6 Hz, 1H), 8.24 (d, *J* = 8.2 Hz, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.79 (t, *J* = 7.4 Hz, 1H), 7.70 (dd, *J* = 10.7, 7.9 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 7.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 145.9, 144.0, 140.2, 139.8, 138.6, 131.3, 129.1, 128.7, 127.5, 125.9, 122.3, 120.7, 118.9, 112.0. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₁₄H₁₀N₃ 220.0875; Found 220.0899

8-Bromo-6*H*-indolo[2,3-*b*]quinoxaline (9b)⁴

Reaction Time: 3 h; Yield: 72% (0.107 g); Nature of compound: yellow solid; Melting Point: 293 – 295 °C; R_f: 0.38 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3468, 2970, 2094, 1623, 1239, 776. ¹H NMR (400 MHz, DMSO) δ 12.24 (s, 1H), 8.46 (d, *J* = 1.9 Hz, 1H), 8.30 – 8.19 (m, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.84 - 7.81 (m, 2H), 7.77 – 7.69 (m, 1H), 7.55 (d, *J* = 8.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 146.5, 143.2, 140.88, 139.2, 139.0, 134.1, 129.7, 129.6, 128.1, 126.8, 124.9, 121.3, 114.6, 113.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₄H₉BrN₃ 297.9980 and 299.9980; Found 297.9983 and 299.9991

8-Methoxy-6H-indolo[2,3-b]quinoxaline (9f)⁵

Reaction Time: 3 h; Yield: 87% (0.108 g); Nature of compound: yellow solid; Melting Point: 290 – 292 °C.; R_f: 0.32 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3472, 2979, 2012, 1669, 1229, 770. ¹H NMR (700 MHz, DMSO) δ 11.94 (s, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 8.18 (d, *J* = 8.9 Hz, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 8.1 Hz, 1H), 7.04 (s, 1H), 6.93 (dd, *J* = 8.5, 2.0 Hz, 1H), 3.92 (s, 3H). ¹³C{¹H} NMR (175 MHz, DMSO) δ 163.1, 146.7, 146.6, 140.3, 139.7, 139.1, 129.1, 128.4, 127.8, 126.3, 123.9, 112.5, 109.9, 96.3, 56.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₂N₃O 250.0980; Found 250.0955

9-Methyl-6*H*-indolo[2,3-*b*]quinoxaline (9g)⁶

Reaction Time: 3 h; Yield: 67% (0.078 g); Nature of compound: yellow solid; Melting Point: 281 – 283 °C.; R_f: 0.30 in 30% ethyl acetate in hexanes; IR (KBr): v (cm⁻¹) = 3497, 2997, 2123, 1639, 1297, 781. ¹H NMR (700 MHz, DMSO) δ 11.89 (s, 1H), 8.22 (d, *J* = 8.3 Hz, 1H), 8.14 (s, 1H), 8.05 (d, *J* = 8.3 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 8.1 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 1H), 2.50 (s, 3H). ¹³C{¹H} NMR (175 MHz, DMSO) δ 146.0, 142.1, 140.1, 139.7, 138.5, 132.5, 129.7, 129.0, 128.6, 127.4, 125.8, 121.9, 119.0, 111.7, 20.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₂N₃ 234.1031; Found 234.1050

Procedure for Chan-Lam coupling of 9a with phenyl boronic acid⁷

In a 10 mL Schlenk tube, 6H-indolo[2,3-*b*]quinoxaline **9a** (0.088g, 0.4 mmol, 1.0 equiv) and phenylboronic acid (0.055g, 0.45 mmol, 1.5 equiv) were dissolved in a mixed solvent of anhydrous DMF and anhydrous acetonitrile (1:1) (2.2 mL). Anhydrous copper acetate (0.108g, 0.6 mmol, 1.5 equiv), cesium carbonate (0.130g, 0.4 mmol, 1.0 equiv) and pyridine (0.095g, 1.2 mmol, 3.0 equiv) were added to the mixture. The mixture was stirred at 110 °C oil bath for 24 h under oxygen. The reaction mixture was cooled to room temperature and quenched with saturated NH₄Cl solution, an appropriate amount of water was added and extracted for three times with ethyl acetate. The combined organic layers were washed with saturated brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by column chromatography to afford the product.

6-Phenyl-6H-indolo[2,3-b]quinoxaline 10a

Reaction Time: 24 h; Yield: 50% (0.060 g); Nature of compound: pale yellow solid; Melting Point: 231 - 233 °C; R_f : 0.2 in 3% ethyl acetate in hexanes. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 7.7 Hz, 1H), 8.40 – 8.25 (m, 1H), 8.16 – 8.03 (m, 1H), 7.83 – 7.60 (m, 7H), 7.53 (t, *J* = 8.1 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.86, 144.74, 140.58, 140.19, 139.79, 135.39, 131.07, 129.81, 129.25, 128.86, 128.24, 128.02, 127.17, 126.54, 122.71, 121.88, 119.83, 110.63. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₀H₁₄N₃ 296.1188; Found 296.1196

Procedure for synthesis of target molecule 6,6'-(9-(*p*-tolyl)-9*H*-carbazole-3,6-diyl)bis(6*H*indolo[2,3-*b*]quinoxaline) 12⁸

To a solution of 6*H*-indolo[2,3-*b*]quinoxaline **9a** (0.241 g, 1.1 mmol, 2.2 equiv) and 3,6-diiodo-9-(*p*-tolyl)-9*H*-carbazole **11** (0.254 g, 0.5 mmol) in dioxane in sealed tube, potassium phosphate (0.143 g, 1 mmol, 2.1 equiv), CuI (0.019 g, 10 mol%) and *trans*-1,2-DACH (0.023 g, 20 mol%) were added. The mixture was stirred at 110 °C for 48 h. After the completion of the reaction, the reaction mixture was diluted with ethyl acetate, washed with water, brine, and dried over Na₂SO₄. The solvent was evaporated and the crude product was purified by flash chromatography on silica gel.

Reaction Time: 48 h; Yield: 64% (0.220 g); Nature of compound: yellow solid; Melting Point: 227 – 229 °C; R_f: 0.23 in 20% ethyl acetate in hexanes. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 7.6 Hz, 2H), 8.47 (s, 1H), 8.35 (d, *J* = 7.4 Hz, 2H), 8.11 (d, *J* = 7.3 Hz, 2H), 7.78 – 7.62 (m, 12H), 7.54 - 7.52 (m, 4H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.28 (s, 1H), 2.58 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.6, 145.9, 141.4, 140.8, 140.4, 139.9, 138.5, 134.5, 131.2, 131.0, 129.4, 128.9, 128.4, 127.9, 127.3, 126.5, 126.2, 124.0, 122.8, 121.8, 120.2, 119.8, 111.6, 110.7, 21.5.

X-Ray crystal data for 5a

Identification code	VS_900
Empirical formula	$C_{21}H_{15}N_3O_2S$
Formula weight	373.42
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	7.9867(2)
b/Å	18.9604(5)
c/Å	11.5410(3)
$\alpha/^{\circ}$	90
β/°	98.527(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1728.35(8)
Z	4
$\rho_{calc}g/cm^3$	1.435
μ/mm^{-1}	0.210
F(000)	776.0
Crystal size/mm ³	$0.19 \times 0.15 \times 0.1$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	7.032 to 63.844
Index ranges	$-11 \le h \le 11, -24 \le k \le 27, -16 \le l \le 14$
Reflections collected	19476
Independent reflections	4989 [$R_{int} = 0.0272$, $R_{sigma} = 0.0207$]
Data/restraints/parameters	4989/0/245
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0375, wR_2 = 0.0970$
Final R indexes [all data]	$R_1 = 0.0438, wR_2 = 0.1010$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.37

Figure S-1: Crystal structure of **5a**. ORTEP Views of the Molecular Structure with Thermal Ellipsoids Set at 50% Probability. X-Ray quality crystals were grown in CH₂Cl₂-Hexane solvent system

X-Ray crystal data for 6t

Identification code	SP_VS_968_auto
Empirical formula	$C_{25}H_{15}F_6N_3O_5S$
Formula weight	583.471
Temperature/K	298.0(7)
Crystal system	triclinic
Space group	P-1
a/Å	7.2215(2)
b/Å	10.8817(3)
c/Å	16.0374(6)
α/°	106.334(3)
β/°	92.084(3)
$\gamma/^{\circ}$	95.137(2)
Volume/Å ³	1202.03(7)
Z	2
$\rho_{calc}g/cm^3$	1.612
μ/mm^{-1}	2.039
F(000)	595.3
Crystal size/mm ³	$0.23\times0.19\times0.09$
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	8.52 to 158.94
Index ranges	$-7 \le h \le 9, -13 \le k \le 13, -20 \le l \le 20$
Reflections collected	17841
Independent reflections	5026 [$R_{int} = 0.0397$, $R_{sigma} = 0.0277$]
Data/restraints/parameters	5026/0/362
Goodness-of-fit on F ²	1.009
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0610, wR_2 = 0.1671$
Final R indexes [all data]	$R_1 = 0.0667, wR_2 = 0.1848$
Largest diff. peak/hole / e Å ⁻³	0.96/-1.14

Figure S-2: Crystal structure of **6t**. ORTEP Views of the Molecular Structure with Thermal Ellipsoids Set at 50% Probability. X-Ray quality crystals were grown in CH₂Cl₂-Hexane solvent system

References:

- 1. Y. H. Cho, K. H. Kim and C. H. Cheon, J. Org. Chem., 2014, 79, 901-907.
- 2. S. K. Guchhait, G. Priyadarshani and N. M. Gulghane, RSC Adv., 2016, 6, 56056-56063.
- 3. S. Laru, S. Bhattacharjee, S. Ghosh and A. Hajra, Org. Lett., 2021, 23, 7624-7629.
- 4. A. J. Payne and G. C. Welch, Org. Biomol. Chem., 2017, 15, 3310-3319.
- 5. S. D. Carter and G. W. H. Cheeseman, *Tetrahedron*, 1978, **34**, 981-988.
- R. Dowlatabadi, Khalaj, A., Rahimian, S., Montazeri, M., Amini, M., Shahverdi, A. and Mahjub, E., *Synth. Commun.*, 2011, 41, 1650-1658.
- Z. Luo, B. Cao, T. Song, Z. Xing, J. Ren and Z. Wang, J. Org. Chem., 2022, 87, 15511-15529.
- T. H. Su, Fan, C.H., Ou-Yang, Y.H., Hsu, L.C. and Cheng, C.H., J. Mater. Chem. C., 2013, 1, 5084-5092.

¹H and ¹³C Spectra copies

3-Phenylquinoxalin-2-amine (3a)

3-(4-Fluorophenyl)quinoxalin-2-amine (3b)

3-(4-Chlorophenyl)quinoxalin-2-amine (3c)

3-(4-Bromophenyl)quinoxalin-2-amine (3d)

¹H NMR (400 MHz, DMSO)

¹³C{¹H} NMR (100 MHz, DMSO)

 $\begin{array}{c} - 151.856 \\ - 145.145 \\ - 141.929 \\ - 141.929 \\ - 137.199 \\ - 132.135 \\ - 132.135 \\ - 132.135 \\ - 132.135 \\ - 122.551 \\$

3-(p-Tolyl)quinoxalin-2-amine (3e)

3-(4-Methoxyphenyl)quinoxalin-2-amine (3f)

3-(2-Chlorophenyl)quinoxalin-2-amine (3g)

¹³C{¹H} NMR (100 MHz, DMSO)

[51.577	(44.800) (41.895) (41.895) (41.895) (41.895) (32.136) (32.136) (32.136) (32.136) (29.766) (29
ī	

3-(o-Tolyl)quinoxalin-2-amine (3h)

3-(2-Methoxyphenyl)quinoxalin-2-amine (3i)

3-(3-Fluorophenyl)quinoxalin-2-amine (3j)

3-(3-Methoxyphenyl)quinoxalin-2-amine (3k)

3-(*m*-Tolyl)quinoxalin-2-amine (3l)

3-(3,5-Dimethylphenyl)quinoxalin-2-amine (3m)

3-(2,3-Dimethoxyphenyl)quinoxalin-2-amine (3n)

3-(Naphthalen-2-yl)quinoxalin-2-amine (30)

3-(Naphthalen-1-yl)quinoxalin-2-amine (3p)

¹H NMR (400 MHz, DMSO)

¹³C{¹H} NMR (100 MHz, DMSO)

6,7-Dichloro-3-phenylquinoxalin-2-amine (3q)

6,7-Dichloro-3-(o-tolyl)quinoxalin-2-amine (3r)

6,7-Dichloro-3-(p-tolyl)quinoxalin-2-amine (3s)

3-(Benzo[d][1,3]dioxol-5-yl)quinoxalin-2-amine (3t)

3-(Benzo[d][1,3]dioxol-5-yl)-6,7-dichloroquinoxalin-2-amine (3u)

3-(4-(Trifluoromethyl)phenyl)quinoxalin-2-amine (3v)

¹H NMR (400 MHz, DMSO)

3-(2,4,5-Trifluorophenyl)quinoxalin-2-amine (3w)

¹H NMR (400 MHz, DMSO)

6-Tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5a)

8-Fluoro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5b)

¹H NMR (400 MHz, CDCl₃

200

190

180

170 160

150 140

110 100 ppm

90 80 70 60 50

130 120

30 20 10 0

40

¹⁹F NMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

8-Chloro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5c)

8-Bromo-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5d)

8-Methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5e)

8-Methoxy-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5f)

100 ppm 90 80

70

60 50 40 30

¹H NMR (400 MHz, CDCl₃)

200

190 180 170 160

150 140

130 120 110

ESI-82

0

20

10

10-Chloro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5g)

10-Methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5h)

10-Methoxy-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5i)

9-Fluoro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5j)

¹⁹F NMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -210 -220 fi (ppm)

9-Methoxy-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5k)

7-Methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline/9-methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (1:1) (5l)

7,9-Dimethyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5m)

7-Tosyl-7*H*-benzo[4,5]indolo[2,3-*b*]quinoxaline (50)

¹H NMR (700 MHz, CDCl₃)

150 140

100 90 ppm

2,3-Dichloro-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5q)

2,3-Dichloro-10-methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5r)

2,3-Dichloro-8-methyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (5s)

5-Tosyl-5*H*-[1,3]dioxolo[4',5':5,6]indolo[2,3-*b*]quinoxaline (5t)

2-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-5-tosyl-5*H*-[1,3]dioxolo[4',5':5,6]indolo[2,3*b*]quinoxaline (6t)

¹⁹F NMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -99 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

8,9-dichloro-2-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-5-tosyl-5H-[1,3]dioxolo[4',5':5,6]indolo[2,3-b]quinoxaline (6u)

N-(4-Iodophenyl)-4-methyl-*N*-(3-(4-(trifluoromethyl)phenyl)quinoxalin-2-yl)benzenesulfonamide (7v)

¹⁹F NMR (377 MHz, CDCl₃)

ESI-102

8-phenyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoxaline (8)

6H-Indolo[2,3-b]quinoxaline (9a)

8-Bromo-6*H*-indolo[2,3-*b*]quinoxaline (9b)

¹H NMR (400 MHz, DMSO)

9-Methyl-6*H*-indolo[2,3-*b*]quinoxaline (9g)

¹H NMR (700 MHz, DMSO)

8-Methoxy-6*H*-indolo[2,3-*b*]quinoxaline (9f)

¹H NMR (700 MHz, DMSO)

6-Phenyl-6*H*-indolo[2,3-*b*]quinoxaline (10a)

¹H NMR (400 MHz, CDCl₃)

6,6'-(9-(p-Tolyl)-9H-carbazole-3,6-diyl)bis(6H-indolo[2,3-b]quinoxaline) (12)

¹H NMR (400 MHz, CDCl₃)

Mass spectra copies

4-Methyl-*N*-(3-phenylquinoxalin-2-yl)benzenesulfonamide (4a)

N-(3-(4-Fluorophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4b)

N-(3-(4-Chlorophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4c)

N-(3-(4-Bromophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4d)

ESI-115

4-Methyl-*N*-(3-(*p*-tolyl)quinoxalin-2-yl)benzenesulfonamide (4e)

N-(3-(4-Methoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4f)

4-Methyl-N-(3-(o-tolyl)quinoxalin-2-yl)benzenesulfonamide (4h)

N-(3-(2-Methoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4i)

ESI-120

N-(3-(3-Fluorophenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4j)

N-(3-(3-Methoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4k)

printed: 5/11/2022 2:44:17 PM Page 1 of 1

4-Methyl-N-(3-(m-tolyl)quinoxalin-2-yl)benzenesulfonamide (4l)

N-(3-(3,5-Dimethylphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4m)

N-(3-(2,3-Dimethoxyphenyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4n)

4-Methyl-N-(3-(naphthalen-2-yl)quinoxalin-2-yl)benzenesulfonamide (40)

4-Methyl-N-(3-(naphthalen-1-yl)quinoxaliN-2-yl)benzenesulfonamide (4p)

N-(6,7-Dichloro-3-phenylquinoxalin-2-yl)-4-methylbenzenesulfonamide (4q)

N-(6,7-Dichloro-3-(*o*-tolyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4r)

460.0463

461.0467 462.0437

462

461

459.0515

459

460

463.3013

463

464.3052

465

464

.

455

456

457

458

N-(6,7-Dichloro-3-(p-tolyl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4s)

- m/z

466

N-(3-(Benzo[*d*][1,3]dioxol-5-yl)quinoxalin-2-yl)-4-methylbenzenesulfonamide (4t)

N-(3-(benzo[d][1,3]dioxol-5-yl)-6,7-dichloroquinoxalin-2-yl)-4-methylbenzenesulfonamide (4u)

4-Methyl-*N*-(3-(4-(trifluoromethyl)phenyl)quinoxalin-2-yl)benzenesulfonamide (4v)

4-Methyl-*N*-(3-(2,4,5-trifluorophenyl)quinoxalin-2-yl)benzenesulfonamide (4w)