Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

# **Supporting Information**

## Metal-free oxidative coupling of aryl acetylene with elemental sulphur and amines: A facile access to α-ketothioamides

Deepika Sharma,<sup>a</sup> Rana Chatterjee,<sup>a</sup> Vasudevan Dhayalan,<sup>\*b</sup> Rambabu Dandela,<sup>\*a</sup>

<sup>a</sup>Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India

<sup>b</sup>Department of Chemistry, National Institute of Technology Puducherry, Karaikal-

609609, Puducherry, India.

Email: r.dandela@iocb.ictmumbai.edu.in

### **Table of contents**

| 1 Experimental Section                                     |    |
|------------------------------------------------------------|----|
| 1.1 General information                                    |    |
| 1.2 Synthesis of α-ketothioamides                          |    |
| 2 <sup>1</sup> H and <sup>13</sup> C data of the compounds | S2 |
| 3 References                                               | S6 |
| 4 Copies of <sup>1</sup> H and <sup>13</sup> C NMR Spectra |    |

#### **1. Experimental Section**

#### **1.1. General Information**

All starting materials and commercial reagent were purchased from Alfa Aesar, Sigma Aldrich, Avra, Spectrochem, TCI. Thin Layer Chromatography plates were visualizedby exposure to ultraviolet light (UV) with 254 nm of wavelength and then further analyzed byusing iodine chamber. Thin-layer chromatography was performed usingpre-coated plates. Column chromatography was performed in 120 to 200 mesh size silica gel.The reactions were carried out inround bottom flask and sealed tube. and all NMR spectra were recorded by Bruker Avance 400 spectrometer (<sup>1</sup>H at 400 MHz and <sup>13</sup>C at 100 MHz). Chemical shifts for <sup>1</sup>H NMR spectra have been reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (CDCl<sub>3</sub>:  $\delta$  7.26 ppm). Simillarly,<sup>13</sup>C NMR spectra have been reported in parts per million (ppm) from tetramethylsilane with the solvent as the internalstandard (CDCl<sub>3</sub>:  $\delta$  77.0 ppm). The <sup>1</sup>H NMR and <sup>13</sup>C NMR of the known products were compared with literature reports.

#### 1.2 Synthesis of 2-morpholino-1-phenyl-2-thioxoethan-1-one (4a):

Phenylacetylene (1, 1 mmol, 102 mg), morpholine (2, 2 mmol, 174 mg), elemental sulphur (3, 2 mmol) was mixed in a sealed tube. Then the mixture was stirred after the addition of the iodine (253 mg, 1 equiv.) and DMSO solvent (2 mL) at 80 °C for 12 h under open atmosphere. After completion, monitoring by TLC, the mixture was cooled to room temperature and 20 mL of cold water was added to the mixture. then extracted with EtOAc three times ( $3 \times 20$  mL). The extract was washed with 10% Na<sub>2</sub>SO<sub>3</sub> solution (w/w), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporation. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the desired product **4a**.

**2-morpholino-1-phenyl-2-thioxoethan-1-one** (4a):<sup>1</sup> Yield: 80%, 188 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (dd, J = 8.3, 1.2 Hz, 2H), 7.62 (dt, J = 8.7, 1.2 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 4.40 – 4.25 (m, 2H), 3.97 – 3.84 (m, 2H), 3.75 – 3.66 (m, 2H), 3.63 – 3.56 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.71, 187.91, 134.47, 133.27, 129.85, 128.98, 66.44 (d, J = 12.0 Hz), 51.94, 47.13.

**2-morpholino-2-thioxo-1-(p-tolyl)ethan-1-one (4b):**<sup>1</sup> Yield: 74%, 184 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, *J* = 8.2 Hz, 2H), 7.29 (d,

*J* = 8.0 Hz, 2H), 4.35 – 4.28 (m, 2H), 3.92 – 3.87 (m, 2H), 3.71 – 3.64 (m, 2H), 3.61 – 3.56 (m, 2H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 196.00, 187.91, 145.75, 130.74, 129.99, 129.71, 66.45 (d, *J* = 12.4 Hz), 51.91, 47.10, 21.90.

**1-(4-fluorophenyl)-2-morpholino-2-thioxoethan-1-one (4c):**<sup>2</sup> Yield: 77%, 194 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (dd, *J* = 8.9, 5.3 Hz, 2H), 7.17 (t, *J* = 8.6 Hz, 2H), 4.35 – 4.30 (m, 2H), 3.94 – 3.86 (m, 2H), 3.74 – 3.66 (m, 2H), 3.63 – 3.56 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.18, 186.38, 167.73, 165.17, 132.67 (d, *J* = 9.7 Hz), 129.74 (d, *J* = 2.9 Hz), 116.40, 116.18, 66.45 (d, *J* = 14.9 Hz), 51.96, 47.18.

**1-(4-chlorophenyl)-2-morpholino-2-thioxoethan-1-one (4d):**<sup>1</sup> Yield: 75%, 201 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 4.35 – 4.29 (m, 2H), 3.93 – 3.87 (m, 2H), 3.73 – 3.66 (m, 2H), 3.63 – 3.56 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 194.94, 186.44, 141.04, 131.75, 131.21, 129.35, 66.45 (d, *J* = 14.8 Hz), 51.96, 47.18.

**1-(3-bromophenyl)-2-morpholino-2-thioxoethan-1-one (4e):**<sup>3</sup> Yield: 70%, 218 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.13 (t, *J* = 1.8 Hz, 1H), 7.90 (d, *J* = 10.3 Hz, 1H), 7.73 (d, *J* = 7.0 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 4.36 – 4.29 (m, 2H), 3.93 – 3.87 (m, 2H), 3.74 – 3.67 (m, 2H), 3.63 – 3.57 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 194.51, 185.95, 137.23, 135.24, 132.36, 130.50, 128.44, 123.21, 66.45 (d, *J* = 13.9 Hz), 52.00, 47.22.

**1-(4-bromophenyl)-2-morpholino-2-thioxoethan-1-one (4f):**<sup>2</sup> Yield: 72%, 224 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.6 Hz, 1H), 7.68 – 7.59 (m, 1H), 4.36 – 4.23 (m, 1H), 3.96 – 3.82 (m, 1H), 3.74 – 3.65 (m, 1H), 3.65 – 3.51 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 194.85, 186.58, 132.25 (d, *J* = 15.9 Hz), 131.24, 129.87, 66.44 (d, *J* = 15.1 Hz), 51.96, 47.18.

**1-(2-methoxyphenyl)-2-morpholino-2-thioxoethan-1-one** (4g):<sup>4</sup> Yield: 66%, 174 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.55 (ddd, *J* = 8.5, 7.4, 1.8 Hz, 1H), 7.16 – 7.05 (m, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 4.32 – 4.19 (m, 2H), 3.91 – 3.88 (m, 2H), 3.87 (s, 3H), 3.79 – 3.74 (m, 2H), 3.71 – 3.65 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  198.33, 186.62, 159.15, 135.54, 131.82, 121.53, 112.56, 66.24, 66.00, 56.14, 51.71, 46.95.

**2-morpholino-1-(thiophen-2-yl)-2-thioxoethan-1-one (4h):**<sup>4</sup> Yield: 69%, 166 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.78 (ddd, *J* = 6.0, 4.4, 1.1 Hz, 2H), 7.16 (dd, *J* = 4.9, 3.9 Hz, 1H), 4.34 – 4.25 (m, 2H), 3.93 – 3.85 (m, 2H), 3.76 – 3.61 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 194.34, 181.03, 140.34, 136.17, 135.60, 128.64, 66.56, 66.33, 52.02, 47.32.

**1-phenyl-2-(piperidin-1-yl)-2-thioxoethan-1-one (4i):**<sup>1</sup> Yield: 72%, 187 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.02 – 7.95 (m, 2H), 7.65 – 7.56 (m, 1H), 7.48 (dd, *J* = 10.6, 4.7 Hz, 2H), 4.32 – 4.16 (m, 2H), 3.61 – 3.46 (m, 2H), 1.88 – 1.72 (m, 4H), 1.67 – 1.59 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 194.46, 188.00, 134.16, 133.47, 129.81, 128.84, 53.01, 48.13, 26.44, 25.36, 24.09.

**1-(4-fluorophenyl)-2-(piperidin-1-yl)-2-thioxoethan-1-one** (4j):<sup>1</sup> Yield: 67%, 168 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (dd, *J* = 8.9, 5.4 Hz, 2H), 7.15 (t, *J* = 8.6 Hz, 2H), 4.27 – 4.22 (m, 2H), 3.56 – 3.51 (m, 2H), 1.85 – 1.75 (m, 4H), 1.63 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.96, 186.49, 167.57, 165.02, 132.58 (d, *J* = 9.6 Hz), 129.92 (d, *J* = 2.9 Hz), 116.24, 116.02, 53.03, 48.17, 26.50, 25.35, 24.06.

**1-(4-chlorophenyl)-2-(piperidin-1-yl)-2-thioxoethan-1-one (4k):**<sup>1</sup> Yield: 64%, 170 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.96 – 7.90 (m, 2H), 7.48 – 7.42 (m, 2H), 4.27 – 4.21 (m,2H), 3.56 – 3.48 (m, 2H), 1.87 – 1.73 (m, 5H), 1.63 (s, 2H), 1.34 – 1.17 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 193.66, 186.57, 140.66, 131.94, 131.16, 129.22, 53.04, 48.18, 29.71, 26.51, 25.37, 24.05.

**1-(3-bromophenyl)-2-(piperidin-1-yl)-2-thioxoethan-1-one (4l):** Yield: 62%, 192 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (t, *J* = 1.7 Hz, 1H), 7.93 – 7.87 (m, 1H), 7.71 (ddd, *J* = 8.0, 1.9, 1.0 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 4.27 – 4.20 (m, 2H), 3.56 – 3.49 (m, 2H), 1.86 – 1.75 (m, 4H), 1.64 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.29, 186.02, 136.93, 135.44, 132.45, 130.39, 128.41, 123.10, 53.10, 48.21, 29.71, 26.50, 25.37, 24.07. HRMS (ESI) calcd for C<sub>13</sub>H<sub>15</sub>BrNOS [M+H]<sup>+</sup> 312.0052; found 312.0058.

**1-(4-bromophenyl)-2-(piperidin-1-yl)-2-thioxoethan-1-one (4m):**<sup>5</sup> Yield: 68%, 210 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, *J* = 8.6 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 4.35 – 4.17 (m, 1H), 3.64 – 3.43 (m, 1H), 1.90 – 1.69 (m, 2H), 1.63 (d, *J* = 4.8 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.59, 186.67, 132.28 (d, *J* = 15.4 Hz), 131.21, 129.50, 53.05, 48.19, 26.51, 25.37, 24.05.

**1-(2-methoxyphenyl)-2-(piperidin-1-yl)-2-thioxoethan-1-one (4n):** Yield: 59%, 155 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 – 7.96 (m, 1H), 7.56 – 7.49 (m, 1H), 7.08 (t, *J* = 7.9 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 4.18 (t, *J* = 5.3 Hz, 2H), 3.85 (s, 3H), 3.63 – 3.59 (m, 2H), 1.74 (dd, *J* = 36.3, 5.3 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  196.79, 186.46, 159.25, 135.29, 131.86, 124.38, 121.33, 112.52, 56.03, 52.81, 47.96, 25.61, 25.23, 24.15. HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 264.1053; found 264.1060.

**2-(piperidin-1-yl)-1-(thiophen-2-yl)-2-thioxoethan-1-one** (40):<sup>5</sup> Yield: 65%, 155 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (ddd, J = 6.0, 4.4, 1.1 Hz, 2H), 7.15 (dd, J = 4.8, 3.9 Hz, 1H), 4.33 – 4.04 (m, 2H), 3.67 – 3.38 (m, 2H), 1.89 – 1.71 (m, 4H), 1.69 – 1.58 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.04, 181.31, 140.49, 135.73, 135.29, 128.54, 53.10, 48.32, 26.50, 25.33, 24.05.

**2-(4-(2-methoxyphenyl)piperazin-1-yl)-1-phenyl-2-thioxoethan-1-one (4p):** Gummy mass, Yield: 71%, 241 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.10 – 7.89 (m, 2H), 7.69 – 7.56 (m, 1H), 7.49 (dd, *J* = 10.6, 4.8 Hz, 2H), 7.06 (ddd, *J* = 8.0, 7.1, 2.1 Hz, 1H), 6.99 – 6.80 (m, 3H), 4.62 – 4.42 (m, 2H), 3.87 (s, 3H), 3.82 – 3.68 (m, 2H), 3.36 – 3.22 (m, 2H), 3.09 (dd, *J* = 5.9, 4.0 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.44, 188.02, 152.24, 139.72, 134.33, 133.42, 129.90, 128.93, 124.10, 121.14, 118.70, 111.46, 55.48, 51.92, 50.70, 50.05, 47.13. HRMS (ESI) calcd for C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 341.1318; found 341.1323.

**1-(3-methoxyphenyl)-2-(4-(2-methoxyphenyl)piperazin-1-yl)-2-thioxoethan-1-one** (4q): Gummy mass, Yield: 63%, 233 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.49 – 7.38 (m, 1H), 6.98 (ddd, *J* = 6.5, 6.0, 3.1 Hz, 2H), 6.90 – 6.80 (m, 4H), 4.40 – 4.25 (m, 2H), 3.79 (s, 3H), 3.77 (s, 3H), 3.74 (d, *J* = 4.9 Hz, 2H), 3.20 – 3.13 (m, 2H), 3.10 – 3.03 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  196.90, 185.58, 158.14, 151.19, 138.93, 134.45, 130.72, 123.30, 122.94, 120.33, 120.09, 117.49, 111.47, 110.39, 55.04, 54.44, 50.59, 48.90 (d, *J* = 9.0 Hz), 45.91. HRMS (ESI) calcd for C<sub>20</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup> 371.1424; found 371.1430.

**1-(4-chlorophenyl)-2-(4-(2-methoxyphenyl)piperazin-1-yl)-2-thioxoethan-1-one** (4r): Gummy mass, Yield: 70%, 261 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, *J* = 8.6 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.12 – 6.99 (m, 1H), 6.99 – 6.83 (m, 3H), 4.55 – 4.41 (m, 2H), 3.87 (s, 3H), 3.80 – 3.65 (m, 2H), 3.33 – 3.16 (m, 2H), 3.16 – 2.98 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  194.68, 186.55, 152.24, 140.89, 139.64, 131.92, 131.24, 129.30, 124.16, 121.15, 118.71, 111.47, 55.49, 51.95, 50.74, 50.06, 47.19. HRMS (ESI) calcd for C<sub>19</sub>H<sub>20</sub>ClN<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 375.0929; found 375.0933.

**1-(3-bromophenyl)-2-(4-(2-methoxyphenyl)piperazin-1-yl)-2-thioxoethan-1-one** (4s): Gummy mass, Yield: 66%, 275 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (t, *J* = 1.7 Hz, 1H), 7.99 – 7.82 (m, 1H), 7.73 (ddd, *J* = 8.0, 1.8, 0.9 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.15 – 7.03 (m, 1H), 6.98 – 6.76 (m, 3H), 4.56 – 4.39 (m, 2H), 3.87 (s, 3H), 3.81 – 3.62 (m, 2H), 3.30 (dd, *J* = 17.5, 12.4 Hz, 2H), 3.09 (dd, *J* = 16.0, 11.2 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  194.28, 186.05, 152.27, 139.65, 137.09, 135.42, 132.52, 130.47, 128.49, 124.17, 123.19, 121.16, 118.77, 111.50, 55.51, 52.00, 50.72, 50.04, 47.22. HRMS (ESI) calcd for C<sub>19</sub>H<sub>20</sub>BrN<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 419.0423; found 419.0429.

**1-(4-bromophenyl)-2-(4-(2-methoxyphenyl)piperazin-1-yl)-2-thioxoethan-1-one** (4t): Gummy mass, Yield: 69%, 288 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.89 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.07 (t, J = 7.5 Hz, 1H), 6.99 – 6.81 (m, 3H), 4.53 – 4.41 (m, 2H), 3.94 – 3.81 (m, 3H), 3.82 – 3.65 (m, 2H), 3.35 – 3.16 (m, 2H), 3.16 – 2.99 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 194.60, 186.69, 152.22, 139.62, 132.31 (d, J = 3.3 Hz), 131.28, 129.73, 124.16, 121.14, 118.70, 111.45, 55.48, 51.94, 50.73, 50.05, 47.18. HRMS (ESI) calcd for C<sub>19</sub>H<sub>20</sub>BrN<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 419.0423; found 419.0430.

**1-phenyl-2-thiomorpholino-2-thioxoethan-1-one (4u):**<sup>6</sup> Yield: 75%, 188 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 – 7.89 (m, 9H), 7.62 (ddd, J = 8.7, 2.5, 1.3 Hz, 5H), 7.50 (t, J = 7.7 Hz, 10H), 4.59 (s, 10H), 3.88 – 3.81 (m, 11H), 2.90 (t, J = 5.1 Hz, 10H), 2.71 (d, J = 2.6 Hz, 11H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  196.11, 187.74, 134.43, 133.23, 129.91, 128.93, 54.64, 49.70, 28.24, 27.30.

**1-(4-bromophenyl)-2-thiomorpholino-2-thioxoethan-1-one (4v):** Gummy mass, Yield: 67%, 219 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, *J* = 8.6 Hz, 1H), 7.63 (d, *J* = 8.6 Hz, 1H), 4.57 (s, 1H), 3.92 – 3.71 (m, 1H), 2.89 (t, *J* = 5.1 Hz, 1H), 2.70 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.22, 186.42, 132.21 (d, *J* = 20.0 Hz), 131.29, 129.85, 54.69, 49.78, 28.31, 27.31. HRMS (ESI) calcd for C<sub>12</sub>H<sub>13</sub>BrNOS<sub>2</sub> [M+H]<sup>+</sup> 329.9616; found 329.9622.

**2-(3,4-dihydroisoquinolin-2(1H)-yl)-1-phenyl-2-thioxoethan-1-one (4w):**<sup>7</sup> Yield: 54%, 151 mg, purified by petroleum ether/EtOAc = 5:1; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.04 – 7.75 (m, 2H), 7.62 – 7.47 (m, 1H), 7.41 (dd, *J* = 15.6, 8.1 Hz, 2H), 7.25 – 7.06 (m, 4H), 5.26 (s, 1H), 4.63 (s, 1H), 4.35 (t, *J* = 6.3 Hz, 1H), 3.86 – 3.69 (m, 1H), 2.95 (dt, *J* = 91.5, 6.0 Hz, 2H). <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.75, 188.03, 134.31 (d, J = 6.8 Hz), 133.41, 133.07, 131.09 (d, J = 16.3 Hz), 129.94 (d, J = 4.3 Hz), 128.91 (d, J = 3.5 Hz), 128.47, 127.26 (d, J = 3.8 Hz), 126.92 (d, J = 13.2 Hz), 125.96, 52.58, 49.36 (d, J = 12.2 Hz), 45.87, 29.28, 27.95.

#### **References:**

- 1. P. Yu, Y. Wang, Z. Zeng and Y. Chen, J. Org. Chem., 2019, 84, 14883.
- Z. Zhang, J. Yang, R. Yu, K. Wu, J. Bu, S. Li, P. Qian and L. Sheng, *Eur. J. Org. Chem.*, 2021, 2021, 5209.
- S. Ravez, C. Corbet, Q. Spillier, A. Dutu, A. D. Robin, E. Mullarky, L. C. Cantley, O. Feron and R. Frédérick, J. Med. Chem., 2017, 60, 1591.
- S. Tiwari, S. Chandrashekharappa and G. N. Gururaja, Org. Biomol. Chem., 2023, 21, 8563.
- 5. T. N. Chaubey, P. J. Borpatra, A. Sharma and S. K. Pandey, Org. Lett., 2022, 24, 8062.
- 6. Q. Spillier, S. Ravez, J. Unterlass, C. Corbet, C. Degavre, O. Feron and R. Frédérick, *Pharmaceuticals*, 2020, **13**, 20.
- 7. J. Dong, C. Sheng, Y. Chen, C. Ni and Y. Wang, Tetrahedron Lett., 2023, 115, 154317.



































































































![](_page_52_Figure_0.jpeg)