Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Deciphering Substitution Effects on Reductive Hydroalkoxylation of Alkynyl Aminols for Stereoselective Synthesis of Morpholines and 1,4-Oxazepanes: Total Synthesis of Tridemorph and Fenpropimorph

Santosh J. Gharpure,^{*a} Deepika Kalita^a, Shipra Somani^a and Juhi Pal^a Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai–400076

India. Fax: +91-22-2576 7152; Tel: +91-22-2576 7171; E-mail: sigharpure@iitb.ac.in

Table of Contents

• General	S2
• Experimental and Characterization of compound	S3-S22
 React IR and NMR Study for Mechanism 	S22-S26
• NMR Spectra	S27-S5 7
• X-Ray crystallographic analysis	S58-S59
References	S60

General experimental:

Melting points are recorded using dbk programmable melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on Nicolet 6700 spectrophotometer. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on Bruker Avance 400 spectrometer. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were recorded on Bruker Avance 500 spectrometer. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to either internal tetramethylsilane or residual CHCl₃ (7.26 ppm for ¹H) or the central line (77.16 ppm) of CDCl₃ (for ¹³C). In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses.

High resolution mass measurements were carried out using Maxis impact (brucker) instrument using direct inlet mode. X-ray diffraction studies were carried out using Bruker Single Crystal Kappa Apex II. Analytical thin-layer chromatographies (TLC) were performed on glass plates $(7.5 \times 2.5 \text{ and } 9 \times 5.0 \text{ cm})$ coated with Merck or Acme's silica gel G containing 13% calcium sulfate as binder or on pre-coated 0.2 mm thick Merck 60 F₂₄₅ silica plates and various combinations of ethyl acetate and Petroleum ether were used as eluent. Visualization of spots was accomplished by either exposure to iodine vapour or KMnO4 stain or vanillin strain. All small-scale dry reactions were carried out using standard syringe septum technique. Dry dichloromethane was prepared by refluxing over anhydrous P₂O₅ and distillation on to calcium hydride. Dry DMF was prepared by stirring on CaH and distillation on to molecular sieves. BF₃·OEt₂, Cu(OTf)₂, TMSOTf, TfOH, AgOTf, In(OTf)₃, Bi(OTf)₃, and Et₃SiH were obtained from Aldrich. All other Lewis/Bronsted acids, propargyl bromide (80% in toluene), amino alcohol, propylene oxide, cyclohexane carbaldehyde, But-2-en-1-ol are commercial reagents and were used as such without further purification. All the starting material were prepared according to literature established protocol.¹⁻²

General procedure for the synthesis of N-Sulfonyl protected alkynyl aminols (6):

Step I:

To the magnetically stirred solution of amino alcohol (1.0 equiv) in CH_2Cl_2 (10 mL), was added *p*-Toluene/*p*-Nosylsulfonyl chloride (1.1 equiv) and Et₃N (1.5 equiv) at 0 °C. The reaction mixture was allowed to stir at room temperature. After the complete consumption of the starting material (TLC control), the reaction mixture was diluted with water and extracted with CH_2Cl_2 . The combined organic layers were dried over anhydrous Na₂SO₄, concentrated in vacuo and the crude product was purified by silica gel chromatography using dichloromethane-methanol (98:2) as eluent to furnish *N*-Sulfonyl protected aminols.

Step II:

To a magnetically stirred solution of *N*-Sulfonyl protected amino alcohols (1.0 equiv) in CH₃CN (10 mL), was added K_2CO_3 (1.5 equiv) and propargyl bromide (1.3 equiv) at room temperature. The reaction mixture was heated at 80 °C. After the complete consumption of the starting material (TLC control), the reaction mixture is cooled to room temperature and filtered through celite. The filtrate was concentrated and purified by silica gel column using ethyl acetate-petroleum ether (20:80) as eluent to furnish terminal alkynols **6**.

General procedure for the synthesis of N-benzylated alkynyl aminol (6d):

Step I:

To a magnetically stirred solution of benzaldehyde (1.0 equiv) in dry MeOH (10 mL), was added amino alcohol (1.1 equiv) dropwise. After completion of addition, the reaction mixture was heated to 75 °C. After 1 h, the reaction mixture was cooled down to room temperature and then placed in an ice bath. Then NaBH₄ (1.5 equiv) was added over 20 min at 0 °C. After completion of addition, the reaction mixture continued stirring at room temperature. After complete conversion of the starting material (TLC control), the reaction mixture was

concentrated and the white crude reaction mixture was dissolved in CH_2Cl_2 (10 mL). The organic layer was extracted with water. The aqueous layer was acidified with 10% HCl and then extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to give benzyl protected amino alcohol.

Step II:

To a magnetically stirred solution of *N*-benzylated amino alcohols (1.0 equiv) in CH₃CN (10 mL), was added K_2CO_3 (1.5 equiv) and propargyl bromide (1.3 equiv) at room temperature. The reaction mixture was heated at 80 °C. After the complete consumption of the starting material (TLC control), the reaction mixture is cooled to room temperature and filtered through celite. The filtrate was concentrated and purified by silica gel column using ethyl acetate-petroleum ether (20:80) as eluent to furnish terminal alkynols **6d**.

General procedure for the synthesis of *N*-Cbz protected alkynyl aminol (6e):

Step I:

To a magnetically stirred solution of amino alcohol (1.5 equiv) in CH₂Cl₂ (10 mL), was added propargyl bromide (1.0 equiv, 80% in toluene). The temperature was monitored and if the reaction warmed above ambient temperature it was cooled in an ice bath. After complete consumption of starting material (TLC control), the mixture was poured into a separatory funnel, washed with water. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Purification was accomplished by silica gel column chromatography using ethyl acetatepetroleum ether (40:80) as eluent to furnish terminal alkynol.

Step II:

A solution of benzyl chloroformate (1.1 equiv) in CHCl₃ (10 mL) was dropwise added to a mixture of amino alkynol (1.0 equiv), 4% aq. NaOH (1.5 mL) and CHCl₃ (40 ml). The reaction mixture was stirred in an ice bath. After the complete consumption of starting material (TLC control), the resulting mixture was diluted with water. The aqueous phase was extracted with CHCl₃ (3×10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column using ethyl acetate-petroleum ether (20:80) as eluent to furnish terminal alkynol **6e**.

General procedure for the synthesis of internal alkynol (8):

Step I:³

To a magnetically stirred solution of 2-butyn-1-ol (1.0 equiv) in Et₂O (15 mL), was added ptoluenesulfonyl chloride (1.1 equiv). The reaction mixture was allowed to cool at 0 °C followed by portion wise addition of powdered KOH (6 equiv). After the addition was completed, the reaction mixture was stirred at room temperature. After complete consumption of starting material (TLC control), reaction mixture was poured into water (30 mL). The layers were separated and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic layers were dried over Na₂SO₄, filtered, concentrated in vacuo and purified by silica gel column using ethyl acetate-petroleum ether (20:80) as eluent to furnish tosylated alcohol. Step II:

To a solution of N-tosylated amino alcohols (1.0 equiv) in CH₃CN (15 mL), was added K₂CO₃ (1.5 equiv) and but-2-yn-1-yl 4-methylbenzenesulfonate (1.3 equiv) and refluxed for 12 hr. After complete consumption of starting material (TLC control), the crude reaction mixture was filtered through celite, concentrated followed by purification on a silica gel column using ethyl acetate-petroleum ether (15:85) as eluent to furnish the alkynols 8.

General procedure for the synthesis of morpholines (7):

To a magnetically stirred solution of alkynol 6 (1.0 equiv) in CH₂Cl₂ (5 mL) at 0 °C, were added Ag(OTf) (10 mol%) and p-TSA (10 mol%). The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (2.0 equiv) was added. After the complete consumption of the hydroalkoxylated product, the reaction mixture was quenched with saturated NaHCO₃, extracted with CH_2Cl_2 (3 × 5 mL), washed with brine, and dried. Evaporation of solvent and purification of residue on silica gel column using EtOAc-petroleum ether as eluent furnished morpholines 7.

(2S,5S)-2-Methyl-5-phenyl-4-tosylmorpholine (7a):

To a magnetically stirred solution of alkynol **6a** (100 mg, 0.374 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (9.6 mg, 0.037 mmol) and *p*-TSA (6.4 mg, 0.037 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (119.3 μ L, 0.748 mmol) was added. After the complete consumption of starting material (TLC control), the reaction mixture was quenched with saturated NaHCO₃, extracted with CH₂Cl₂ (3 × 5 mL) dried over anhydrous Na₂SO₄. Evaporation of solvent and purification of residue on silica gel column using EtOAcpetroleum ether as eluent furnished morpholine **7a** (96 mg, 95%).

Physical appearance: Sticky liquid.

R_f: 0.5 (20:80, EtOAc:Petroleum ether).

[α]²³_D: 46.4 (*c* 1.3, CHCl₃).

IR (neat): 3058, 2979, 2919, 2865, 1599, 1495, 1451, 1381, 1341, 1299, 1268, 1162,1120, 1096, 1022, 997, 907, 843, 816, 770, 737, 703 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.66 (dd, *J* = 8.0, 2.8 Hz, 2H), 7.28 (dd, *J* = 8.0, 2.8 Hz, 2H), 3.94-3.92 (m, 1H), 3.58-3.57 (m, 2 H), 3.52-3.48 (m, 1H), 3.46-3.41 (m, 1H), 2.79-2.72 (m, 1H), 2.39 (s, 3H), 1.12 (dd, *J* = 6.0, 3.2 Hz, 3H), 1.06 (dd, *J* = 6.8, 3.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.3 (C), 137.5 (C), 129.8 (2 × CH), 127.0 (2 × CH), 71.8 (CH), 71.3 (CH₂), 48.1 (CH), 45.8 (CH₂), 21.5 (CH₃), 18.6 (CH₃), 13.7 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. For C₁₃H₂₀NO₃S 270.1168, found 270.1168.

2-methyl-4-tosylmorpholine (7b):

To a magnetically stirred solution of alkynol **6b** (100 mg, 0.395 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (10.1 mg, 0.039 mmol) and *p*-TSA (6.8 mg, 0.039 mmol)) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (125.9 μ L, 0.789 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7b** (92 mg, 91%).

Physical appearance: Sticky liquid.

R_f: 0.5 (20:80, EtOAc:Petroleum ether).

IR (neat): 2982, 2920, 2899, 2861, 1595, 1489, 1447, 1387,1377, 1340, 1296, 1280, 1184, 1162, 1112, 1053, 1001, 903, 861, 823,769, 709 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.63 (d, *J* = 6.4 Hz, 2H), 7.34 (d, *J* = 6.4 Hz, 2H), 3.89-3.86 (m, 1H), 3.70-3.64 (m, 2H), 3.55-3.49 (m, 2H), 2.44 (s, 3H), 2.36 (ddd, *J* = 11.6, 3.2 Hz, 1H), 2.01 (t, *J* = 8.4 Hz, 1H), 1.12 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 144.0 (C), 132.3 (C), 129.9 (2 × CH), 128.0 (2 × CH), 71.5 (CH), 66.0 (CH₂), 51.7 (CH₂), 45.4 (CH₂), 21.7 (CH₃), 18.8 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. for C₁₂H₁₈NO₃S 256.1005, found 256.1005.

(2S,5S)-2,5-dimethyl-4-((4-nitrophenyl) sulfonyl) morpholine (7c):

To a magnetically stirred solution of alkynol **6c** (100 mg, 0.335 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (8.71 mg, 0.034 mmol) and *p*-TSA (6.44 mg, 0.034) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (119.5 μ L, 0.748 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7c** (91 mg, 90%).

Physical Appearance: White solid.

m.p.: 105-107°C.

Rf: 0.5 (20:80, EtOAc:Petroleum ether).

[α]²³_D: 48.9 (*c* 0.3, CHCl₃).

IR (neat): 2876, 2363, 1535, 1354, 1039, 741, 554 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 8.37-8.34 (m, 2H), 8.00-7.97 (m, 2H), 4.02-3.97 (m, 1H), 3.63 (d, J = 2.0 Hz, 2H), 3.56 (ddd, J = 12.8, 2.8, 0.8 Hz, 3H), 3.51-3.43 (m, 1H), 2.82 (dd, J = 12.8, 10.8 Hz, 1H), 1.16 (d, J = 6.0 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 150.1 (C), 146.6 (C), 128.8 (2 × CH), 124.5 (2 × CH), 72.1 (CH), 71.5 (CH₂), 48.7 (CH), 46.1 (CH₂), 18.6 (CH₃), 14.2 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₂H₁₇N₂O₅S 301.0809, found 301.0809.

(2S,5S)-5-Isopropyl-2-methyl-4-tosylmorpholine (7f):

To a magnetically stirred solution of alkynol **6f** (77.0 mg, 0.251 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (6.4 mg, 0.025 mmol) and *p*-TSA (4.3 mg, 0.025 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (119.3 μ L, 0.748 mmol) was added as described for

the morpholine derivative 7a followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative 7f (68 mg, 91%).

Physical appearance: Sticky liquid.

R_f: 0.5 (20:80, EtOAc:Petroleum ether).

[α]²³_D: 23.6 (*c* 1.5, CHCl₃).

IR (neat): 2965, 2364, 1458, 1340, 1277, 1160, 1096, 1021, 995, 905, 815, 782, 679, 560 cm⁻¹.

Ts

′Me

^{*i*}Pr_{//,}

7f

¹**H NMR (400 MHz, CDCl₃):** δ 7.70 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 3.83 (d, J = 11.6 Hz, 1H), 3.61 (dd, J = 14.4, 2.4 Hz, 1H), 3.30-3.23 (m, 2H), 3.21-3.15 (m, 1H), 2.83 (dd, J = 14.4, 11.2 Hz, 1H), 2.41 (s, 3H), 2.27-2.18 (m, 1H), 1.03 (d, J = 6.0 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3 H), 0.93 (d, J = 6.8 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.3 (C), 138.8 (C), 129.9 (2 × CH), 127.0 (2 × CH), 70.5 (CH), 66.3 (CH₂), 59.0 (CH), 47.0 (CH₂), 25.4 (CH₃), 21.6 (CH), 20.0 (CH₃), 19.8 (CH₃), 18.6 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₅H₂₄NO₃S 298.1478, found 298.1478.

(2S)-5-isobutyl-2-methyl-4-tosylmorpholine (7g):

To a magnetically stirred solution of alkynol **6g** (100 mg, 0.323 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (8.31 mg, 0.032 mmol) and *p*-TSA (5.57 mg, 0.032 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (103.3 μ L, 0.647 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7g** (93 mg, 92%).

Physical appearance: Yellow oil.

Rf: 0.5 (20:80, EtOAc:Petroleum ether).

 $[\alpha]^{23}$ D: 30.3 (*c* 0.2, CHCl₃).

IR (neat): 2932, 1343, 1159, 1018, 993, 679, 559 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.84 (d, *J* = 12.0 Hz, 1H), 3.59 (dd, *J* = 14.4. 2.4 Hz, 1H), 3.36 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.24 (dd, *J* = 12.0, 3.2 Hz, 1H), 3.21-3.14 (m, 1H), 2.82 (dd, *J* = 14.8. 11.2 Hz, 1H), 2.42 (s, 3H), 2.03-1.92 (m, 1H), 1.65-1.57 (m, 2H), 1.03 (d, *J* = 6.4 Hz, 3H), 0.92-0.87 (m, 6H)

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.4 (C), 138.9 (C), 130.0 (2 × CH), 127.1 (2 × CH), 70.4 (CH), 66.4 (CH₂), 57.8 (CH), 47.2 (CH₂), 31.7 (CH), 25.4 (CH₂), 21.6 (CH₃), 19.0 (CH₃), 16.0 (CH₃), 11.3 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₆H₂₆NO₃S 312.1628, found 312.1628.

(2S,5S)-2-Methyl-5-phenyl-4-tosylmorpholine (7h):

To a magnetically stirred solution of alkynol **6h** (100 mg, 0.302 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (8.17 mg, 0.030 mmol) and *p*-TSA (5.50 mg, 0.030 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (96.5 μ L, 0.604 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7h** (94 mg, 94%).

Physical appearance: Yellow oil.

Rf: 0.5 (20:80, EtOAc:Petroleum ether).

[α]²³**D:** -104.7 (*c* 0.6, CHCl₃).

IR (neat): 2917, 2363, 1340, 1163, 770, 688, 558 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.61 (d, J = 8.0 Hz, 2H), 7.49-7.47 (m, 2H), 7.33-7.27 (m, 3H), 7.24 (d, J = 8.0 Hz, 2H), 4.93 (s, J = 3.2 Hz, 1H), 4.29 (d, J = 12.0 Hz, 1H), 3.82 (dd, J = 12.0, 2.4 Hz, 1H), 3.61 (dd, J = 13.6, 2.8 Hz, 1H), 3.56-3.50 (m, 1H), 2.84 (dd, J = 13.6, 10.4 Hz, 1H), 2.42 (s, 3H), 1.13 (d, J = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.4 (C), 138.1 (C), 137.7 (C), 129.8 (2× CH), 128.53 (2× CH), 128.46 (2× CH), 127.7 (CH), 127.2 (2× CH), 71.4 (CH), 69.0 (CH₂), 54.4 (CH), 47.1 (CH₂), 21.6 (CH₃), 18.8 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₈H₂₂NO₃S 332.1308, found 332.1308.

(2S,5S)-5-benzyl-2-methyl-4-tosylmorpholine (7i):

To a magnetically stirred solution of alkynol **6i** (100 mg, 0.291 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (7.5 mg, 0.029 mmol) and *p*-TSA (5.0 mg, 0.029 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (93.0 μ L, 0.582 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7i** (97 mg, 96%).

Physical appearance: Yellow oil.

Rf: 0.5 (20:80, EtOAc:Petroleum ether).

 $[\alpha]^{23}$ D: -42.6 (*c* 0.3, CHCl₃).

IR (neat): 3301, 2340, 1661, 1406, 1045, 772, 558 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.64 (d, *J*= 8.0 Hz, 2H), 7.30-7.18 (m, 7H), 3.99-3.96 (m, 1H), 3.65 (d, *J*= 11.8 Hz, 1H), 3.59 (dd, *J*= 13.2, 2.0 Hz, 1H), 3.52-3.47 (m, 1H), 3.43 (dd, *J* = 11.6, 2.0 Hz, 1H), 3.03 (dd, *J* = 12.8, 10.8 Hz, 1H), 2.91 (dd, *J* = 12.8, 11.2 Hz, 1H), 2.69 (dd, *J* = 13.2, 4.8 Hz, 1H), 2.40 (s, 3H), 1.19 (d, *J* = 6.0 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃, DEPT): δ143.5 (C), 138.0 (C), 137.7 (C), 129.9 (2 × CH), 129.5 (2 × CH), 128.7 (2× CH), 127.1 (2 × CH), 126.6 (CH), 71.8 (CH), 67.3 (CH₂), 54.1 (CH), 46.6 (CH₂), 34.1 (CH₂), 21.6 (CH₃), 18.7 (CH₃).

HRMS (ESI, M+H⁺): *m*/*z* calcd. for C₁₉H₂₄NO₃S 346.1461, found 346.1461.

(2S*,6R*)-2,6-Dimethyl-4-tosylmorpholine (7j):

To a magnetically stirred solution of alkynol **6j** (100 mg, 0.374 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (9.61 mg, 0.037 mmol) and *p*-TSA (6.44 mg, 0.037) at 0 °C. The

reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (119.5 μ L, 0.748 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7j** (89 mg, 88%).

Physical Appearance: White solid.

m.p.: 100-102 °C.

R_f: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 2931, 2363, 1716, 1339, 1159, 1090, 816, 760, 657, 551 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.71-3.63 (m, 2H), 3.53-3.51 (m, 2H), 2.41 (s, 3H), 1.90 (t, J = 10.4 Hz, 2H), 1.10 (d, J = 6.4 Hz, 6H).
¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.9 (C), 132.3 (C), 129.8 (2 × CH), 127.8 (2 × CH), 71.4 (2 × CH), 50.9 (2 × CH₂), 21.6 (CH₃), 18.7 (2 × CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₃H₂₀NO₃S 270.1182, found 270.1182.

(2S*,6R*)-2-Cyclohexyl-6-methyl-4-tosylmorpholine (7k):

To a magnetically stirred solution of alkynol **6k** (100 mg, 0.298 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (7.6 mg, 0.029 mmol) and *p*-TSA (5.1 mg, 0.0269) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (95.2 μ L, 0.596 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7k** (85 mg, 85%).

Physical Appearance: White solid.

m.p.: 126-128 °C.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 2929, 2849, 1595, 1449, 1343, 1161, 1095, 1064, 994, 932, 816,

774 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ7.61 (d, *J*= 8.4 Hz, 2H), 7.33 (d, *J*= 8.0 Hz, 2H), 3.64-3.59 (m, 2H), 3.54-3.29 (m, 1H), 3.29-3.24 (m, 1H), 2.42 (s, 3H), 1.99-1.84 (m, 3H), 1.69-1.57 (m, 4H), 1.32-1.24 (m, 1H), 1.20-1.09 (m, 6H), 1.03-0.92 (m, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ143.8 (C), 132.4 (C), 129.8 (2 × CH), 127.8 (2 × CH), 79.5 (CH), 71.3 (CH), 51.3 (CH₂), 47.7 (CH₂), 40.9 (CH), 29.0 (CH₂), 28.5 (CH₂), 26.4 (CH₂), 26.0 (CH₂), 25.9 (CH₂), 21.6 (CH₃), 18.7 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₈H₂₈NO₃S 338.1801, found 338.1801.

(2R*,6R*)-2-(Benzyloxymethyl)-6-methyl-4-tosylmorpholine (7l):

To a magnetically stirred solution of alkynol **6l** (100 mg, 0.268 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (6.9 mg, 0.027 mmol) and *p*-TSA (4.6 mg, 0.027 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (85.5 μ L, 0.536 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **7l** (91 mg, 90%).

Physical Appearance: Pale yellow liquid.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 3062, 3032, 2978, 2869, 2251, 1724, 1599, 1495, 1453, 1347, 1235, 1166, 1089, 1001, 912, 812,783, 734, 703 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.36-7.28 (m, 7H), 4.52 (s, 2H), 3.83-3.78 (m, 1H), 3.76-3.68 (m, 1H), 3.56 (dt, *J* = 11.2, 1.6 Hz, 1H), 3.56 (dt, *J* = 11.2, 2.0 Hz, 1H), 3.44 (qd, *J* = 10.0, 4.8 Hz, 2H), 2.44 (s, 3H), 2.11 (t, *J*= 10.8 Hz, 1H), 1.96 (t, *J*= 10.4 Hz, 1H), 1.15 (d, *J* = 6 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 144.0 (C), 137.8 (C), 132.3 (C), 129.8 (2×CH), 128.5 (CH), 127.91 (2 × CH), 127.88 (2 × CH), 127.82 (2 × CH), 74.4 (CH), 73.5 (CH₂), 71.6 (CH), 70.5 (CH₂), 51.2 (CH₂), 47.3 (CH₂), 21.6 (CH₃), 18.7 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₂₀H₂₅NO₄NaS 376.1598, found 376.1598.

Gram scale procedure for the synthesis of (2S,5S)-2-Methyl-5-phenyl-4-tosylmorpholine (7a):

To a magnetically stirred solution of alkynol **6a** (1.0 g, 3.74 mmol) in CH₂Cl₂ (30 mL), were added Ag(OTf) (96 mg, 0.37 mmol) and *p*-TSA (64 mg, 0.37 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (1.19 mL, 7.48 mmol) was added. After the complete

consumption of starting material (TLC control), the reaction mixture was quenched with saturated NaHCO₃, extracted with CH_2Cl_2 (3 × 5 mL) dried over anhydrous Na₂SO₄. Evaporation of solvent and purification of residue on silica gel column using EtOAc-petroleum ether as eluent furnished morpholine **7a** (836 mg, 83%).

Physical appearance: Sticky liquid.

Rf: 0.5 (20:80, EtOAc:Petroleum ether).

 $[\alpha]^{23}_{D}$: 46.4 (*c* 1.3, CHCl₃).

IR (neat): 3058, 2979, 2919, 2865, 1599, 1495, 1451, 1381, 1341, 1299, 1268, 1162, 1120,

1096, 1022, 997, 907, 843, 816, 770, 737, 703 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.66 (dd, *J* = 8.0, 2.8 Hz, 2H), 7.28 (dd, *J* = 8.0, 2.8 Hz, 2H), 3.94-3.92 (m, 1H), 3.58-3.57 (m, 2 H), 3.52-3.48 (m, 1H), 3.46-3.41 (m, 1H), 2.79-2.72 (m, 1H), 2.39 (s, 3H), 1.12 (dd, *J* = 6.0, 3.2 Hz, 3H), 1.06 (dd, *J* = 6.8, 3.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.3 (C), 137.5 (C), 129.8 (2 × CH), 127.0 (2 × CH), 71.8 (CH), 71.3 (CH₂), 48.1 (CH), 45.8 (CH₂), 21.5 (CH₃), 18.6 (CH₃), 13.7 (CH₃). HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₃H₂₀NO₃S 270.1168, found 270.1168.

General procedure for the synthesis of oxazepanes (9):

To a magnetically stirred solution of alkynol **8** (1.0 equiv) in CH₂Cl₂ (5 mL), was added Ag(OTf) (40 mol%) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (1.088 mmol) was added. After the complete consumption of the hydrated product, the reaction mixture was quenched with saturated NaHCO₃, extracted with CH₂Cl₂ (3×5 mL), washed with brine, and dried. Evaporation of solvent and purification of residue on silica gel column using EtOAcpetroleum ether as eluent furnished oxazepanes **9**.

(3S,7S)-3,7-dimethyl-4-tosyl-1,4-oxazepane (9a):

To a magnetically stirred solution of alkynol **8a** (70 mg, 0.213 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (21.9mg, 0.085 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (68.1 μ L, 0.426 mmol) was added. After the complete consumption of the starting material (TLC control), the reaction mixture was quenched with saturated NaHCO₃, extracted with CH₂Cl₂ (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of solvent and purification of residue on silica gel column using EtOAc- petroleum ether as eluent furnished oxazepane **9a** (56 mg, 92%).

Physical Appearance: Yellow oil.

 \mathbf{R}_{f} : 0.7 (20:80, EtOAc:Petroleum ether).

 $[\alpha]_D^{25}$: 60.4 (*c* 0.5, CHCl₃)

IR (neat): 2932, 1336, 1158, 1085, 944, 851, 673, 550 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 4.09-4.03 (m, 1H), 3.73-3.65 (m, 2H), 3.58-3.47 (m, 2H), 3.33-3.26 (m, 1H), 2.40 (s, 3H), 2.07-1.99 (m, 1H), 1.68-1.60 (m, 1H), 1.16 (d, *J* = 6.4 Hz, 3H), 1.11 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.2 (C), 137.7 (C), 129.8 (2 × CH), 126.9 (2 × CH), 76.3 (CH), 74.2 (CH₂), 54.2 (CH), 40.5 (CH₂), 37.4 (CH₂), 22.4 (CH₃), 21.6 (CH₃), 16.5 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₁₄H₂₁NNaO₃S 306.1143, found 306.1143.

(3S,7S)-3-isopropyl-7-methyl-4-tosyl-1,4-oxazepane (9b):

To a magnetically stirred solution of alkynol **8b** (50 mg, 0.179 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (18.7 mg, 0.072 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (57.2 μ L, 0.358 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9b** (49 mg, 87%).

Physical Appearance: White solid.

m.p.: 67-69 °C.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

 $[\alpha]_{D^{25}}$: 29.8 (*c* 0.9, CHCl₃)

IR (neat): 2957, 1462, 1337, 1157, 755, 672, 551 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.69 (d, *J*= 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 4.04 (d, *J* = 12.4 Hz, 1H), 3.67-3.58 (m, 2H), 3.44-3.38 (m, 2H), 3.22-3.15 (m, 1H), 2.41 (s, 3H), 2.10-2.02 (m, 2H), 1.62-1.54 (m, 1H), 1.14 (dd, *J* = 6.4, 0.8 Hz, 3H), 0.93 (d, *J* = 6.8Hz, 3H), 0.65 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ143.1 (C), 138.3 (C), 129.6 (2×CH), 127.2 (2×CH), 76.3 (CH), 71.3 (CH₂), 65.1 (CH), 40.5 (CH₂), 36.9 (CH₂), 26.7 (CH), 22.6 (CH₃), 21.6 (CH₃), 20.2 (CH₃), 20.1 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₆H₂₆NO₃S 312.1667, found 312.1667.

(3S,7S)-3-isobutyl-7-methyl-4-tosyl-1,4-oxazepane (9c):

To a magnetically stirred solution of alkynol **8c** (50 mg, 0.154 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (15.9 mg, 0.062 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (49.3 μ L, 0.309 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the

oxazepane derivative 9c (43 mg, 85%).

Physical Appearances: Colorless oil.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

 $[\alpha]_{D}^{25}$: 39.5 (*c* 0.2, CHCl₃)

IR (neat): 2957, 1462, 1337, 1157, 755, 672, 551 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.68 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 6.4 Hz, 2H), 4.05 (dd, J = 13.2, 1.6 Hz, 1H), 3.64-3.56 (m, 2H), 3.52 (d, J = 10.8 Hz, 1H), 3.39 (dd, J = 13.2, 2.4 Hz, 1H), 3.19-3.12 (m, 1H), 2.41 (s, 3H), 2.06-1.98 (m, 1H), 1.85-1.79 (m, 1H), 1.62-1.53 (m, 1H), 1.33-1.24 (m, 2 H), 1.12 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H), 0.77 (d, J = 4.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.1 (C), 138.3 (C), 129.6 (2 × CH), 127.2 (2 × CH), 76.1 (CH), 71.2 (CH₂), 63.8 (CH), 40.6 (CH₂), 36.7 (CH₂), 33.1 (CH), 25.4 (CH₂), 22.6 (CH₃), 21.6 (CH₃), 16.0 (CH₃), 11.5 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₁₇H₂₇NNaO₃S 348.1616, found 348.1616.

(3S,7S)-7-methyl-3-phenyl-4-tosyl-1,4-oxazepane (9d):

To a magnetically stirred solution of alkynol **8d** (50 mg, 0.213 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (21.9 mg, 0.085 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (68.1 μ L, 0.426 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9d** (62 mg, 83%).

Physical Appearance: White solid.

m.p.: 72-74 °C.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

[α]_D²⁵**:** -92.8 (*c* 1.1, CHCl₃).

IR (neat): 2931, 2341, 1339, 1160, 684, 554 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J*= 8.0 Hz, 2H), 7.28-7.25 (m, 5H), 5.13 (s, 1H), 4.50 (dd, *J* = 13.5, 1.5 Hz, 1H), 3.85 (dd, *J* = 13.5, 3.5 Hz, 1H), 3.80-3.73 (m, 1H), 3.57-3.51 (m, 1H), 3.24-3.18 (m, 1H), 2.47 (s, 3H), 2.12-2.06 (m, 1H), 1.60-1.53 (m, 1H), 1.20 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 143.4 (C), 138.6 (C), 138.1 (C), 129.8 (2 × CH), 128.5 (2 × CH), 128.2 (2 × CH), 127.5 (CH), 127.2 (2 × CH), 76.9 (CH), 73.1 (CH₂), 61.0 (CH), 41.8 (CH₂), 37.5 (CH₂), 22.4 (CH₃), 21.7 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₁₉H₂₃NNaO₃S 368.1301, found 368.1301.

Ph₁, N 9d Me

(3S,7S)-7-methyl-4-((4-nitrophenyl) sulfonyl)-3-phenyl-1,4-oxazepane (9e):

To a magnetically stirred solution of alkynol **8e** (60 mg, 0.160 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (16.5 mg, 0.064 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (51.2 μ L, 0.321 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9e** (49 mg, 81%).

Physical Appearance: White solid.

m.p.: 108-110 °C.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

 $[\alpha]_{D}^{25}$: -98.9 (*c* 0.5, CHCl₃).

IR (neat): 2931, 2339, 1531, 1350, 1308, 1166, 856, 738 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 8.31 (d, *J* = 9.0 Hz, 2H), 7.94 (d, *J* = 8.5 Hz, 2H), 7.24-7.18 (m, 5H), 5.13 (s, 1H), 4.44 (dd, *J* = 13.5, 2.0 Hz, 1H), 3.86 (dd, *J* = 13.5, 3.5 Hz, 1H), 3.83-3.77 (m, 1H), 3.59-3.54 (m, 1H), 3.34-3.29 (m, 1H), 2.16-2.09 (m, 1H), 1.66-1.60 (m, 2H), 1.21 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 149.9 (C), 146.8 (C), 137.8 (C), 128.7 (CH), 128.3 (2 × CH), 128.2 (2 × CH), 128.0 (2 × CH), 124.4 (2 × CH), 76.8 (CH), 73.1 (CH₂), 61.8 (CH), 42.3 (CH₂), 37.6 (CH₂), 22.2 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₈H₂₁N₂O₅S 377.1175, found 377.1175.

(3S,7S)-7-methyl-3-phenyl-4-tosyl-1,4-oxazepane (9f):

To a magnetically stirred solution of alkynol **8f** (60 mg, 0.168 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (17.2 mg, 0.067 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (53.6 μ L, 0.336 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9f** (53 mg, 88%).

Physical Appearance: White solid.

m.p.: 74-76 °C.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

[**α**]_{**D**}²⁵: 15.9 (*c* 0.9, CHCl₃).

IR (neat): 2932, 2308, 1590, 1590, 1457, 1336, 1155, 752, 550 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.58 (d, J = 8.0 Hz, 2H), 7.26-7.18 (m,

5H), 7.15-7.13 (m, 2H), 4.07-4.04 (m, 1H), 3.77-3.70 (m, 2H), 3.53-3.41 (m, 3H), 3.05 (dd, J

= 13.2, 10.0 Hz, 1H), 2.76 (dd, *J* = 13.2, 5.2 Hz, 1H), 2.40 (s, 3H), 2.16-2.08 (m, 1H), 1.78-1.70 (m, 1H), 1.23 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.2 (C), 138.3 (C), 137.4 (C), 129.8 (2 × CH), 129.5 (2 × CH), 128.6 (2 × CH), 127.1 (2 × CH), 126.5 (CH), 76.5 (CH), 70.4 (CH₂), 60.8 (CH), 41.4 (CH₂), 37.5 (CH₂), 37.2 (CH₂), 22.5 (CH₃), 21.6 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₂₀H₂₅NNaO₃S 382.1459, found 382.1459.

7-methyl-4-tosyl-1,4-oxazepane (9g):

To a magnetically stirred solution of alkynol **8g** (50 mg, 0.187 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (19.2 mg, 0.075 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (59.7 μ L, 0.374 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9g** (42 mg, 84%).

Physical Appearance: Colorless oil.

Rf: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 2931, 1338, 1161, 714, 549 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.69-7.66 (m, 2H), 7.33-7.28 (m, 2H), 3.97-3.93 (m, 1H), 3.81-3.77 (m, 1H), 3.64-3.58 (m, 2H), 3.50-3.46 (m, 1H), 3.24-3.20 (m, 1H), 3.15-3.09 (m, 1H), 2.43 (s, 3H), 2.05-2.00 (m, 1H), 1.71-1.67 (m, 1H), 1.19-1.17 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.4 (C), 135.9 (C), 129.8 (2 × CH), 127.1 (2 × CH), 75.8 (CH), 69.2 (CH₂), 51.6 (CH₂), 46.0 (CH₂), 37.4 (CH₂), 22.4 (CH₃), 21.6 (CH₃).

HRMS (ESI, M+Na⁺): *m*/*z* calcd. For C₁₃H₁₉NNaO₃S 292.0958, found 292.0958.

7-ethyl-4-tosyl-1,4-oxazepane (9h):

To a magnetically stirred solution of alkynol 8h (50 mg, 0.178 mmol) in CH₂Cl₂ (3 mL), was

added Ag(OTf) (18.3 mg, 0.071 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (56.7 μ L, 0.355 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column

using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9h** (43 mg, 85%).

Physical Appearance: Colorless liquid.

R_f: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 2939, 2340, 1338, 1163, 1039, 769, 549 cm⁻¹.

Τs

¹**H NMR (400 MHz, CDCl₃):** δ 7.68 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.33-7.28 (m, 2H), 4.01-3.97 (m, 1H), 3.63-3.57 (m, 2H), 3.54-3.48 (m, 2H), 3.20-3.16 (m, 1H), 3.15-3.06 (m, 1H), 2.44 (s, 3H), 2.08-2.00 (m, 1H), 1.74-1.62 (m, 2H), 1.55-1.40 (m, 2H), 0.94-0.89 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ143.4 (C), 136.0 (C), 129.8 (2 × CH), 127.1 (2 × CH), 81.4 (CH), 69.9 (CH₂), 51.8 (CH₂), 46.4 (CH₂), 35.6 (CH₂), 29.4 (CH₂), 21.6 (CH₃), 10.4 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₁₄H₂₁NNaO₃S 306.1120, found 306.1120.

(2*R**,7*S**)-2,7-dimethyl-4-tosyl-1,4-oxazepane (9i):

To a magnetically stirred solution of alkynol **8i** (50 mg, 0.178 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (18.3 mg, 0.071 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (56.7 μ L, 0.355 mmol) was added as described for the oxazepane derivative **9a** followed by

purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9i** (46 mg, 92%).

Physical Appearance: Colorless oil.

R_f: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 2932, 1336, 1158, 1085, 944, 851, 673, 550 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 3.90-3.82 (m, 1H), 3.78-3.69 (m, 2H), 3.67-3.61 (m, 1H), 3.01-2.96 (m, 1H), 2.58 (dd, *J* = 14.0, 10.4 Hz, 1H), 2.41 (s, 3H), 2.09-2.01 (m, 1H), 1.68-1.59 (m, 1H), 1.16 (d, *J* = 6.0 Hz, 3H), 1.12 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.3 (C), 136.4 (C), 129.8 (2 × CH), 127.0 (2 × CH), 76.8 (CH), 74.9 (CH₂), 57.6 (CH), 46.5 (CH₂), 37.8 (CH₂), 22.8 (CH₃), 21.6 (CH₃), 19.6 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₄H₂₂NO₃S 284.1346, found 284.1346.

(2R*, 7S*)-2-cyclohexyl-7-methyl-4-tosyl-1,4-oxazepane (9j):

To a magnetically stirred solution of alkynol **8j** (50 mg, 0.143 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (14.7 mg, 0.057 mmol) at 0 °C. The reaction mixture was allowed to warm to

room temperature. After complete consumption of starting material (TLC control), Et₃SiH (45.6 μ L, 0.286 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9j** (43 mg, 86%).

Τs

Me``

Ν

9i

́Ме

Physical Appearance: Colorless solid.

m.p.: 70-72 °C.

R_f: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 2966, 2924, 2850, 1598, 1494, 1446, 1371, 1337, 1306, 1266, 1205, 1154, 1086, 1044, 1022, 957, 883, 868, 817, 747, 732, 706 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 3.80-3.72 (m, 2H), 3.64-3.58 (m, 1H), 3.25-3.20 (m, 1H), 3.01-2.94 (m, 1H), 2.66 (dd, *J* = 10.4, 2.8 Hz, 1H), 2.40 (s, 3H), 2.07-2.00 (m, 1H), 1.88 (d, *J* = 11 Hz, 1H), 1.71-1.68 (m, 2H), 1.62-1.54 (m, 3H), 1.31-1.23 (m, 2H), 1.15 (d, *J* = 6.5 Hz, 4H), 1.09-0.94 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): 143.2 (C), 136.5 (C), 129.8 (2 × CH), 127.0 (2 × CH),
85.1 (CH), 75.7 (CH), 54.7 (CH₂), 46.3 (CH₂), 41.5 (CH), 37.9 (CH₂), 29.5 (CH₂), 28.9 (CH₂),
26.4 (CH₂), 26.1(CH₂), 26.0 (CH₂), 22.3 (CH₃), 21.6 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₉H₃₀NO₃S 352.1965, found 352.1965.

Gram scale synthesis of (3S,7S)-7-methyl-3-phenyl-4-tosyl-1,4-oxazepane (9d): (3S,7S)-7-methyl-3-phenyl-4-tosyl-1,4-oxazepane (9d):

To a magnetically stirred solution of alkynol **8d** (1 g, 2.890 mmol) in CH₂Cl₂ (30 mL), was added Ag(OTf) (288 mg, 1.16 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (926 μ L, 5.800 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **9d** (792 mg, 79%).

Тs

9d

́Ме

Ph/

Physical Appearance: White solid.

m.p.: 72-74 °C.

R_f: 0.7 (20:80, EtOAc:Petroleum ether).

[α]_D²⁵: -92.8 (*c* 1.1, CHCl₃).

IR (neat): 2931, 2341, 1339, 1160, 684, 554 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J*= 8.0 Hz, 2H), 7.28-7.25 (m, 5H), 5.13 (s, 1H), 4.50 (dd, *J* = 13.5, 1.5 Hz, 1H), 3.85 (dd, *J* = 13.5, 3.5 Hz, 1H), 3.80-3.73 (m, 1H), 3.57-3.51 (m, 1H), 3.24-3.18 (m, 1H), 2.47 (s, 3H), 2.12-2.06 (m, 1H), 1.60-1.53 (m, 1H), 1.20 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 143.4 (C), 138.6 (C), 138.1 (C), 129.8 (2 × CH), 128.5 (2 × CH), 128.2 (2 × CH), 127.5 (CH), 127.2 (2 × CH), 76.9 (CH), 73.1 (CH₂), 61.0 (CH), 41.8 (CH₂), 37.5 (CH₂), 22.4 (CH₃), 21.7 (CH₃).

HRMS (ESI, M+Na⁺): *m*/*z* calcd. For C₁₉H₂₃NNaO₃S 368.1301, found 368.1301.

2,6-dimethyl-4-tosyl-3,4-dihydro-2H-1,4-oxazine (10):

To a magnetically stirred solution of alkynol **6j** (100 mg, 0.374 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (9.61 mg, 0.037 mmol) and *p*-TSA (6.44 mg, 0.037) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), the reaction mixture was quenched with saturated NaHCO₃, extracted with CH₂Cl₂, washed with brine, and dried. Evaporation of solvent and purification of residue on silica gel column using EtOAc-petroleum ether as eluent furnished the morphine derivative **10** (90 mg, 90 %).

Physical Appearance: Colourless oil.

R_f: 0.5 (10:90, EtOAc:Petroleum ether).

IR (neat): 3067, 2820, 2352, 1686, 1596, 1183, 1081, 1005, 917 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.81 (s, 1H), 3.68 (ddd, *J* = 13.1, 2.2, 1.4 Hz, 1H), 3.38-3.30 (m, 1H), 2.74 (d, *J* = 13.1, 9.0 Hz, 1H), 2.42 (s, 3H), 1.72 (s, 3H), 1.14 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.9 (C), 140.0 (C), 134.1 (C), 129.9 (2 × CH), 127.5 (2 × CH), 99.5 (CH), 68.5 (CH), 48.3 (CH₂), 21.7 (CH₃), 18.1 (CH₃), 18.0 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₁₃H₁₇NNaO₃S 290.0823, found 290.0823.

(S)-N-(2-hydroxy-1-phenylethyl)-4-methyl-N-(3-oxobutyl) benzenesulfonamide (11):

To a magnetically stirred solution of alkynol **8d** (50 mg, 0.213 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (21.9 mg, 0.085 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), the reaction mixture was quenched with saturated NaHCO₃, extracted with CH₂Cl₂ (3 × 5 mL), washed with brine, and dried. Evaporation of solvent and purification of residue on silica gel column using EtOAc-petroleum ether as eluent furnished methyl ketone **11** (69 mg, 90%).

Physical Appearance: Yellow oil.

Rf: 0.3 (20:80, EtOAc:Petroleum ether).

IR (neat): 3110, 2931, 2363, 1715, 1264, 1212, 1159, 1090, 816, 760, 657, 551 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.24-7.22 (m, 4H), 7.13-7.04 (m, 2H), 5.09 (t, *J* = 8.4 Hz, 1H), 4.00 (d, *J* = 6.8 Hz, 2H), 3.34 (t, *J* = 8.0 Hz, 2H), 2.91-2.83 (m, 1H), 2.54-2.46 (m, 1H), 2.40 (s, 3H), 1.97 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 207.7 (C), 143.7 (C), 137.6 (C), 136.2 (C), 129.8 (2 × CH), 128.8 (2 × CH), 128.3 (CH), 128.0 (2 × CH), 127.4 (2 × CH), 62.3 (CH), 62.0 (CH₂), 44.3 (CH₂), 39.4 (CH₂), 30.1 (CH₃), 21.6 (CH₃).

HRMS (ESI, M+Na⁺): *m/z* calcd. For C₁₉H₂₃NNaO₄S 384.1239, found 384.1239.

(5S*)-5-methyl-3-tosyl-6,8-dioxa-3-azabicyclo [3.2.1] octane (14):

To a magnetically stirred solution of alkynol **12** (100 mg, 0.353 mmol) in CH₂Cl₂ (3 mL), were added Ag(OTf) (9.1 mg, 0.035 mmol) and *p*-TSA (6.1 mg, 0.035 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (112.7 μ L, 0.706 mmol) was added as described for the morpholine derivative **7a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the morpholine derivative **14** (85 mg, 85%).

Physical Appearance: White solid.

m.p.: 156-158 °C.

R_{*f*}: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 3013, 2341, 1346, 1166, 1002, 767, 549 cm⁻¹.

Ts N 14 O Me

¹**H NMR (400 MHz, CDCl₃):** δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.52 (d, *J* = 4.8 Hz, 1H), 4.03 (d, *J* = 6.8 Hz, 1H), 3.80 (t, *J* = 6.0 Hz, 1H), 3.48 (dd, *J* = 11.2, 1.3 Hz, 2H), 2.74 (d, *J* = 11.2 Hz, 1H), 2.44 (d, *J* = 10.8 Hz, 1H), 2.39 (s, 3H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ143.9 (C), 132.8 (C), 129.8 (2 × CH), 127.5 (2 × CH), 104.1 (C), 72.8 (CH), 68.2 (CH₂), 52.6 (CH₂), 47.9 (CH₂), 21.5 (CH₃), 21.3 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₃H₁₈NO₄S 284.0942, found 284.0942.

(1S*,6R*)-6-methyl-3-tosyl-7,9-dioxa-3-azabicyclo [4.2.1] nonane (15):

To a magnetically stirred solution of alkynol **13** (70 mg, 0.235 mmol) in CH₂Cl₂ (3 mL), was added Ag(OTf) (24.1 mg, 0.094 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature. After complete consumption of starting material (TLC control), Et₃SiH (74.9 μ L, 0.469 mmol) was added as described for the oxazepane derivative **9a** followed by purification on a silica gel column using ethyl acetate-petroleum ether as eluent furnished the oxazepane derivative **15** (65 mg, 93%).

Physical Appearance: White solid.

m.p.: 181-183 °C.

R_f: 0.7 (20:80, EtOAc:Petroleum ether).

IR (neat): 2957, 1462, 1337, 1157, 755, 672, 551 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 4.50-4.48 (m, 1H), 4.02-4.00 (m, 1H), 3.95 (t, *J* = 6.8 Hz, 1H), 3.67-3.60 (m, 2H), 2.86 (dd, *J* = 13.2, 1.6 Hz, 1H), 2.77-2.70 (m, 1H), 2.40 (s, 3H), 2.20-2.12 (m, 1H), 1.89-1.84 (m, 1H), 1.41 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 143.4 (C), 136.1 (C), 129.8 (2 × CH), 127.0 (2 ×

CH), 110.4 (C), 76.1 (CH), 66.3 (CH₂), 53.6 (CH₂), 45.7 (CH₂), 41.8 (CH₂), 27.3 (CH₃), 21.6 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₄H₂₀NO₄S 298.3130, found 298.3130.

(2S*,6R*)-2,6-Dimethyl-morpholine (16):

To a cold (-78 °C) solution of compound **7j** (10 g, 39.469 mmol) in dry THF (100 mL) was added sodium naphthalide solution prepared by adding naphthalene (29.9 g, 236.817 mmol) to sodium (11.8 g, 296.018 mmol) in dry THF (50 mL) at rt and stirred for 2h and the resulting solution is stirred for 1 h. The reaction mixture was quenched by addition of saturated NH4Cl at -78 °C and warmed to rt. The reaction mixture was extracted with EtOAc (3 × 5mL), and the combined organic layer was washed with dilute HCl (3 × 5 mL). The aqueous layer was neutralized with saturated aq NaHCO₃ and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and evaporated to furnish **16** (2.65 g, 62%).

Physical Appearance: Colourless liquid.

Rf: 0.5 (50:50, EtOAc:Petroleum ether).

Me

Me

Me

¹**H NMR (400 MHz, CDCl₃):** δ 3.56-3.49 (m, 2H), 2.77 (d, J = 13.7 Hz,

2H), 2.37 (t, *J* = 11.2 Hz, 2H), 1.79 (brs, 1H), 1.72 (s, 3H), 1.08 (d, *J* = 4.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 73.1 (2 × CH), 52.1 (2 × CH₂), 19.2 (2 × CH₃).

Data is matching with the reported one 4,5

(2S*, 6R*)-4-(3-(4-(tert-butyl) phenyl)-2-methylpropyl)-2,6-dimethylmorpholine (2):

A magnetically stirred solution of 3-(4-(tert-butyl) phenyl)-2-methylpropanal (**18**) (100 mg, 0.489 mmol) and (2S*, 6R*)-2,6-dimethylmorpholine **16** (68 mg, 0.587 mmol) in acetic acid (3 mL), was heated at 80°C for 10 minutes. NaBH₄ (22 mg, 0.362 mmol) was added to the solution portion wise and the resulting mixture was refluxed until complete consumption of starting material. The solvent was removed under reduced pressure. After completion of reaction (TLC control), the residue was washed with 20% NaOH solution and was extracted with CH_2Cl_2 (3 × 5 mL). The organic layer was washed with water (2 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of solvent and purification of residue on silica gel column using EtOAc-petroleum ether as eluent furnished morpholine (**2**) (137 mg, 92%).

Physical Appearance: Yellow oil.

R_f: 0.5 (20:80, EtOAc:Petroleum ether).

IR (neat): 2965, 1682, 1373, 1145, 1084, 575 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 7.29 (d, J = 8.0 Hz, 2H),

7.09 (d, J = 8.0 Hz, 2H), 3.72-3.66 (m, 2H), 2.77 (dd, J = 13.5, 4.5 Hz, 1H), 2.70 (dd, J =

Me ∠Me

(2)

Me

20.5, 11.5 Hz, 2H), 2.29 (dd, *J* = 13.5, 8.5, Hz, 1H), 2.22-2.18 (m, 1H), 2.13-2.09 (m, 1H), 2.03-1.93 (m, 1H), 1.73-1.65 (m, 2H), 1.32 (s, 9H), 1.16 (dd, *J* = 6.0, 1.0 Hz, 6H), 0.86 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 148.5 (C), 138.0 (C), 129.0 (2 × CH), 125.1 (2 × CH), 71.84 (CH), 71.81 (CH), 65.1 (CH₂), 60.2 (CH₂), 59.9 (CH₂), 40.9 (CH₂), 34.5 (C), 32.1 (2 × CH₃), 31.6 (3 × CH₃), 19.3 (CH₃), 18.2 (CH).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₂₀H₃₄NO 304.2640, found 304.2640.

(2S*, 6R*)-2,6-dimethyl-4-tridecylmorpholine (1):

A magnetically stirred solution of tridecanal (17) (100 mg, 0.504 mmol) and (2S*,6R*)-2,6dimethylmorpholine 16 (70 mg, 0.605 mmol) in acetic acid (3 mL) was heated at 80 °C for 10 minutes. NaBH₄ (23 mg, 0.605 mmol) was added to the solution portion wise and the resulting mixture was refluxed until complete consumption of starting material. The solvent was removed under reduced pressure. After completion of reaction (TLC control), the residue was washed with 20% NaOH solution and was extracted with CH_2Cl_2 (3 × 5 mL). The organic layer was washed with water (2 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of solvent and purification of residue on silica gel column using EtOAc- petroleum ether as eluent furnished morpholine (1) (132 mg, 88%).

Physical Appearance: Yellow oil.

Rf: 0.5 (20:80, EtOAc:Petroleum ether).

IR (neat): 3324, 2855, 1467, 1144, 1081, 716 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 3.70-3.62 (m, 2H), 2.72 (d, *J* = 10.8 Hz, 2H), 2.26 (t, *J* = 8.8 Hz, 2H), 1.65 (t, *J* = 10.8 Hz, 2H), 1.45-1.44 (m, 2H), 1.25-1.23 (m, 20H), 1.13 (d, *J* = 6.0 Hz, 6H), 0.87-0.84 (t, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 71.8 (2 × CH), 59.8 (3 × CH₂), 59.0 (2 × CH₂), 32.0 (CH₂), 29.8 (CH₂), 29.77 (CH₂), 29.74 (CH₂), 29.71 (CH₂), 29.5 (CH₂), 27.7 (CH₂), 26.7 (CH₂), 22.8 (CH₂), 19.3 (2 × CH₃), 14.2 (CH₃).

HRMS (ESI, M+H⁺): *m/z* calcd. For C₁₉H₄₀NO 298.3126, found 298.3126.

Mechanistic study for the formation of morpholine: NMR experiment

Trend	Color	Units
Peak at 3310 cm-1		Height
Probe Temp		Deg C
Peak at 1602 cm-1		Height
Peak at 1600 cm-1		Height

Mechanistic study for the formation of oxazepane: NMR experiment

Mechanistic study for the formation of oxazepane: React IR experiment

Trend	Color	Units
Probe Temp		Deg C
Peak at 1715 cm-1		Height
Peak at 3110 cm-1		Height

¹³C NMR spectrum of **7f** (100 MHz, CDCl₃)

¹³C NMR spectrum of **7g** (100 MHz, CDCl₃)

S33

¹³C NMR spectrum of **7k** (100 MHz, CDCl₃)

NOE spectrum of 7k (400 MHz, C₆D₆)

¹³C NMR spectrum of **9a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **9b** (100 MHz, CDCl₃)

¹³C NMR spectrum of **9e** (125 MHz, CDCl₃)

¹³C NMR spectrum of **9f** (100 MHz, CDCl₃)

¹³C NMR spectrum of **9h** (100 MHz, CDCl₃)

¹³C NMR spectrum of **9i** (100 MHz, CDCl₃)

7.650 7.650 7.650 7.651 7.

S53

¹³C NMR spectrum of **15** (100 MHz, CDCl₃)

Crystal data and structure refinement for 7c (ellipsoid is drawn at the 50% probability level

Identification code Solvent CCDC	7 CH ₂ Cl ₂ : Petroleum etho 2356421	c er (1:1)	
Bond precision:	C-C = 0.0107 A	Wavelength=0.71073	
Cell:	a=10.2670(15)	b=5.7556(6)	c=11.9973(14)
	alpha=90	beta=98.887(12)	gamma=90
Temperature:	150 K		
	Calculated	Reported	
Volume	700.44(15)	700.44(15)	I
Space group	P 21	P 1 21 1	
Hall group	P 2yb	P 2yb	
Moiety formula	C12 H16 N2 O5 S	C12 H16 N	J2 O5 S
Sum formula	C12 H16 N2 O5 S	C12 H16 N	J2 O5 S
Mr	300.33	300.33	
Dx,g cm-3	1.424	1.424	
Z	2	2	
Mu (mm-1)	0.252	0.252	
F000	316.0	316.0	
F000'	316.41		
h,k,lmax	12,6,14	12,6,14	
Nref	2461[1367]	2458	
Tmin,Tmax	0.908,0.923	0.661,1.00)0
Tmin'	0.851		
Correction method= # Report	ted T Limits: Tmin=0.66	51 Tmax=1.000	
AbsCorr = MULTI-SCAN			
Data completeness= 1.80/1.00		Theta(max)= 24.994	
R(reflections)= 0.0842(1971)		
		wR2(reflections)=	
		0.2311(2458)	
S = 1.024	Npar= 183		

S58

Crystal data and structure refinement for 9f (ellipsoid is drawn at the 50% probability level

	2 33 e 19. dk. 7. memb_tmeP 21 21	NOMOVE FORCED Prob - Prob -	36 X
Identification code		9f	
Solvent CCDC	CH_2Cl_2 : Petroleur 2356420	m ether (1:1)	
Bond precision:	C-C = 0.0079 A	1 10 (400 (10)	Wavelength=0.71073
Cell:	a=7.8103(7)	b=13.6493(13)	c=17.9317(14)
	alpha=90	beta=90	gamma=90
Temperature: 150 K	O(1, 1, 1, 1)		D (1
Valuma	Calculated $10116(2)$		Reported
volume	1911.0(3)		1911.0(3)
Space group	$\begin{array}{c} P \ 21 \ 21 \ 21 \\ P \ 2ac \ 2ab \end{array}$		P 21 21 21 P 200 20h
Maiatu formula	P Zac Zab		$\begin{array}{c} P \ 2ac \ 2ab \\ C20 \ H25 \ N \ O2 \ S \end{array}$
Sum formula	C20 H25 N O3 S		C20 H25 N O3 S
Mr	250 A7		350 47
Dx g cm-3	1 249		1 249
7.	4		4
2 Mu (mm-1)	0 187		0 187
F000	768.0		768.0
F000'	768.82		,
h.k.lmax	9.16.21		9.16.21
Nref	3371[1947]		3368
Tmin,Tmax	0.931.0.949		0.242,1.000
Tmin'	0.886		
Correction method= # I AbsCorr = MULTI-SC	Reported T Limits: Tmir AN	n=0.242 Tmax=1.00	00
Data completeness= $1.73/1.00$		Theta(max))= 24.988
R(reflections) = 0.0573((2491)	()	, ,
, , , , , , , , , , , , , , , , , , , ,	· · ·	wR2 0.1	2(reflections)= 367(3368)
S = 0.987	Ν	Npar= 228	

References:

(1) L. A. Gandon, A. G. Russell, T. Güveli, A. E. Brodwolf, B. M. Kariuki, N. Spencer, J. S. Snaith, J. Org. Chem, 2006, 71, 5198.

(2) J. A. Nieman, S. K. Nair, S. E. Heasley, B. L. Schultz, H. M. Zerth, R. A. Nugent, K. Chen,
K. J. Stephanski, T. A. Hopkins, M. L. Knechtel, N. L. Oien, J. L. Wieber, M. W. Wathen, *Bioorg. Med. Chem. Lett.* 2010, 20, 3039.

(3) H. M. Sheldrake, T. W. Wallace, Tetrahydron Lett. 2007, 48, 4407.

(4) S. J. Gharpure, J. V. K. Prasad, J. Org. Chem., 2011, 76, 10325.

(5) S. Dugar, A. Sharma, B. Kuila, D. Mahajan, S. Dwivedi, V. Tripathi, *Synthesis* 2015, 47, 712.