Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of Indol-3-yl-benzofurans and Carbazoles via Cu(OTf)₂ Catalyzed [3+2] and [4+2] Cycloaddition

Amar Nath Singh Chauhan^a, Vikrant Vini^a, Akhilesh Kumar^b & Rohan D. Erande*^a

^aDepartment of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.

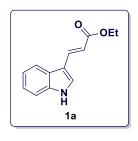
^bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.

Table of Contents

General Information:	3
General procedure	4
A- Synthesis and characterization of indole acrylates (standard Wittig protocol):	4
B- Synthesis and characterization of protected indole acrylates:	8
C- Synthesis and characterization of 1H-indol-3-yl-2,3-dihydrobenzofuran:	15
D- Synthesis and characterization of 1H-indol-3-yl-benzofuran:	23
E- Synthesis and characterization of carbazoles:	32
F- Selected control experiments:	41
X-ray Crystallographic data:	43
NMR Spectra	50

General Information: All the reactions were performed using pre-dried glassware and screwcap vials. All the solvents and reagents were obtained from Merck, Sigma-Aldrich and Avra and used without further drying or fresh distillation unless otherwise mentioned. The indoles and indole carbaldehydes were obtained from commercial sources and used without further purification. All the corresponding acrylates, protected and unprotected, are synthesized following the procedures given on the next page. Reactions were monitored by thin layer chromatography (TLC) on Merck pre-coated silica gel 60 F₂₅₄ aluminium sheets with detection under UV light at 254 nm and an ethanolic solution of anisaldehyde is used as stain. Products were purified by column chromatography carried out on Avra silica gel (100-200 mesh or 230-400 mesh) packing using ethyl acetate and hexane as a solvent medium. The reported yields of isolated compounds are estimated to be >95% pure as determined by ¹H NMR and ¹³C NMR. NMR spectra were recorded on Bruker High Performance Digital FT-NMR (Model: AVANCE III HD, Ascend TM WB, 500 MHz Equipment control: Topspin 3.2 Features (Standard operating procedure) and Bruker ALPHA (Eco-ATR) spectrometer and calibrated using deuterated solvents ¹H NMR [δ H = 7.26 (CDCl₃) and $\delta H = 2.50$ (DMSO- d_6) and ¹³C deuterated solvent for ¹³C {1H} NMR [$\delta C =$ 77.00 (CDCl₃) and δ C = 39.52 \pm 0.06 (DMSO- d_6)] as a solvent and TMS as an internal reference at 298 K. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, dd = doublet of doublet, ddd = doublet of a doublet of a doublet, dt = doublet of a triplet, m = multiplet, br = broad, ap = apparent.

Single Crystal X-Ray diffraction data was recorded with Bruker Smart Apex Single Crystal-XRD at 100 K. ¹H and ¹³C NMR spectra were recorded on a Bruker High-Performance Digital 500 MHz FT-NMR, in CDCl₃ solvent and tetramethylsilane was used as a reference for the chemical shift. FTIR spectra were recorded on a Bruker Vertex, 70V PMA50 spectrometer using MeOH or CHCl₃ as solvent /KBr Pellet. Elemental analysis was carried out on a model- UNICUBE, Elementar Analysensysteme GmbH, Germany. The HRMS data were collected using a 6545 LC/Q-TOF HRMS. Melting point was recorded on a SHIVAKI SI-6002. Melting points of all the synthesized compounds were determined in open capillary tube.

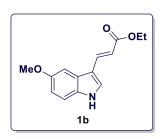

General procedure

A- Synthesis and characterization of indole acrylates (standard Wittig protocol):

To the magnetically stirred solution of indole-carbaldehyde (1equivalent) in anhydrous CH₂Cl₂, PPh₃CHCOOEt (1.5 equivalent) was added. The reaction was continued for 6h-18h and monitored by TLC, after completion of reaction solvent was evaporated and purification of the residue on silica gel column using EtOAc: hexane (1.5:8.5) as eluent gave the corresponding ester.

Synthesis and characterization of starting materials:

Synthesis of ethyl (E)-3-(1H-indol-3-yl)acrylate (1a)

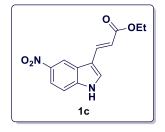


The compound was prepared according to general procedure-A, using 1H-indole-3-carbaldehyde (0.2 g, 1.37 mmol, 1 eq.) and PPh₃CHCOOEt (0.71 g, 2.06 mmol, 1.5 eq), in 4 mL DCM to afford ethyl E-3-(1H-indol-3-yl)acrylate. After 8 h, purification by column chromatography (15% ethyl acetate in hexane) gave **1a** as a white solid (0.25g, 87%); Rf (EtOAc/ hexane

1:3) = 0.5.

mp: 176-178 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3270, 1685, 1578, 1479, 1230, 760; ¹**H NMR** (500 MHz, CDCl₃); δ 8.63 (s, 1H), 7.84 (dd, J = 12.1, 3.8 Hz, 2H), 7.36 (d, J = 2.6 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.22 – 7.15 (m, 2H), 6.39 (d, J = 16.0 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.4, 138.3, 137.1, 128.9, 125.3, 123.3, 121.5, 120.5, 113.5, 113.4, 111.8, 60.1, 14.4; **HRMS-ESI** (m/z): Calcd for C₁₃H₁₃NO₂ [M + H]⁺ 216.1019; found 216.1019.

Synthesis of ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate (1b)

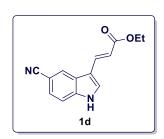


The compound was prepared according to general procedure-A, using 5-methoxy-1H-indole-3-carbaldehyde (0.2 g, 1.14 mmol, 1eq.) and PPh₃CHCOOEt (0.59g, 1.71 mmol, 1.5 eq), in 4 mL DCM to afford ethyl E-3-(5-methoxy-1H-indol-3-yl)acrylate. After 12 h, purification by column chromatography (18% ethyl acetate in hexane) gave **1b** as a

creamy white solid (0.24g, 84%); Rf (EtOAc/ hexane 1:2) = 0.5.

mp: 182-184 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3257, 2374, 1680, 1612, 1570, 1430, 1230, 770; ¹**H NMR** (500 MHz, CDCl₃); δ 8.94 (s, 1H), 7.94 (d, J = 16.0 Hz, 1H), 7.46 (d, J = 2.8 Hz, 1H), 7.34 (d, J = 2.2 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H), 6.94 (dd, J = 8.8, 2.3 Hz, 1H), 6.41 (d, J = 16.0 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.90 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.6, 155.4, 138.5, 132.1, 129.4, 125.9, 113.2, 113.2, 112.6, 112.4, 102.5, 60.2, 56.0, 14.4. **HRMS-ESI** (m/z): Calcd for C₁₄H₁₅NO₃ [M + H]⁺ 246.1125; found 246.1128.

Synthesis of ethyl (E)-3-(5-nitro-1H-indol-3-yl)acrylate (1c)

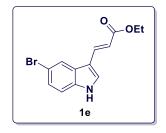


The compound was prepared according to general procedure-A, using 5-nitro-1H-indole-3-carbaldehyde (0.2 g, 1.05 mmol, 1 eq.) and PPh₃CHCOOEt (0.54 g, 1.57 mmol, 1.5 eq), in 4 mL DCM to afford ethyl E-3-(5-nitro-1H-indol-3-yl)acrylate. After 8 h, purification by column chromatography (30% ethyl acetate in hexane) gave **1c** as a

yellow solid (0.22g, 89%); Rf (EtOAc/ hexane 2:3) = 0.5.

mp: 190-192 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3390, 2962, 1720, 1640, 1570, 1474, 1230, 770; ¹**H NMR** (500 MHz, CDCl₃ + DMSO- d_6); δ 11.18 (s, 1H), 8.78 (d, J = 2.0 Hz, 1H), 8.10 (dd, J = 9.0, 2.1 Hz, 1H), 7.86 (d, J = 16.1 Hz, 1H), 7.60 (s, 1H), 7.46 (d, J = 9.0 Hz, 1H), 6.45 (d, J = 16.1 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃ + DMSO- d_6); δ 166.8, 141.4, 139.6, 135.7 130.7, 123.7, 117.2, 116.1, 113.7, 113.7, 111.2, 59.3, 13.4. **HRMS-ESI** (m/z): Calcd for C₁₃H₁₂N₂O₄ [M + H]⁺ 261.0870; found 261.0879.

Synthesis of ethyl (E)-3-(5-cyano-1H-indol-3-yl)acrylate (1d)

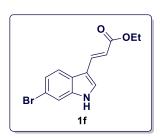


The compound was prepared according to general procedure-A, using 3-formyl-1H-indole-5-carbonitrile (0.2 g, 1.17 mmol, 1 eq.) and PPh₃CHCOOEt (0.61 g, 1.76 mmol, 1.5 eq), in 4 mL DCM to afford ethyl E-3-(5-cyano-1H-indol-3-yl)acrylate. After 9 h, purification by column chromatography (35% ethyl acetate in hexane) gave **1d** as a pale

greenish solid (0.25g, 89%); Rf (EtOAc/ hexane 2:3) = 0.5.

mp: 160-162 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3494, 2962, 2376, 1720, 1512, 1232, 770, 688; ¹**H NMR** (500 MHz, CDCl₃ + DMSO- d_6); δ 11.23 (s, 1H), 8.15 (s, 1H), 7.81 (d, J = 16.1 Hz, 1H), 7.54 (d, J = 1.8 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 6.34 (d, J = 16.0 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃ + DMSO- d_6); δ 166.8, 138.3, 136.1, 130.1, 124.4(X2C), 124.1, 119.4, 113.2, 112.2, 112.1, 102.8, 59.2, 13.4. **HRMS-ESI** (m/z): Calcd for C₁₄H₁₂N₂O₂ [M + H]⁺ 241.0972; found 241.0970

Synthesis of ethyl (E)-3-(5-bromo-1H-indol-3-yl)acrylate (1e)

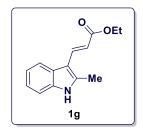


The compound was prepared according to general procedure-A, using 5-bromo-1H-indole-3-carbaldehyde (0.2 g, 0.089 mmol, 1 eq.) and PPh₃CHCOOEt (0.46 g, 1.33 mmol, 1.5 eq), in 4 mL DCM to afford ethyl E-3-(5-bromo-1H-indol-3-yl)acrylate. After 12 h, purification by column chromatography (25% ethyl acetate in hexane) gave **1e** as a

creamy white solid (0.22g, 84%); Rf (EtOAc/ hexane 2:3) = 0.5.

mp: 120-122 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3450, 2977, 2374, 1720, 1619, 1240, 757; ¹**H NMR** (500 MHz, CDCl₃); δ 8.73 (s, 1H), 8.06 (d, J = 1.6 Hz, 1H), 7.87 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 2.5 Hz, 1H), 7.39 (d, J = 1.8 Hz, 1H), 7.37 (d, J = 1.8 Hz, 1H), 6.43 (d, J = 16.0 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.1, 137.4, 135.6, 129.4, 126.9, 126.2, 123.1, 114.9, 114.1, 113.2, 113.1, 60.3, 14.4. **HRMS-ESI** (m/z): Calcd for C₁₃H₁₂BrNO₂ [M + H]⁺ 294.0124; found 294.0122.

Synthesis of ethyl (E)-3-(6-bromo-1H-indol-3-yl)acrylate (1f)



The compound was prepared according to general procedure-A, using 6-bromo-1H-indole-3-carbaldehyde (0.2 g, 0.089 mmol, 1 eq.) and PPh₃CHCOOEt (0.46 g, 1.33 mmol, 1.5 eq), in 4 mL DCM to afford ethyl E-3-(6-bromo-1H-indol-3-yl)acrylate. After 12 h, purification by column chromatography (25-30% ethyl acetate in hexane) gave **1f** as a

creamy white solid (0.23g, 87%); Rf (EtOAc/ hexane 2:3) = 0.5.

mp: 135-137 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3230, 2945, 2275, 1715, 1680, 1250, 752; ¹**H** NMR (500 MHz, CDCl₃); δ 8.90 (s, 1H), 7.78 (d, J = 16.0 Hz, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.47 (d, J = 16.0 Hz, 1H), 7.34 (d, J = 2.5 Hz, 1H), 7.25 (dd, J = 8.5, 1.5 Hz, 1H), 6.33 (d, J = 16.0 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.2, 137.9, 137.7, 129.2, 124.6, 124.2, 121.5, 116.7, 114.8, 113.9, 113.5, 60.3, 14.4. **HRMS-ESI** (m/z): Calcd for C₁₃H₁₂BrNO₂ [M + H]⁺ 294.0124; found 294.0125.

Synthesis of ethyl (E)-3-(2-methyl-1H-indol-3-yl)acrylate (1g)

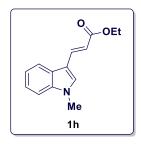
The compound was prepared according to general procedure-A, using 2-methyl-1H-indole-3-carbaldehyde (0.2 g, 1.22 mmol, 1 eq.) and PPh₃CHCOOEt (0.65 g, 1.89 mmol, 1.5 eq), in 4 mL DCM to afford ethyl E-3-(2-methyl-1H-indol-3-yl)acrylate. After 12 h, purification by column chromatography (15% ethyl acetate in hexane) gave **1g** as a pale brown solid

(0.23g, 87%); Rf (EtOAc/hexane 1:3) = 0.5.

mp: 128-130 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3367, 2928, 2366, 2372, 1699, 1250; ¹**H NMR** (500 MHz, CDCl₃); δ 8.57 (s, 1H), 7.99 (d, J = 15.9 Hz, 1H), 7.88 (d, J = 5.0 Hz, 1H), 7.36 – 7.33 (m, 1H), 7.25 – 7.21 (m, 2H), 6.47 (d, J = 15.9 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.55 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.8, 140.1, 137.6, 135.7, 126.3, 122.4, 121.4, 120.0, 112.0, 110.9, 109.6, 60.1, 14.51, 12.3. **HRMS-ESI** (m/z): Calcd for C₁₄H₁₅NO₂ [M + H]⁺ 230.1176; found 230.1175.

B- Synthesis and characterization of protected indole acrylates:

OOEt

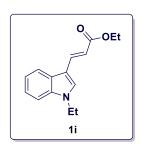

NaH,
$$R_2X$$
 0

OC-rt, ACN

 R_1
 R_1
 R_2
 R_2

To the magnetically stirred solution of indole-ester (1equiv) in anhydrous ACN, slowly add NaH (1.5 equivalent) at 0°C followed by addition of second reacting partner (alkyl, aryl, allyl, benzyl, propargyl halides, 1.2 equivalents). The reaction was continued to stirred at room temperature for 3-4h and monitored by TLC, after completion of reaction solvent was evaporated and purification of the residue on silica gel column using EtOAc (15-40%) as eluent gave the corresponding protected ester.

Synthesis of ethyl (E)-3-(1-methyl-1H-indol-3-yl)acrylate (1h)

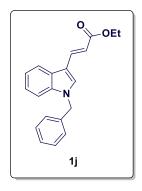


The compound was prepared according to general procedure-B, using ethyl (E)-3-(1H-indol-3-yl)acrylate **1a** (0.1 g, 0.464 mmol, 1 eq.), NaH (0.022 g, 0.92 mmol, 2 eq.) at 0°C and MeI (0.079 g, 0.55 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-methyl-1H-indol-3-yl)acrylate. After 3 h, purification by column chromatography (13% ethyl acetate in hexane) gave **1h** as a white solid (0.104g, 98%); Rf (EtOAc/

hexane 1:3) = 0.5.

mp: 156-158 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3365, 3033, 2374, 1684, 1230, 1166, 765; ¹**H NMR** (500 MHz, CDCl₃); δ 7.95 (d, J = 7.9 Hz, 1H), 7.92 (d, J = 16.0 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.35 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 6.45 (d, J = 15.9 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.81 (s, 3H), 1.38 (t, J = 7.5, 6.7 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.3, 138.0, 137.9, 133.1, 126.0, 122.9, 121.2, 120.6, 112.6, 112.1, 109.9, 60.0, 33.1, 14.5. **HRMS-ESI** (m/z): Calcd for C₁₄H₁₅NO₂ [M + H]⁺ 230.1176; found 230.1175.

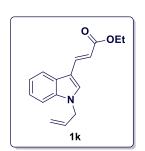
Synthesis of ethyl (E)-3-(1-ethyl-1H-indol-3-yl)acrylate (1i)



The compound was prepared according to general procedure-B, using ethyl (E)-3-(1H-indol-3-yl)acrylate **1a** (0.1 g, 0.464 mmol, 1 eq.), NaH (0.022 g, 0.92 mmol, 2 eq.) at 0°C and EtI (0.087 g, 0.55 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-ethyl-1H-indol-3-yl)acrylate. After 2.5 h, purification by column chromatography (15% ethyl acetate in hexane) gave **1i** as a white solid (0.109g, 97%); Rf (EtOAc/

hexane 1:3) = 0.5.

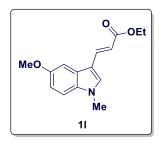
Mp: 146-148 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3230, 2370, 1716, 1669, 1583, 1232, 763; ¹**H NMR** (500 MHz, CDCl₃); δ 7.98 – 7.94 (m, 1H), 7.93 (s, 1H), 7.41 (s, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.30 – 7.26 (m, 1H), 6.46 (d, J = 15.9 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.17 (q, J = 7.3 Hz, 2H), 1.50 (t, J = 7.3 Hz, 3H), 1.39 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.3, 138.1, 137.1, 131.4, 126.2, 122.8, 121.2, 120.7, 112.4, 112.1, 110.0, 60.0, 41.3, 15.2, 14.5. **HRMS-ESI** (m/z): Calcd for C₁₅H₁₇NO₂ [M + H]⁺ 244.1332; found 244.1333.


Synthesis of ethyl (E)-3-(1-benzyl-1H-indol-3-yl)acrylate (1j)

The compound was prepared according to general procedure-B, using ethyl (E)-3-(1H-indol-3-yl)acrylate **1a** (0.1 g, 0.464 mmol, 1 eq.), NaH (0.022 g, 0.92 mmol, 2 eq.) at 0°C and benzylchloride (0.07 g, 0.92 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-benzyl-1H-indol-3-yl)acrylate. After 3 h, purification by column chromatography (12% ethyl acetate in hexane) gave **1j** as a white solid (0.109g, 97%); Rf (EtOAc/hexane 1:2) = 0.5.

mp: 136-138 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3368, 3023, 2374, 1706, 1230, 1154, 763; ¹**H NMR** (500 MHz, CDCl₃); δ 7.98 – 7.95 (m, 1H), 7.92 (d, J = 16.0 Hz, 1H), 7.43 (s, 1H), 7.36 – 7.34 (m, 2H), 7.32 (s, 1H), 7.29 (d, J = 1.8 Hz, 2H), 7.28 – 7.26 (m, 1H), 7.21 – 7.14 (m, 2H), 6.46 (d, J = 16.0 Hz, 1H), 5.35 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.2, 137.8, 137.6, 136.1, 132.3, 128.9, 128.0, 126.9, 126.3, 123.1, 121.4, 120.7, 113.12, 112.7, 110.4, 60.0, 50.4, 14.4. **HRMS-ESI** (m/z): Calcd for C₂₀H₁₉NO₂ [M] 305.1416; found 305.1569.

Synthesis of ethyl (E)-3-(1-allyl-1H-indol-3-yl)acrylate (1k)

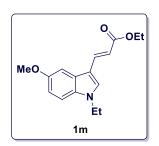


The compound was prepared according to general procedure-B, using ethyl (E)-3-(1H-indol-3-yl)acrylate **1a** (0.1 g, 0.464 mmol, 1 eq.), NaH (0.022 g, 0.92 mmol, 2 eq.) at 0°C and allyl bromide (0.067 g, 0.55 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-allyl-1H-indol-3-yl)acrylate. After 2.5 h, purification by column chromatography (10% ethyl acetate in hexane) gave **1k** as a white solid (0.107 g, 91%); Rf

(EtOAc/hexane 1:3) = 0.5.

mp: 145-147°C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3270, 2978, 2970, 1665, 1630, 1517, 1479, 1230, 760; **¹H NMR** (500 MHz, CDCl₃); δ 7.98 – 7.90 (m, 2H), 7.42 (s, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.31 – 7.26 (m, 1H), 6.46 (d, J = 15.9 Hz, 1H), 6.07 – 5.97 (m, 1H), 5.29 (d, J = 10.2 Hz, 1H), 5.18 (d, J = 17.1 Hz, 1H), 4.76 (d, J = 5.3 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 168.3, 137.9, 137.4, 132.4, 132.0, 126.2, 122.9, 121.3, 120.7, 118.2, 112.9, 112.5, 110.3, 60.0, 49.0, 14.4. **HRMS-ESI** (m/z): Calcd for C₁₆H₁₇NO₂ [M+Na]⁺ 279.1230; found 279.1294.

3.5 Synthesis of ethyl (E)-3-(5-methoxy-1-methyl-1H-indol-3-yl)acrylate (11)

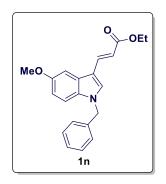


The compound was prepared according to general procedure-B, using ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate **1b** (0.1 g, 0.407 mmol, 1 eq.), NaH (0.019 g, 0.815 mmol, 2 eq.) at 0°C and MeI (0.069 g, 0.48 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(5-methoxy-1-methyl-1H-indol-3-yl)acrylate. After 2.5 h, purification by

column chromatography (15% ethyl acetate in hexane) gave 11 as a white solid (0.098 g, 93%); Rf (EtOAc/ hexane 1:2) = 0.5.

mp: 177-179 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3256, 2924, 1686, 1620, 1485, 1366, 1274, 757; ¹**H NMR** (500 MHz, CDCl₃); δ 7.90 (d, J = 15.9 Hz, 1H), 7.35 (s, 1H), 7.32 (s, 1H), 7.25 (d, J = 8.9 Hz, 1H), 6.98 (dd, J = 8.9, 2.2 Hz, 1H), 6.34 (d, J = 15.9 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 3.79 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.4, 155.4, 138.0, 133.2, 133.2, 126.6, 112.8, 111.8, 111.6, 110.7, 102.6, 60.0, 56.0, 33.3, 14.5. **HRMS-ESI** (m/z): Calcd for C₁₅H₁₇NO₃ [M + H]⁺ 260.1281; found 260.1284.

Synthesis of ethyl (E)-3-(1-ethyl-5-methoxy-1H-indol-3-yl)acrylate (1m)


The compound was prepared according to general procedure-B, using ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate **1b** (0.1 g, 0.407 mmol, 1 eq.), NaH (0.019 g, 0.815 mmol, 2 eq.) at 0°C and ethyl iodide (0.076 g, 0.48 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-ethyl-5-methoxy-1H-indol-3-yl)acrylate. After 3.5 h, purification by

column chromatography (15% ethyl acetate in hexane) gave 1m as a creamy white solid (0.104 g, 94%); Rf (EtOAc/ hexane 1:2) = 0.5.

mp: 165-167 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3260, 2941, 1689, 1622, 1452, 1358, 1260, 757; ¹**H NMR** (500 MHz, CDCl₃); δ 7.92 (d, J = 15.9 Hz, 1H), 7.39 (s, 1H), 7.35 (s, 1H), 7.27 (d, J = 8.9

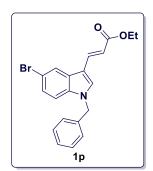
Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 6.35 (d, J = 15.9 Hz, 1H), 4.30 (q, J = 7.0 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.93 (s, 3H), 1.50 (t, J = 7.2 Hz, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 168.4, 155.4, 138.1, 132.2, 131.5, 126.8, 112.8, 111.7, 111.7, 110.7, 102.7, 60.0, 56.0, 41.5, 15.2, 14.5. **HRMS-ESI** (m/z): Calcd for C₁₆H₁₉NO₃ [M + H]⁺ 274.1438; found 274.1444.

Synthesis of ethyl (E)-3-(1-benzyl-5-methoxy-1H-indol-3-yl)acrylate (1n)

The compound was prepared according to general procedure-B, using ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate **1b** (0.1 g, 0.407 mmol, 1 eq.), NaH (0.019 g, 0.815 mmol, 2 eq.) at 0°C and benzyl chloride (0.062 g, 0.48 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-benzyl-5-methoxy-1H-indol-3-yl)acrylate. After 3 h, purification by column chromatography (18% ethyl acetate in hexane) gave **1n** as a creamy white solid (0.121 g, 89%), Rf (EtOAc/ hexane 1:2)

= 0.5.

mp: 165-167 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3521, 3033, 2374, 1706, 1558, 1230, 756; ¹**H NMR** (500 MHz, CDCl₃); δ 7.80 (d, J = 16.0 Hz, 1H), 7.28 (s, 1H), 7.26 – 7.22 (m, 2H), 7.22 – 7.16 (m, 2H), 7.09 (d, J = 8.9 Hz, 1H), 7.06 – 6.99 (m, 2H), 6.80 (dd, J = 8.9, 2.3 Hz, 1H), 6.25 (d, J = 16.0 Hz, 1H), 5.17 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.3, 155.5, 138.0, 136.2, 132.6, 132.6, 128.9, 128.0, 126.9, 126.9, 113.0, 112.3, 112.2, 111.3, 102.6, 60.0, 55.9, 50.6, 14.5. **HRMS-ESI** (m/z): Calcd for C₂₁H₂₁NO₃ [M + H]⁺ 336.1594; found 336.1588.

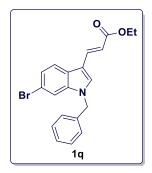

Synthesis of ethyl (E)-3-(5-methoxy-1-(prop-2-yn-1-yl)-1H-indol-3-yl)acrylate (10)

The compound was prepared according to general procedure-B, using ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate **1b** (0.1 g, 0.407 mmol, 1 eq.), NaH (0.019 g, 0.815 mmol, 2 eq.) at 0°C and propargyl bromide (0.058 g, 0.48 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(5-methoxy-1-(prop-2-yn-1-yl)-1H-indol-3-yl)acrylate. After 2 h, purification by column chromatography (20 % ethyl acetate in

hexane) gave 10 as a light brownish solid (0.099 g, 86%), Rf (EtOAc/ hexane 1:2) = 0.5.

mp: 150-152 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3530, 2370, 1702, 1558, 1220, 749; ¹**H NMR** (500 MHz, CDCl₃); δ 7.90 (d, J = 16.0 Hz, 1H), 7.52 (s, 1H), 7.36 – 7.34 (m, 1H), 7.31 (d, J = 21.0 Hz, 1H), 7.00 (dd, J = 8.8, 1.9 Hz, 1H), 6.37 (d, J = 16.0 Hz, 1H), 4.87 (d, J = 2.2 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 2.50 (s, 1H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C{¹**H**} **NMR** (126 MHz, CDCl₃); δ 168.2, 155.7, 137.7, 132.0, 131.4, 127.1, 113.1, 112.8, 112.5, 110.7, 102.8, 76.6, 74.6, 60.1, 56.0, 36.3, 14.4. **HRMS-ESI** (m/z): Calcd for C₁₇H₁₇NO₃ [M + H]⁺ 284.1281; found 284.1236.

Synthesis of ethyl (E)-3-(1-benzyl-5-bromo-1H-indol-3-yl)acrylate (1p)

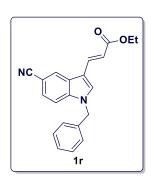


The compound was prepared according to general procedure-B, using ethyl (E)-3-(5-bromo-1H-indol-3-yl)acrylate **1e** (0.1 g, 0.339 mmol, 1 eq.), NaH (0.016 g, 0.67 mmol, 2 eq.) at 0°C and benzyl chloride (0.052 g, 0.40 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-benzyl-5-bromo-1H-indol-3-yl)acrylate. After 4 h, purification by column chromatography (35% ethyl acetate in hexane) gave **1p** as a creamy white

solid (0.113 g, 87%), Rf (EtOAc/ hexane 2:1) = 0.5.

mp: 145-147 °C; **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3260, 2984, 2370, 1702, 1628, 1558, 1391, 1220,1037, 749; ¹**H NMR** (500 MHz, CDCl₃); δ 7.96 (d, J = 1.7 Hz, 1H), 7.74 (d, J = 16.0 Hz, 1H), 7.30 (s, 1H), 7.27 – 7.24 (m, 1H), 7.22 (d, J = 6.3 Hz, 2H), 7.22 – 7.19 (m, 1H), 7.07 (d, J = 8.7 Hz, 1H), 7.04 – 6.98 (m, 2H), 6.29 (d, J = 16.0 Hz, 1H), 5.20 (s, 2H), 4.19 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C{¹**H**} **NMR** (126 MHz, CDCl₃); δ 166.9, 136.0, 135.1, 134.6, 132.0, 128.0, 127.2, 126.7, 125.8, 124.9, 122.2, 113.9, 112.6, 111.0, 110.8, 59.1, 49.5, 13.4. **HRMS-ESI** (m/z): Calcd for C₂₀H₁₈BrNO₂ [M + H]⁺ 384.0594; found 384.0597.

Synthesis of ethyl (E)-3-(1-benzyl-6-bromo-1H-indol-3-yl)acrylate (1q)

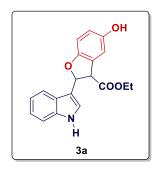


The compound was prepared according to general procedure-B, using ethyl (E)-3-(6-bromo-1H-indol-3-yl)acrylate **1f** (0.1 g, 0.339 mmol, 1 eq.), NaH (0.016 g, 0.67 mmol, 2 eq.) at 0°C and benzyl chloride (0.052 g, 0.40 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-benzyl-6-bromo-1H-indol-3-yl)acrylate. After 4.5 h, purification by column chromatography (40% ethyl acetate in hexane) gave **1f** as a creamy

white solid (0.113 g, 87%), Rf (EtOAc/hexane 1:2) = 0.5.

mp: 143-152 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3150, 2955, 1700, 1605, 1345, 1276, 1150, 1045, 760; **¹H NMR** (500 MHz, CDCl₃); δ 7.76 (d, J = 16.0 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.39 (s, 1H), 7.31 – 7.20 (m, 5H), 7.04 (d, J = 7.5 Hz, 2H), 6.30 (d, J = 16.0 Hz, 1H), 5.18 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). 13 C{ 1 H} NMR (126 MHz, CDCl₃); δ 166.9, 137.3, 136.1, 134.5, 131.4, 128.0, 127.2, 125.9, 124.0, 123.6, 120.8, 115.7, 112.8, 112.4, 111.7, 59.1, 49.4, 13.4. HRMS-ESI (m/z): Calcd for C₂₀H₁₈BrNO₂ [M + H]⁺ 384.0594; found 384.0597.

Synthesis of ethyl (E)-3-(1-benzyl-5-cyano-1H-indol-3-yl)acrylate (1r)

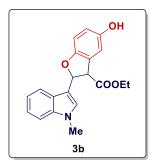

The compound was prepared according to general procedure-B, using ethyl (E)-3-(5-cyano-1H-indol-3-yl)acrylate **1d** (0.1 g, 0.416 mmol, 1 eq.), NaH (0.019g, 0.83 mmol, 2 eq.) at 0°C and benzyl chloride (0.064 g, 0.41 mmol, 1.2 eq.) room temperature in 2 mL ACN affording ethyl (E)-3-(1-benzyl-5-cyano-1H-indol-3-yl)acrylate. After 4.5 h, purification by column chromatography (35% ethyl acetate in hexane) gave **1r** as a creamy white solid (0.108 g, 79%), Rf (EtOAc/ hexane 3:2) = 0.5.

mp: 160-162 °C; **FT-IR** (neat): v_{max} /cm⁻¹: 3495, 3125, 2966, 1720, 1605, 1514, 1276, 1045, 760; ¹**H NMR** (500 MHz, CDCl₃); δ 8.24 (s, 1H), 7.85 (d, J = 16.1 Hz, 1H), 7.53 (s, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.39 (d, J = 8.6 Hz, 1H), 7.38 (d, J = 6.0 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.15 (d, J = 6.3 Hz, 2H), 6.42 (d, J = 16.1 Hz, 1H), 5.37 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 167.5, 139.0, 136.0, 135.2, 133.6, 129.2, 128.5, 126.9, 126.1, 125.9, 125.8, 120.0, 115.2, 113.2, 111.4, 104.6, 60.3, 50.7, 14.4. **HRMS-ESI** (m/z): Calcd for $C_{21}H_{18}N_2O_2$ [M + H]⁺ 331.1441; found 331.1442.

C- Synthesis and characterization of 1H-indol-3-yl-2,3-dihydrobenzofuran (scheme 1):

A Screw-cap vial was charged with indole ester (1 equiv) with subsequent addition of benzoquinone (2.0 equiv) in THF, and then the reaction mixture was stirred at 0°C for 5 min. further a catalytic quantity of Cu(OTf)₂ (10 mol%) was added. Then reaction mixture was continued to stir at 0°C till the completion of reaction (monitored by TLC). After completion reaction was quenched by adding water, further the organic layer was then washed with brine and dried over Na₂SO₄. Finally, reaction mixture was concentrated under vacuum and crude residue was purified by column chromatography (10-50% ethyl acetate in hexane) to obtain the corresponding product.

Synthesis of 5-hydroxy-2-(1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate (3a)


The compound was prepared according to general procedure-(C), using ethyl (E)-3-(1H-indol-3-yl)acrylate (0.05 g, 0.23 mmol, 1 eq.) **1a** and benzoquinone (0.05 g, 0.46 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.007 g, 0.02 mmol, 10 mol%) at 0°C affording ethyl 5-hydroxy-2-(1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate. After 1 h, purification by column chromatography (20% ethyl acetate in

hexane) gave 3a as a brown oily liquid (0.05 g, 88%), R_f (EtOAc/ hexane 1:2) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3611, 2350, 2321, 1724, 1699, 1544, 1220, 1180, 759, 710; ¹**H NMR** (500 MHz, CDCl₃); δ 8.10 (s, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.9 Hz, 1H), 7.17 (d, J = 18.0 Hz, 1H), 7.15 – 6.99 (m, 2H), 6.86 (s, 1H), 6.66 (s, 2H), 6.29 (d, J = 7.7 Hz, 1H), 4.66 (s,

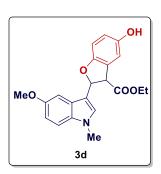
1H), 4.49 (d, J = 7.7 Hz, 1H), 4.19 (q, 2H), 1.24 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 171.0, 153.5, 149.7, 136.8, 125.4, 125.2, 122.9, 122.7, 120.2, 119.5, 116.2, 115.3, 112.2, 111.5, 110.0, 81.1, 61.6, 54.0, 14.2. **HRMS-ESI** (m/z): Calcd for C₁₉H₁₇NO₄ [M + H]⁺ 324.22; found 324.1230.

Synthesis of ethyl 5-hydroxy-2-(1-methyl-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate (3b)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(1-methyl-1H-indol-3-yl)acrylate (0.05 g, 0.21 mmol, 1 eq.) **1h** and benzoquinone (0.04 g, 0.43 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.007 g, 0.02 mmol, 10 mol%) at 0°C affording ethyl 5-hydroxy-2-(1-methyl-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate. After 1.5 h, purification by column chromatography (18%)

ethyl acetate in hexane) gave **3b** as a brown oily liquid (0.05 g, 78%), R_f (EtOAc/ hexane 1:2) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3615, 2364, 2321, 1745, 1687, 1524, 1238, 1195, 769, 714; ¹H NMR (500 MHz, CDCl₃); δ 7.45 (d, J = 7.3 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.14 (d, J = 2.0 Hz, 1H), 7.08 – 7.03 (m, 1H), 6.91 (s, 1H), 6.72 – 6.63 (m, 2H), 6.33 (dd, J = 8.0, 2.1 Hz, 1H), 5.10 (s, 1H), 4.54 (d, J = 8.0 Hz, 1H), 4.23 (q, J = 4.4, 2.7 Hz, 2H), 3.73 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 171.2, 153.5, 149.8, 137.7, 127.6, 125.8, 125.5, 122.3, 119.8, 119.6, 116.3, 113.6, 112.2, 110.1, 109.7, 81.1, 61.7, 54.2, 32.8, 14.3. HRMS-ESI (m/z): Calcd for C₂₀H₁₉NO₄ [M + H]⁺ 338.1387; found 338.1394.


Synthesis of ethyl 5-hydroxy-2-(5-methoxy-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate (3c)

The compound was prepared according to general procedure-(C), ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate (0.05 g, 0.20 mmol, 1 eq.) **1b** and benzoquinone (0.04 g, 0.40 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.007 g, 0.02 mmol, 10 mol%) at 0°C affording ethyl 5-hydroxy-2-(5-methoxy-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate. After 1.5 h, purification by column chromatography (20%)

ethyl acetate in hexane) gave 3c as a brown oily liquid (0.064 g, 93%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹: 3612, 2348, 2310, 1720, 1684, 1520, 1210, 1150, 789, 774; ¹H NMR (500 MHz, CDCl₃); δ 8.20 (s, 1H), 7.19 (dd, J = 8.7, 1.9 Hz, 1H), 7.15 (d, J = 2.4 Hz, 1H), 6.90 (s, 1H), 6.86 – 6.80 (m, 2H), 6.68 (d, J = 0.8 Hz, 2H), 6.30 (d, J = 7.5 Hz, 1H), 4.49 (d, J = 7.4 Hz, 1H), 4.22 (q, J = 7.1, 4.5 Hz, 2H), 3.69 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 171.3, 154.3, 153.4, 150.0, 132.0, 125.7, 125.5, 123.7, 116.3, 115.0, 112.7, 112.3, 112.2, 110.1, 101.5, 81.2, 61.8, 55.8, 53.9, 14.3. HRMS-ESI (m/z): Calcd for C₂₀H₁₉NO₅ [M + H]⁺ 354.1336; found 354.1347.

Synthesis of ethyl 5-hydroxy-2-(5-methoxy-1-methyl-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate (3d)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(5-methoxy-1-methyl-1H-indol-3-yl)acrylate (0.04 g, 0.15 mmol, 1 eq.) **11** and benzoquinone (0.03 g, 0.30 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.01 mmol, 10 mol%) at 0°C affording ethyl 5-hydroxy-2-(5-methoxy-1-methyl-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate. After 1.5 h, purification by column

chromatography (18% ethyl acetate in hexane) gave $\bf 3d$ as a reddish oily liquid (0.039 g, 87%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3558, 2362, 1652, 1529, 1234, 1033, 771, 751; ¹**H NMR** (500 MHz, CDCl₃); δ 7.17 (d, J = 8.2 Hz, 1H), 7.10 (s, 1H), 6.91 (d, J = 0.9 Hz, 1H), 6.87 (d, J = 8.3 Hz, 2H), 6.72 – 6.65 (m, 2H), 6.29 (d, J = 7.5 Hz, 1H), δ 5.05 (s, 1H), 4.49 (d, J = 7.6 Hz, 1H), 4.22 (q, J = 11.5, 7.2 Hz, 2H), 3.71 (s, 3H), 3.70 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz,

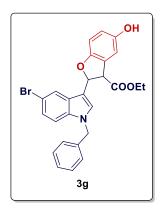
CDCl₃); δ 171.2, 154.2, 153.5, 149.9, 133.0, 128.0, 126.1, 125.5, 116.3, 113.2, 112.4, 112.1, 110.5, 110.1, 101.6, 81.1, 61.7, 55.8, 54.0, 33.0, 14.3. **HRMS-ESI** (m/z): Calcd for C₂₁H₂₁NO₅ [M + H]⁺ 368.1492; found 368.1505.

Synthesis of ethyl 5-hydroxy-2-(5-methoxy-1-methyl-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate (3e)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(1-benzyl-5-methoxy-1H-indol-3-yl)acrylate (0.05 g, 0.14 mmol, 1 eq.) **1n** and benzoquinone (0.03 g, 0.29 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.01 mmol, 10 mol%) at 0°C affording ethyl 2-(1-benzyl-5-methoxy-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate. After 2 h, purification by column chromatography (25% ethyl acetate in hexane) gave **3e** as a brown oily

liquid (0.06 g, 92%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹:, 3617, 2940, 2364, 2321, 1699, 1524, 1238, 1187, 767, 751; ¹H NMR (500 MHz, CDCl₃); δ 7.31 – 7.21 (m, 3H), 7.17 (d, J = 3.8 Hz, 1H), 7.15 – 7.06 (m, 3H), 6.91 (s, 1H), 6.87 (s, 1H), 6.83 – 6.78 (m, 1H), 6.74 – 6.66 (m, 2H), 6.30 (d, J = 7.6 Hz, 1H), 5.21 (s, 2H), 4.93 (s, 1H), 4.51 (d, J = 4.3 Hz, 1H), 4.23 (q, J = 7.1, 4.7 Hz, 2H), 3.69 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 171.1, 154.3, 153.5, 149.8, 137.1, 132.6, 128.8, 127.8, 127.4, 126.9, 126.4, 125.5, 116.3, 113.9, 112.5, 112.1, 111.0, 110.1, 101.7, 81.2, 61.7, 55.8, 54.0, 50.4, 14.3. HRMS-ESI (m/z): Calcd for C₂₇H₂₅NO₅ [M + H]⁺ 444.1805; found 444.1815.


Synthesis of ethyl 2-(5-bromo-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate (3f)

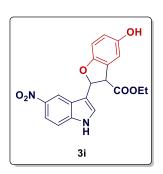
The compound was prepared according to general procedure-(C), using ethyl (E)-3-(5-bromo-1H-indol-3-yl)acrylate (0.04 g, 0.13 mmol, 1 eq.) **1e** and benzoquinone (0.29 g, 0.27 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.01 mmol, 10 mol%) at 0°C affording ethyl 2-(5-bromo-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate **3f**. After 1.5 h, purification by column chromatography

(28% ethyl acetate in hexane) gave **3f** as a golden-brown oil (0.037 g, 70%), R_f (EtOAc/ hexane 2:1) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3681, 2366, 1732, 1489, 1193, 771, 714; ¹**H NMR** (500 MHz, CDCl₃); δ 8.30 (s, 1H), 7.61 (d, J = 1.8 Hz, 1H), 7.26 (dd, J = 8.6, 1.8 Hz, 1H), 7.22 – 7.18 (m, 2H), 6.91 – 6.89 (m, 1H), 6.71 (d, J = 0.8 Hz, 2H), 6.26 (d, J = 8.2 Hz, 1H), 4.46 (d, J = 8.3 Hz, 1H), 4.25 (q, J = 7.1, 5.0 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃); δ 171.1, 153.2, 150.0, 135.4, 127.0, 125.6, 125.2, 124.1, 122.1, 116.4, 114.8, 113.5, 113.0, 112.3, 110.2, 80.9, 61.9, 54.0, 14.3. **HRMS-ESI** (m/z): Calcd for C₁₉H₁₆BrNO₄ [M + H]⁺ 402.0335; found 402.0343.

Synthesis of ethyl 2-(1-benzyl-5-bromo-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate (3g)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(1-benzyl-5-bromo-1H-indol-3-yl)acrylate (0.05 g, 0.13 mmol, 1 eq.) **1p** and benzoquinone (0.028 g, 0.26 mmol, 2 eq.) **2** under catalytic quantity of $Cu(OTf)_2$ (0.004 g, 0.03 mmol, 10 mol%) at 0°C affording ethyl 2-(1-benzyl-5-bromo-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate. After 2 h, purification by column chromatography (30% ethyl acetate in hexane) gave **3g** as a brown oily liquid (0.053 g, 84%), R_f (EtOAc/ hexane 1:3) = 0.5.


FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3688, 2950, 2333, 1654, 1542, 1245, 1184, 789, 745; ¹H NMR (500 MHz, CDCl₃); δ 7.64 (d, J = 1.8 Hz, 1H), 7.32 – 7.23 (m, 5H), 7.21 (s, 1H), 7.11 (d, J = 8.8 Hz, 1H), 7.08 (d, J = 5.7 Hz, 2H), 6.93 – 6.91 (m, 1H), 6.71 (d, J = 2.5 Hz, 2H), 6.28 (d, J = 8.5 Hz, 1H), 5.22 (s, 2H), 4.49 (d, J = 8.3 Hz, 1H), 4.25 (q, J = 7.1, 5.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); 171.0, 153.2, 150.1, 136.5, 135.9, 128.0, 128.0, 127.8, 126.9, 125.4, 125.2, 122.3, 116.4, 116.2, 113.9, 113.5, 112.3, 111.7, 110.2, 80.8, 61.9, 54.2, 50.4, 14.3. HRMS-ESI (m/z): Calcd for C₂₆H₂₂BrNO₄ [M + H]⁺ 492.0805; found 492.0816.

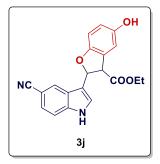
Synthesis of ethyl 2-(1-benzyl-6-bromo-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate (3h)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(1-benzyl-6-bromo-1H-indol-3-yl)acrylate (0.04 g, 0.10 mmol, 1 eq.) **1q** and benzoquinone (0.022 g, 0.20 mmol, 2 eq.) **2** under catalytic quantity of $Cu(OTf)_2$ (0.003 g, 0.010 mmol, 10 mol%) at 0°C affording ethyl 2-(1-benzyl-6-bromo-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate. After 1.5 h, purification by column chromatography (30% ethyl acetate in hexane) gave **3h** as a brown oily liquid (0.045 g, 88%), R_f (EtOAc/ hexane 2:1) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3655, 2988, 2354, 1652, 1520, 1245, 1178, 745, 713; ¹H NMR (500 MHz, CDCl₃); 7.42 (s, 1H), 7.32 (d, J = 8.7 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.18 (s, 1H), 7.17 – 7.14 (m, 1H), 7.09 (d, J = 6.3 Hz, 2H), 6.92 (s, 1H), 6.69 (d, J = 13.2 Hz, 2H), 6.29 (d, J = 8.0 Hz, 1H), 5.20 (s, 2H), 4.47 (d, J = 8.0 Hz, 1H), 4.24 (q, J = 7.0 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 171.1, 153.2, 150.1, 138.1, 136.4, 129.0, 128.0, 127.5, 126.9, 125.2, 124.9, 123.4, 121.1, 116.4, 116.2, 114.7, 113.1, 112.2, 110.1, 80.8, 61.9, 54.2, 50.2, 14.3. HRMS-ESI (m/z): Calcd for C₂₆H₂₂BrNO₄ [M + H]⁺ 492.0805; found 492.0803.

Synthesis of ethyl 5-hydroxy-2-(5-nitro-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate (3i)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(5-nitro-1H-indol-3-yl)acrylate (0.04 g, 0.15 mmol, 1 eq.) **1c** and benzoquinone (0.032 g, 0.30 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.015 mmol, 10 mol%) at 0°C affording ethyl 5-hydroxy-2-(5-nitro-1H-indol-3-yl)-2,3-dihydrobenzofuran-3-


carboxylate 3i. After 3 h, purification by column chromatography (40%

ethyl acetate in hexane) gave 3i as a yellow oily liquid (0.04 g, 75%), R_f (EtOAc/ hexane 3:1) = 0.5.

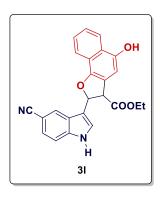
FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3645, 2378, 2320, 1745, 1699, 1524, 1213, 774; ¹**H NMR** (500 MHz, CDCl₃+DMSO- d_6); δ 11.94 (s, 1H), 9.06 (s, 1H), 8.37 (d, J = 2.2 Hz, 1H), 8.03 (dd, J = 9.0, 2.2 Hz, 1H), 7.81 (d, J = 2.4 Hz, 1H), 7.59 (d, J = 9.0 Hz, 1H), 6.85 (d, J = 1.5 Hz, 1H), 6.74 – 6.62 (m, 2H), 6.26 (d, J = 7.7 Hz, 1H), 4.62 (d, J = 7.7 Hz, 1H), 4.22 (q, J = 11.8, 7.1 Hz, 2H), 1.26 (t,

J= 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃+DMSO- d_6); δ 171.0, 152.0, 151.8, 141.1, 140.3, 128.3, 125.5, 125.1, 117.5, 116.8, 116.4, 116.2, 112.8, 112.3, 110.1, 80.1, 61.7, 53.7, 14.5. **HRMS-ESI** (m/z): Calcd for C₁₉H₁₆N₂O₆ [M + H]⁺ 369.1081; found 369.1077.

Synthesis of ethyl 2-(5-cyano-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate (3j)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(5-cyano-1H-indol-3-yl)acrylate (0.04 g, 0.16 mmol, 1 eq.) **1d** and benzoquinone (0.036 g, 0.32 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.016 mmol, 10 mol%) at 0°C affording ethyl 2-(5-cyano-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate. After 2 h, purification by column chromatography (40%)

ethyl acetate in hexane) gave $\bf{3j}$ as a brown oily liquid (0.05 g, 90%), R_f (EtOAc/ hexane 3:1) = 0.5.


FT-IR (neat): v_{max} /cm⁻¹:, 3612, 2354, 2310, 1720, 1652, 1520, 1220, 774; ¹**H NMR** (500 MHz, CDCl₃+DMSO- d_6); δ 11.23 (s, 1H), 7.72 (s, 1H), 7.47 – 7.37 (m, 2H), 7.36 – 7.26 (m, 1H), 6.85 (s, 1H), 6.72 – 6.53 (m, 2H), 6.20 (d, J = 4.5 Hz, 1H), 4.38 (d, J = 4.4 Hz, 1H), 4.19 (dd, J = 7.0, 3.0 Hz, 2H), 1.26 (t, J = 8.3, 5.2 Hz, 3H). ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃+DMSO- d_6); δ 169.85, 151.0, 150.8, 138.0, 124.8, 124.2, 123.9, 123.7, 123.6, 119.8, 115.2, 114.3, 112.1, 111.1, 108.7, 101.1, 79.4, 60.5, 53.2, 13.3. **HRMS-ESI** (m/z): Calcd for C₂₀H₁₆N₂O₄ [M + H]⁺ 349.1183; found 349.1180.

Synthesis of ethyl 2-(1-benzyl-5-cyano-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate (3k)

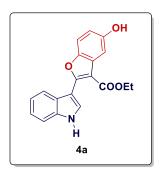
The compound was prepared according to general procedure-(C), using ethyl (E)-3-(1-benzyl-5-cyano-1H-indol-3-yl)acrylate (0.04 g, 0.12 mmol, 1 eq.) **1r** and benzoquinone (0.027 g, 0.24 mmol, 2 eq.) **2** under catalytic quantity of $Cu(OTf)_2$ (0.004 g, 0.016 mmol, 10 mol%) at 0°C affording ethyl 2-(1-benzyl-5-cyano-1H-indol-3-yl)-5-hydroxy-2,3-dihydrobenzofuran-3-carboxylate. After 2 h, purification by column chromatography (40% ethyl acetate in hexane) gave **3k** as a brown oily liquid (0.04 g, 88%), R_f (EtOAc/ hexane 3:1) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹:, 3655, 2320, 2300, 1722, 1655, 1520, 1220, 1123, 774, 716; ¹H NMR (500 MHz, CDCl₃); δ 7.88 (d, J = 0.9 Hz, 1H), 7.38 (dd, J = 8.6, 1.4 Hz, 1H), 7.34 – 7.31 (m, J = 6.2 Hz, 2H), 7.31 – 7.29 (m, 1H), 7.29 – 7.27 (m, 2H), 7.12 – 7.07 (m, J = 7.4, 1.9 Hz, 2H), 6.96 – 6.93 (m, 1H), 6.74 – 6.72 (m, 2H), 6.30 (d, J = 8.5 Hz, 1H), 5.27 (s, 2H), 4.45 (d, J = 8.3 Hz, 1H), 4.25 (q, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 170.8, 152.9, 150.5, 138.8, 135.9, 129.1, 129.0, 128.3, 126.9, 125.9, 125.6, 125.4, 124.8, 120.5, 116.5, 115.6, 112.4, 111.1, 110.2, 103.0, 80.3, 62.0, 54.4, 50.5, 14.3. HRMS-ESI (m/z): Calcd for C₂₇H₂₂N₂O₄ [M + H]⁺ 439.1652; found 439.1659.

Synthesis of ethyl 2-(5-cyano-1H-indol-3-yl)-5-hydroxy-2,3-dihydronaphtho[1,2-b]furan-3-carboxylate (3l)

The compound was prepared according to general procedure-(C), using ethyl (E)-3-(5-cyano-1H-indol-3-yl)acrylate (0.04 g, 0.16 mmol, 1 eq.) **1d** and 1,4-Naphthoquinone (0.052 g, 0.33 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.016 mmol, 10 mol%) at 0°C affording ethyl 2-(5-cyano-1H-indol-3-yl)-5-hydroxy-2,3-dihydronaphtho[1,2-b]furan-3-carboxylate. After 2 h, purification by column chromatography (40% ethyl acetate in hexane) gave **31** as a brown oily

liquid (0.055 g, 87%), R_f (EtOAc/ hexane 3:1) = 0.5.

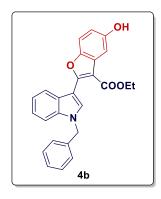

FT-IR (neat): v_{max} /cm⁻¹:, 3661, 3617, 2364, 2321, 1745, 1699, 1524, 1191, 769, 689; ¹**H NMR** (500 MHz, CDCl₃); δ 8.84 (s, 1H), 8.22 – 8.15 (m, 1H), 7.98 – 7.93 (m, 1H), 7.90 (s, 1H), 7.51 – 7.44 (m, 2H), 7.40 (s, 3H), 6.97 (s, 1H), 6.53 (d, J = 7.8 Hz, 1H), 4.61 (d, J = 7.8 Hz, 1H), 4.28 (q,

J= 9.3, 7.3 Hz, 2H), 1.32 (t, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃); δ 170.4, 147.6, 145.3, 137.5, 125.3, 124.8, 124.4, 124.4, 124.2, 124.0, 121.3, 120.6, 119.8, 119.5, 115.4, 114.8, 111.5, 104.1, 101.9, 79.5, 60.9, 54.2, 28.6, 13.2. HRMS-ESI (m/z): Calcd for C₂₄H₁₈N₂O₄ [M + Na]⁺ 421.1164; found 421.1155.

D- Synthesis and characterization of 1H-indol-3-yl-benzofuran (scheme 2):

To the magnetically stirred solution of indole ester (1.0 equiv) in THF, 2 equivalents of benzoquinone were added at room temperature, under catalytic quantity of Cu(OTf)₂. Then the reaction mixture is allowed to stir at 40 °C till completion of reaction (monitored by TLC). After completion reaction was quenched by adding water, further the organic layer was then washed with brine and dried over Na₂SO₄. Finally, reaction mixture was concentrated under vacuum and crude residue was purified by column chromatography (10-50% ethyl acetate in hexane) to obtain the corresponding product. (note: compounds formed are insoluble in CDCl3 and not completely miscible in DMSO-d6, 0.5-0.6 mL of solvent is used to obtaine the respective NMR spectra.

Synthesis of ethyl 5-hydroxy-2-(1H-indol-3-yl)benzofuran-3-carboxylate (4a)


The compound was prepared according to general procedure-(D) using ethyl (E)-3-(1H-indol-3-yl)acrylate (0.03 g, 0.14 mmol, 1 eq.) **1a** and benzoquinone (0.03 g, 0.29 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.014 mmol, 10 mol%) at 40 °C to furnish ethyl 5-hydroxy-2-(1H-indol-3-yl)benzofuran-3-carboxylate. After 2 h, purification by column chromatography (15% ethyl acetate in hexane)

4a obtained as a light brown oily liquid (0.030 g, 69%), R_f (EtOAc/ hexane 1:3) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3617, 2315, 1687, 1524, 1238, 1191, 759, 714; ¹**H NMR** (500 MHz, DMSO- d_6); δ 11.98 (s, 1H), 9.34 (s, 1H), 8.86 (d, J = 2.5 Hz, 1H), 8.26 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 8.9 Hz, 2H), 7.37 (d, J = 1.9 Hz, 1H), 7.30 – 7.19 (m, 2H), 6.77 (dd, J = 8.6, 2.0 Hz, 1H),

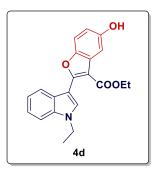
4.39 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 163.4, 159.7, 153.7, 146.0, 135.4, 130.8, 126.9, 124.8, 122.0, 120.8, 120.5, 112.0, 111.8, 110.5, 106.0, 104.2, 103.2, 59.4, 13.7.; HRMS (ESI): m/z: [M+H]⁺ Calcd for C₁₉H₁₅NO₄ 322.1074; found 322.1072.

Synthesis of ethyl 2-(1-benzyl-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4b)

The compound was prepared according to general procedure-(D) using ethyl (E)-3-(1-benzyl-1H-indol-3-yl)acrylate (0.03 g, 0.09 mmol, 1 eq.) **1j** and benzoquinone (0.021 g, 0.19 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.0032 g, 0.009 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(1-benzyl-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate. After 1.5 h, purification by column chromatography (18% ethyl acetate in hexane) obtained as a brown oily liquid **4b** (0.03 g, 85%),

 R_f (EtOAc/hexane 1:3) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹:, 3654, 2310, 1680, 1542, 1210, 1190, 1047, 759, 723; ¹H NMR (500 MHz, DMSO- d_6); δ 9.37 (s, 1H), 8.96 (s, 1H), 8.30 (dd, J = 12.0, 7.0 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.39 (d, J = 2.3 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.31 – 7.25 (m, 5H), 6.79 (dd, J = 8.7, 2.4 Hz, 1H), 5.61 (s, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C { ¹H} NMR (126 MHz, DMSO- d_6); δ 164.3, 159.9, 154.7, 147.1, 137.7, 136.3, 134.7, 129.1, 128.1, 127.8, 127.6, 126.5, 123.2, 122.2, 121.9, 113.1, 111.6, 107.0, 105.0, 104.6, 79.6, 60.5, 50.1, 14.7. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₆H₂₁NO₄412.1543; found 412.1543.

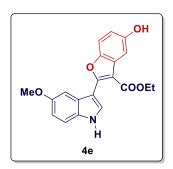

Synthesis of ethyl 2-(1-allyl-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4c)

The compound was prepared according to general procedure-(D) using ethyl (E)-3-(1-allyl-1H-indol-3-yl)acrylate (0.03 g, 0.11 mmol, 1 eq.) **1k** and benzoquinone (0.025 g, 0.23 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.0032 g, 0.011 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(1-allyl-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate **4c**. After 2.5 h, purification by column chromatography (20% ethyl acetate in hexane) obtained as a brown oily liquid (0.027 g,

75%), R_f (EtOAc/ hexane 1:3) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3625, 2340, 1650, 1620, 1510, 1241, 1122, 789, 724; ¹H NMR (500 MHz, DMSO- d_6); δ 8.85 (s, 1H), 8.45 – 8.38 (m, 1H), 7.48 (d, J = 2.6 Hz, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.39 – 7.36 (m, 1H), 7.32 – 7.29 (m, 2H), 6.81 (dd, J = 8.7, 2.6 Hz, 1H), 6.08 – 5.95 (m, 1H), 5.25 (dd, J = 10.3, 1.2 Hz, 1H), 5.16 (dd, J = 17.1, 1.1 Hz, 1H), 4.82 – 4.78 (m, 2H), 4.43 (q, J = 7.1 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 165.2, 161.2, 152.5, 148.1, 136.2, 134.3, 132.5, 128.2, 126.9, 122.9, 122.6, 121.6, 118.1, 112.2, 111.1, 110.3, 107.5, 105.6, 104.6, 60.4, 49.5, 14.5. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₂H₁₉NO₄ 362.1387; found 362.1385.

Synthesis of ethyl 2-(1-ethyl-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4d)

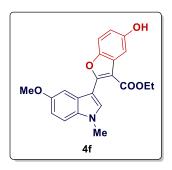

The compound was prepared according to general procedure-(D) using ethyl (E)-3-(1-ethyl-1H-indol-3-yl)acrylate (0.03 g, 0.12 mmol, 1 eq.) 1i and benzoquinone (0.026 g, 0.24 mmol, 2 eq.) 2 under catalytic quantity of Cu(OTf)₂ (0.0043 g, 0.012 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(1-ethyl-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate 4d. After 1.5 h, purification by column chromatography (20% ethyl acetate

in hexane) obtained as a brown oily liquid (0.029 g, 70%), R_f (EtOAc/ hexane 1:3) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹:, 3640, 2320, 1644, 1625, 1522, 1224, 1120, 778, 724; ¹H NMR (500 MHz, DMSO- d_6); δ 9.36 (s, 1H), 8.89 (s, 1H), 8.29 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.39 (d, J = 2.5 Hz, 1H), 7.34 – 7.25 (m, 2H), 6.78 (dd, J = 8.7, 2.5 Hz, 1H), 4.47 – 4.25 (m, 4H), 1.53 – 1.35 (m, 6H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 164.4, 160.2, 154.7, 147.0, 135.9, 133.8, 127.8, 126.4, 123.0, 122.2, 121.8, 113.0, 111.5, 111.1, 107.0,

104.5, 104.2, 60.4, 41.5, 15.6, 14.7. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₁H₁₉NO₄ 350.1387; found 350.1383.

Synthesis of ethyl 5-hydroxy-2-(5-methoxy-1H-indol-3-yl)benzofuran-3-carboxylate (4e)

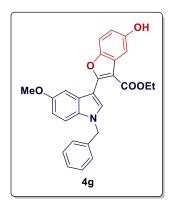


The compound was prepared according to general procedure-(D) using ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate (0.04 g, 0.16 mmol, 1 eq.) **1b** and benzoquinone (0.035 g, 0.32 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.016 mmol, 10 mol%) at 40 °C to furnish ethyl 5-hydroxy-2-(5-methoxy-1H-indol-3-yl)benzofuran-3-carboxylate **4e**. After 1.5 h, purification by column chromatography

(20% ethyl acetate in hexane) obtained as a brown oily liquid (0.033 g, 71%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3654, 2320, 1690, 1500, 1222, 1185, 795, 725; ¹H NMR (500 MHz, DMSO- d_6); δ 11.86 (s, 1H), 9.33 (s, 1H), 8.80 (d, J = 3.0 Hz, 1H), 7.73 (s, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.37 (d, J = 2.4 Hz, 1H), 6.92 (dd, J = 8.7, 2.4 Hz, 1H), 6.76 (dd, J = 8.7, 2.4 Hz, 1H), 4.38 (q, J = 7.0 Hz, 2H), 3.86 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 163.4, 159.8, 154.2, 153.7, 145.9, 131.2, 130.4, 126.9, 125.5, 112.4, 111.8, 111.6, 110.5, 106.0, 104.0, 103.1, 102.9, 59.4, 54.9, 13.7. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₀H₁₇NO₅ 352.1178; found 352.1179.

Synthesis of ethyl 5-hydroxy-2-(5-methoxy-1-methyl-1H-indol-3-yl)benzofuran-3-carboxylate (4f)


The compound was prepared according to general procedure-(D) using ethyl (E)-3-(5-methoxy-1-methyl-1H-indol-3-yl)acrylate (0.035 g, 0.13 mmol, 1 eq.) **11** and benzoquinone (0.029 g, 0.26 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 5-hydroxy-2-(5-methoxy-1-methyl-1H-indol-3-yl)benzofuran-3-carboxylate **4f**. After 1.5 h, purification by column

chromatography (20% ethyl acetate in hexane) obtained as a brown oily liquid (0.035 g, 79%), R_f (EtOAc/ hexane 2:3) = 0.5.

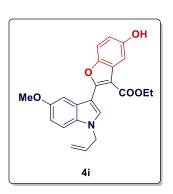
FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3658, 2320, 1650, 1502, 1272, 1187, 798, 725; ¹**H NMR** (500 MHz, DMSO- d_6); δ 9.35 (s, 1H), 8.77 (s, 1H), 7.74 (d, J = 2.3 Hz, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.48 (d,

J = 8.9 Hz, 1H), 7.37 (d, J = 2.4 Hz, 1H), 6.97 (dd, J = 8.8, 2.2 Hz, 1H), 6.77 (dd, J = 8.7, 2.5 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); 164.4, 160.4, 155.5, 154.7, 146.9, 135.7, 132.1, 127.8, 126.9, 112.8, 112.4, 111.8, 111.5, 107.0, 104.4, 103.9, 103.7, 60.4, 55.9, 33.8, 14.7. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₁H₁₉NO₅ 366.1336; found 366.1331.

Synthesis of ethyl 2-(1-benzyl-5-methoxy-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4g)

The compound was prepared according to general procedure-(D) using ethyl (E)-3-(1-benzyl-5-methoxy-1H-indol-3-yl)acrylate (0.035 g, 0.13 mmol, 1 eq.) **1n** and benzoquinone (0.029 g, 0.26 mmol, 2 eq.) **2** under catalytic quantity of $Cu(OTf)_2$ (0.004 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(1-benzyl-5-methoxy-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate **4g**. After 1.5 h, purification by column chromatography (20% ethyl acetate in hexane) obtained as a brown oily liquid (0.040 g, 87%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹:, 3655, 2320, 1690, 1540, 1210, 1150, 1182, 1044, 759, 724; ¹H NMR (500 MHz, DMSO- d_6); δ 8.82 (s, 1H), 7.82 (s, 1H), 7.42 (s, 1H), 7.28 (d, J = 8.6 Hz, 1H), 7.18 (t, J = 9.6 Hz, 3H), 7.08 (d, J = 8.6 Hz, 3H), 6.78 (dd, J = 20.2, 8.6 Hz, 2H), 6.63 (s, 1H), 5.27 (s, 2H), 4.31 (d, J = 7.0 Hz, 2H), 3.83 (s, 3H), 1.35 (t, J = 6.9 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); 165.1, 160.8, 155.4, 153.4, 149.8, 147.6, 136.5, 134.9, 131.4, 128.8, 128.0, 127.8, 127.6, 126.7, 116.1, 111.0, 110.7, 107.5, 105.4, 105.0, 104.6, 60.2, 55.9, 51.0, 14.4. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₇H₂₃NO₅ 442.1649; found 442.1645.


Synthesis of ethyl 5-hydroxy-2-(5-methoxy-1-(prop-2-yn-1-yl)-1H-indol-3-yl)benzofuran-3-carboxylate (4h)

The compound was prepared according to general procedure-(D) using ethyl (E)-3-(5-methoxy-1-(prop-2-yn-1-yl)-1H-indol-3-yl)acrylate (0.04 g, 0.14 mmol, 1 eq.) **10** and benzoquinone (0.035 g, 0.26 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 5-hydroxy-2-(5-methoxy-1-(prop-2-yn-1-yl)-1H-indol-3-yl)benzofuran-3-carboxylate **4h**. After 1.5 h, purification by column chromatography (25% ethyl acetate in hexane)

obtained as a brown oily liquid (0.030 g, 55%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3610, 2665, 2305, 1650, 1502, 1272, 1190, 803, 723; ¹H NMR (500 MHz, DMSO- d_6); δ 9.36 (s, 1H), 8.89 (s, 1H), 7.75 (s, 1H), 7.65 – 7.53 (m, 2H), 7.38 (s, 1H), 7.02 (d, J = 8.9 Hz, 1H), 6.78 (d, J = 8.7 Hz, 1H), 5.26 (s, 2H), 4.40 (q, J = 7.0 Hz, 2H), 3.88 (s, 3H), 3.55 (s, 1H), 1.43 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 164.3, 159.9, 155.7, 154.7, 147.0, 134.2, 131.1, 127.7, 127.1, 113.1, 112.7, 112.1, 111.6, 107.0, 104.8, 104.6, 104.4, 78.9, 76.9, 60.5, 55.9, 36.4, 14.7. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₃H₁₉NO₅ 390.1336; found 390.1331.

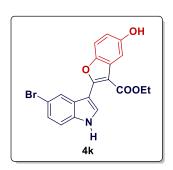
Synthesis of ethyl 2-(1-allyl-5-methoxy-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4i)

The compound was prepared according to general procedure-5(D) using ethyl (E)-3-(1-allyl-5-methoxy-1H-indol-3-yl)acrylate (0.03 g, 0.10 mmol, 1 eq.) **10** and benzoquinone (0.022 g, 0.21 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.003 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(1-allyl-5-methoxy-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate **4i**. After 1.5 h, purification by column chromatography (25% ethyl acetate in hexane) obtained as a

brown oily liquid (0.029 g, 71%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹:, 3633, 2620, 2334, 1620, 1510, 1270, 1180, 845, 789; ¹H NMR (500 MHz, DMSO- d_6); δ 9.36 (s, 1H), 8.80 (s, 1H), 7.75 (s, 1H), 7.53 (dd, J = 24.4, 8.6 Hz, 2H), 7.38 (s, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 6.18 – 5.88 (m, 1H), 5.20 (dd, J = 41.6, 13.5 Hz, 2H), 4.96 (s, 2H), 4.39 (d, J = 6.8 Hz, 2H), 3.87 (s, 3H), 1.42 (t, J = 6.6 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 164.4, 160.2, 155.5, 154.7, 146.9, 134.7, 134.1, 131.4, 127.8,

127.0, 118.0, 112.9, 112.6, 112.2, 111.6, 107.0, 104.5, 104.4, 104.0, 60.4, 55.9, 49.2, 14.7. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₃H₂₁NO₅ 392.1492; found 392.1486.

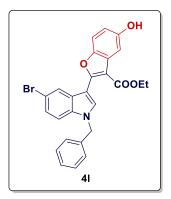

Synthesis of ethyl 2-(1-ethyl-5-methoxy-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4j)

The compound was prepared according to general procedure-(D) using ethyl (E)-3-(1-ethyl-5-methoxy-1H-indol-3-yl)acrylate (0.03 g, 0.10 mmol, 1 eq.) **1m** and benzoquinone (0.022 g, 0.21 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.012 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(1-ethyl-5-methoxy-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate **4j**. After 1.5 h, purification by column chromatography (25% ethyl acetate in hexane) obtained as a

brown oily liquid (0.028 g, 72%), R_f (EtOAc/ hexane 2:3) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3615, 2611, 2320, 1641, 1501, 1250, 1160, 855, 795; ¹H NMR (500 MHz, DMSO- d_6); δ 9.35 (s, 1H), 8.83 (s, 1H), 7.74 (d, J = 2.3 Hz, 1H), 7.54 (dd, J = 8.8, 2.7 Hz, 2H), 7.37 (d, J = 2.4 Hz, 1H), 6.96 (dd, J = 8.9, 2.4 Hz, 1H), 6.76 (dd, J = 8.7, 2.5 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 1.42 (q, J = 7.3 Hz, 6H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 164.4, 160.4, 155.5, 154.7, 146.9, 134.1, 131.1, 127.9, 127.1, 112.8, 112.4, 111.9, 111.5, 107.0, 104.5, 104.1, 103.8, 60.4, 55.9, 41.7, 15.7, 14.7. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₂H₂₁NO₅ 380.1492; found 380.1488.

Synthesis of ethyl 2-(5-bromo-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4k)


The compound was prepared according to general procedure-(D) using ethyl (E)-3-(5-bromo-1H-indol-3-yl)acrylate (0.03 g, 0.10 mmol, 1 eq.) **1e** and benzoquinone (0.022 g, 0.21 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.003 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(5-bromo-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate **4k**. After 1.5 h, purification by column chromatography

(25% ethyl acetate in hexane) obtained as a brown oily liquid (0.024 g, 64%), R_f (EtOAc/ hexane 2:1) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3640, 2623, 2310, 1620, 1520, 1230, 1136, 890, 789; ¹**H NMR** (500 MHz, DMSO- d_6); δ 12.17 (s, 1H), 9.37 (s, 1H), 8.86 (s, 1H), 8.34 (s, 1H), 7.55 (dd, J = 23.7, 8.4

Hz, 2H), 7.38 (d, J = 11.7 Hz, 2H), 6.78 (d, J = 8.6 Hz, 1H), 4.39 (q, 2H), 1.41 (t, J = 6.4 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 164.3, 159.7, 154.8, 147.0, 135.2, 132.9, 127.7, 127.4, 125.6, 123.7, 114.8, 114.2, 113.2, 111.7, 107.0, 104.9, 104.8, 60.5, 14.7. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₁₉H₁₄BrNO₄ 400.0179; found 400.0174.

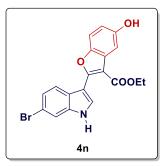
Synthesis of ethyl 2-(1-benzyl-5-bromo-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (41)

The compound was prepared according to general procedure-(D) using ethyl (E)-3-(1-benzyl-5-bromo-1H-indol-3-yl)acrylate (0.03 g, 0.08 mmol, 1 eq.) **1p** and benzoquinone (0.017 g, 0.14 mmol, 2 eq.) 2 under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(1-benzyl-5-bromo-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate **4l**. After 1.5 h, purification by column chromatography (25% ethyl acetate in hexane) obtained as a

brown oily liquid (0.027 g, 78%), R_f (EtOAc/ hexane 2:1) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3650, 2611, 2312, 1678, 1654, 1520, 1250, 1178, 877, 752; ¹H NMR (500 MHz, DMSO- d_6); δ 9.39 (s, 1H), 8.95 (s, 1H), 8.36 (d, J = 1.8 Hz, 1H), 7.62 – 7.55 (m, 8.8 Hz, 2H), 7.41 (dd, J = 8.7, 1.8 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.37 – 7.26 (m, 5H), 6.80 (dd, J = 8.8, 2.5 Hz, 1H), 5.61 (s, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 164.2, 158.9, 154.8, 147.1, 137.4, 135.7, 135.1, 129.2, 128.2, 128.0, 127.6, 127.5, 125.8, 124.1, 114.7, 113.7, 113.4, 111.8, 107.0, 105.2, 104.6, 60.6, 50.2, 14.6. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₆H₂₀BrNO₄ 490.0648; found 490.0642.

Synthesis of ethyl 5-hydroxy-2-(2-methyl-1H-indol-3-yl)benzofuran-3-carboxylate (4m)



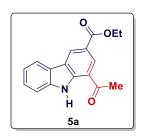
The compound was prepared according to general procedure-5(D) using ethyl (E)-3-(2-methyl-1H-indol-3-yl)acrylate (0.03 g, 0.13 mmol, 1 eq.) **1g** and benzoquinone (0.029 g, 0.26 mmol, 2 eq.) 2 under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 5-hydroxy-2-(2-methyl-1H-indol-3-yl)benzofuran-3-carboxylate **4m**. After 1.5 h, purification by column chromatography

(25% ethyl acetate in hexane) obtained as a brown oily liquid (0.029 g, 73%), R_f (EtOAc/ hexane 1:3) = 0.5.

FT-IR (neat): v_{max} /cm⁻¹:, 3565, 2603, 2210, 1522, 1501, 1220, 1122, 854, 774; ¹H NMR (500 MHz, DMSO- d_6); δ 11.71 (s, 1H), 9.41 (s, 1H), 7.51 – 7.46 (m, 2H), 7.45 – 7.41 (m, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.84 (dd, J = 8.7, 2.5 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 2.46 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C { ¹H} NMR (126 MHz, DMSO- d_6); δ 163.7, 159.2, 154.6, 147.9, 139.2, 135.5, 127.9, 127.4, 121.7, 120.4, 119.4, 116.1, 113.5, 111.7, 108.0, 106.6, 102.8, 60.2, 14.5, 13.7. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₂₀H₁₇NO₄ 336.1230; found 336.1226.

Synthesis of ethyl 2-(5-bromo-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate (4n)

The compound was prepared according to general procedure-(D), using ethyl (E)-3-(6-bromo-1H-indol-3-yl)acrylate (0.03 g, 0.10 mmol, 1 eq.) **1f** and benzoquinone (0.022 g, 0.21 mmol, 2 eq.) **2** under catalytic quantity of Cu(OTf)₂ (0.003 g, 0.013 mmol, 10 mol%) at 40 °C to furnish ethyl 2-(6-bromo-1H-indol-3-yl)-5-hydroxybenzofuran-3-carboxylate **4n**. After 1.5 h, purification by column chromatography

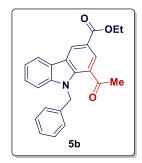

(25% ethyl acetate in hexane) obtained as a brown oily liquid (0.017 g, 42%), R_f (EtOAc/ hexane 3:2) = 0.5.

FT-IR (neat): $v_{\text{max}}/\text{cm}^{-1}$:, 3654, 2345, 1650, 1524, 1233, 1110, 789, 754; ¹H NMR (500 MHz, DMSO- d_6); δ 12.10 (s, 1H), 9.38 (s, 1H), 8.85 (s, 1H), 8.19 (d, J = 8.6 Hz, 1H), 7.76 (s, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.37 (d, J = 7.4 Hz, 2H), 6.79 (d, J = 8.6 Hz, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 164.3, 159.8, 154.7, 147.0, 137.3, 132.5, 127.7, 124.8, 124.3, 123.5, 115.6, 115.4, 113.2, 111.6, 107.0, 105.4, 104.8, 60.5, 14.7. HRMS (ESI): m/z: [M+H]⁺ Calcd for C₁₉H₁₄BrNO₄ 400.0179; found 400.0175.

E- Synthesis and characterization of carbazoles (scheme 3):

To the magnetically stirred solution of indole ester (1.0 equiv) in THF, 2 equivalents of vinyl ketone derivatives were added at room temperature, under catalytic quantity of Cu(OTf)₂. Then the reaction mixture is allowed to stir at 40 °C till completion of reaction (monitored by TLC). After completion reaction was quenched by adding water, further the organic layer was then washed with brine and dried over Na₂SO₄. Finally, reaction mixture was concentrated under vacuum and crude residue was purified by column chromatography (10-50% ethyl acetate in hexane) to obtain the corresponding product.

Synthesis of ethyl 1-acetyl-9H-carbazole-3-carboxylate (5a)



The compound was prepared according to general procedure-(E) using ethyl (E)-3-(1H-indol-3-yl)acrylate (0.03 g, 0.14 mmol, 1 eq.) **1a** and methyl vinyl ketone (0.03 g, 0.29 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.014 mmol, 10 mol%) at 40 °C to furnish ethyl 5-hydroxy-2-(1H-indol-3-yl)benzofuran-3-carboxylate. After 4 h,

purification by column chromatography (15% ethyl acetate in hexane) obtained as a white solid (0.029 g, 80%), R_f (EtOAc/ hexane 1:3) = 0.5.

mp: 111–113 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3416, 2854, 2364, 2319, 1654, 1524, 1061, 1003, 831, 775; ¹**H NMR** (500 MHz, CDCl₃); δ 10.71 (s, 1H), 8.93 (s, 1H), 8.66 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.50 – 7.46 (m, 1H), 7.37 – 7.28 (m, 1H), 4.46 (q, 2H), 2.78 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H). ¹³**C** { ¹**H**} **NMR** (126 MHz, CDCl₃); δ 200.2, 166.7, 141.5, 140.5, 129.7, 127.4, 127.3, 125.0, 122.3, 121.1, 120.7 (X 2C), 118.7, 111.7, 61.2, 26.8, 14.5. **HRMS** (ESI): m/z: [M+H] + Calcd for C₁₇H₁₅NO₃ 282.1125; found 282.1124.

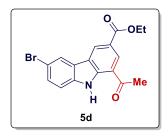
Synthesis of ethyl 1-acetyl-9-benzyl-9H-carbazole-3-carboxylate (5b)

The compound was prepared according to general procedure-(E) using ethyl (E)-3-(1-benzyl-1H-indol-3-yl)acrylate (0.04 g, 0.13 mmol, 1 eq.) **1j** and methyl vinyl ketone (0.023 g, 0.32 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.006 g, 0.02 mmol, 10 mol%) at 40 °C to furnish ethyl 1-acetyl-9-benzyl-9H-carbazole-3-carboxylate **5b**. After 2.5 h, purification by column chromatography (20% ethyl acetate in hexane)

obtained as a white solid (0.036 g, 75%), R_f (EtOAc/ hexane 1:3) = 0.4.

mp: 125–127 °C, **FT-IR** (neat): v_{max} /cm⁻¹: 3422, 2977, 2368, 2323, 1745, 1701, 1522, 1138, 1045, 956, 851; 635; ¹**H NMR** (500 MHz, CDCl₃); δ 8.98 (s, 1H), 8.30 (s, 1H), 8.25 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 3.4 Hz, 2H), 7.45 – 7.38 (m, 1H), 7.22 – 7.14 (m, 3H), 6.81 – 6.72 (m, 2H), 5.70 (s, 2H), 4.48 (q, J = 7.1 Hz, 2H), 2.26 (s, 3H), 1.48 (t, J = 7.1 Hz, 3H). ¹³**C** { ¹**H**} **NMR** (126 MHz, CDCl₃); δ 200.5, 166.5, 143.0, 138.5, 136.3, 128.6, 127.4, 127.3, 127.3, 126.7, 125.8, 125.5, 125.1, 122.5, 121.0, 120.5 (X 2C), 109.9, 61.0, 48.4, 28.9, 14.5. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₄H₂₁NO₃ 372.1594; found 372.1594.

Synthesis of ethyl 1-acetyl-6-methoxy-9H-carbazole-3-carboxylate (5c)

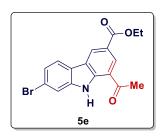


The compound was prepared according to general procedure-(E) using ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylateacrylate (0.04 g, 0.20 mmol, 1 eq.) **1b** and methyl vinyl ketone (0.028 g, 0.407 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.008 g, 0.02 mmol, 10 mol%) at 40 °C to furnish ethyl 1-acetyl-6-methoxy-9H-carbazole-3-carboxylate **5c**. After 2.5 h, purification by column chromatography

(20% ethyl acetate in hexane) obtained as a golden yellow solid (0.035 g, 69%), R_f (EtOAc/ hexane 2:3) = 0.5.

mp: 118–120 °C, **FT-IR** (neat): v_{max} /cm⁻¹: 3412, 2860, 2354, 2317, 1749, 1652, 1008, 854, 779; ¹**H NMR** (500 MHz, CDCl₃); δ 10.53 (s, 1H), 8.81 (s, 1H), 8.57 (s, 1H), 7.50 (s, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.06 (dd, J = 8.8, 2.4 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 2.71 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃); δ 200.0, 166.6, 154.9, 141.8, 135.1, 129.6, 127.3, 124.9, 122.8, 120.1, 118.6, 116.5, 112.4, 103.2, 61.1, 55.9, 26.7, 14.5. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₁₇H₁₈NO₄ 312.1230; found 312.1209.

Synthesis of ethyl 1-acetyl-6-bromo-9H-carbazole-3-carboxylate (5d)



The compound was prepared according to general procedure-(E) using ethyl (E)-3-(5-bromo-1H-indol-3-yl)acrylate (0.03 g, 0.10 mmol, 1 eq.) **1e** and methyl vinyl ketone (0.014 g, 0.204 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-acetyl-6-bromo-9H-carbazole-3-carboxylate **5d**.

After 2.5 h, purification by column chromatography (20% ethyl acetate in hexane) obtained as a pale yellow solid (0.023 g, 66%), R_f (EtOAc/ hexane 2:3) = 0.4.

mp: 130–132 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3449, 2975, 2362, 2319, 1701, 1524, 1345, 1047, 798; **¹H NMR** (500 MHz, CDCl₃); δ 10.68 (s, 1H), 8.84 (s, 1H), 8.63 (d, J = 1.2 Hz, 1H), 8.18 (d, J = 1.3 Hz, 1H), 7.52 (dd, J = 8.6, 1.8 Hz, 1H), 7.36 (d, J = 8.6 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.74 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). (1³C {¹H} NMR (126 MHz, CDCl₃); δ 200.1, 166.3, 141.6, 139.0, 130.2, 130.0, 127.6, 124.0, 123.9, 123.5, 121.2, 118.9, 113.9, 113.1, 61.2, 26.8, 14.5. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₁₇H₁₄BrNO₃ 360.0230; found 360.0223.

Synthesis of ethyl 1-acetyl-7-bromo-9H-carbazole-3-carboxylate (5e)

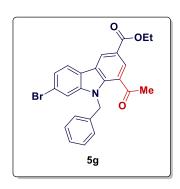
The compound was prepared according to general procedure-(E) using ethyl (E)-3-(6-bromo-1H-indol-3-yl)acrylate (0.03 g, 0.10 mmol, 1 eq.) **1f** and methyl vinyl ketone (0.014 g, 0.204 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-acetyl-7-bromo-9H-carbazole-3-carboxylate **5e**. After

2.5 h, purification by column chromatography (20% ethyl acetate in hexane) obtained as a yellow solid (0.024 g, 69%). R_f (EtOAc/ hexane 2:3) = 0.3.

mp: 135–137 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3389, 2988, 2267, 2317, 1720, 1547, 1104, 770; **NMR** (500 MHz, CDCl₃); δ 10.73 (s, 1H), 8.92 (s, 1H), 8.70 (s, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.71 (s,

1H), 7.46 (dd, J = 8.3, 1.1 Hz, 1H), 4.51 (q, J = 7.1 Hz, 2H), 2.82 (s, 3H), 1.51 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃); δ 200.1, 166.4, 141.4, 141.2, 129.8, 127.3, 124.3, 124.3, 121.8, 121.3, 121.1, 120.7, 118.9, 114.7, 61.2, 26.8, 14.5. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₁₇H₁₄BrNO₃ 360.0230; found 360.0220.

Synthesis of ethyl 1-acetyl-9-benzyl-7-bromo-9H-carbazole-3-carboxylate (5f)

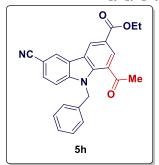


The compound was prepared according to general procedure-(E) using ethyl (E)-3-(1-benzyl-5-bromo-1H-indol-3-yl)acrylate (0.04 g, 0.10 mmol, 1 eq.) **1p** and methyl vinyl ketone (0.014 g, 0.207 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-acetyl-9-benzyl-7-bromo-9H-carbazole-3-

carboxylate **5f**. After 2.5 h, purification by column chromatography (20% ethyl acetate in hexane) obtained as a creamy white solid (0.035 g, 72%), R_f (EtOAc/hexane 2:3) = 0.4.

mp: 140–142 °C, **FT-IR** (neat): v_{max} /cm⁻¹: 3452, 2988, 2854, 2362, 1745, 1701, 1522, 1339,1148, 1047, 998, 683; ¹**H NMR** (500 MHz, CDCl₃); δ 8.82 (s, 1H), 8.23 (d, J = 19.0 Hz, 2H), 7.55 (dd, J = 8.7, 1.7 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.13 – 7.05 (m, 3H), 6.68 – 6.60 (m, 2H), 5.55 (s, 2H), 4.37 (q, J = 7.1 Hz, 2H), 2.16 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³**C** {¹**H**} **NMR** (126 MHz, CDCl₃); δ 200.3, 166.2, 141.6, 138.7, 135.9, 130.0, 128.7, 128.0, 127.5, 126.6, 125.8, 125.3, 124.7, 124.2, 123.2, 121.0, 113.9, 111.4, 61.2, 48.6, 28.9, 14.5. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₄H₂₀BrNO₃ 450.0699; found 450.0693.

Synthesis of ethyl 1-acetyl-9-benzyl-7-bromo-9H-carbazole-3-carboxylate (5g)


The compound was prepared according to general procedure-5(D) using ethyl (E)-3-(1-benzyl-6-bromo-1H-indol-3-yl)acrylate (0.04 g, 0.10 mmol, 1 eq.) **1q** and methyl vinyl ketone (0.014 g, 0.207 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-acetyl-9-benzyl-7-bromo-9H-carbazole-3-carboxylate **5g**. After 2.5 h, purification by column chromatography (20% ethyl acetate in hexane) obtained as a creamy

white solid (0.036 g, 74%), R_f (EtOAc/ hexane 2:3) = 0.4.

mp: 145–147 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3485, 2970, 2754, 2250, 1720, 1532, 1236, 1099, 759; **¹H NMR** (500 MHz, CDCl₃); δ 8.93 (s, 1H), 8.30 (s, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.73 (s, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.24 – 7.14 (m, 3H), 6.78 – 6.70 (m, 2H), 5.63 (s, 2H), 4.47 (q, J = 7.1 Hz, 2H), 2.23 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃); δ 200.3, 166.3, 143.8, 138.6, 135.7, 128.7, 127.5, 126.6, 125.9, 125.2, 125.0, 124.3, 121.6, 121.1, 121.0, 116.0, 114.8, 113.1, 61.2, 48.5, 28.9, 14.4. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₄H₂₀BrNO₃ 450.0699; found 450.0697.

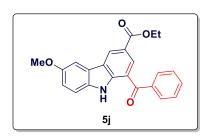
Synthesis of ethyl 1-acetyl-9-benzyl-8-bromo-9H-carbazole-3-carboxylate (5h)

Chemical Formula: C₂₅H₂₀N₂O₃

The compound was prepared according to general procedure-(E) using ethyl (E)-3-(1-benzyl-6-cyano-1H-indol-3-yl)acrylate (0.04 g, 0.10 mmol, 1 eq.) **1r** and methyl vinyl ketone (0.014 g, 0.207 mmol, 2 eq.) **5** under catalytic quantity of Cu(OTf)₂ (0.004 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-acetyl-9-benzyl-7-cyano-9H-carbazole-3-carboxylate **5h**. After 2.5 h, purification by column chromatography (20% ethyl acetate in hexane) obtained as a light brown solid (0.022 g,

54%), R_f (EtOAc/ hexane 3:1) = 0.5.

mp: 155–157 °C, **FT-IR** (neat): v_{max} /cm⁻¹: 3459, 3034, 2989, 2450, 1720, 1566, 1365, 1215, 1054, 789; ¹**H NMR** (500 MHz, CDCl₃); δ 8.88 (s, 1H), 8.46 (s, 1H), 8.25 (d, J = 1.5 Hz, 1H), 7.72 (dd, J = 8.6, 1.4 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.13 – 7.10 (m, 3H), 6.81 – 6.42 (m, 2H), 5.61 (s, 2H), 4.39 (q, J = 7.1 Hz, 2H), 2.15 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). ¹³**C** { ¹**H**} **NMR** (126 MHz, CDCl₃); δ 199.1, 164.9, 143.6, 138.1, 134.2, 129.3, 127.8, 127.4, 126.7, 125.6 (X2C), 125.3, 124.3, 123.6, 121.7, 121.0, 118.6, 109.7, 103.1, 60.3, 47.7, 27.8, 13.4. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₅H₂₀BrN₂O₃ 397.1547; found 397.1544.

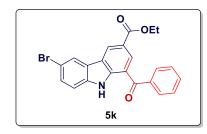

Synthesis of ethyl 1-benzoyl-9H-carbazole-3-carboxylate (5i)

The compound was prepared according to general procedure-(E) using ethyl (E)-3-(1H-indol-3-yl)acrylate (0.03 g, 0.14 mmol, 1 eq.) **1a** and phenyl vinyl ketone (0.037 g, 0.28 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.006 g, 0.002 mmol, 10 mol%) at 40 °C to furnish ethyl 1-benzoyl-9H-carbazole-3-carboxylate

5i. After 5 h, purification by column chromatography (5% ethyl acetate in hexane) obtained as a white solid (0.036 g, 74%), R_f (EtOAc/ hexane 1:9) = 0.5.

mp: 140–142 °C, **FT-IR** (neat): v_{max} /cm⁻¹: 3378, 3033, 2878, 2545, 1725, 1680, 1355, 1210, 1154, 755; ¹**H NMR** (500 MHz, CDCl₃ + DMSO- d_6); δ 10.72 (s, 1H), 9.00 (s, 1H), 8.56 (s, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 8.5 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.60 – 7.51 (m, 4H), 7.36 (t, J = 7.4 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³**C** { ¹**H**} **NMR** (126 MHz, CDCl₃ + DMSO- d_6); δ 197.7, 166.7, 142.7, 140.5, 138.5, 132.4, 132.1, 129.6, 128.6, 127.4, 127.3, 125.2, 122.5, 121.2, 120.8, 120.7, 118.0, 111.8, 61.2, 14.5. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₂H₁₇NO₃ 344.1281; found 344.1264.

Synthesis of ethyl 1-benzoyl-6-methoxy-9H-carbazole-3-carboxylate (5j)

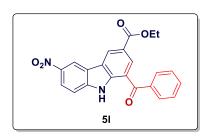


The compound was prepared according to general procedure-(E) using (E)-3-(5-methoxy-1H-indol-3-yl)acrylate (0.04 g, 0.16 mmol, 1 eq.) **1b** and phenyl vinyl ketone (0.043 g, 0.33 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.006 g, 0.002 mmol, 10 mol%) at 40 °C to furnish ethyl 1-benzoyl-6-methoxy-9H-

carbazole-3-carboxylate (5j). After 5 h, purification by column chromatography (5% ethyl acetate in hexane) obtained as a light-yellow solid (0.036 g, 60%), R_f (EtOAc/ hexane 1:9) = 0.5.

mp: 150–152 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3375, 3133, 2860, 2555, 1730, 1650, 1320, 1220, 755; ¹**H NMR** (500 MHz, CDCl₃₊ DMSO- d_6); δ 10.72 (s, 1H), 8.88 (s, 1H), 8.44 (s, 1H), 7.74 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 2.1 Hz, 2H), 7.51 – 7.42 (m, 3H), 7.08 (d, J = 8.7, 2.2 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³**C** { ¹**H**} **NMR** (126 MHz, CDCl₃₊ DMSO- d_6); δ 197.2, 166.5, 154.9, 142.8, 138.4, 135.2, 132.1, 131.8, 129.3, 128.4, 127.1, 124.9, 122.9, 119.9, 117.9, 116.5, 112.6, 103.1, 60.9, 55.9, 14.4. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₃H₂₀NO₄ 374.1387; found 374.1371.

Synthesis of ethyl 1-benzoyl-6-bromo-9H-carbazole-3-carboxylate (5k)

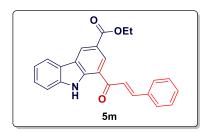


The compound was prepared according to general procedure-(E) using (E)-3-(1-benzyl-5-bromo-1H-indol-3-yl)acrylate (0.04 g, 0.14 mmol, 1 eq.) **1p** and phenyl vinyl ketone (0.036 g, 0.28 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.005 g, 0.015 mmol, 10 mol%) at 40 °C to furnish ethyl 1-benzoyl-6-bromo-

9H-carbazole-3-carboxylate (5k). After 5 h, purification by column chromatography (5% ethyl acetate in hexane) obtained as yellow solid (0.039 g, 67%), R_f (EtOAc/ hexane 1:7) = 0.5.

mp: 155–157 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3360, 3033, 2875, 1720, 1650, 1315, 1120, 733; ¹**H NMR** (500 MHz, DMSO- d_6); δ 12.26 (s, 1H), 9.08 (s, 1H), 8.56 (d, J = 2.0 Hz, 1H), 8.30 (s, 1H), 7.80 (d, J = 7.5 Hz, 2H), 7.75 – 7.67 (m, 2H), 7.64 – 7.55 (m, 3H), 4.33 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C** { ¹**H**} **NMR** (126 MHz, DMSO- d_6); δ 195.3, 165.4, 141.2, 139.8, 137.8, 132.1, 131.3, 129.3, 129.1, 128.4, 127.1, 123.5, 123.2, 119.7, 118.5, 114.5, 112.7, 60.5, 39.5, 14.1. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₂H₁₇BrNO₃ 422.0387; found 422.0366.

Synthesis of ethyl 1-benzoyl-6-nitro-9H-carbazole-3-carboxylate (51)

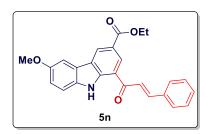

The compound was prepared according to general procedure-(E) using ethyl (E)-3-(5-nitro-1H-indol-3-yl)acrylate (0.04 g, 0.15 mmol, 1 eq.) **1c** and phenyl vinyl ketone (0.04 g, 0.30 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.006 g, 0.015 mmol, 10 mol%) at 40 °C to furnish ethyl 1-benzoyl-6-nitro-9H-

carbazole-3-carboxylate (51). After 5 h, purification by column chromatography (5% ethyl acetate in hexane) obtained as yellow solid (0.034 g, 57%), R_f (EtOAc/ hexane 1:5) = 0.5.

mp: 160–162 °C, **FT-IR** (neat): v_{max} /cm⁻¹: 3350, 3152, 2855, 1720, 1610, 1330, 1120, 724; ¹**H NMR** (500 MHz, DMSO- d_6); δ 12.65 (s, 1H), 9.24 (s, 1H), 8.35 (d, J = 9.0 Hz, 1H), 8.29 (s, 1H), 7.87 – 7.80 (m, 3H), 7.73 (d, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 2H), 4.34 (q, J = 7.0 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H). ¹³**C** { ¹**H**} **NMR** (126 MHz, DMSO- d_6); δ 195.1, 165.3, 144.6, 142.2, 141.3, 137.6, 132.5, 131.7, 129.3, 128.6, 127.8, 124.4, 122.3, 121.5, 120.9,

119.4, 118.1, 112.9, 60.8, 14.2. **HRMS** (ESI): m/z: $[M+H]^+$ Calcd for $C_{22}H_{17}N_2O_5$ 389.1132; found 389.1114.

Synthesis of ethyl 1-cinnamoyl-9H-carbazole-3-carboxylate (5m)

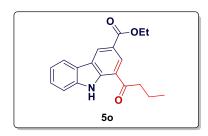


The compound was prepared according to general procedure-(E) using ethyl (E)-3-(1H-indol-3-yl)acrylate (0.04 g, 0.18 mmol, 1 eq.) **1a** and (E)-1-phenylpenta-1,4-dien-3-one (0.05 g, 0.36 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.006 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-cinnamoyl-9H-

carbazole-3-carboxylate (5m). After 8 h, purification by column chromatography (5% ethyl acetate in hexane) obtained as white solid (0.050 g, 75%), R_f (EtOAc/ hexane 1:5) = 0.5.

mp: 180–182 °C, **FT-IR** (neat): v_{max} /cm⁻¹: 3360, 3140, 2840, 1730, 1620, 1320, 1110, 750; ¹**H NMR** (500 MHz, CDCl₃); δ 10.97 (s, 1H), 8.97 (s, 1H), 8.86 (s, 1H), 8.15 (d, J = 7.8 Hz, 1H), 8.02 – 7.83 (m, 2H), 7.79 – 7.68 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.48 – 7.44 (m, 3H), 7.34 (t, J = 7.3 Hz, 1H), 4.37 (q, 2H), 1.51 (t, J = 7.1 Hz, 3H). ¹³**C** {¹**H**} **NMR** (126 MHz, CDCl₃); δ 190.3, 166.8, 144.7, 142.4, 140.5, 134.9, 130.8, 129.1, 128.8, 127.4, 127.4, 125.1, 122.5, (121.1X2C), 120.8, 120.8, (119.3X2C), 111.9, 61.3, 14.6. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₄H₂₀NO₃ 370.1438; found 370.1422.

Synthesis of ethyl 1-cinnamoyl-6-methoxy-9H-carbazole-3-carboxylate (5n)



The compound was prepared according to general procedure-(E) using ethyl (E)-3-(5-methoxy-1H-indol-3-yl)acrylate (0.04 g, 0.16 mmol, 1 eq.) **1b** and (E)-1-phenylpenta-1,4-dien-3-one (0.052 g, 0.33 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.006 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-

cinnamoyl-6-methoxy-9H-carbazole-3-carboxylate (5n). After 8 h, purification by column chromatography (5% ethyl acetate in hexane) obtained as white solid (0.046 g, 72%), R_f (EtOAc/hexane 1:5) = 0.5.

mp: 185–187 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3350, 3120, 2850, 1720, 1610, 1310, 1150, 755; ¹**H NMR** (500 MHz, CDCl₃); δ 10.77 (s, 1H), 8.82 (s, 1H), 8.73 (s, 1H), 7.90 – 7.73 (m, 2H), 7.65 (d, J = 6.5 Hz, 2H), 7.51 (s, 1H), 7.42 – 7.33 (m, 4H), 7.06 (d, J = 8.7 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H). ¹³**C** {¹**H**} **NMR** (126 MHz, CDCl₃); δ 190.0, 166.7, 155.0, 144.4, 142.7, 135.1, 134.8, 130.6, 129.0, 128.6, 127.3, 127.2, 124.9, 122.9, 120.7, 120.2, 119.1, 116.5, 112.5, 103.2, 103.2, 61.1, 14.6. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₂₅H₂₂NO₄ 400.1543; found 400.1525.

Synthesis of ethyl 1-butyryl-9H-carbazole-3-carboxylate (50)

The compound was prepared according to general procedure-(E) using ethyl (E)-3-(1H-indol-3-yl)acrylate (0.03 g, 0.14 mmol, 1 eq.) **1a** and hex-1-en-3-one (0.028 g, 0.28 mmol, 2 eq.) under catalytic quantity of Cu(OTf)₂ (0.006 g, 0.01 mmol, 10 mol%) at 40 °C to furnish ethyl 1-butyryl-9H-carbazole-3-carboxylate

(50). After 8 h, purification by column chromatography (2% ethyl acetate in hexane) obtained as creamy white solid (0.02 g, 48%), R_f (EtOAc/ hexane 1:7) = 0.3.

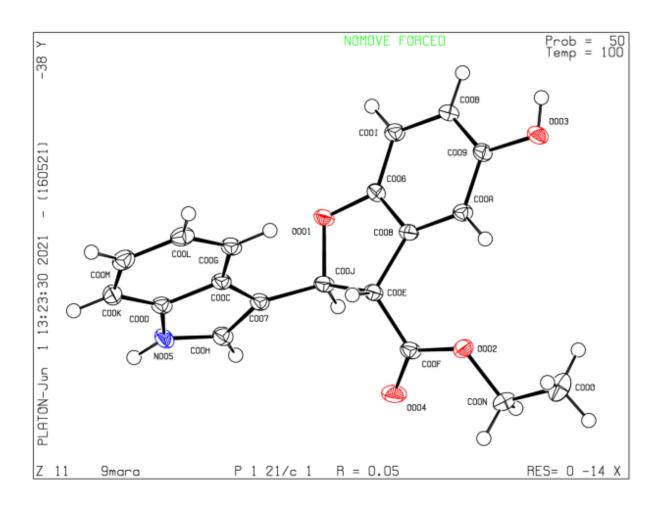
mp: 166–168 °C, **FT-IR** (neat): $v_{\text{max}}/\text{cm}^{-1}$: 3430, 2840, 1720, 1605, 1310, 755; ¹**H NMR** (500 MHz, CDCl₃ +DMSO- d_6); δ 10.82 (s, 1H), 8.97 (s, 1H), 8.73 (s, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.63 – 7.46 (m, 2H), 7.34 (t, J = 7.3 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 3.18 (q, J = 7.3 Hz, 2H), 1.88 (q, J = 14.7, 7.3 Hz, 2H), 1.49 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.4 Hz, 3H). ¹³**C** {¹**H**} **NMR** (126 MHz, CDCl₃ + DMSO- d_6); δ 202.6, 166.8, 141.8, 140.6, 129.0, 127.3, 127.3, 125.1, 122.4, 121.1, 120.8, (118.6X2C), 111.8, 61.2, 40.4, 18.1, 14.6, 14.0. **HRMS** (ESI): m/z: [M+H]⁺ Calcd for C₁₉H₂₀NO₃ 310.1438; found 310.1422.

F- Selected control experiments:

Iodine mediated conversion of 3a to 4a

To the magnetically stirred solution of ethyl-5-hydroxy-2-(1H-indol-3-yl)-2,3-dihydrobenzofuran-3-carboxylate $\bf 3a$ (0.04 g, 0.13 mmol, 1 eq.) in ACN, 10 mol% of iodine was added at room temperature. Then the reaction mixture is allowed to stir at 40 °C till completion of reaction (monitored by TLC). After completion (3h), reaction was quenched by adding water, further the organic layer was then washed with brine and dried over Na₂SO₄. Purification by column chromatography (15% ethyl acetate in hexane) $\bf 4a$ obtained as a light brown oily liquid (0.030 g, 69%), $\bf R_f$ (EtOAc/ hexane 1:3) = 0.5.

The obtained product was identified by TLC analysis, followed by spectroscopic data: ¹H NMR (500 MHz, DMSO- d_6); δ 11.98 (s, 1H), 9.34 (s, 1H), 8.86 (d, J = 2.5 Hz, 1H), 8.26 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 8.9 Hz, 2H), 7.37 (d, J = 1.9 Hz, 1H), 7.30 – 7.19 (m, 2H), 6.77 (dd, J = 8.6, 2.0 Hz, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, DMSO- d_6); δ 163.4, 159.7, 153.7, 146.0, 135.4, 130.8, 126.9, 124.8, 122.0, 120.8, 120.5, 112.0, 111.8, 110.5, 106.0, 104.2, 103.2, 59.4, 13.7.; HRMS (ESI): m/z: [M+H]⁺ Calcd for C₁₉H₁₅NO₄ 322.1074; found 322.1072.


Self-dimerization in absence of electrophilic partner:

To the magnetically stirred solution of indole-3-acrylates 1a (0.04 g, 0.18 mmol, 1 eq.) in THF, 10 mol% of Cu(OTf)₂ (0.006 g, 0.018 mmol) was added at room temperature. Then the reaction mixture is allowed to stir at 40 °C till completion of reaction (monitored by TLC). After completion (6h), reaction was quenched by adding water, further the organic layer was then washed with brine and dried over Na₂SO₄. Purification by column chromatography (15% ethyl acetate in hexane) 6 obtained as a light-yellow oily liquid (0.062 g, 78%), R_f (EtOAc/ hexane 1:3) = 0.5. The obtained product was identified by 1 H, 13 C-NMR, DEPT, IR, HRMS data and X-ray analysis.

FT-IR (neat): v_{max} /cm⁻¹: 3327, 3215, 1654, 1547, 1477, 1200, 1140, 760; ¹H NMR (500 MHz, CDCl₃ +DMSO- d_6);δ 8.74 (s, 1H), 8.24 (s, 1H), 7.82 (s, 1H), 7.77 – 7.63 (m, 2H), 7.53 – 7.42 (m, 1H), 7.35 (s, 1H), 7.32 – 7.14 (m, 5H), 4.31 – 4.18 (m, 4H), 3.51 (d, J = 15.4 Hz, 1H), 2.54 (t, J = 12.4 Hz, 1H), 1.31 – 1.19 (m, 6H). ¹³C {¹H} NMR (126 MHz, CDCl₃ DMSO- d_6); δ 173.0, 164.7, 144.9, 141.0, 139.6, 135.9, 132.3, 127.8, 127.7, 126.3, 123.7, 122.7, 122.6, 120.7, 120.4, 120.3, 120.0, 112.1, 111.8, 108.5, 60.6, 59.9, 42.2, 36.3, 14.3, 14.2.; HRMS (ESI) (m/z): Calcd for C₂₆H₂₄N₂O₄ [M + H]⁺ 431.1965; found 431.1940.

X-ray Crystallographic data:

The crystal was prepared by slow evaporation of the 3a in the solution of ethanol.

X-ray crystallographic ortep diagram of compound 3a

Table 1: Crystal data and structure refinement for 3a

Emperical formula	C19 H17 N O4
Formula weight	323.33
Crystal color, habit	colorless, block
<i>T</i> / K	100(2)
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a/Å	16.790(2)
b/Å	9.1114(12)

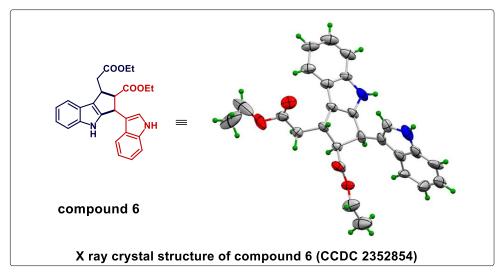
c/Å	10.3491(13)
$lpha/^{ m o}$	90.0
β/°	104.207(5)
γ/°	90.0
V/ų	1534.8(3)
Z	4
$D_{\rm c}/{ m g~cm}^{-3}$	1.399
μ/mm^{-1}	0.099
Reflections measured	31542
Unique reflections/R _{int}	3814/0.1111
$R(F) [I > 2\sigma(I)]$	2881
R_1^{σ} , wR_2^{b} [$I > 2\sigma(I)$]	$R_1 = 0.0453^a$
	$wR_2 = 0.0974^b$
R_1^a , wR_2^b (all data)	$R_1 = 0.0693^a$
	$WR_2 = 0.11111^b$
GOF on F^2	1.057

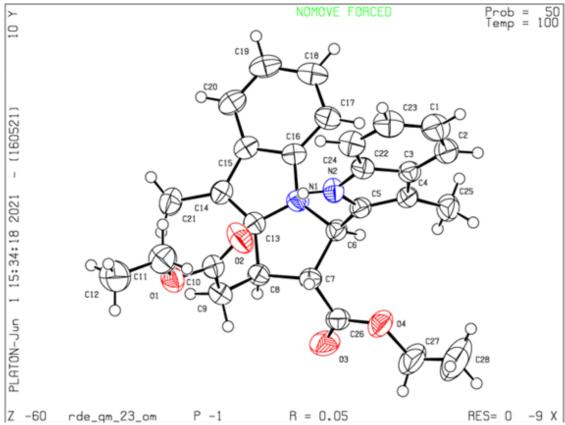
 ${}^{a}R_{1} = \Sigma(|F_{o}| - |F_{c}|) / \Sigma(|F_{o}|); {}^{b}wR_{2} = {\Sigma[w(F_{o}^{2} - F_{c}^{2})_{2}]/\Sigma[w(F_{o}^{2})_{2}]}^{1/2}$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 9mara

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.


Datablock: 9mara


Bond precision: C-C = 0.0023 A Wavelength=0.71073 a=16.790(2) b=9.1114(12) c=10.3491(13) Ce11: alpha=90 beta=104.207(5) ganna-90 100 K Temperature: Reported Calculated Volume 1534.8(3) 1534.8(3) P 21/c P 1 21/c 1 Space group Hall group -P 2ybc -P 2ybc Moiety formula C19 H17 N O4 C19 H17 N 04 Sum formula C19 H17 N O4 C19 H17 N O4 Mr-323.34 323.33 Dx.g cm-3 1.399 1.399 Z Mu (mm-1) 0.099 0.099 F000 680.0 680.0 F000' 680.35 22,12,13 22,12,13 h,k,lmax Nref 3843 3814 Tmin, Tmax 0.993,0.995 0.607,0.746 Tmin' 0.990 Correction method- # Reported T Limits: Tmin-0.607 Tmax-0.746 AbsCorr = MULTI-SCAN Data completeness= 0.992 Theta(max) = 28.370 R(reflections) = 0.0453(2881) wR2(reflections)= 0.1111(3814) S = 1.057Npar= 220

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

The crystal was prepared by slow evaporation of the compound 6 in the solution of ethanol.

X-ray crystallographic ortep diagram of compound 6

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) rde_gm_23_om

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: rde_gm_23_om

Bond precision: C-C = 0.0030 A Wavelength=0.71073 Ce11: a=8.3294(19) b=9.907(2) c=16.337(4)alpha=75.760(3) gamna=69.309(3) beta=78.824(3) Temperature: 100 K Calculated Reported Volume 1213.9(5) 1213.9(5) Space group P -1 P -1 Hall group -P 1 -P 1 Moiety formula C28 H30 N2 O4 C28 H30 N2 O4 Sum formula C28 H30 N2 O4 C28 H30 N2 04 Mr 458.54 458.54 Dx.g cm-3 1.255 1.254 Z Mu (mn-1) 0.084 0.084 F000 488.0 488.0 F000° 488.22 10,12,20 h, k, lmax 10,12,20 Nref 5337 5317 0.995,0.997 Tmin. Tmax 0.660,0.746 Tmin' 0.992 Correction method- # Reported T Limits: Tmin-0.660 Tmax-0.746 AbsCorr = MULTI-SCAN Data completeness= 0.996 Theta(max) = 27.055 R(reflections) = 0.0486(3728) wR2(reflections) = 0.1345(5317) S = 1.032Npar- 319

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

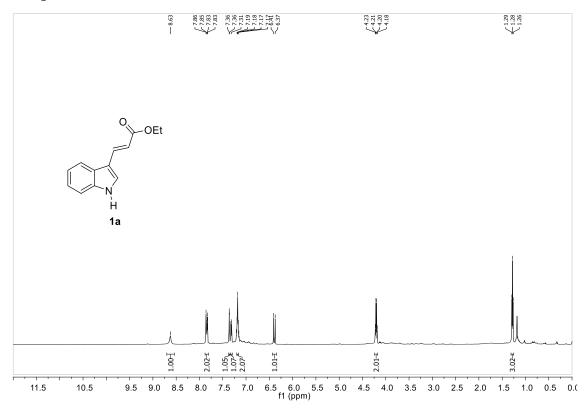
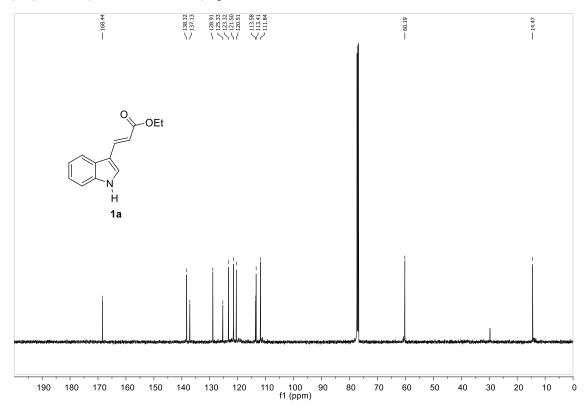
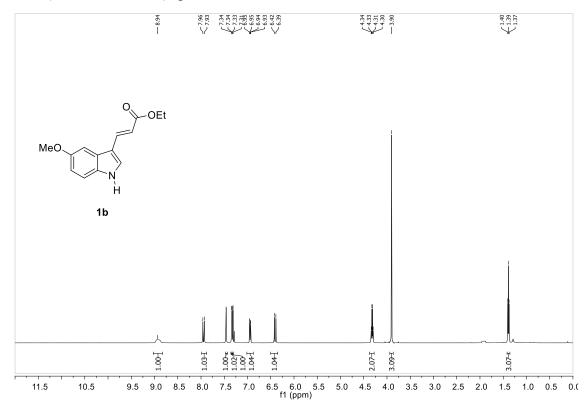
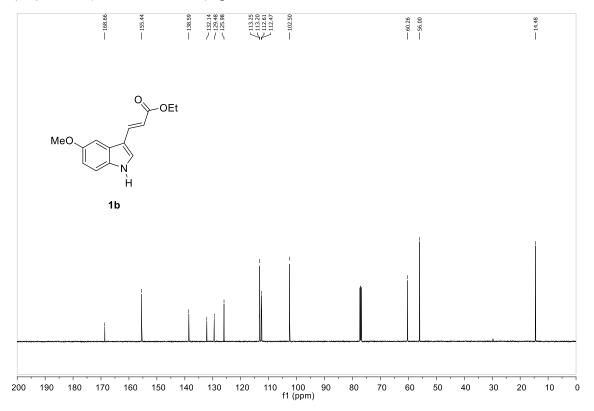

Click on the hyperlinks for more details of the test.

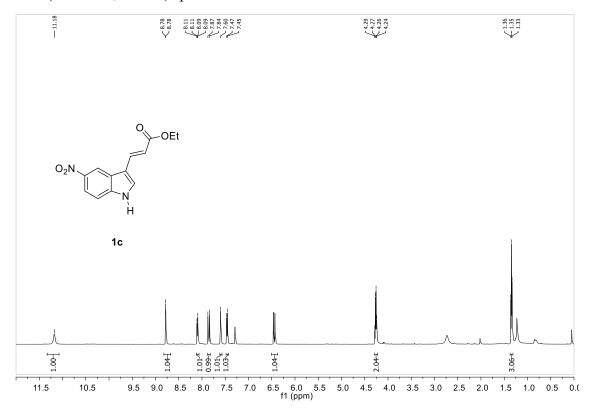
Table.2 Crystal data and structure refinement for 6

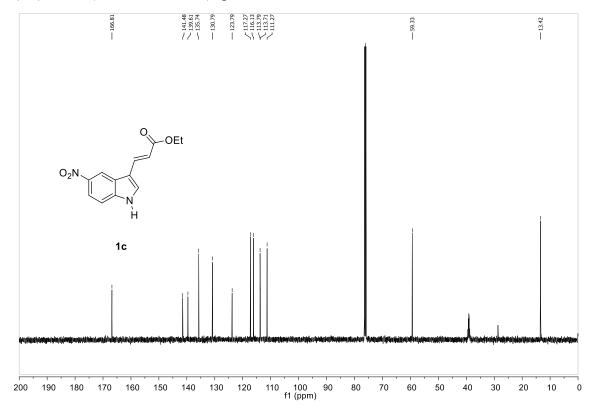

Emperical formula	C ₂₆ H ₂₆ N ₂ O ₄
Formula weight	430.50
Crystal color, habit	colorless, needle
T / K	100(2)
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a/Å	14.203(3)
b/Å	12.372(3)
c/Å	25.592(5)
α/°	90.0
β/°	104.499(6)
γ/°	90.0
V/ų	4353.7(15)
Z	8
$D_{\rm c}/{ m g~cm^{-3}}$	1.303
μ /mm $^{-1}$	0.089
Reflections measured	38332
Unique reflections/R _{int}	10772/0.0790
Final R indexes [I>=2σ (I)]	$R_1 = 0.1811, wR_2 = 0.4490$
R_1^a , wR_2^b (all data)	$R_1 = 0.02916^a$
	$wR_2 = 0.5306^b$
GOF on F^2	1.590

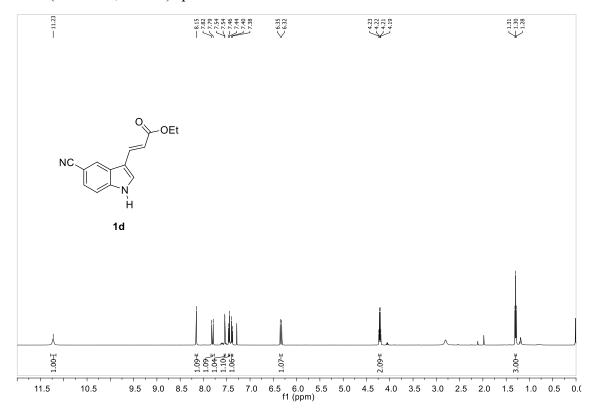
 $^{{}^{}a}R_{1} = \Sigma(|F_{0}| - |F_{c}|) / \Sigma(|F_{0}|); {}^{b}wR_{2} = \{\Sigma[w(F_{0}{}^{2} - F_{c}{}^{2})_{2}]/\Sigma[w(F_{0}{}^{2})_{2}]\}^{1/2}$

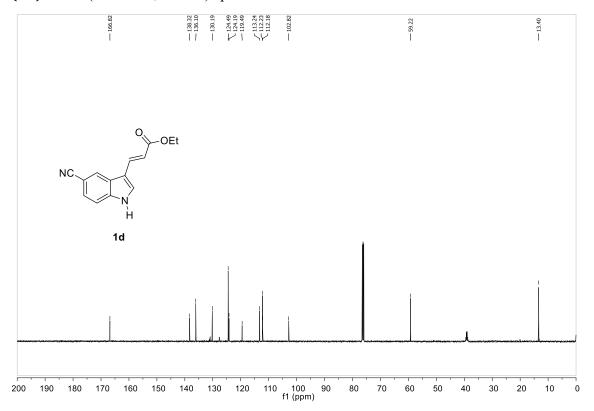

NMR Spectra: ¹H NMR (500 MHz, CDCl₃) spectrum of 1a

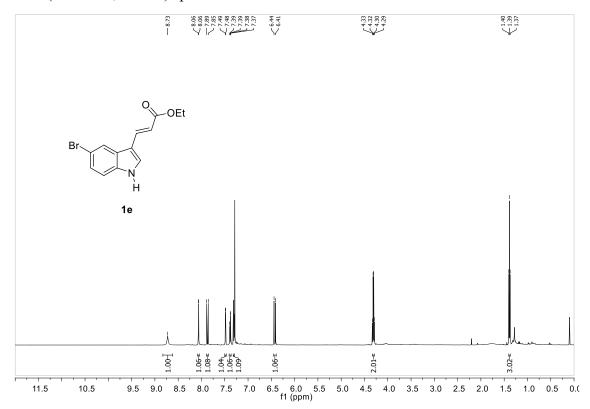

 13 C 1 H 1 NMR (126 MHz, CDCl $_{3}$) spectrum of 1a

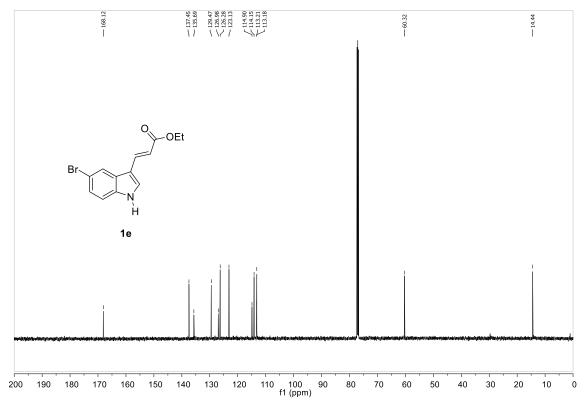

¹H NMR (500 MHz, CDCl₃) spectrum of 1b

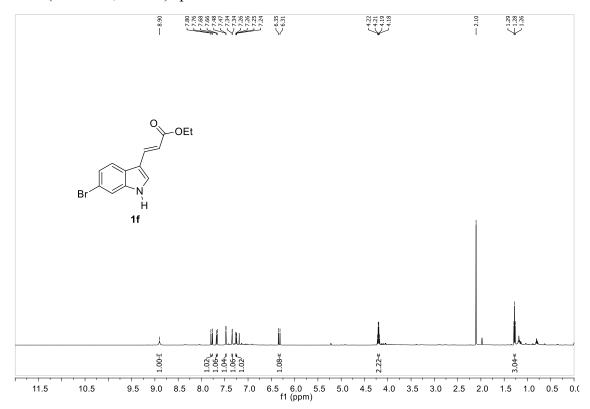

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1b

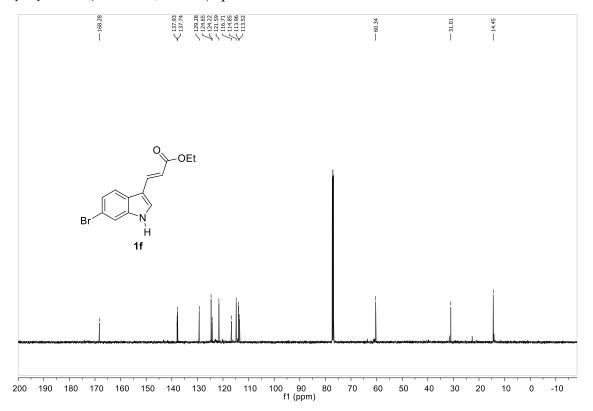

 ^{1}H NMR (500 MHz, CDCl₃) spectrum of 1c

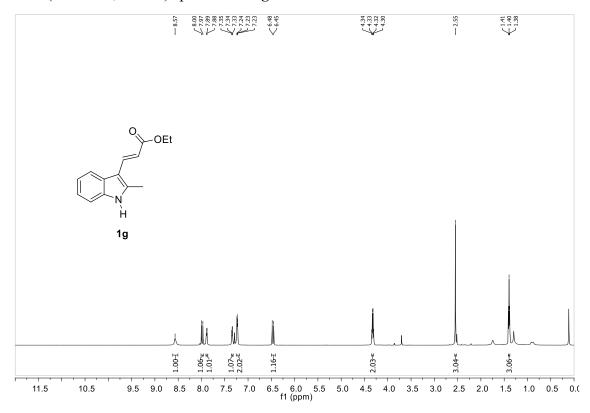

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1c

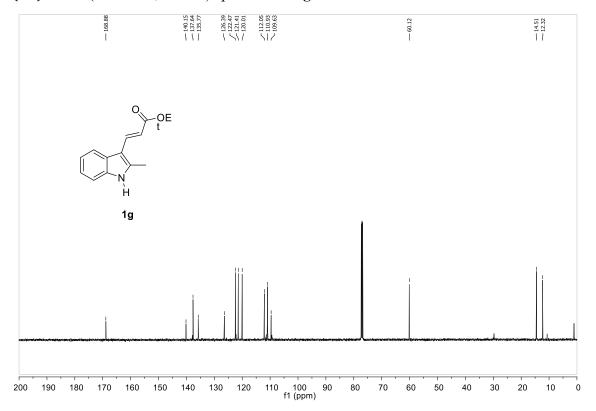

 ^{1}H NMR (500 MHz, CDCl₃) spectrum of 1d

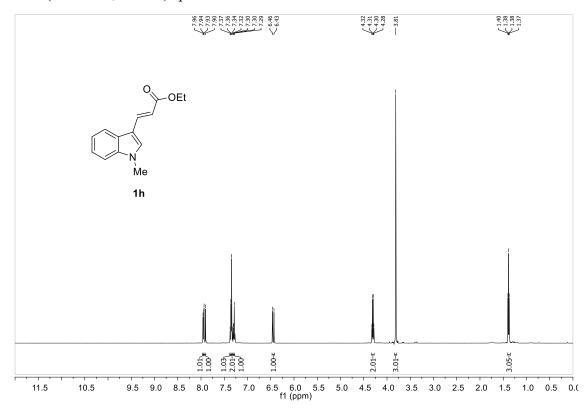

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1d

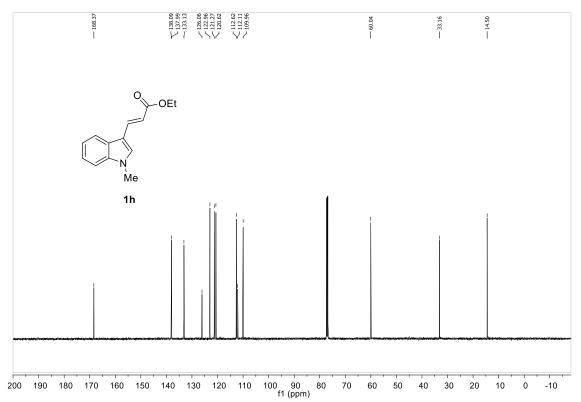

¹H NMR (500 MHz, CDCl₃) spectrum of 1e

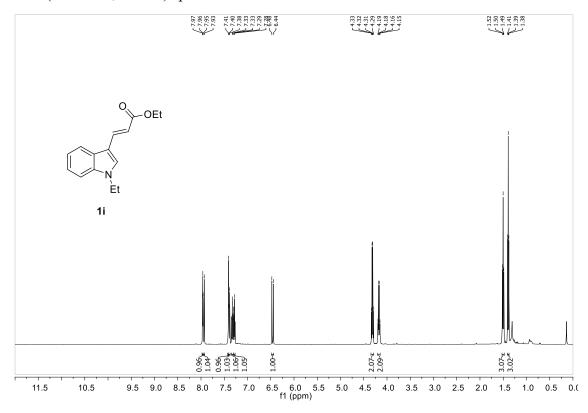

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl $_{3}$) spectrum of 1e

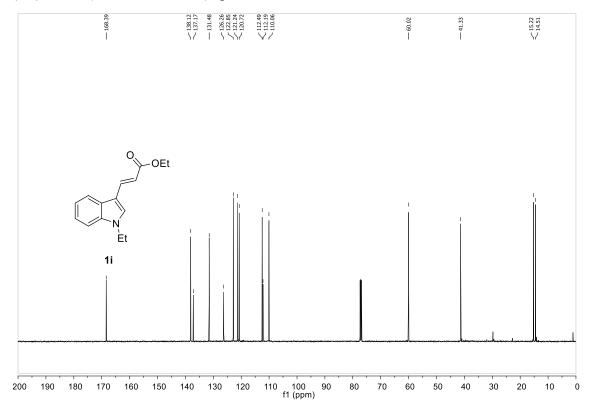

¹H NMR (500 MHz, CDCl₃) spectrum of 1f

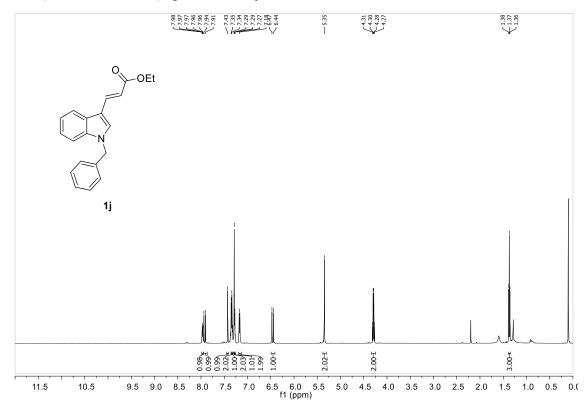

 ^{13}C {\$^1\$H} NMR (126 MHz, CDCl3) spectrum of 1f

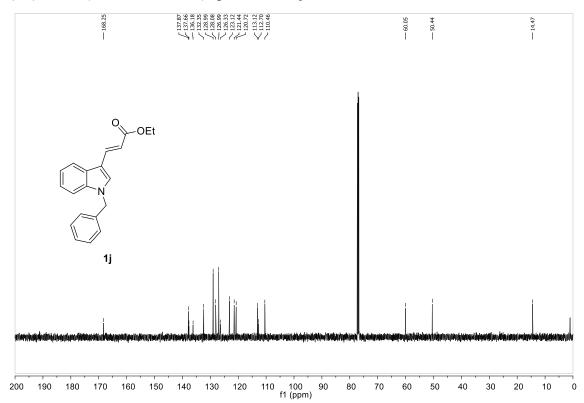

 ^{1}H NMR (500 MHz, CDCl₃) spectrum of 1g

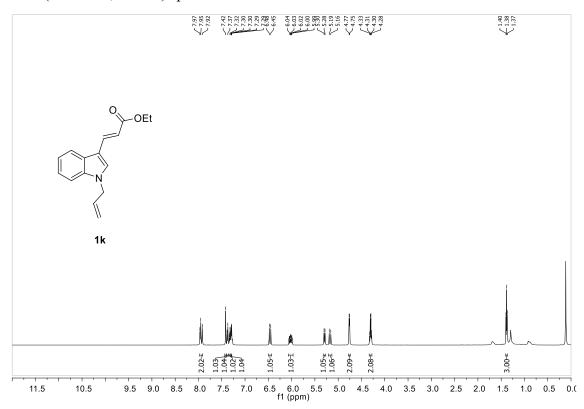

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1g

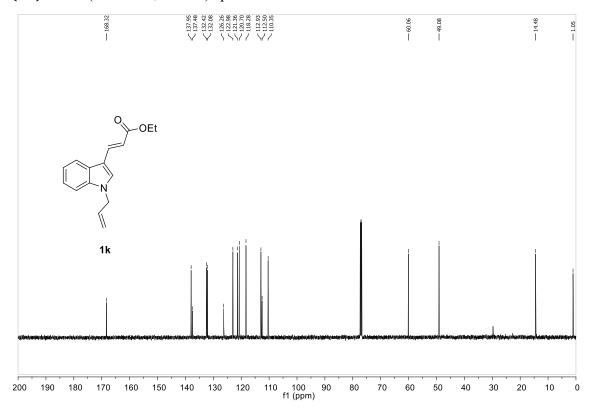

¹H NMR (500 MHz, CDCl₃) spectrum of 1h

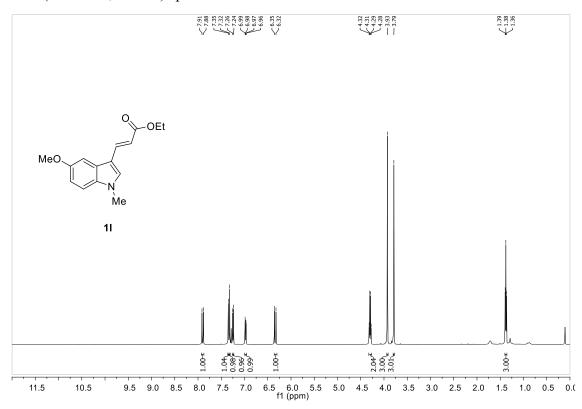

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1h

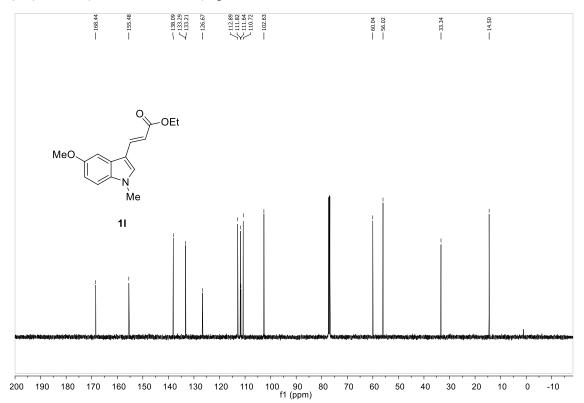

¹H NMR (500 MHz, CDCl₃) spectrum of 1i

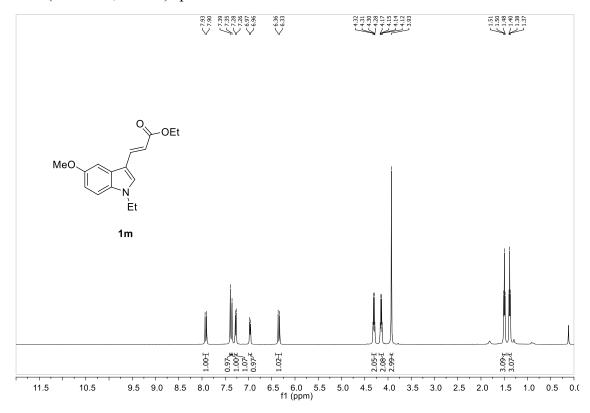

 ^{13}C {\$^1\$H} NMR (126 MHz, CDCl3) spectrum of 1i

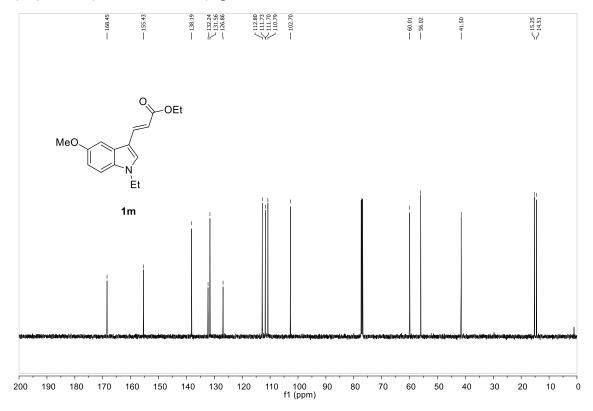

H NMR (500 MHz, CDCl₃) spectrum of 1j

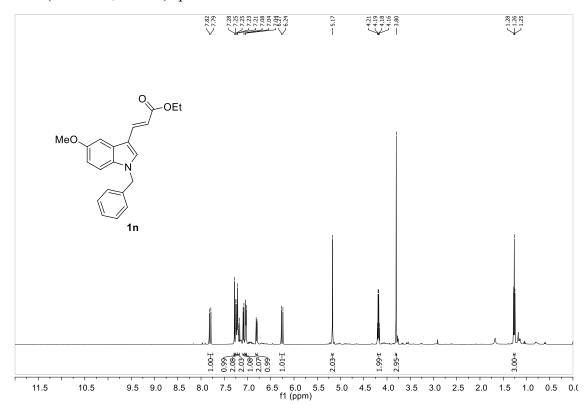

 13 C 1 H 1 NMR (126 MHz, CDCl₃) spectrum of 1j

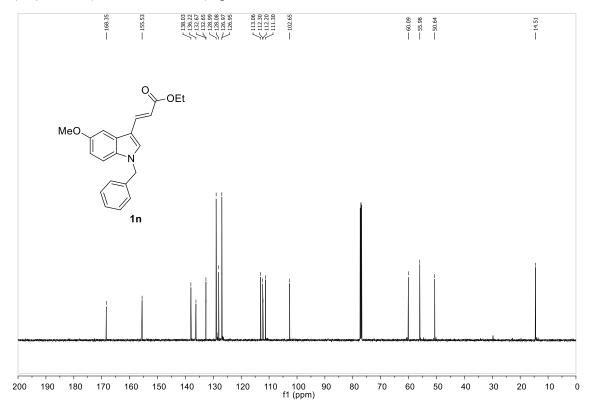

¹H NMR (500 MHz, CDCl₃) spectrum of 1k

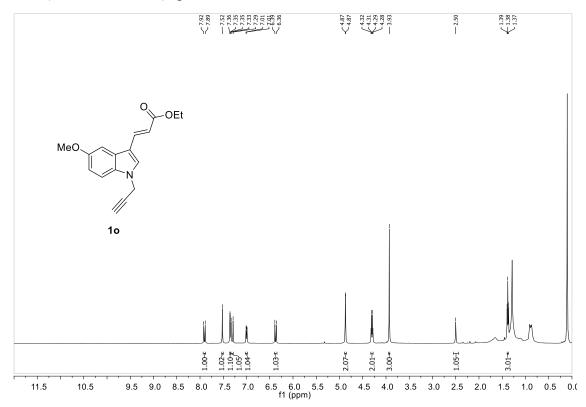

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1k

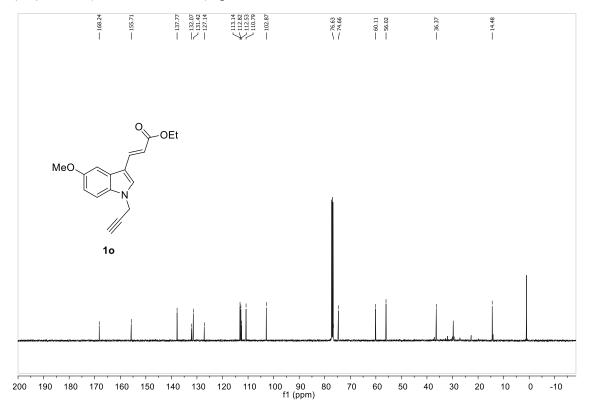

¹H NMR (500 MHz, CDCl₃) spectrum of 11

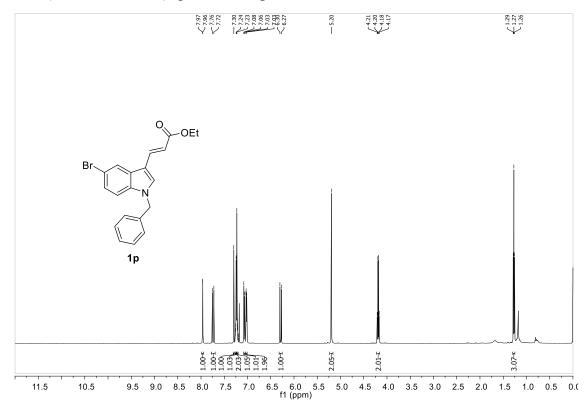

 ^{13}C { $^{1}\text{H}}$ NMR (126 MHz, CDCl₃) spectrum of 11

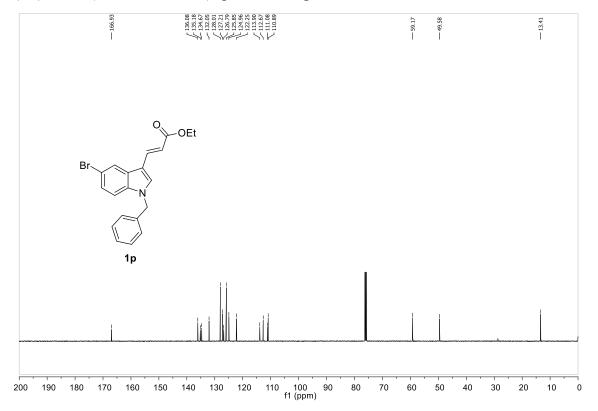

¹H NMR (500 MHz, CDCl₃) spectrum of 1m

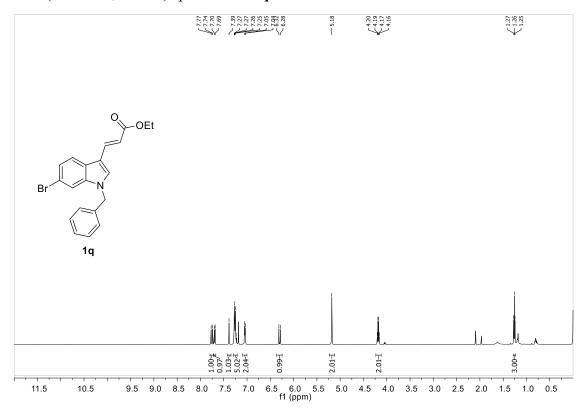

 $^{13}\text{C }\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 1m


¹H NMR (500 MHz, CDCl₃) spectrum of 1n

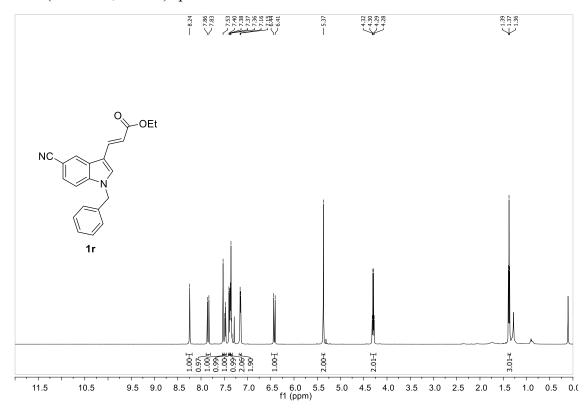

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1n

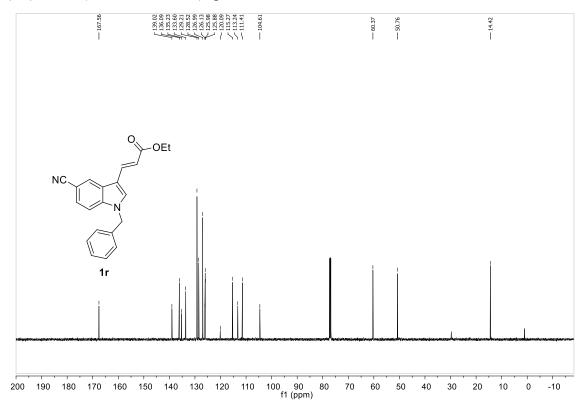

¹H NMR (500 MHz, CDCl₃) spectrum of 10

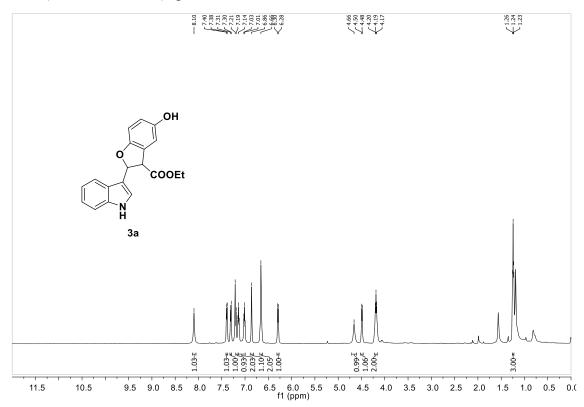

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1o

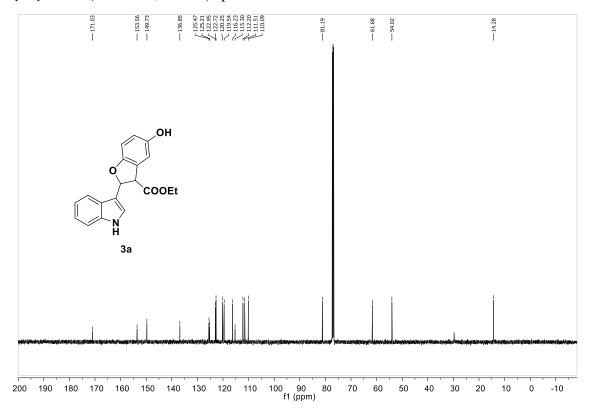

¹H NMR (500 MHz, CDCl₃) spectrum of 1p

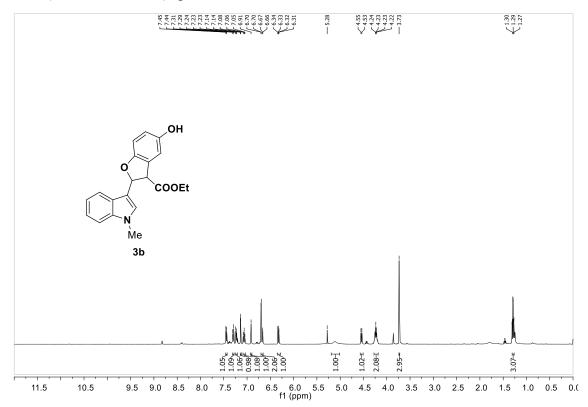
 13 C $\{^{1}$ H $\}$ NMR (126 MHz, CDCl₃) spectrum of 1p

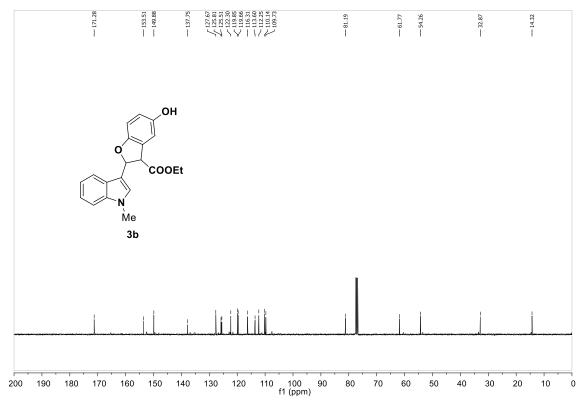

 ^{1}H NMR (500 MHz, CDCl₃) spectrum of 1q

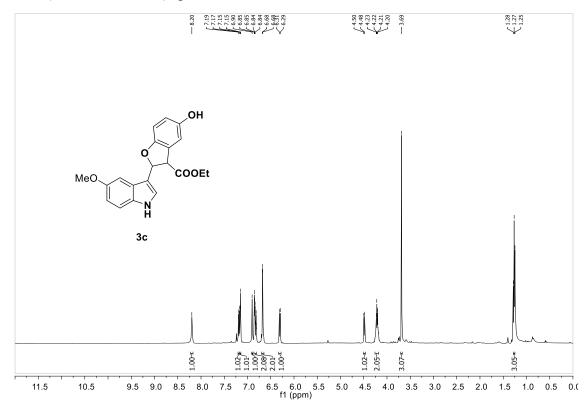

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 1q

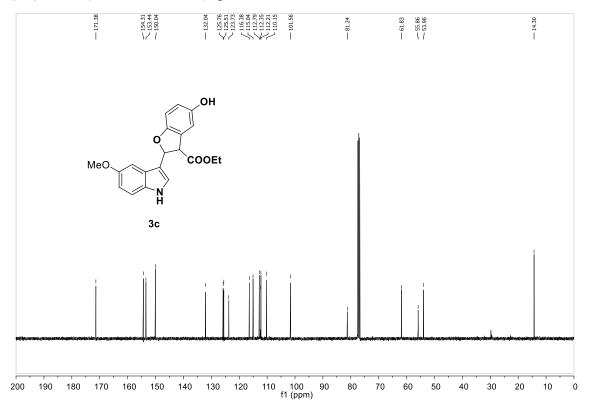

¹H NMR (500 MHz, CDCl₃) spectrum of 1r

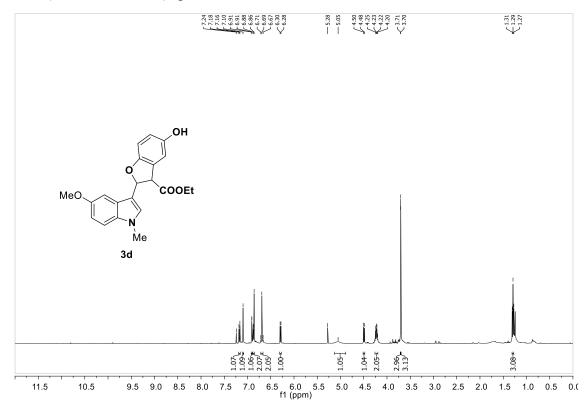

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) spectrum of 1r

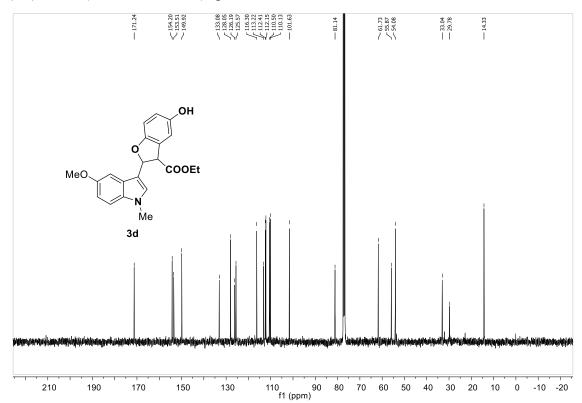

¹H NMR (500 MHz, CDCl₃) spectrum of 3a

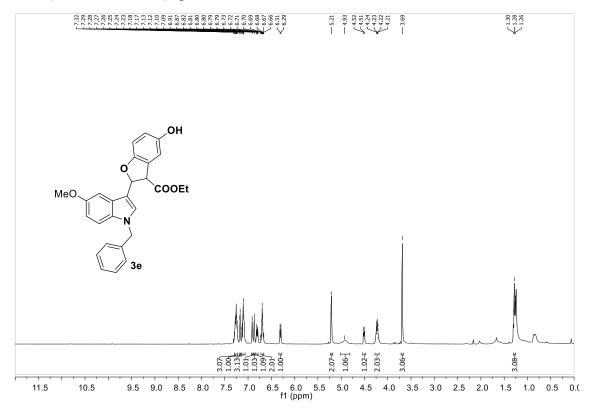

 ^{13}C { $^1\text{H}}$ NMR (126 MHz, CDCl₃) spectrum of 3a

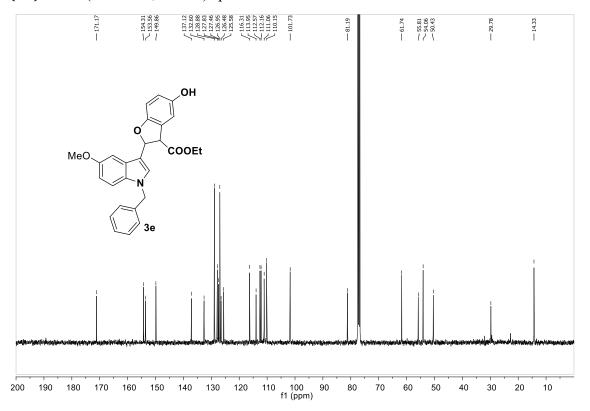

¹H NMR (500 MHz, CDCl₃) spectrum of **3b**

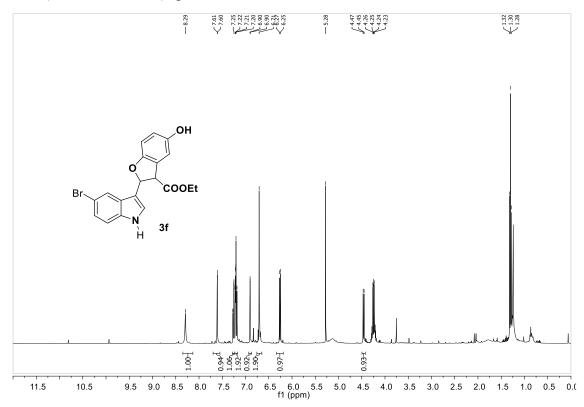

$^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 3b

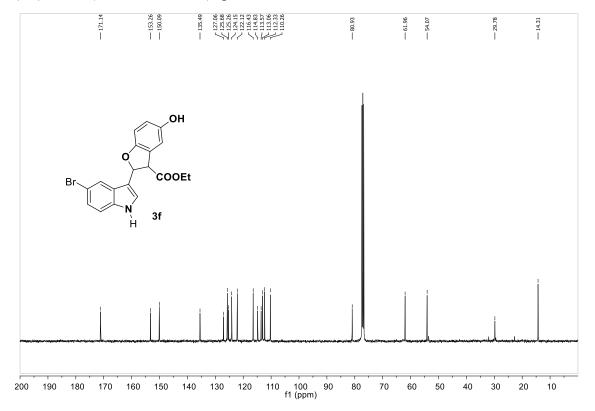

¹H NMR (500 MHz, CDCl₃) spectrum of 3c

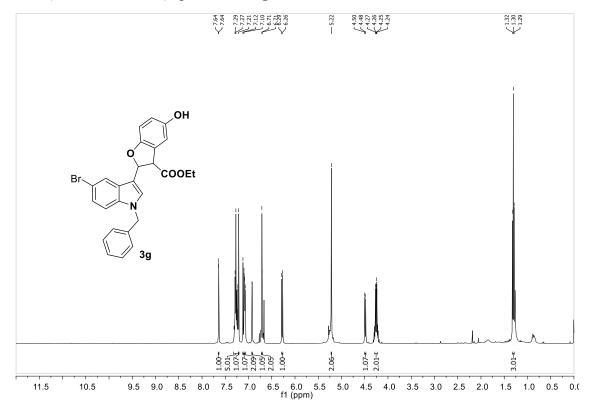

 ^{13}C { 1H NMR (126 MHz, CDCl $_3$) spectrum of 3c

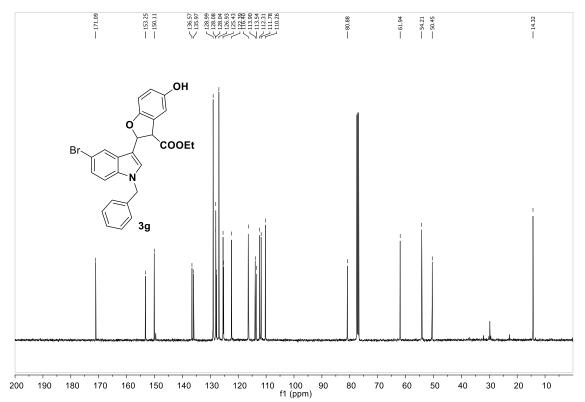

¹H NMR (500 MHz, CDCl₃) spectrum of 3d

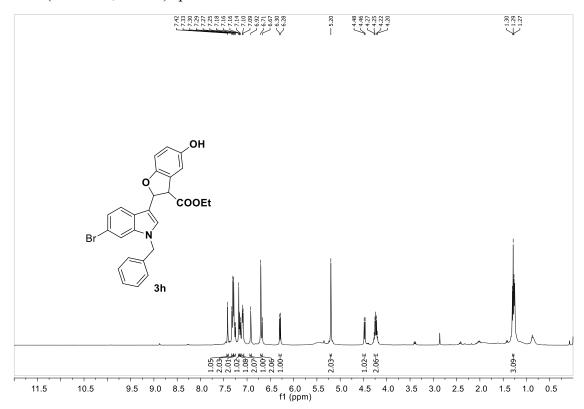

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 3d

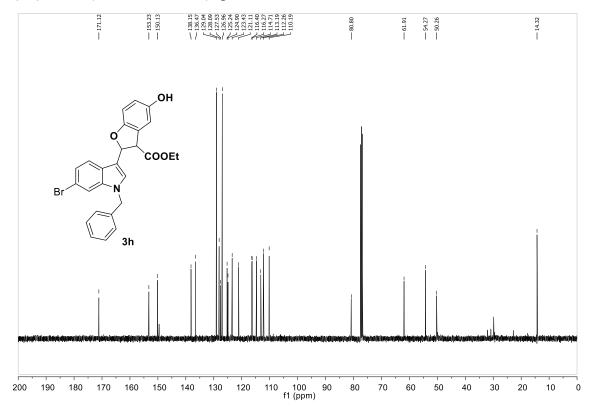

¹H NMR (500 MHz, CDCl₃) spectrum of 3e

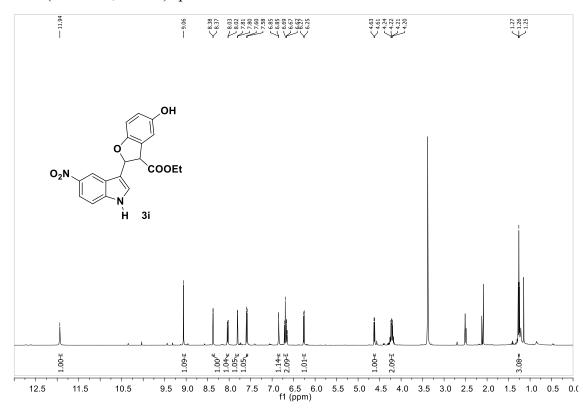

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 3e

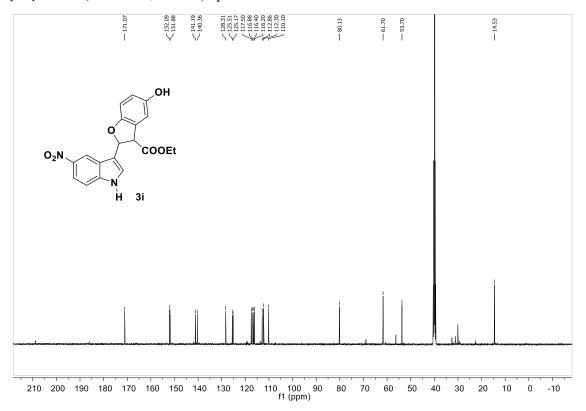

¹H NMR (500 MHz, CDCl₃) spectrum of **3f**

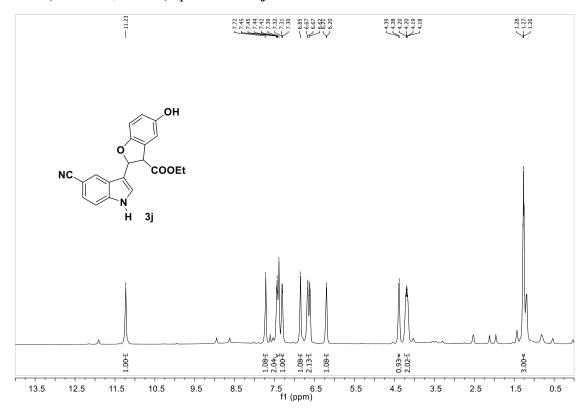

 ^{13}C { $^1\text{H}}$ NMR (126 MHz, CDCl₃) spectrum of 3f

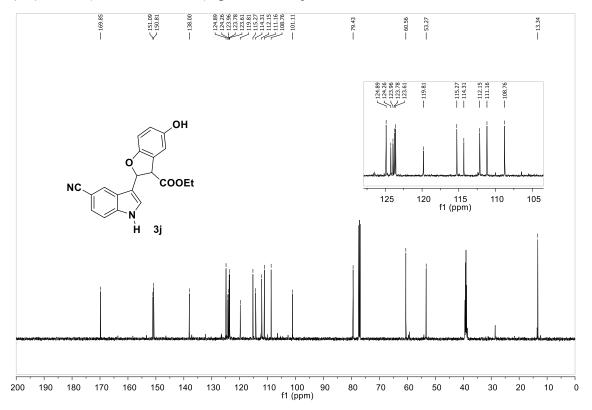

¹H NMR (500 MHz, CDCl₃) spectrum of **3g**

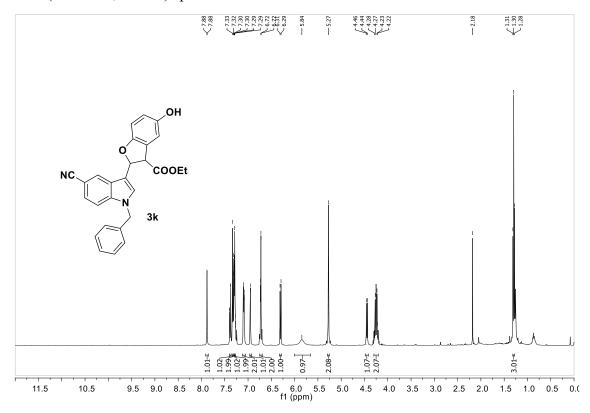

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 3g

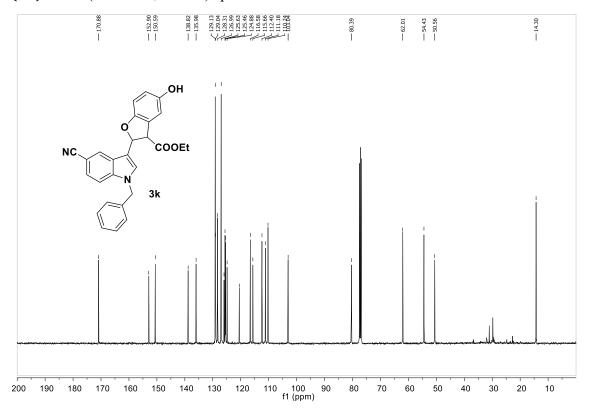

¹H NMR (500 MHz, CDCl₃) spectrum of **3h**

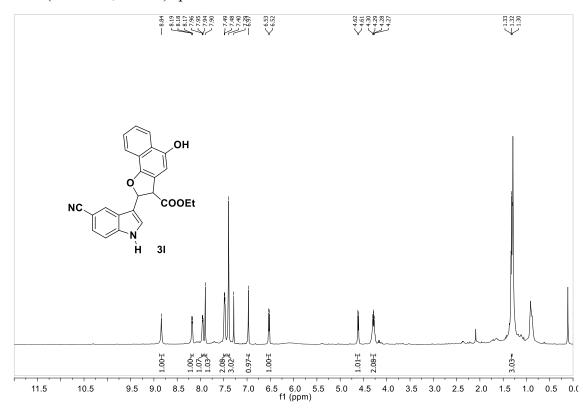

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 3h

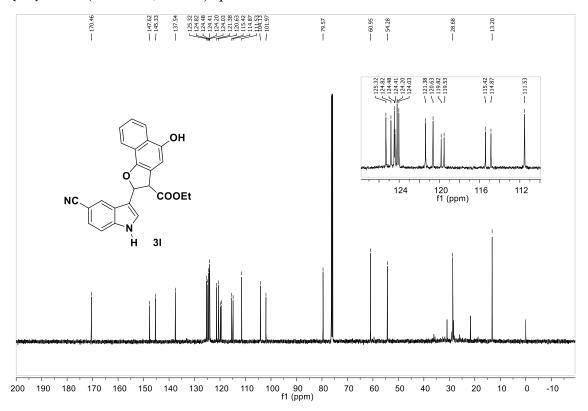

¹H NMR (500 MHz, CDCl₃) spectrum of 3i

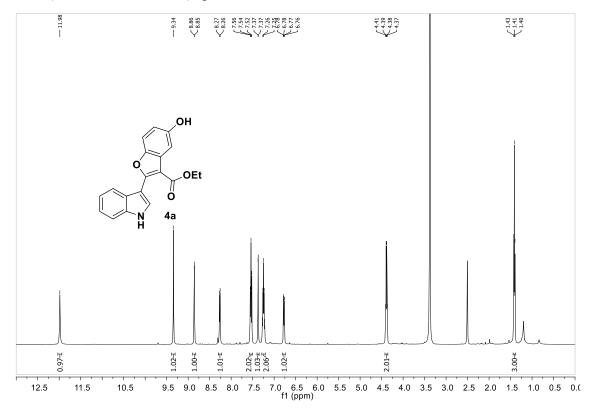

 ^{13}C { $^1\text{H}}$ NMR (126 MHz, CDCl₃) spectrum of 3i

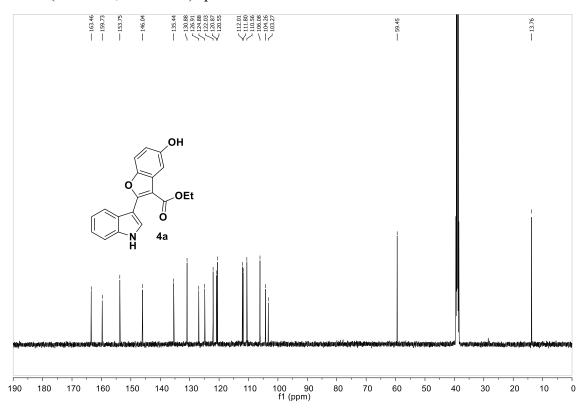

¹H NMR (500 MHz, CDCl₃) spectrum of 3j

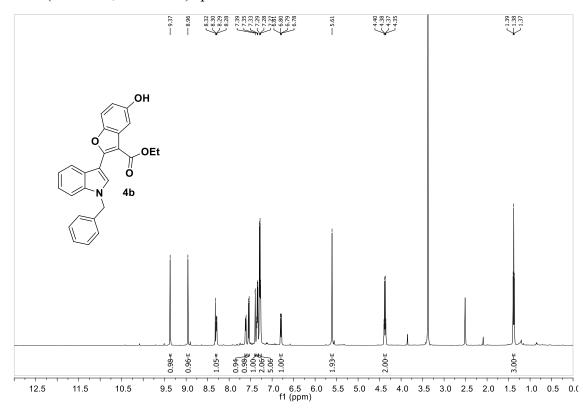

 ^{13}C { $^1\text{H}}$ NMR (126 MHz, CDCl₃) spectrum of 3j

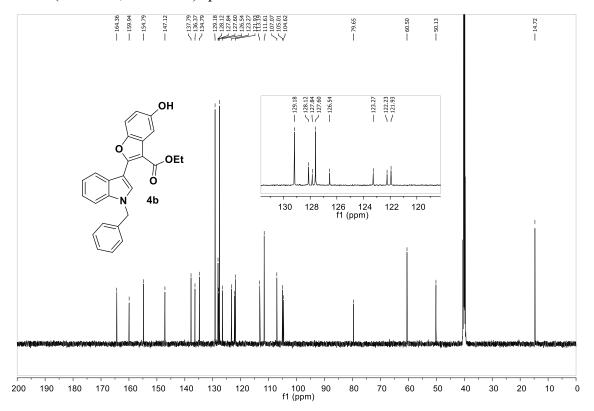

¹H NMR (500 MHz, CDCl₃) spectrum of **3k**

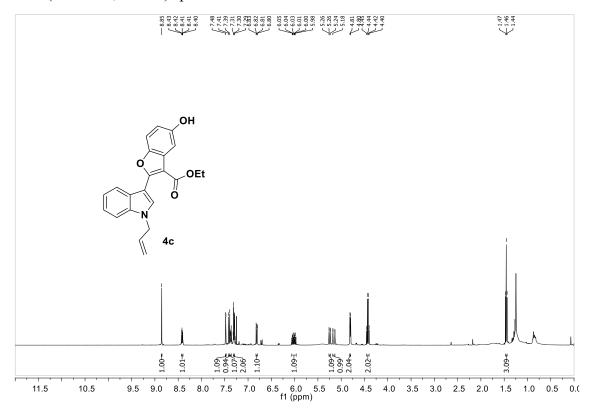

 ^{13}C { $^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of 3k

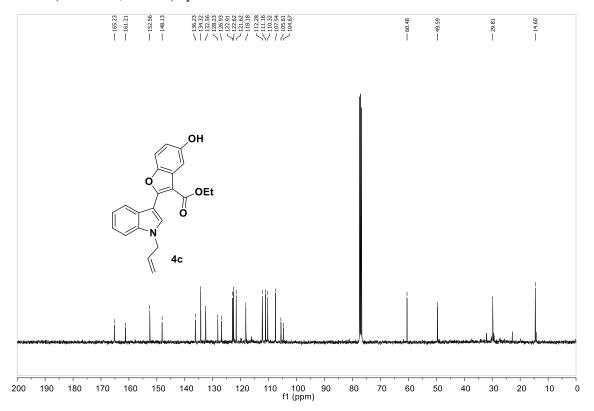

¹H NMR (500 MHz, CDCl₃) spectrum of 31

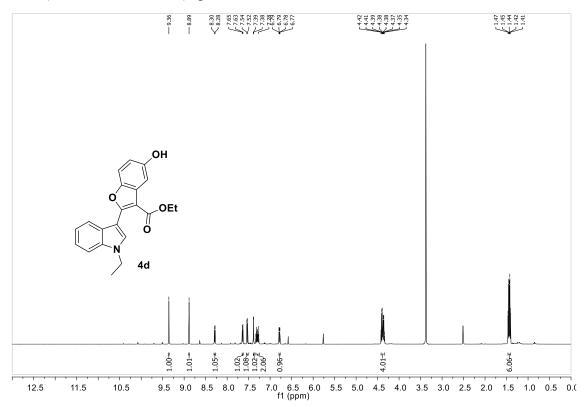

 ^{13}C { $^1\text{H}}$ NMR (126 MHz, CDCl₃) spectrum of 31

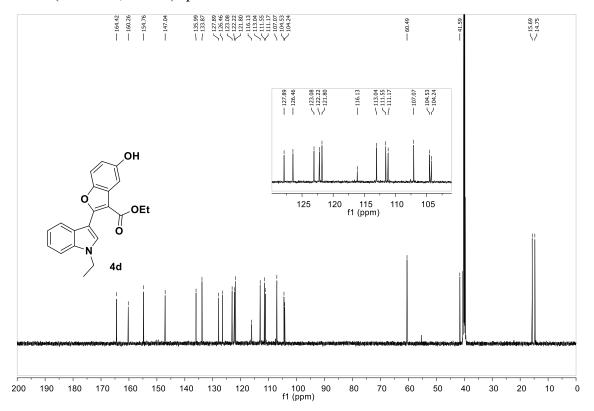

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of **4a**

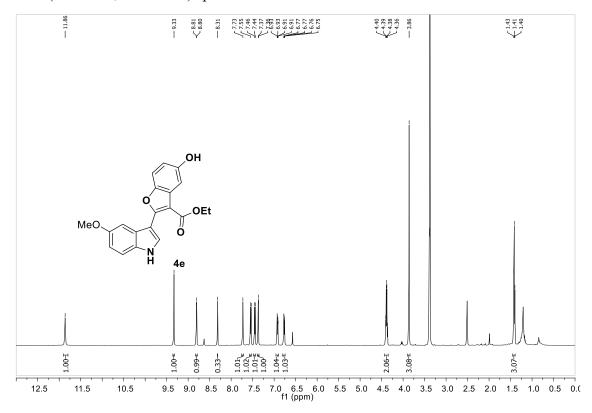

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4a

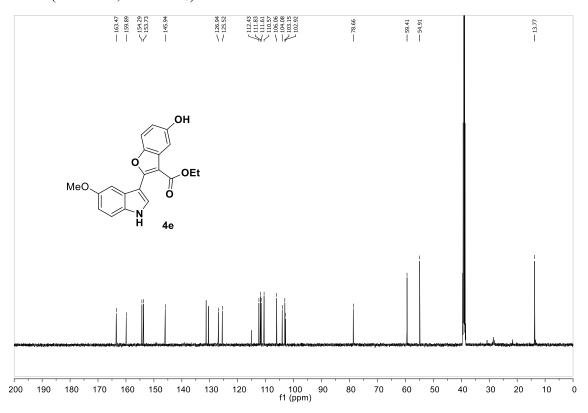

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of **4b**

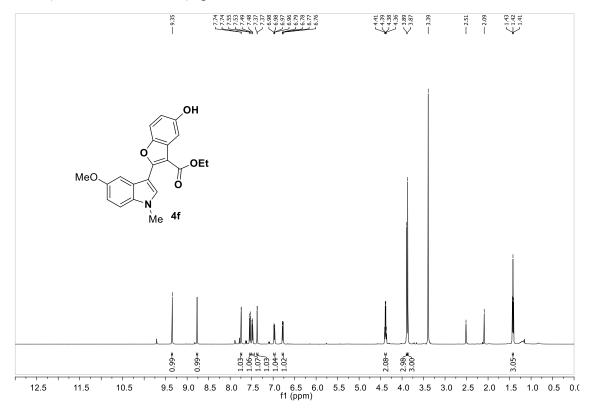

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4b

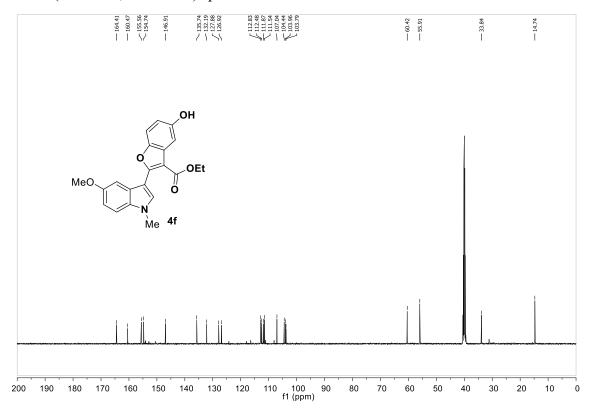

¹H NMR (500 MHz, CDCl₃) spectrum of 4c

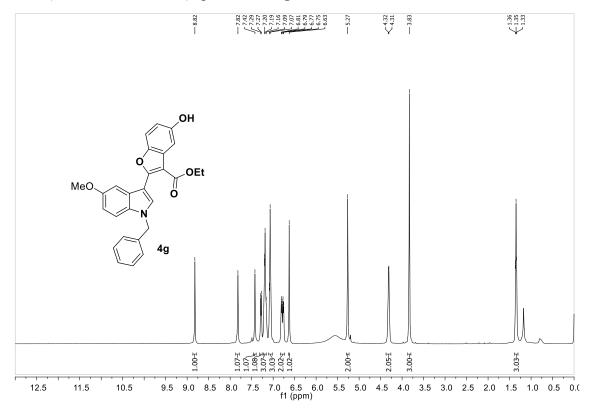

 ^{13}C NMR (126 MHz, CDCl₃) spectrum of 4c

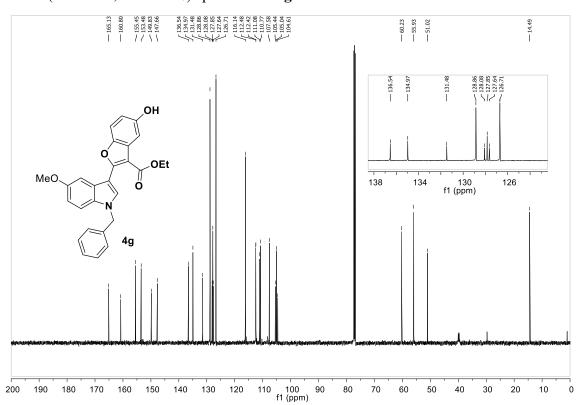

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of **4d**

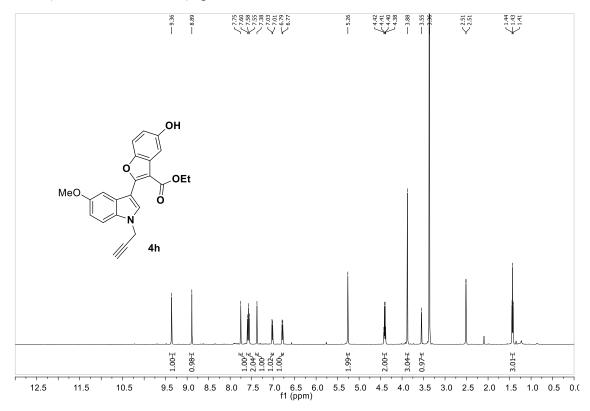

 ^{13}C NMR (126 MHz, CDCl₃) spectrum of 4d

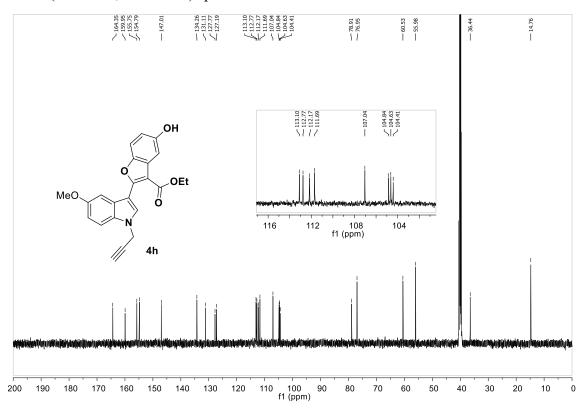

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 4e

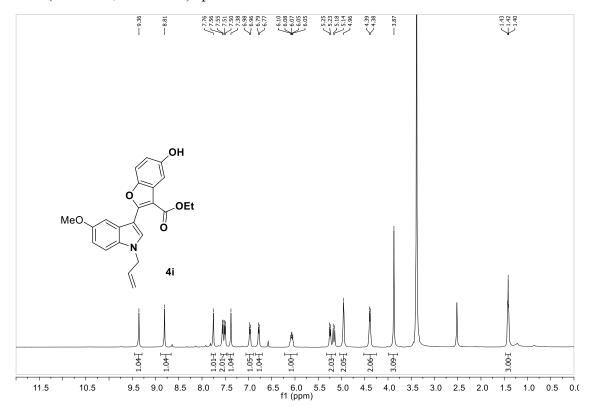

13 C NMR (126 MHz, DMSO- d_6) of 4e

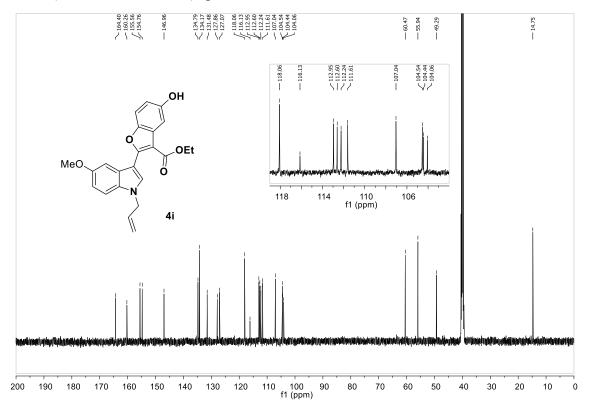

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of **4f**

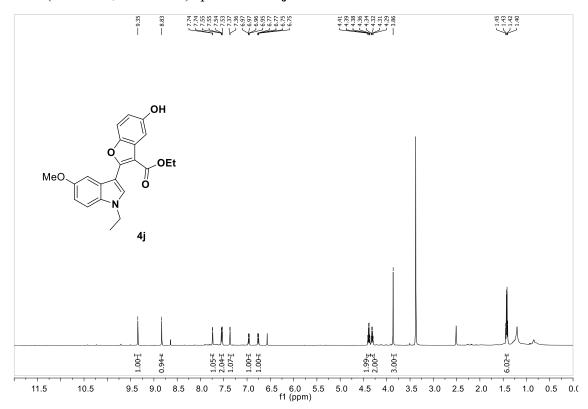

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4f

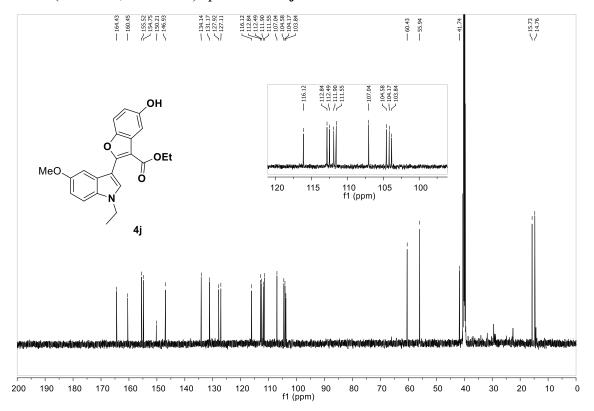

 1 H NMR (500 MHz, DMSO- d_{6}) spectrum of 4g

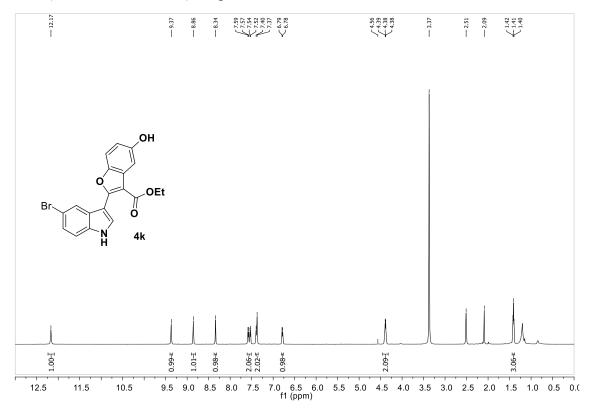

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4g

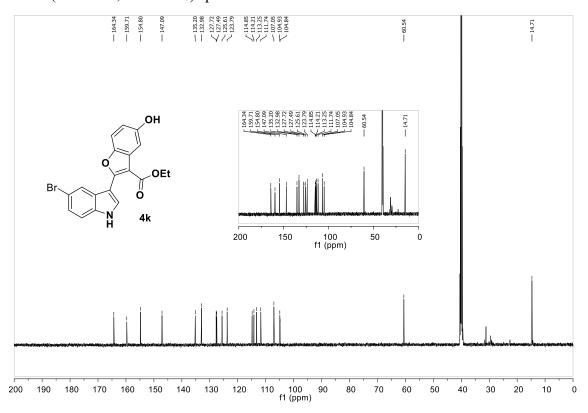

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of **4h**

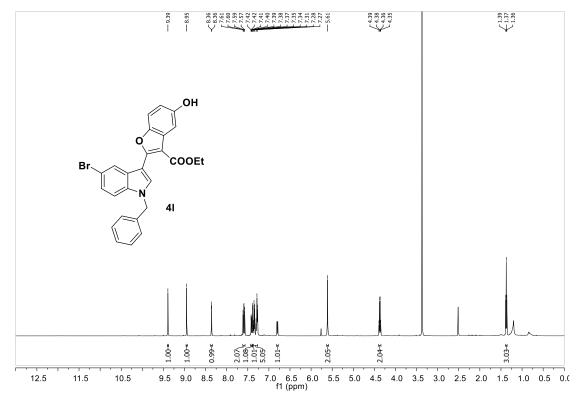

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4h

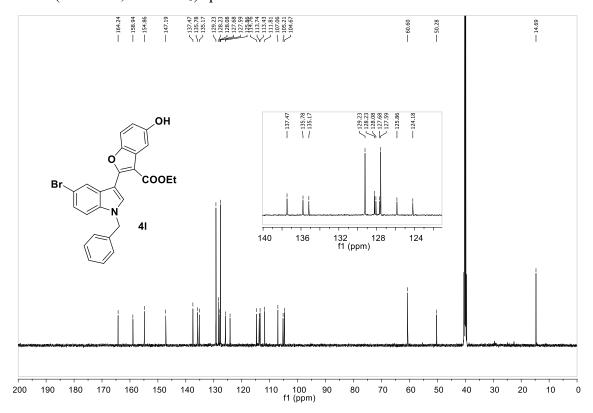

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 4i

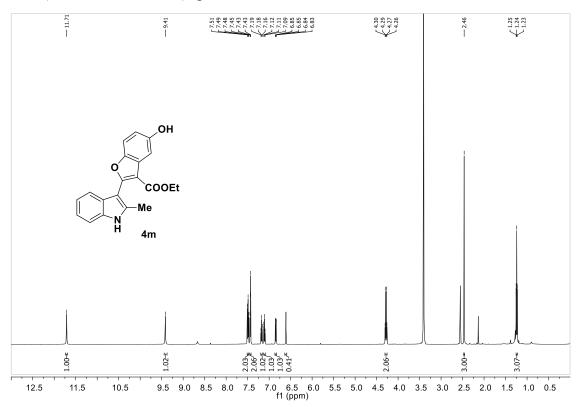

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4i

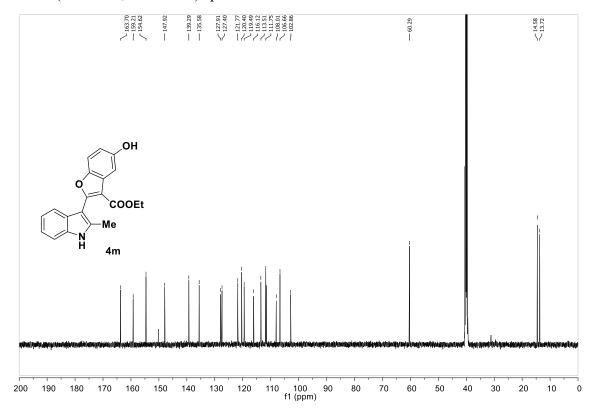

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 4j

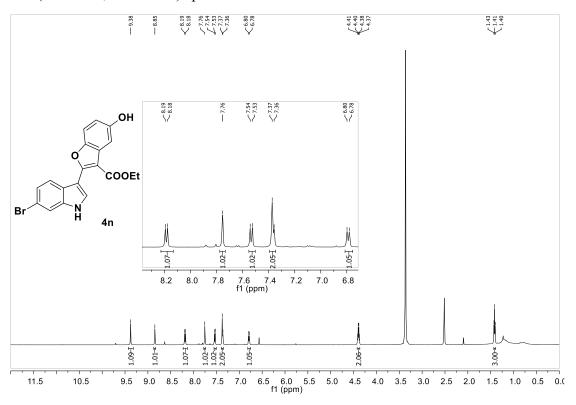

13 C NMR (126 MHz, DMSO- d_6) spectrum of 4j

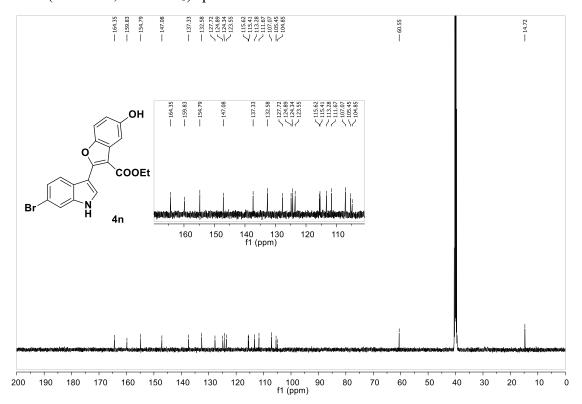

 1 H NMR (500 MHz, DMSO- d_{6}) of spectrum 4k

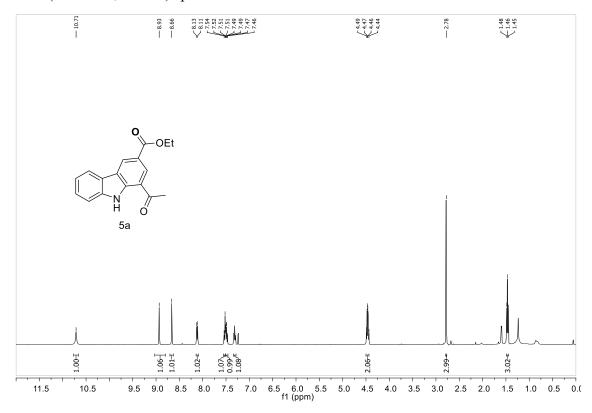

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4k

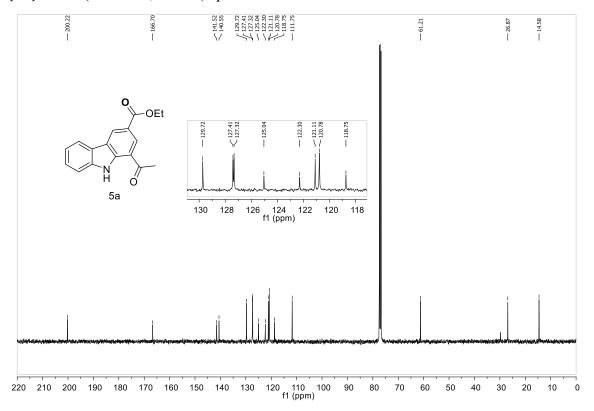

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 4l

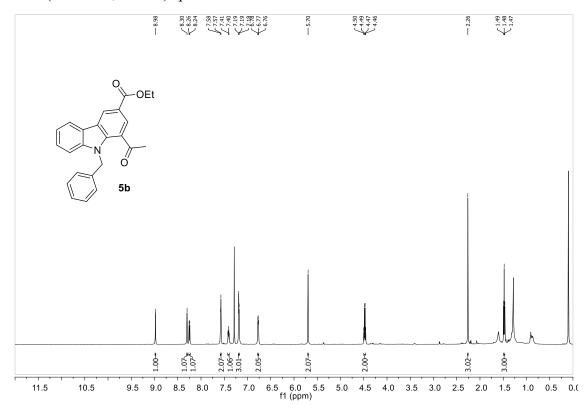

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 41

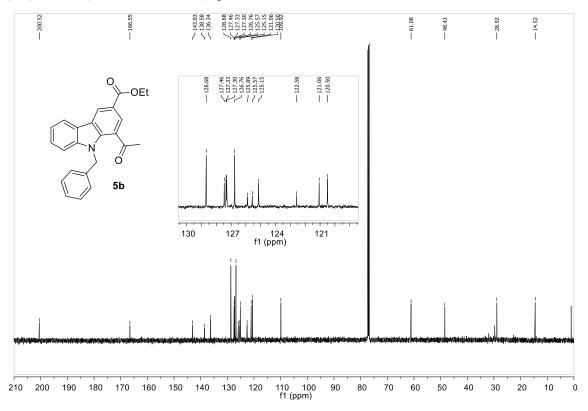

 1 H NMR (500 MHz, DMSO- d_6) spectrum of 4m

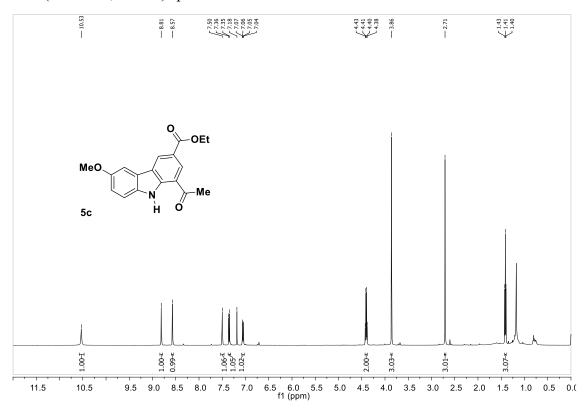

 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4m

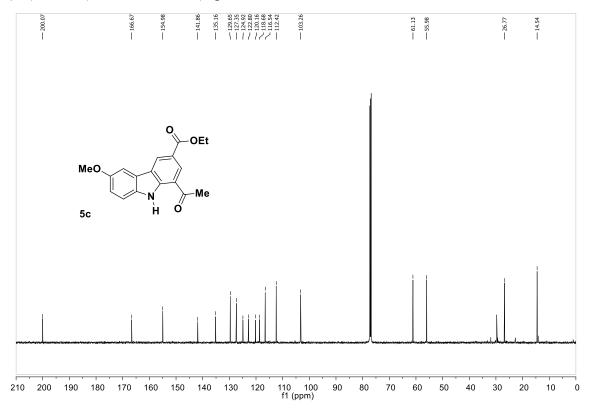

 1 H NMR (500 MHz, DMSO- d_{6}) spectrum of 4n

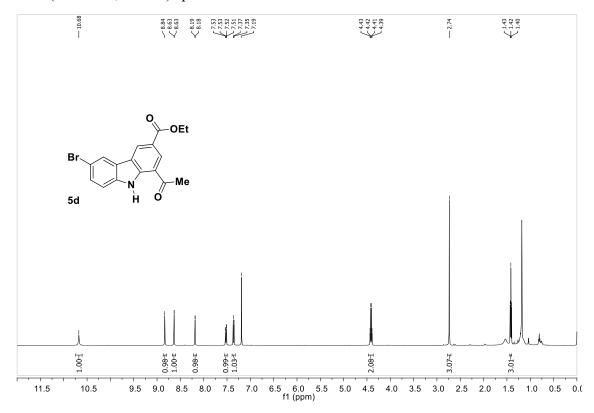

 13 C NMR (126 MHz, DMSO- d_6) spectrum of **4n**

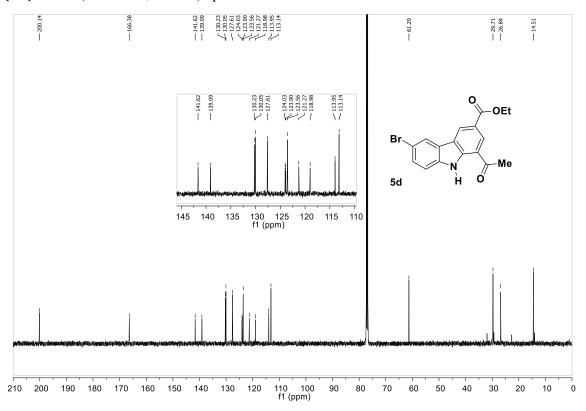

¹H NMR (500 MHz, CDCl₃) spectrum of **5a**

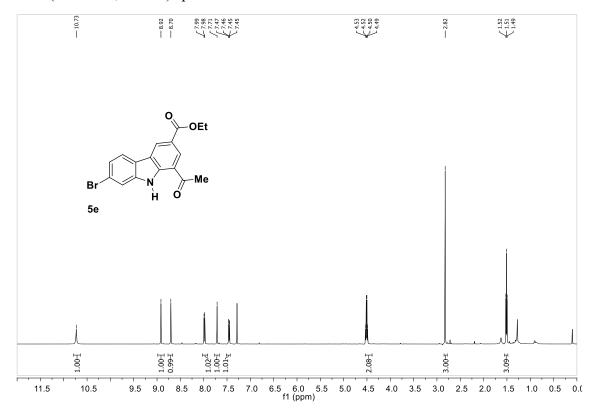

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) spectrum of 5a

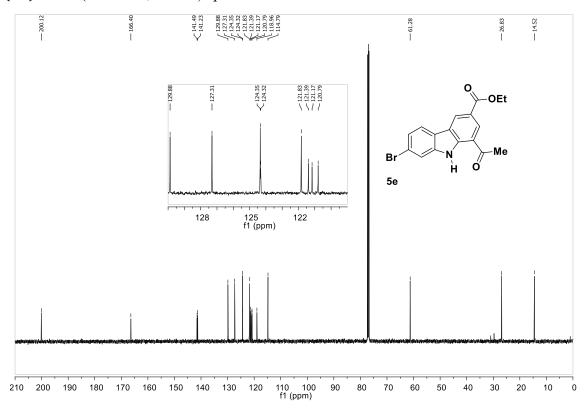

¹H NMR (500 MHz, CDCl₃) spectrum of **5b**

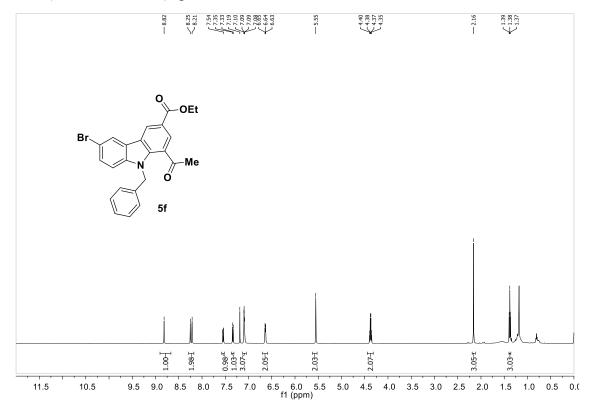

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) spectrum of **5b**

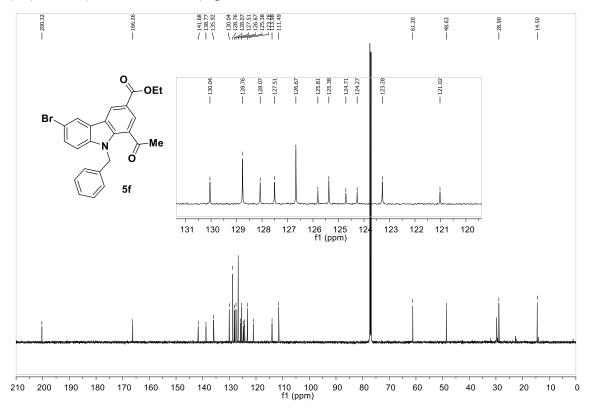

¹H NMR (500 MHz, CDCl₃) spectrum of **5c**

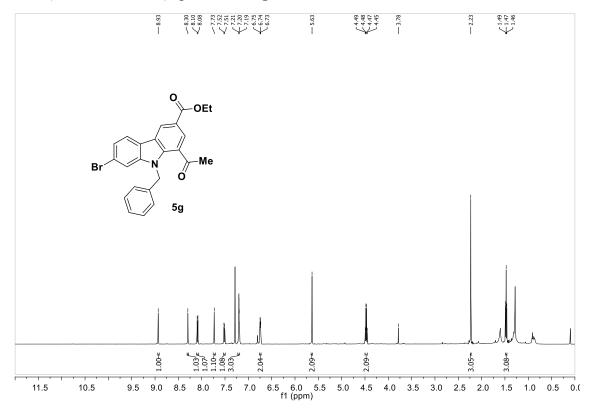

 $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 5c

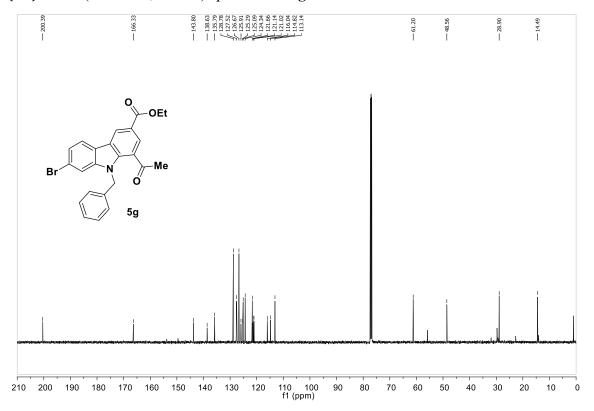

¹H NMR (500 MHz, CDCl₃) spectrum of **5d**

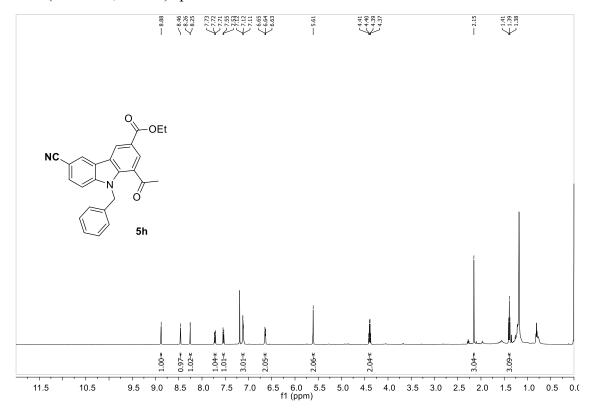

 $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 5d

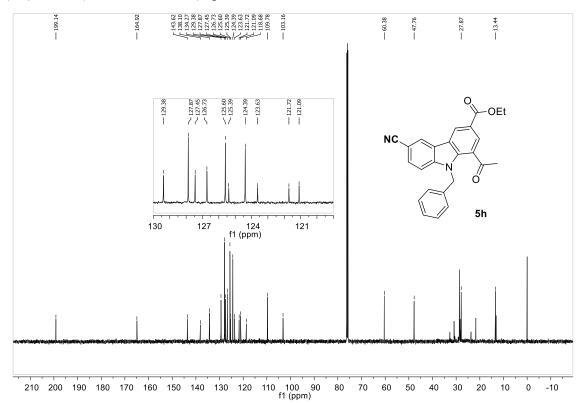

¹H NMR (500 MHz, CDCl₃) spectrum of **5e**

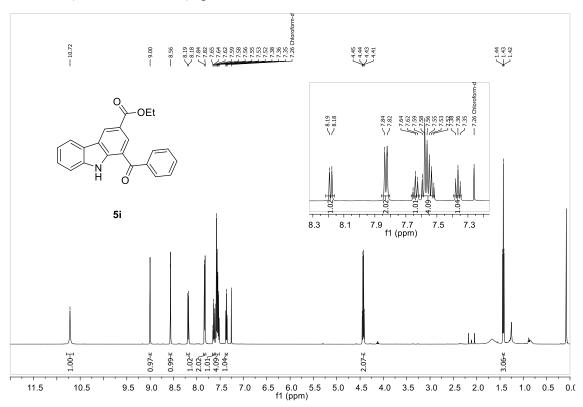

 $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 5e

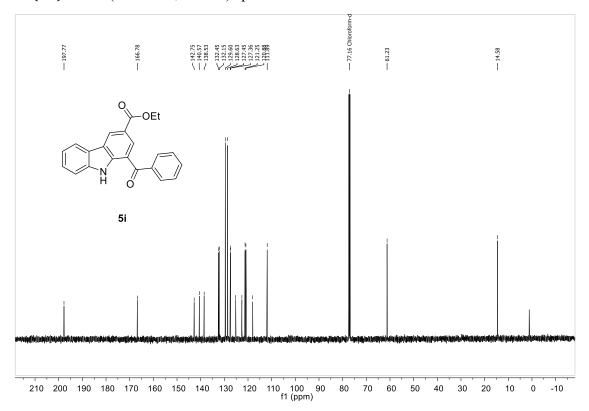

¹H NMR (500 MHz, CDCl₃) spectrum of **5f**

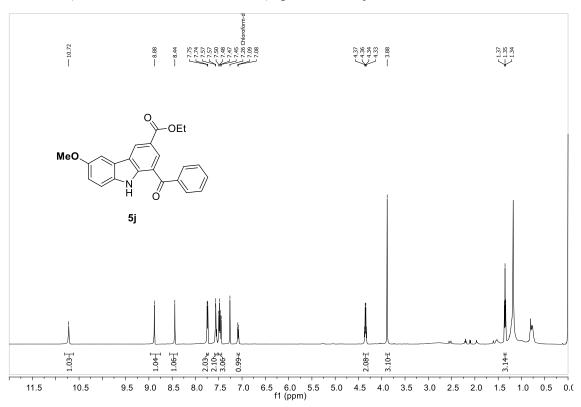

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) spectrum of **5f**

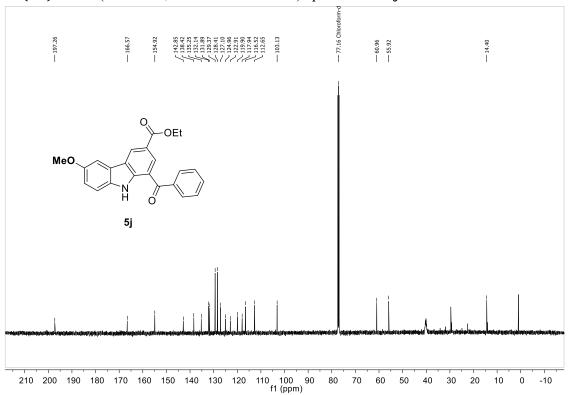

¹H NMR (500 MHz, CDCl₃) spectrum of **5g**

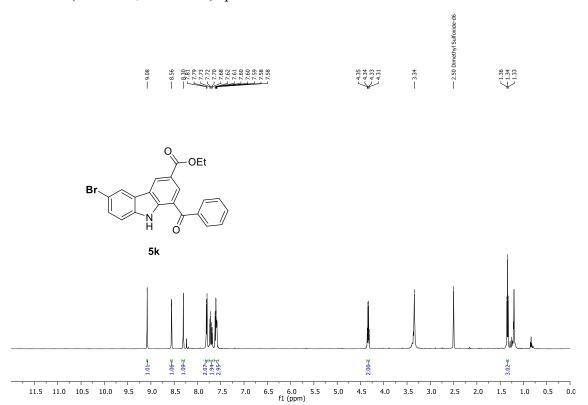

 $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 5g

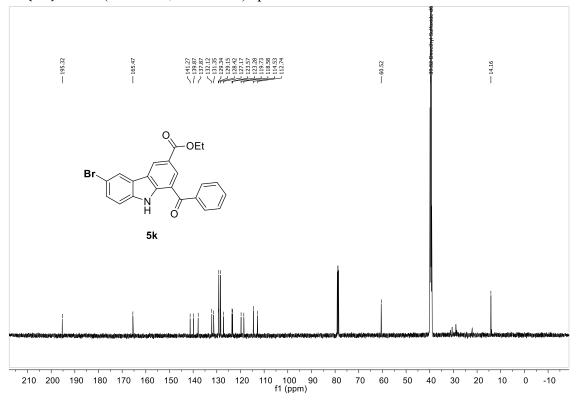

¹H NMR (500 MHz, CDCl₃) spectrum of **5h**

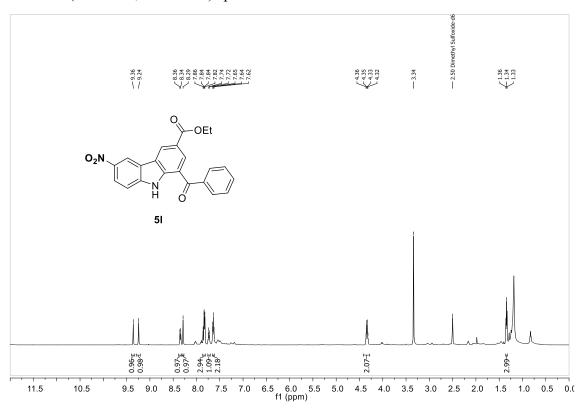

 $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 5h

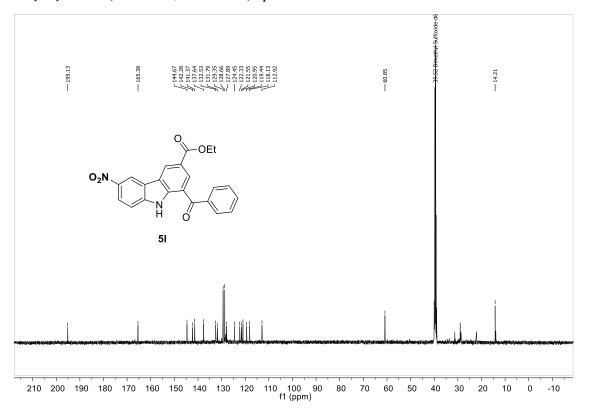

¹H NMR (500 MHz, CDCl₃) spectrum of **5i**

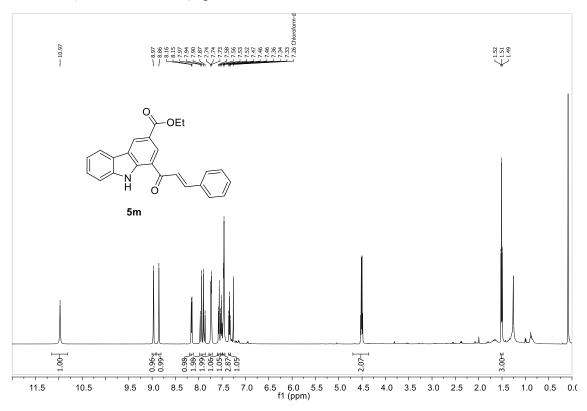

 $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CDCl₃) spectrum of 5i

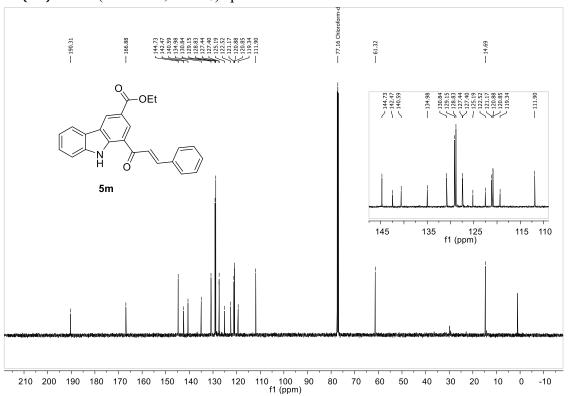

¹H NMR (500 MHz, CDCl₃ + DMSO-*d*₆) spectrum of **5j**

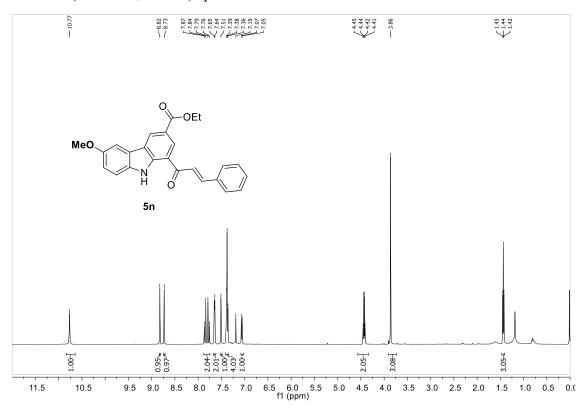

 13 C{ 1 H} NMR (126 MHz, CDCl₃ + DMSO- d_6) spectrum of 5j

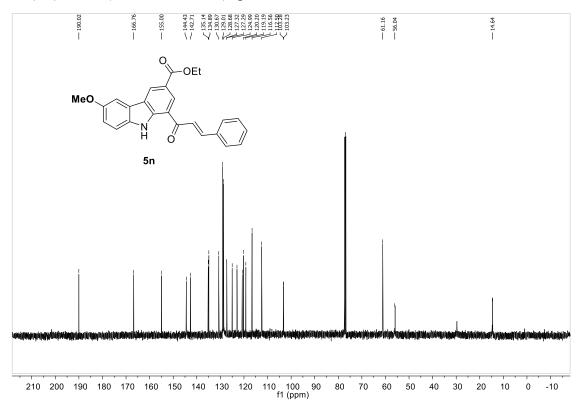

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of **5**k

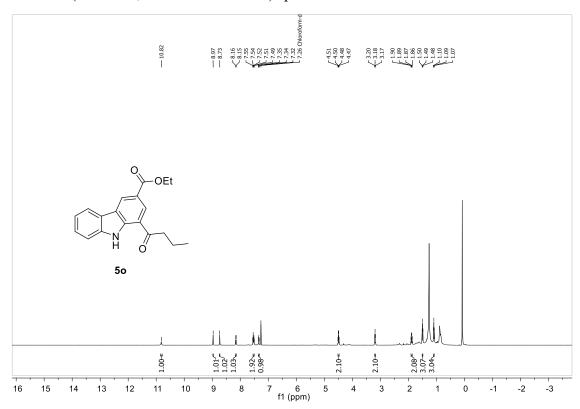

 13 C{ 1 H} NMR (126 MHz, DMSO- d_6) spectrum of 5k


¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 5l

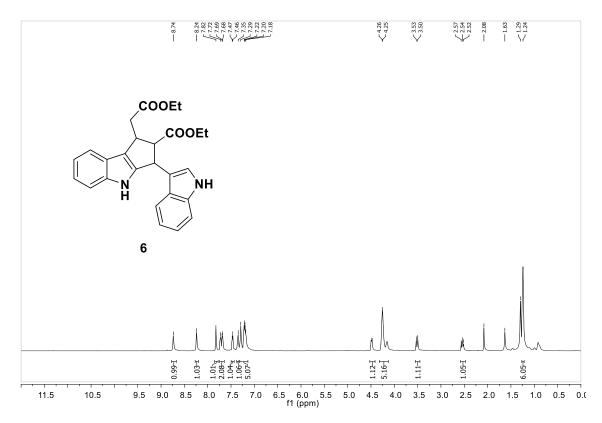

 13 C{ 1 H} NMR (126 MHz, DMSO- d_6) spectrum of 51

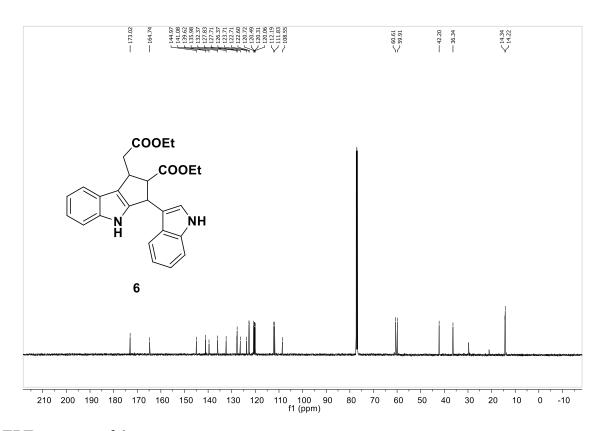

¹H NMR (500 MHz, CDCl₃) spectrum of **5m**

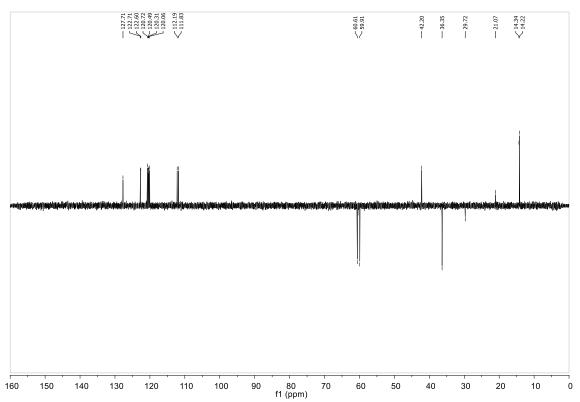

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of **5m**


 ^{1}H NMR (500 MHz, CDCl₃) spectrum of 5n

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) spectrum of 5m


¹H NMR (500 MHz, CDCl₃ + DMSO-*d*₆) spectrum of **50**


 13 C{ 1 H} NMR (126 MHz, CDCl₃ DMSO- d_6) spectrum of **50**


¹H NMR (500 MHz, CDCl₃+ DMSO-*d*₆) spectrum of **6**

 13 C{ 1 H} NMR (126 MHz, CDCl₃ + DMSO- d_6) spectrum of 6

DEPT spectrum of 6

