Electronic Supplementary Information

A macrocycle based new organometallic nano-vessel towards sustainable C2-selective arylation of free indole in water

Subham Mandal^a, Piyali Sarkar^b and Pradyut Ghosh^{a,*}

^aSchool of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata-700032, India. E-mail: <u>icpg@iacs.res.in</u>

^bInstitute of Health Sciences, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata 700156, West Bengal, India.

Table of Contents

I. General Details	S2
II. Experimental procedures and data	S2
1. Synthesis of macrocycle (CATMC)	S2
2. Synthesis of CATMC-Pd.	S3
3. General procedure for synthesis of 2-arylindole compounds (3a-3ah)	S3
4. Spectral Data of 2-arylindole derivatives	-S10
III. NMR spectra	S11
1. ¹ H and ¹³ C spectra of CATMC	.S11
2. COSY spectrum of CATMC	S12
3. ROESY spectrum of CATMC	S12
4. ¹ H and ¹³ C spectra of compound CATMC-Pd	S13
5. COSY spectrum of CATMC-Pd	S14
6. ROESY spectrum of CATMC-Pd.	S14
7. Reaction mixture only with PdCl ₂	S15
8. Reaction mixture with CATMC-Pd	S15
9. GC-MS chromatogram	516
10. The equation for calculating the selectivity for C2-phenylindole (3a)	516
11. Leaching test:	
a. Characterization of CATMC-Pd bound with 4-Methylpyridine	\$17
b. ICP-MS data	517

12. Table 1S: Comparative table of direct C2-arylation with previous r our catalyst	eported catalysts vs.
IV. References	S18-S19
13. ¹ H and ¹³ C Spectra of Synthesized 2-arylindole derivatives	S19-S53
V. Crystal Information and Structure	S53
ORTEP diagram of CATMC-Pd	S54
Crystallographic details of the CATMC-Pd crystal	

I. General Details

All the starting materials were purchased from commercial sources such as Sigma-Aldrich, Merck, Spectrochem and Alfa Aesar and were used as received without further purification. High resolution mass spectra were measured on Q-Tof micro-MS system by electron spray ionization (ESI) technique. All the NMR experiments were obtained on 300 MHz, 400 MHz and 600 MHz Bruker DPX. The Single Crystal XRD data were collected using Bruker SC-XRD. The absorption spectra were recorded with a Perkin Elmer Lambda 950 UV/VIS-NIR scanning spectrophotometer at 298 K.

II. Experimental procedures and data

1. Synthesis of macrocycle (CATMC)^{S1}:

Initially, compound I was synthesised by using dibromoethane and 4hydroxybenzaldehyde as starting materials in ACN solvent in presence of K_2CO_3 under reflux condition for 24h. Further dehydrobromination reaction occur with catechol in DMF solvent under similar basic condition to provide the corresponding compound II. Then macrocycle has been synthesised using high dilution principle as follows-

Scheme 1S. Synthesis of CATMC

In a 500ml two neck round bottom flask compound II (406 mg, 1mmol) was dissolved in CH₂Cl₂ in a pressure equalizer funnel and in another pressure-equalizing funnel Diethylenetriamine (108 µl, 1mmol) was dissolved in CH₃OH. The reactants were added dropwise to CH₂Cl₂-CH₃OH solvent mixture at stirring condition at room temperature under N₂ for 15h. After complete addition of above reactants, NaBH₄ (113 mg, 3mmol) was added and stirred another 4 hours at room temperature. Then, the reaction mixture was filtered and removed solvent in vacuo. The crude was extracted with CHCl₃ and water. After drying over sodium sulphate, the organic layer was completely evaporated and washed with diethyl ether to get the pure white solid product. Yield 83% (395mg). ¹H-NMR (400 MHz, DMSO-d₆) δ 7.15 (4H, d, *J* = 11.2 Hz), 7.06 (2H, dd, *J* = 8.0 Hz, 4.8Hz), 6.94 (2H, dd, *J* = 8.0 Hz, 4.8 Hz), 6.80 (4H, d, *J* = 11.6 Hz), 4.27-4.23 (8H, m), 3.56 (4H, brs), 2.61 (8H, brs); ¹³C-NMR (125 MHz, DMSO-d₆) δ 157.8, 149.0, 133.4, 129.6, 122.1, 115.2, 114.6, 68.3, 67.3, 52.7, 48.2, 48.0.

2. Synthesis of CATMC-Pd:

PdCl₂ (1 mmol) was added to the solution of **CATMC** (1mmol) in ACN and the mixture was stirred at 50-60 °C for 3-4 hours. Then solvent was evaporated and the solid residue was washed with diethyl-ether to get the pale yellowish crystalline **CATMC-Pd**. ¹H-NMR (600 MHz, DMSO-d₆) δ 7.74 (4H, d, J = 8.4 Hz), 7.15 (4H, d, J = 8.4 Hz), 7.08 (2H, dd, J = 6.0 Hz, 3.6 Hz), 6.94 (2H, dd, J = 6.0 Hz, 3.6 Hz,), 6.75 (2H, d, J = 7.8 Hz,), 6.34 (1H, t, J = 10.5 Hz), 4.43 (4H, t, J = 8.7 Hz), 4.22 (2H, t, J = 9.0 Hz), 4.16 (2H, t, J = 9.3 Hz), 4.05 (2H, dd, J = 12.6 Hz, 2.4 Hz), 3.07 (2H, dd, J = 12.3 Hz, 2.1 Hz), 2.72 (2H, dd, J = 24.7 Hz, 11.4 Hz), 2.61 (2H, d, J = 12.0 Hz), 2.41 – 2.33 (4H, m); ¹³C-NMR (125 MHz, DMSO-d₆) δ 158.8, 148.6, 133.5, 127.2, 121.7, 115.1, 114.3, 67.3, 66.7, 53.4, 52.5, 52.2.

3. General procedure for synthesis of 2-arylindole compounds (3a-3ah):

In a 10mL round bottom flask corresponding indoles (1 mmol) and boronic acids (1.2 mmol) were taken in 2mL of water then **CATMC-Pd** complex (5 mol%) was added and overall reaction mixture was allowed to stir for another 12 h at 50 °C. Then the solvent was evaporated. All the crude products were extracted by chloroform and were purified by column chromatography.

4. Spectral Data of 2-arylindole derivatives:

2-phenyl-1H-indole (3a)^{S2}: White solid (84%); ¹H-NMR (400 MHz, CDCl₃) δ 8.34 (1H, brs), 7.70 (3H, d, J = 7.6Hz), 7.49 (2H, t, J = 7.8Hz), 7.44 (1H, d, J = 8Hz), 7.38 (1H, t, J = 7.2 Hz), 7.26 (1H, t, J = 7.0 Hz), 7.19 (1H, t, J = 7.4 Hz), 6.89 (1H, s); ¹³C-NMR (101 MHz, CDCl₃) δ 137.9, 136.8, 132.4, 129.3, 129.0, 127.7, 125.2, 122.4, 120.7, 120.3, 110.9, 100.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₂N 194.0965; Found 194.0969, m.p. 187-189 °C. **2-(p-tolyl)-1H-indole (3b)**^{S2}: White solid (86%); ¹H-NMR (300 MHz, CDCl₃) δ 8.31(1H, brs), 7.64 (1H, d, J = 7.5 Hz), 7.57 (2H, d, J = 8.1 Hz), 7.40 (1H, d, J = 8.1 Hz), 7.26 (2H, d, J = 7.8 Hz), 7.23-7.11(2H, m), 6.80 (1H, t, J = 1.0 Hz), 2.41(3H, s); ¹³C-NMR (75 MHz, CDCl₃) δ 138.2, 137.8, 136.9, 129.9, 129.8, 129.5, 125.2, 122.3, 120.7, 120.4, 111.0, 99.6, 21.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄N 208.1121; Found 208.1128, m.p. 211-213 °C.

2-(4-ethylphenyl)-1H-indole (3c)^{S3}: White solid (87%); ¹H-NMR (300 MHz, CDCl₃) δ 8.31(1H, brs), 7.65 (1H, d, J = 7.8 Hz), 7.60 (2H, d, J = 8.1 Hz), 7.40 (1H, d, J = 8.1 Hz), 7.30 (2H, d, J = 8.4 Hz), 7.21(1H, t, J = 6.9 Hz), 7.14 (1H, t, J = 7.2 Hz), 6.81(1H, d, J = 1.8 Hz), 2.71(2H, q, J

= 7.6 Hz), 1.30 (3H, t, *J* = 7.6 HZ); ¹³C-NMR (75 MHz, CDCl₃) δ 144.2, 138.2, 136.9, 130.0, 129.5, 128.7, 125.3, 122.3, 120.7, 120.3, 111.0, 99.6, 28.8, 15.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₆N 222.1278; Found 222.1284, m.p. 194-196 °C.

2-(4-propylphenyl)-1H-indole (3d)^{S4}: White solid (87%); ¹H-NMR (400 MHz, CDCl₃) δ 8.31(1H, brs), 7.62 (1H, d, J = 7.6 Hz), 7.58 (2H, d, J = 8 Hz), 7.40 (1H, d, J = 8 Hz), 7.25 (2H, t, J = 4.0 Hz), 7.17 (1H, t, J=7.2 Hz), 7.11 (1H, t, J = 7.2 Hz), 6.78 (1H, s), 2.62(2H, t, J =

7.6 Hz), 1.72-1.63 (2H, m), 0.97 (3H, t, J = 7.4 Hz); ¹³C-NMR (101 MHz, CDCl₃) δ 142.5, 138.1, 136.7, 129.9, 129.4, 129.1, 125.1, 122.1, 120.5, 120.2, 110.8, 99.4, 37.8, 24.5, 13.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈N 236.1434; Found 236.1440, m.p. 197-199 °C.

2-(4-(tert-butyl)phenyl)-1H-indole (3e)^{S5}: White solid (87%); ¹H-NMR (300 MHz, CDCl₃) δ 8.30 (1H, brs), 7.68(1H, d, *J* = 7.5 Hz), 7.61 (2H, d, *J* = 8.4 Hz), 7.50 (2H, d, *J* = 8.4 Hz), 7.41 (1H, d, *J* = 7.8 Hz), 7.26-7.16 (2H, m), 6.85 (1H, d, 1.5 Hz), 1.41 (9H, s); ¹³C-NMR (101)

MHz, CDCl₃) δ 150.9, 138.0, 136.8, 129.6, 129.4, 126.0, 125.0, 122.2, 120.6, 120.2, 110.9, 99.6, 34.7, 31.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₀N 250.1591; Found 250.1596, m.p. 186-189 °C.

2-(3,5-dimethylphenyl)-1H-indole (3f)^{S6}: White solid (86%); ¹H-NMR (400 MHz,

CDCl₃) δ 8.33 (1H, brs), 7.62 (1H, d, J=8 Hz), 7.39(1H, d, J=8 Hz), 7.30(2H, s), 7.18(1H, t, J=7.6 Hz), 7.11(1H, t, J=7.4 Hz), 6.98(1H, s), 6.80(1H, s), 2.39 (6H, s); ¹³C-NMR (101 MHz, CDCl₃) δ 138.6, 136.7,

132.2, 129.5, 129.3, 125.0, 123.1, 122.2, 120.6, 120.2, 110.8, 99.8, 21.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₆N 222.1278; Found 222.1283, m.p. 116-118 °C.

2-(4-phenoxyphenyl)-1H-indole (3g)^{S7}: White crystalline (88%); ¹H-NMR (400 MHz,

 $CDCl_3$) δ 8.29 (1H, brs), 7.63 (3H, d, J = 8.8 Hz), 7.38 (3H, dd, J = 13.6 Hz, J = 8 Hz), 7.21-7.06 (7H, m), 6.76 (1H, s); ¹³C-NMR (101 MHz, CDCl₃) δ 157.1, 156.9, 136.8, 129.9, 129.4,

127.6, 126.6, 123.6, 122.2, 120.5, 120.3, 119.2, 119.2, 110.8, 99.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₆NO 286.1227; Found 286.1230, m.p. 168-170 °C.

2-(3,5-difluorophenyl)-1H-indole (3h)^{S8}: White crystalline (82%); ¹H-NMR (300 MHz, CDCl₃) δ 8.32(1H, brs), 7.65 (1H, d, J = 8.1 Hz), 7.41 (1H, d, J = 8.4 Hz), 7.27-7.24

(1H, m), 7.22-7.14 (3H, m), 6.86 (1H, brs), 6.80-6.72 (1H, m); ¹³C-NMR (75 MHz, CDCl₃) δ 165.2, 137.2, 135.7, 129.0, 123.4, 121.2, 120.8, 111.2, 108.2, 107.8, 102.9, 101.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for

C₁₄H₂₀F₂N 230.0776; Found 230.0782, m.p. 125-127 °C.

2-(4-(trifluoromethyl)phenyl)-1H-indole (3i)^{S2}: White crystalline (85%); ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 8.36 (1\text{H}, \text{brs}), 7.76 (2\text{H}, \text{d}, J = 8.1 \text{ Hz}), 7.70$ -7.64 (3H, m), 7.43 (1H, d, *J* = 8.1 Hz), 7.27-7.22 (1H, m), 7.15 (1H, t, J = 7.5 Hz), 6.93 (1H, d, J = 1.2 Hz); ¹³C-NMR (101 MHz,

CDCl₃) & 137.2, 136.1, 135.7, 129.0, 126.1, 126.0, 125.1, 123.2, 121.1, 120.7, 111.1, 101.7; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₅H₁₁F₃N 262.0838; Found 262.0835, m.p. 233-235 °C.

2-(3-nitrophenyl)-1H-indole (3j)^{S9}: Yellowish crystalline (83%); ¹H-NMR (400 MHz,

DMSO-d₆) δ 11.63 (1H, brs), 8.47 (1H, s), 8.17 (1H, d, J = 7.6 Hz), 8.06 (1H, d, *J* = 8.4 Hz), 7.97 (1H, d, *J* = 2.4 Hz), 7.92 (1H, d, *J* = 7.6 Hz), 7.71 (1H, t, *J* = 8 Hz), 7.50 (1H, d, *J* = 8 Hz), 7.23-7.16 (2H, m);

¹³C-NMR (151 MHz, CDCl₃) δ 148.8, 137.4, 136.7, 133.0, 129.6, 125.2, 123.0, 122.7, 121.8, 121.0, 120.6, 119.3, 116.2, 111.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₁N₂O₂ 239.0815; Found 239.0819, m.p. 164-167 °C.

2-(naphthalen-2-yl)-1H-indole (3k)^{S2}: White crystalline (86%); ¹H-NMR (300 MHz,

CDCl₃) δ 8.49 (1H, brs), 8.05 (1H, s), 7.92-7.81 (4H, m), 7.68 (1H, d, J = 7.8 Hz), 7.55-7.42 (3H, m), 7.26-7.13 (2H, m), 6.97 (1H, d, J = 1.5 Hz); 13 C-NMR (75 MHz, CDCl₃) δ 137.9, 137.1, 133.7, 132.9,

129.8, 129.4, 128.8, 128.1, 127.9, 126.8, 126.2, 123.9, 123.1, 122.6, 120.8, 120.4, 111.0, 100.8; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₁₄N 244.1121; Found 244.1126, m.p. 194-196 °C.

5-methyl-2-phenyl-1H-indole (31)^{S2}: White solid (85%); ¹H-NMR (400 MHz, CDCl₃) δ 8.27 (1H, brs), 7.68 (2H, d, J = 7.6 Hz), 7.49-7.47 (3H, m), 7.38-7.28 (2H, m), 7.07 (1H, d, J = 8.4 Hz), 6.80 (1H, s), 2.50 (3H, s); ¹³C-NMR (101 MHz, CDCl₃) δ 138.0, 135.2, 132.5, 129.6, 129.5, 129.0,

127.6, 125.1, 124.0, 120.3, 110.6, 99.6, 21.5; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₅H₁₄N 208.1121; Found 208.1124, m.p. 216-219 °C.

6-methyl-2-phenyl-1H-indole $(3m)^{S10}$: White solid (84%); ¹H-NMR (300 MHz, CDCl₃) δ 8.18 (1H, brs), 7.65 (2H, d, *J* =7.5 Hz), 7.52 (1H, d, *J* = 7.8 Hz), 7.44 (2H, t, *J* = 7.6 Hz), 7.31 (1H, t, *J* = 6.9 Hz), 7.19 (1H, s), 6.97 (1H, d, *J* = 8.1 Hz), 6.79 (1H, s), 2.48 (3H, s); ¹³C-NMR (75 MHz), 7.50 Hz

CDCl₃) δ 137.4, 137.3, 132.6, 132.3, 129.1, 127.5, 127.2, 125.0, 122.1, 120.4, 110.9, 99.9, 21.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄N 208.1121; Found 208.1125, m.p. 193-195 °C.

6-methoxy-2-phenyl-1H-indole (3n)^{S10}: White solid (83%); ¹H-NMR (400 MHz, CDCl₃) δ 8.25(1H, brs), 7.65 (2H, d, *J* = 7.6 Hz), 7.52 (1H, d, *J* = 8.4 Hz), 7.45 (2H, t, *J* = 7.6 Hz), 7.32 (1H, t, *J* = 7.6 Hz), 6.93 (1H, s), 6.83 (1H, dd, *J* = 8.4 Hz, *J* = 2.4 Hz), 6.79 (1H, s), 3.89 (3H, s);

 13 C NMR (101 MHz, CDCl₃) δ 156.7, 137.7, 136.8, 132.6, 129.0, 127.3, 124.7, 123.6, 121.3, 110.2, 99.9, 94.5, 55.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄NO 224.1070; Found 224.1074, m.p. 162-164 °C.

6-fluoro-2-phenyl-1H-indole (30)^{S10}: White crystalline (88%); ¹H NMR (300 MHz,

CDCl₃) δ 8.31 (1H, brs), 7.63 (2H, d, *J* = 7.2 Hz), 7.53 (1H, dd, *J* = 8.7 Hz, 5.4 Hz), 7.45 (2H, t, *J* = 7.5 Hz), 7.33 (1H, t, *J* = 7.4 Hz), 7.08 (1H, dd, *J* = 9.6 Hz, 2.2 Hz), 6.93-6.86 (1H, m), 6.79 (1H, dd, *J* = 2.2

Hz, 0.8 Hz); ¹³C-NMR (75 MHz, CDCl₃) δ 161.7, 158.6, 136.9, 136.7, 132.2, 129.1, 127.8, 125.9, 125.0, 121.5, 121.4, 109.3, 108.9, 99.9, 97.5, 97.2; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₁FN 212.0870; Found 212.0866, m.p. 175-187 °C.

5-bromo-2-phenyl-1H-indole (3p)^{S11}: White solid (86%); ¹H NMR (300 MHz, CDCl₃) δ 8.36 (1H, brs), 7.69-7.63 (2H, m), 7.44 (3H, dd, J = 15.6Hz, 7.8 Hz), 7.33 (1H, dd, J = 8.4 Hz, 6.3 Hz), 7.19 (1H, dd, J = 8.1Hz, 1.2 Hz), 7.15-7.10 (1H, m), 6.84 (1H, d, J = 1.8 Hz); ¹³C-NMR

(101 MHz, CDCl₃) δ 137.9, 136.8, 132.4, 129.3, 129.0, 127.7, 125.2, 122.4, 120.7, 120.3, 110.9, 100.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₁BrN 272.0069 (for ⁷⁹Br) and 274.0049 (for ⁸¹Br); Found 272.0076 (for ⁷⁹Br) and 274.0056 (for ⁷⁹Br), m.p. 191-193 °C.

Methyl 2-phenyl-1H-indole-5-carboxylate (3q)^{S2}: White solid (89%); ¹H NMR (400

MHz, CDCl₃) δ 8.62 (s, 1H), 8.40 (s, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 6.90 (s, 1H), 3.95 (s,

3H); ¹³C-NMR (101 MHz, CDCl₃) δ 168.2, 139.4, 139.3, 131.8, 129.1, 128.8, 128.2, 125.3, 123.8, 123.6, 122.4, 110.6, 101.0, 51.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄NO₂ 252.1019; Found 252.1026, m.p. 185-188 °C.

2-phenyl-1H-indole-5-carbonitrile (3r)^{S11}: White solid (90%); ¹H NMR (400 MHz,

CDCl₃) δ 8.74 (s, 1H), 7.97 (s, 1H), 7.68 (d, J = 7.5 Hz, 2H), 7.51 – 7.37 (m, 5H), 6.87 (s, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 140.4, 138.5, 131.3, 129.3, 129.1, 128.7, 126.1, 125.5, 125.3, 120.8, 111.8,

103.4, 100.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₁N₂ 219.0917; Found 219.0930, m.p. 194-196 °C.

2-phenyl-1H-indole-6-carbonitrile (3s)^{S12}: White solid (88%); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.74 (s, 1H), 7.69 (t, J = 8.7 Hz, 3H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 6.9 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 6.88 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 135.5, 132.5,

131.2, 129.3, 128.9, 125.6, 123.4, 121.3, 120.7, 115.6, 104.4, 100.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₁N₂ 219.0917; Found 219.0926, m.p. 232-234 °C.

5-nitro-2-phenyl-1H-indole (3t)^{S11}: Yellowish crystalline (92%); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.59 (d, J = 2.0 Hz, 1H), 8.12 (dd, J = 8.9, 2.2 Hz, 1H), 7.72 – 7.66 (m, <sup>O₂N</sub>
2H), 7.50 (t, J = 7.6 Hz, 2H), 7.46 – 7.39 (m, 2H), 6.97 (d, J = 1.4Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃) δ 142.3, 141.2, 139.7, 131.1, 129.3, 128.8, 128.6, 125.4, 118.0, 117.7, 110.8, 101.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₁N₂O₂ 239.0815; Found 239.0826, m.p. 233-235°C.</sup>

2-(4-(tert-butyl)phenyl)-5-methyl-1H-indole (3u)^{S13}: White solid (86%); ¹H NMR
(400 MHz, CDCl₃)
$$\delta$$
 8.22 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.46
(d, J = 8.2 Hz, 2H), 7.41 (s, 1H), 7.29 (d, J = 8.2 Hz, 1H), 7.01
(d, J = 8.0 Hz, 1H), 6.72 (s, 1H), 2.46 (s, 3H), 1.37 (s, 9H); ¹³C-

NMR (101 MHz, CDCl₃) δ 150.8, 138.1, 135.1, 129.7, 129.4, 125.9, 124.8, 123.7, 120.2, 110.5, 99.1, 34.7, 31.3, 21.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₂N 264.1747; Found 264.1741, m.p. 218-220 °C.

2-(4-ethylphenyl)-5-methoxy-1H-indole (3v): White solid (83%); ¹H NMR (300

MHz, CDCl₃) δ 8.21 (s, 1H), 7.57 – 7.49 (m, 2H), 7.24 (d, *J* = 7.9 Hz, 3H), 7.06 (d, *J* = 2.3 Hz, 1H), 6.82 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.70 (d, *J* = 1.4 Hz, 1H), 3.84 (s, 3H), 2.67 (q, *J* = 7.6

Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 154.6, 144.1, 140.0, 132.1, 130.0, 128.6, 125.2, 112.4, 111.7, 102.4, 99.4, 56.0, 28.8, 15.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO 252.1383; Found 252.1391, m.p. 154-156 °C.

2-(4-(tert-butyl)phenyl)-5-methoxy-1H-indole (3w)^{S14}: White solid (84%); ¹H NMR **MeO** (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.9 Hz, 1H), 7.11 (d, J = 1.9 Hz, 1H), 6.86 (dd, J = 8.7, 2.3 Hz, 1H), 6.74 (s, 1H),

3.88 (s, 3H), 1.37 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃) δ 154.6, 151.0, 138.9, 132.1, 130.0, 129.8, 126.1, 125.0, 112.5, 111.7, 102.4, 99.5, 56.0, 34.8, 31.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₂NO 280.1696; Found 280.1688, m.p. 248-250 °C.

2-(3-fluorophenyl)-5-methoxy-1H-indole (3x): White crystalline (82%); ¹H NMR (300 MHz, CDCl₃) δ 8.21 (s, 1H), 7.39 (t, J = 5.3 Hz, 2H), 7.32 (dd, J = 17.1, 5.3 Hz, 2H), 7.09 (d, J = 2.3 Hz, 1H), 7.05 – 6.96 (m, 1H), 6.88 (dd, J = 8.8, 2.5 Hz, 1H), 6.77 (d, J = 1.7 Hz, 1H),

3.87 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 161.9; 154.8, 137.4, 134.8, 132.2, 130.8, 129.7, 120.7, 114.6, 114.3, 113.4, 112.2, 111.9, 102.4, 100.8, 56.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₃FNO 242.0976; Found 242.0981, m.p. 126-128 °C.

2-(2-fluorophenyl)-5-methoxy-1H-indole (3y): White crystalline (80%); ¹H NMR (300 MHz, CDCl₃) δ 8.79 (s, 1H), 7.77 (td, J = 7.7, 1.9 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H), 7.26 – 7.13 (m, 3H), 7.10 (d, J = 2.4 Hz, 1H), 6.92 – 6.86 (m, 2H), 3.87 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃)

δ 154.6, 132.0, 128.9, 128.8, 128.0, 128.0, 124.9, 116.8, 116.5, 113.4, 111.9, 102.1, 101.5,

56.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₃FNO 242.0976; Found 242.0979, m.p. 123-125 °C.

5-fluoro-2-(m-tolyl)-1H-indole (3z): White solid (88%); ¹H NMR (400 MHz, CDCl₃)

δ 8.32 (s, 1H), 7.46 (d, J = 11.2 Hz, 2H), 7.31 (ddd, J = 10.2, 9.4, 4.9 Hz, 3H), 7.16 (d, J = 7.5 Hz, 1H), 6.93 (td, J = 9.1, 2.4 Hz, 1H), 6.77 (s, 1H), 2.43 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 159.4, 157.0,

139.8, 138.8, 133.3, 132.0, 129.0, 128.9, 125.9, 122.4, 111.5, 110.6, 110.4, 105.5, 105.3, 99.9, 21.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₃FN 226.1027; Found 226.1033, m.p. 178-180 °C.

2-(4-(tert-butyl)phenyl)-5-fluoro-1H-indole (3aa): White crystalline (89%); ¹H

Br

NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.30 (ddd, *J* = 9.6, 7.2, 3.3 Hz, 2H), 6.95 (td, *J* = 9.1, 2.4 Hz, 1H), 6.77 (s, 1H), 1.39 (s, 9H);

 $^{13}\text{C-NMR}$ (101 MHz, CDCl₃) δ 159.4, 157.0, 151.3, 139.8, 133.2, 129.8, 129.5, 129.2, 126.0, 125.0, 111.4, 110.5, 110.2, 105.4, 105.2, 99.6, 34.7, 31.3(; HRMS (ESI) m/z: [M + H]^+ Calcd for C_{18}H_{19}FN 268.1496; Found 268.1492, m.p. 212-214 °C.

5-bromo-2-(p-tolyl)-1H-indole (3ab)^{S15}: White solid (87%); ¹H NMR (400 MHz, DMSO-d₆) δ 11.68 (s, 1H), 7.74 (d, *J* = 7.9 Hz, 2H), 7.68 (s, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 1H), 6.83 (s, 1H), 2.34 (s, 3H); ¹³C-NMR (101 MHz, DMSO-

d₆) δ 139.3, 137.3, 135.6, 130.6, 129.5, 128.9, 125.1, 123.7, 121.9, 113.1, 111.7, 97.6, 20.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₃BrN 286.0226 (for ⁷⁹Br) and 288.0205 (for ⁸¹Br); Found 286.0233 (for ⁷⁹Br) and 288.0212 (for ⁸¹Br), m.p. 239-241 °C.

Methyl 2-(m-tolyl)-1H-indole-5-carboxylate (3ac): White solid (90%); ¹H NMR (300

MHz, CDCl₃) δ 8.59 (s, 1H), 8.39 (s, 1H), 7.90 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.43 – 7.30 (m, 2H), 7.17 (d, *J* = 8.7 Hz, 1H), 6.88 (d, *J* = 1.5 Hz, 1H), 3.94 (s, 3H), 2.43 (s,

3H); ¹³C-NMR (101 MHz, CDCl₃) δ 168.2, 139.5, 139.3, 138.8, 131.7, 129.0, 128.9, 126.0, 123.7, 123.5, 122.4, 122.3, 110.5, 100.8, 51.9, 21.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆NO₂ 266.1176; Found 266.1187, m.p. 164-166 °C.

2-(4-methoxyphenyl)-1H-indole-5-carbonitrile (3ad)^{S5}: White solid (90%); ¹H NMR

(300 MHz, CDCl₃) δ 8.65 (s, 1H), 7.93 (s, 1H), 7.60 (d, J = 8.9 Hz, 2H), 7.46 – 7.37 (m, 2H), 7.00 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 1.7 Hz, 1H), 3.87 (s, 3H); ¹³C-NMR (75 MHz,

CDCl₃) δ 160.2, 140.4, 138.4, 129.3, 127.0, 125.8, 125.0, 124.0, 120.9, 114.8, 111.6, 103.4, 99.2, 55.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₃N₂O 249.1022; Found 249.1044, m.p. 210-212 °C.

NC

NC

2-(m-tolyl)-1H-indole-5-carbonitrile (3ae): White solid (91%); ¹H NMR (300 MHz, CDCl₃) δ 9.04 (s, 1H), 7.94 (s, 1H), 7.42 (ddd, J = 22.3, 17.5, 9.5 Hz, 5H), 7.20 (d, J = 8.2 Hz, 1H), 6.84 (d, J = 1.6 Hz, 1H), 2.43 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 140.7, 139.1, 138.7, 131.3,

129.6, 129.2, 129.1, 126.3, 126.1, 125.1, 122.7, 121.2, 112.0, 103.0, 100.0, 21.7; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₆H₁₃N₂ 233.1073; Found 233.1092, m.p. 229-231 °C.

2-(p-tolyl)-1H-indole-5-carbonitrile (3af): White solid (91%); ¹H NMR (300 MHz, CDCl₃) δ 8.76 (s, 1H), 7.94 (s, 1H), 7.57 (d, J = 8.1 Hz, 2H), 7.46 – 7.38 (m, 2H), 7.28 (d, J = 8.1 Hz, 2H), 6.82 (d, J = 1.8 Hz, 1H), 2.41 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 140.6, 138.9, 138.4,

130.0, 129.2, 125.9, 125.4, 125.1, 111.7, 103.3, 99.7, 21.4; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₆H₁₃N₂ 233.1073; Found 233.1093, m.p. 207-209 °C.

5-nitro-2-(m-tolyl)-1H-indole (3ag): Yellowish solid (93%); ¹H NMR (400 MHz,

 $\begin{array}{c} \text{CDCl}_3 \ \delta \ 8.81 \ (\text{s}, 1\text{H}), \ 8.58 \ (\text{s}, 1\text{H}), \ 8.10 \ (\text{dd}, J = 8.9, 1.8 \ \text{Hz}, 1\text{H}), \\ 7.49 \ (\text{d}, J = 11.6 \ \text{Hz}, 2\text{H}), \ 7.41 \ (\text{dd}, J = 16.8, \ 8.3 \ \text{Hz}, 2\text{H}), \ 7.22 \ (\text{d}, J = 7.4 \ \text{Hz}, 1\text{H}), \ 6.95 \ (\text{s}, 1\text{H}), \ 2.45 \ (\text{s}, 3\text{H}); \ ^{13}\text{C-NMR} \ (101 \ \text{MHz}, 1\text{H}), \end{array}$

CDCl₃) δ 142.2, 141.3, 139.6, 139.1, 131.0, 129.6, 129.2, 128.6, 126.1, 122.6, 117.9, 117.6, 110.7, 101.5, 21.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₃N₂O₂ 253.0972; Found 253.0991, m.p. 194-196 °C.

2-(4-(tert-butyl)phenyl)-5-nitro-1H-indole (3ah): Yellowish crystalline (93%); ¹H **O₂N N**MR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.57 (s, 1H), 8.10 (dd, J = 8.9, 1.6 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.9 Hz, 1H), 6.93 (s, 1H), 1.37 (s,

9H); ¹³C-NMR (101 MHz, CDCl₃) δ 152.2, 142.2, 141.3, 139.7, 128.7, 128.2, 126.2, 125.2, 117.8, 117.5, 110.7, 101.2, 34.8, 31.2; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂O₂ 295.1441; Found 295.1463, m.p. 201-203 °C.

III. NMR spectra:

1. ¹H and ¹³C spectra of **CATMC**:

Figure 1S. 400 MHz ¹H-NMR spectrum of compound CATMC in DMSO-d₆

Figure 2S. 125 MHz ¹³C-NMR spectrum of compound CATMC in DMSO-d₆

2. COSY spectrum of CATMC:

Figure 3S. 600 MHz COSY spectrum of CATMC in DMSO-d₆

3. ROESY spectrum of CATMC:

Figure 4S. 300 MHz ROESY spectrum of CATMC in DMSO-d₆

4. ¹H and ¹³C spectra of compound **CATMC-Pd**:

Figure 6S. 125 MHz ¹³C-NMR spectrum of compound CATMC-Pd in DMSO-d₆

5. COSY spectrum of **CATMC-Pd**:

Figure 7S. 600 MHz COSY spectrum of CATMC-Pd in DMSO-d₆

6. ROESY spectrum of CATMC-Pd:

Figure 8S. 300 MHz ROESY spectrum of CATMC-Pd in DMSO-d₆

7. Reaction mixture only with PdCl₂:

Figure 9S. 400 MHz ¹H-NMR spectrum of crude mixture reaction only with PdCl₂ in DMSO- d_6

8. Reaction mixture with CATMC-Pd:

Figure 10S. 400 MHz ¹H-NMR spectrum of crude mixture reaction only with **CATMC-Pd** in DMSO-d₆

9. GC-MS chromatogram:

Figure 11S. GC-MS chromatogram for crude (a) with CATMC-Pd and (b) with PdCl₂

10. The equation for calculating the selectivity for C2-phenylindole (3a)

$$(\%Selectivity)_{PdCl2} = \frac{I_{3a}}{I_{3a} + I_{4a}} \times 100$$

= $\frac{1}{1 + 0.89} \times 100$
= 52.91% (\%Selectivity)_{CATMC-Pd} = $\frac{I_{3a}}{I_{3a} + I_{4a}} \times 100$
 $\approx \frac{1}{1 + (trace amount)} \times 100$
> 90%

Where I_{3a} and I_{4a} are the peak intensities corresponding products **3a** and **4a** respectively as determined from the crude ¹H-NMR (Figure 9S-10S, ESI).

11. Leaching test:

a. Characterization of CATMC-Pd bound with 4-Methylpyridine

Figure 12S. HRMS data of [{CATMC-Pd}-Cl+(4-Methylpyridine)]⁺

b. ICP-MS data

SampleID	Analyte	Mean
Calib Blank 1		
0.1	Pd 340.458	
9.5	Pd 340.458	[0.1] mg/L
1	Pd 340.458	[0.5] mg/L
rev.Pd	Pd 340.458	[1] mg/L
107-1 u	Pd 340.458	18.95 mg/L

12. Table 1S: Comparative table of direct C2-arylation with previous reported catalysts vs. our catalyst

Ref.	Reactions	Catalyst	Additives	Temp	Tim	Solvent	Yields
		(mol %)		(°C).	е		(%)
S16	Br	Na ₂ PdCl ₄ (5)	KOAc	100	4h	DCE	85
	$R_1 + R_2 \rightarrow R_1 + Ar$			(High temp.)			

S17	$R_1 \xrightarrow{N}_{R_2} + \underbrace{N}_{R_2} \xrightarrow{\oplus}_{BF_4} \xrightarrow{R}_{N} \xrightarrow{R}_{R_2} \xrightarrow{Ar}_{R_2}$	Pd@MOF (1)		80	5h	GVL	80
S18	$R_1 \xrightarrow{P_1} R_2 \xrightarrow{P_1} R_1 \xrightarrow{P_2} Ar$	Pd/C (10)		70	4h	PC/H₂ O	93
S19	$R_1 + H R_2 \rightarrow R_1 + Ar$	Pd-NPs (10)	AgTFA (Stoichio metric addition al additive)	50	5h	MeOH/ H ₂ O	82
Our Work	$R_1 + H + R_2 + R_1 + R_1 + R_2 + $	CATMC-Pd (5) (lower catalyst loading)	(additive free)	50 (ambi ent temp.)	12h	H₂O	93

IV. References:

- S1. S. Santra, S. Mukherjee, S. Bej, S. Saha and P. Ghosh, *Dalton Transactions*, 2015, 44, 15198-15211.
- S2. Y.-S. Yang, S. Lee, S. H. Son, H.-S. Yoo, Y. H. Jang, J.-W. Shin, H.-J. Won, J. Sim and N.-J. Kim, Org. Chem. Front., 2022, 9, 5906-5911.
- M. S. Lokolkar, P. A. Mane, S. Dey and B. M. Bhanage, *Eur. J. Org. Chem.*, 2022, 2022, e202101505.
- S4. H. Long, K. Xu, S. Chen, J. Lin, D. Wu, B. Wu, X. Tian and L. Ackermann, Org. Lett., 2019, 21, 3053-3056.
- S5. I. Banerjee, K. C. Ghosh and S. Sinha, J. Chem. Sci., 2019, 131, 71.
- S6. G.-p. Lu and C. Cai, Synlett, 2012, 23, 2992-2996.
- S7. V. Arun, M. Pilania and D. Kumar, Chem. Asian J., 2016, 11, 3345-3349.
- X.Yu, E.-J. Park, T. P. Kondratyuk, J. M. Pezzuto and D. Sun, Org. Biomol. Chem., 2012, 10, 8835-8847.
- S9. G. Arora, S. Sharma and S. Joshi, Asian J. Chem., 2017, 29, 1651-1654.
- S10. C. A. D. Caiuby, M. P. de Jesus and A. C. B. Burtoloso, J. Org. Chem., 2020, 85, 7433-7445.
- S11. F. Campana, B. M. Massaccesi, S. Santoro, O. Piermatti and L. Vaccaro, ACS Sustain. Chem. Eng., 2020, 8, 16441-16450.
- S12. W.-M. Dai, D.-S. Guo and L.-P. Sun, Tetrahedron Lett., 2001, 42, 5275-5278.

- S13. J. He, X. Zhang, Q. He, H. Guo and R. Fan, Chem. Commun., 2021, 57, 5442-5445.
- S14. C. Liu, L. Ding, G. Guo, W. Liu and F.-L. Yang, Org. Biomol. Chem., 2016, 14, 2824-2827.
- S15. S. Yu, L. Qi, K. Hu, J. Gong, T. Cheng, Q. Wang, J. Chen and H. Wu, J. Org. Chem., 2017, 82, 3631-3638.
- S16. P. Xu and X. H. Duan, New J. Chem., 2021, 45, 19425-19431.
- S17. Anastasiou, N. Van Velthoven, E. Tomarelli, A. Lombi, D. Lanari, P. Liu, S. Bals, D. E. De Vos and L. Vaccaro, *ChemSusChem*, 2020, 13, 2786-2791.
- S18. F. Campana, B. M. Massaccesi, S. Santoro, O. Piermatti and L. Vaccaro, ACS Sustainable Chem. Eng., 2020, 8, 16441-16450.
- S19. P. Bhattacharjee, A. Dewan, P. K. Boruah, M. R. Das and U. Bora, Sustainable Chemistry and Pharmacy, 2023, 33, 101087.
- 13. ¹H and ¹³C Spectra of Synthesized 2-arylindole derivatives:

Figure 13S. 400 MHz ¹H-NMR spectrum of compound **3a** in CDCl₃

Figure 15S. 300 MHz ¹H-NMR spectrum of compound **3b** in CDCl₃

Figure 17S. 300 MHz ¹H-NMR spectrum of compound 3c in CDCl₃

Figure 19S. 400 MHz ¹H-NMR spectrum of compound **3d** in CDCl₃

Figure 21S. 300 MHz ¹H-NMR spectrum of compound **3e** in CDCl₃

Figure 23S. 400 MHz ¹H-NMR spectrum of compound **3f** in CDCl₃

Figure 25S. 400 MHz ¹H-NMR spectrum of compound **3g** in CDCl₃

Figure 27S. 300 MHz ¹H-NMR spectrum of compound **3h** in CDCl₃

Figure 31S. 400 MHz ¹H-NMR spectrum of compound 3j in DMSO-d₆

Figure 33S. 300 MHz ¹H-NMR spectrum of compound **3k** in CDCl₃

Figure 35S. 400 MHz ¹H-NMR spectrum of compound **3l** in CDCl₃

Figure 37S. 300 MHz ¹H-NMR spectrum of compound **3m** in CDCl₃

Figure 39S. 400 MHz ¹H-NMR spectrum of compound **3n** in CDCl₃

Figure 45S. 400 MHz ¹H-NMR spectrum of compound **3q** in CDCl₃

Figure 53S. 400 MHz ¹H-NMR spectrum of compound **3u** in CDCl₃

Figure 57S. 400 MHz ¹H-NMR spectrum of compound **3w** in CDCl₃

Figure 63S. 400 MHz ¹H-NMR spectrum of compound **3z** in CDCl₃

Figure 69S. 300 MHz ¹H-NMR spectrum of compound **3ac** in CDCl₃

Figure 71S. 300 MHz ¹H-NMR spectrum of compound **3ad** in CDCl₃

Figure 75S. 300 MHz ¹H-NMR spectrum of compound 3af in CDCl₃

Figure 77S. 400 MHz ¹H-NMR spectrum of compound **3ag** in CDCl₃

Figure 79S. 400 MHz ¹H-NMR spectrum of compound **3ah** in CDCl₃

V. Crystal Information and Structure:

X-ray quality single crystals of **CATMC-Pd** was obtained by diffusion of diethyl-ether into the DMSO. Single crystal X-ray diffraction data were collected using Bruker APEX III D8 Venture, PHOTON II detector (Mo K α , λ =0.7107 Å). Data collection, data reduction, structure solution and refinement were carried out using the software package of the corresponding diffractometer. All the structures were solved by direct methods and refined in a routine manner. Hydrogen atoms were geometrically fixed. All the non-hydrogen atoms were treated anisotropically. CCDC-numbers **2272228** contain the crystallographic data for **CATMC-Pd**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure 81S. ORTEP diagram of **CATMC-Pd**. Thermal ellipsoids are shown at 50% probability.

Table 2S. C	Crystallographic	details of the	CATMC-Pd crystal,	related to Figure 3a
-------------	------------------	----------------	-------------------	----------------------

Identification code	CATMC-Pd
CCDC No.	2272228
Empirical formula	$C_{30}H_{41}Cl_2N_3O_5PdS$
Formula weight	733.02
Temperature/K	140.02
Crystal system	monoclinic
Space group	P2 ₁ /n

a/Å	8.576(3)
b/Å	38.304(13)
c/Å	10.469(4)
α/°	90
β /°	109.747(10)
γ/°	90
Volume/Å ³	3236.7(19)
Z	4
ρ _{calc} g/cm ³	1.504
μ/mm ⁻¹	0.845
F(000)	1512.0
Crystal size/mm ³	0.6 imes 0.5 imes 0.4
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	4.648 to 50.052
Index ranges	$-10 \le h \le 10, -44 \le k \le 45, -12 \le l \le 12$
Reflections collected	23410
Independent reflections	5684 [$R_{int} = 0.1073$, $R_{sigma} = 0.0932$]
Data/restraints/parameters	5684/22/381
Goodness-of-fit on F ²	1.070
Final R indexes [I>=2σ (I)]	$R_1 = 0.0933, wR_2 = 0.2378$
Final R indexes [all data]	$R_1 = 0.1076, wR_2 = 0.2494$
Largest diff. peak/hole / e Å ⁻³	1.27/-1.14