SUPPORTING INFORMATION

Impact of charges on the hybridization kinetics and thermal

duplex stability of PNA

Miguel López-Tena^a and Nicolas Winssinger*^a

nicolas.winssinger@unige.ch

Table of Contents

Figures S1 to S4 2
Abbreviations7
Synthesis of PNA oligomers
Protocols for the synthesis of compounds Az-A/H/N/G/P
Characterisation of PNA oligomers10
Copies of the SPR response curves and the 1:1 binding model fitting curves.46
Copies of the ¹ H and ¹³ C NMR spectra for compounds Az-A/H/N/G/P46
References60

Figures S1 to S4

PNA1-ach-F: C-Ter: GTG AAT CCC AGT-Lys(FITC)-Ac

PNA1-H1-F: C-Ter: GTG AAT CC^HC AGT-Lys(FITC)-Ac

PNA1-H4-F: C-Ter: GT^HG AA^HT CC^HC AG^HT-Lys(FITC)-Ac

PNA1-A1-F: C-Ter: GTG AAT CCAC AGT-Lys(FITC)-Ac

. જે રું રું રું રું રું રું રું રું રું

PNA1-A4-F: C-Ter: GT^AG AA^AT CC^AC AG^AT-Lys(FITC)-Ac

PNA1-N1-F: C-Ter: GTG AAT CC^NC AGT-Lys(FITC)-Ac

PNA1-N4-F: C-Ter: GT^NG AA^NT CC^NC AG^NT-Lys(FITC)-Ac

ىۋىغۇندىدىمۇد.مەنغۇ ھەتلەركە ئۇلغۇندىدەن مەنغۇ ھەتلەركە

PNA1-H1-D: C-Ter: Lys(ACT GG^HG ATT CAC -Ac)-Dabcyl

32 in.

PNA1-H4-D: C-Ter: Lys(AC^HT GG^HG AT^HT CA^HC -Ac)-Dabcyl

<u> 76 99</u>9

PNA1-A1-D: C-Ter: Lys(ACT GG^AG ATT CAC -Ac)-Dabcyl

PNA1-A4-D: C-Ter: Lys(AC^AT GG^AG AT^AT CA^AC -Ac)-Dabcyl

DNA1-D: 5'- CACTTAGGGTCA- 3' 3'-Dabcyl modification

岱

DNA3-D: 5'- CACTTAGAGTCA- 3' 3'-Dabcyl modification / A:C mismatch DNA5-D: 5'- CACTTAGCGTCA- 3' 3'-Dabcyl modification / C:C mismatch

PNA1-ach-D: C-Ter: Lys(ACT GGG ATT CAC -Ac)-Dabcyl

PNA1-G1-F: C-Ter: GTG AAT CC^GC AGT-Lys(FITC)-Ac

PNA-P1-F: C-Ter: GTG AAT CC^PC AGT-Lys(FITC)-Ac

en and the set of the

PNA1-P4-F: C-Ter: GT^PG AA^PT CC^PC AG^PT-Lys(FITC)-Ac

Laka sada asala sala sala sa

PNA1-N1-D: C-Ter: Lys(ACT GG^NG ATT CAC -Ac)-Dabcyl

<u>مَ</u>

PNA1-N4-D: C-Ter: Lys(AC^NT GG^NG AT^NT CA^NC -Ac)-Dabcyl

Engrafer zweize afer ausgeste

PNA1-G1-D: C-Ter: Lys(ACT GG^GG ATT CAC -Ac)-Dabcyl

& gate and the second second

PNA1-G4-D: C-Ter: Lys(AC^GT GG^GG AT^GT CA^GC -Ac)-Dabcyl

PNA1-P1-D: C-Ter: Lys(ACT GG^PG ATT CAC -Ac)-Dabcyl

PNA1-P4-D: C-Ter -Ac)-Dabcyl 使劳动

DNA2-F: 5'- TGACCCTAAGTG -3' 5'-FITC modification

DNA4-D: 5'- CACTTAGTGTCA- 3' 3'-Dabcyl modification / T:C mismatch

-PEG₂-AcCOOH G $B = \underline{A}, \underline{T}, \underline{C}, \underline{G}$ -(CH₂)₃-NH(=NH)NH₂ 'nн н -PEG₃-OH From L-Sei $\mathsf{B}=\mathsf{A}^\mathsf{R},\,\mathsf{T}^\mathsf{R},\,\mathsf{C}^\mathsf{R},\,\mathsf{G}^\mathsf{R}$ P -NH₂ -(CH₂)₃-PO(OH)₂ **R** = a, s, n, g, p N $B = A, T, C, G, N-7-MeG (G^{+}),$ -(CH₂)₃-NH₂ G-clamp (C⁺)

Figure S1. Detailed structures of all PNA/DNA oligomers used in this work for FRET T_m and K_D measurements.

PNA2-H1: C-Ter: GTG AA^HT CC -Ac

PNA2-H3: C-Ter: GT^HG AA^HT CC^H -Ac

to the second second

PNA2-A3: C-Ter: GT^AG AA^AT CC^A -Ac

Stor to the to the to the second

PNA2-N3: C-Ter: GT^NG AA^NT CC^N -Ac

fo.o. telo state te

DNA6-Bt: 5'- CAC TTA GG- 3' 5'-Biotin modification **PNA2-pc-ach:** C-Ter: GTG⁺ AAT C⁺C -Ac

PNA2-pc-H3: C-Ter: $GT^HG^+AA^HTC^+C^H$ -Ac

the state of the second s Ť

PNA3-Bt: C-Ter: GG ATT CAC-Lys(Bt)-Ac

ۺؿڹؿڣؿڣؿڣؿڣؿڣؿڛ

PNA3-AAmm-Bt: C-Ter: GG AAT CAC-Lys(Bt)-Ac

A:A mismatch Le contraction de la c

PNA2-G3: C-Ter: GT^GG AA^GT CC^G -Ac

ස්ලි ඉදිරුද

PNA2-P3: C-Ter: GT^PG AA^PT CC^P -Ac

માં છે. છે. છે. છે. છે. છે.

DNA7-Bt: 5'- CAC TAA GG- 3' 5'-Biotin modification / A:A mismatch

DNA-8: 5'- CC TAA GTG- 3'

PNA2-pc-A1: C-Ter: GTG⁺ AA^AT C⁺C -Ac

t tele to the

PNA2-pc-A3: C-Ter: GT^AG⁺ AA^AT C⁺C^A -Ac

E sta sta

Figure S1 continued. Detailed structures of all PNA/DNA oligomers used in this work for FRET T_m and K_D measurements.

Figure S2. A) Scheme of the FRET melting temperature analysis curves for DNA labelled with Dabcyl quencher and PNA with FITC. B) Melting temperatures for DNA-DNA duplexes, perfect matched sequence versus A:Cmm, T:Cmm and C:Cmm. C) Melting temperatures for PNA-DNA duplexes, perfect matched sequence versus A:Cmm, T:Cmm and C:Cmm.

On chip									
PN/	A3-AAmm-Bt A:A mm	k _{on} x10⁴ (M⁻¹s⁻¹)	<i>k</i> _{off} x10 ⁻³ (s ⁻¹)	<i>К</i> _D (nM)		k _{on} x10⁴ (M⁻¹s⁻¹)	<i>k</i> _{off} x10 ⁻³ (s ⁻¹)	<i>К</i> _D (nM)	
	PNA2-ach	3.0	2.1	71	DNA8	4.9	258.2	5225	
	PNA2-H1	1.4	2.0	147	PNA2-H3	1.8	1.2	65	
	PNA2-N3	1.4	1.2	80	PNA2-A3	1.1	1.1	98	
ſ	PNA2-G3	2.6	1.2	44	PNA2-P3	2.8	2.3	155	

Figure S3. SPR dissociation equilibrium constants (K_D), association rates (k_{on}) and dissociation rates (k_{off}) for PNAs for **PNA3-AAmm-Bt** immobilized on the chip.

DNA6-Bt: 5'- CAC TTA GG- 3' 5'-Bt DNA-8: 5'- CC TAA GTG- 3' PNA2-ach: C-Ter: GTG AAT CC -Ac PNA2-pc-ach: C-Ter: GTG⁺ AAT CC⁺ -Ac PNA2-pc-A1: C-Ter: GTG⁺ AA^AT CC⁺ -Ac PNA2-pc-A3: C-Ter: GT^AG⁺ AA^AT C^AC⁺ -Ac PNA2-pc-H3: C-Ter: GT^HG⁺ AA^HT C^HC⁺ -Ac

On chip		-	-	-			
DNA6-Bt	<i>k</i> _{on} x10⁴ (M⁻¹s⁻¹)	<i>k</i> _{off} x10 ⁻³ (s ⁻¹)	<i>К</i> _D (nM)		<i>k</i> _{on} x10⁴ (M⁻¹s⁻¹)	<i>k</i> _{off} x10 ⁻³ (s ⁻¹)	<i>К</i> _D (nM)
DNA8	39 ± 2	329 ± 6	8600 ± 2000	PNA2-pc-H3	7.9 ± 0.5	2.79 ± 0.06	35 ± 2
PNA2-ach	8.88 ± 0.01	113 ± 7	1280 ± 80	PNA2-pc-A1	4.5 ± 0.2	5.99 ± 0.01	135 ± 6
PNA2-pc-ach	38.8 ± 0.3	18.68 ± 0.08	48.1 ± 0.6	PNA2-pc-A3	2.12 ± 0.09	2.55 ± 0.06	121 ± 5

Figure S4. SPR dissociation equilibrium constants (K_D), association rates (k_{on}) and dissociation rates (k_{off}) for pc-PNAs for **DNA6-Bt** immobilized on the chip. Data presented as the average of duplicate measurements (n = 2) and reported as the mean \pm 95% CI (z = 1.96). Plotted error bars represent the standard deviation (SD).

Abbreviations

AcN	Acetonitrile
Boc	Tert-butyloxycarbonyl
DCM	Dichloromethane
DHB	2,5-Dihydroxybenzoic acid
DIPEA	N,N-Diisopropylethylamine
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
ESI	Electrospray ionization
EtOAc	Ethyl acetate
FITC	Fluorescein isothiocyanate
Fmoc	Fluorenylmethoxycarbonyl
HATU	Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium
HPLC	High performance liquid chromatography
LC-MS	Liquid chromatography-mass spectrometry
MALDI	Matrix-assisted laser desorption/ionization
MS	Mass spectrometry
PEG	Polyethylene glycol
PNA	Peptide Nucleic Acid
TEA	Triethyl amine
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
THPTA	Tris(3-hydroxypropyltriazolylmethyl)amine

Synthesis of PNA oligomers

Synthesis of the reported PNA oligomers was performed starting from 5.0 mg of Fmoc-Rink-Amide PEG AM resin (0.33mmol/g, IrisBiotech) by iterative cycles of solid phase peptide synthesis following our previous reports. ^{1,2}

Protocols for the synthesis of compounds Az-A/H/N/G/P

2-[2-[2-(2-Azidoethoxy)ethoxy]ethoxy]ethanol (Az-H)

Azido alcohol (Az-H) was synthesized according to the previous reported protocols.³

¹**H NMR (400 MHz, CDCl₃):** δ 3.87 (s, 1H), 3.70 – 3.66 (m, 2H), 3.64 – 3.60 (m, 12H), 3.60 – 3.53 (m, 2H), 3.35 (t, *J* = 5.1, 5.1 Hz, 2H).

2-[2-[2-(2-Azidoethoxy)ethoxy]ethoxy]acetic acid (Az-A)

Azido acetic acid (Az-A) was synthesized according to previous reported protocols.³

¹**H NMR (400 MHz, CDCl₃):** δ 9.69 (br. s, 1H), 4.15 (s, 2H), 3.73 – 3.61 (m, 10H), 3.35 (t, *J* = 5.2, 5.2 Hz, 2H).

 N_3 NH_2 H_2 H_2 H_2 H_2 N_3 NH_2 N_3 N_3 N_4 N_3 N_4 N_4 N_3 N_4 $N_$

Tert-butyl (3-azidopropyl)carbamate (Az-N)

To a stirred solution of 3-azidopropan-1-amine (400mg, 4 mmol, 1 eq) in CH₂Cl₂ (5 mL) at 0°C, triethylamine (556 μ L, 4 mmol, 1 eq) and 4-dimethylaminopyridine (24mg, 0.2 mmol, 0.05eq) were added. Then, di-tert-butyl dicarbonate (872 mg, 4 mmol, 1 eq) was added in one portion and the reaction mixture was left to warm to room temperature overnight. The reaction mixture was partitioned between Et₂O (60 mL) and NH₄Cl (sat.) (20 mL). The organic layer was separated, washed again with NH₄Cl (sat.) (2 x 20 mL), brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The resulting crude residue was purified by column chromatography (10-30% EtOAc/pentane) to give Az-N.

Yield: 611mg (76%). Isolated as a pale yellow oil. Spectroscopic data in accordance with previous reports.⁴

R_f: 0.70 in 1/3 EtOAc/Pentane. UV inactive and stains yellow with KMnO₄ stain.

HR-MS/TOF-MS-ES+: *m/z* expected for [M+Na]⁺: 223.1171, *m/z* found: 223.1181

¹**H NMR (300 MHz, CDCl₃):** δ 4.66 (br. s, 1H), 3.35 (t, J = 6.7 Hz, 2H), 3.26 – 3.15 (m, 2H), 1.76 (p, J = 6.7 Hz, 2H), 1.44 (s, 9H).

¹³C NMR (75 MHz, CDCl₃): δ 156.1, 79.6, 49.3, 38.2, 29.4, 28.5.

N², N³-Bis(tert-butoxycarbonyl)-N¹-(3-azidopropyl)guanidine (Az-G)

To a stirred solution of N,N'-Di-Boc-S-methylisothiourea (300 mg, 1.03 mmol, 1 eq) in THF (3.2 mL) at room temperature, a solution of 3-azidopropan-1-amine (258 mg, 2.58 mmol, 2.5 eq) and triethylamine (430 μ L, 3.09 mmol, 3 eq) in THF (2 mL) were added. The reaction mixture was left to stir at 40°C overnight. Then, concentrated in vacuo and the resulting crude residue was purified by column chromatography (10% EtOAc/pentane) to give Az-G.

Yield: 272mg (89%). Isolated as a white solid.

R_f: 0.30 in 10% EtOAc/Pentane. UV inactive and stains yellow with KMnO₄ stain.

HR-MS/TOF-MS-ES+: *m/z* expected for [M+Na]⁺: 365.1913, *m/z* found: 365.1920

¹**H NMR (300 MHz, CDCl₃):** δ 11.48 (br. s, 1H), 8.42 (br. s, 1H), 3.51 (m, 2H), 3.38 (t, *J* = 6.8 Hz, 2H), 1.86 (p, *J* = 6.8 Hz, 2H), 1.49 (m, 18H).

¹³C NMR (75 MHz, CDCl₃): δ 163.7, 156.4, 153.4, 83.4, 79.5, 49.3, 38.3, 28.6, 28.4, 28.2.

Dibenzyl (3-azidopropyl)phosphonate (Az-P)

To a stirred solution of diethyl (3-azidopropyl)phosphonate (300 mg, 1.4 mmol, 1 eq) in CH₂Cl₂ (1 mL) at room temperature, TMS-Br (648 μ L, 4.8 mmol, 3.5 eq) were added and stirred under N₂ atmosphere for 4h. Then, excess of TMS-Br removed by CH₂Cl₂ co-evaporations (2 x 5 mL). The residual yellow oil was redissolved CH₂Cl₂ (1.5 mL) with 2 drops of DMF. Cooled to 0°C and (COCl)₂ (908 μ L, 10.1 mmol, 7.4 eq) added dropwise under intert atmosphere (strong bubbling). The mixture was left to warm to room temperature for 2h before removing the excess (COCl)₂ by CH₂Cl₂ co-evaporations (2 x 5 mL). The residual orange oil was redissolved in CH₂Cl₂ (1 mL) and cooled to 0°, then a solution of benzyl alcohol (560 μ L, 5.4 mmol, 4 eq), 4-dimethylaminopyridine (17 mg, 0.1 mmol, 0.1 eq) and triethylamine (1.14 mL, 8.2 mmol, 6 eq) in CH₂Cl₂ (1.5 mL) was dropwise added under inert atmosphere (strong exotherm). The reaction mixture was left to warm to room temperature for 30min, partitioned between Et₂O (60 mL) and NH₄Cl (sat.) (20 mL). The organic layer was separated, washed again with NH₄Cl (sat.) (2 x 20 mL), water (1 x 20 mL), 1M NaOH (3 x 20 mL), brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The resulting crude residue was purified by column chromatography (10-30% acetone/pentane) to give **Az-p**.

Yield: 121mg (24%). Isolated as a pale yellow oil.

Rf: 0.60 in 30% acetone/pentane. UV active and stains yellow with KMnO₄ stain.

HR-MS/TOF-MS-ES+: *m/z* expected for [M+Na]⁺: 368.1140, *m/z* found: 368.1147

¹**H NMR (400 MHz, CDCl₃):** δ 7.42 – 7.29 (m, 10H), 5.10 – 4.92 (m, 4H), 3.43 – 3.19 (m, 2H), 2.24 – 1.67 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 136.4, 136.4, 128.8, 128.7, 128.1, 67.5, 67.4, 51.6, 51.4, 33.7, 33.5, 26.0, 25.9, 25.7, 24.3, 24.2, 22.7, 22.5, 22.4.

³¹P NMR (121 MHz, CDCl₃): δ 34.8, 32.0 (major), 31.7.

Characterisation of PNA oligomers PNA1- ach-D: C-Ter: Lys(ACT GGG ATT CAC -Ac)-Dabcyl

Chemical Formula: C₁₅₂H₁₈₉N₇₅O₃₉ Exact Mass: 3688.511 Molecular Weight: 3690.670

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 616.1, *m/z* found: 616.2; *m/z* expected for [M+5H]⁵⁺: 739.1, *m/z* found: 739.1; *m/z* expected for [M+4H]⁴⁺: 923.6, *m/z* found: 923.4; *m/z* expected for [M+3H]³⁺: 1231.2, *m/z* found: 1231.0.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 3691.511, m/z found: 3692.187. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

10

Chemical Formula: C₁₅₈H₁₈₇N₇₃O₄₃S Exact Mass: 3826.441 Molecular Weight: 3828.762

LC-MS-ESI+: m/z expected for $[M+4H]^{4+}$: 958.1, m/z found: 958.3; m/z expected for $[M+3H]^{3+}$: 1277.2, m/z found: 1277.3; m/z expected for $[M+2H]^{2+}$: 1915.2, m/z found: 1914.7. (0.1% aqueous TFA solution and 0.1% TFA in HPLC grade acetonitrile used as eluents.)

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 3829.438, *m/z* found: 3830.111

PNA1-H1-D: C-Ter: Lys(ACT GG^HG ATT CAC -Ac)-Dabcyl

Chemical Formula: C₁₆₄H₂₁₀N₇₈O₄₄ Exact Mass: 3975.659 Molecular Weight: 3977.986

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 664.0, *m/z* found: 664.2; *m/z* expected for [M+5H]⁵⁺: 796.5, *m/z* found: 796.7; *m/z* expected for [M+4H]⁴⁺: 995.4, *m/z* found: 995.4; *m/z* expected for [M+3H]³⁺: 1326.9, *m/z* found: 1326.9.

MALDI-TOF-MS: *m/z* expected for [M+Na]⁺: 4000.656 *m/z* found: 4001.175. *In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.*

PNA1-H1-F: C-Ter: GTG AAT CC^HC AGT-Lys(FITC)-Ac

Chemical Formula: C₁₇₀H₂₀₈N₇₆O₄₈S Exact Mass: 4113.589 Molecular Weight: 4116.078

LC-MS-ESI+: m/z expected for $[M+5H]^{5+}$: 824.1, m/z found: 824.7; m/z expected for $[M+4H]^{4+}$: 1029.9, m/z found: 1030.1; m/z expected for $[M+3H]^{3+}$: 1372.9, m/z found: 1372.9. (0.1% aqueous TFA solution and 0.1% TFA in HPLC grade acetonitrile used as eluents.)

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 4116.604, *m/z* found: 4116.239

13

PNA1-H4-D: C-Ter: Lys(AC^HT GG^HG AT^HT CA^HC -Ac)-Dabcyl

Chemical Formula: C₂₀₀H₂₇₃N₈₇O₅₉ Exact Mass: 4837.104 Molecular Weight: 4839.934

LC-MS-ESI+: m/z expected for $[M+6H]^{6+}$: 807.5, m/z found: 807.8 m/z expected for $[M+5H]^{5+}$: 968.8, m/z found: 968.9; m/z expected for $[M+4H]^{4+}$: 1210.8, m/z found: 1210.9; m/z expected for $[M+3H]^{3+}$: 1614.0, m/z found: 1613.9.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 4840.114, m/z found: 4840.054. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-H4-F: C-Ter: GT^HG AA^HT CC^HC AG^HT-Lys(FITC)-Ac

Chemical Formula: C₂₀₆H₂₇₁N₈₅O₆₃S Exact Mass: 4975.034 Molecular Weight: 4978.026

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 830.5, *m/z* found: 830.5; *m/z* expected for [M+5H]⁵⁺: 996.4, *m/z* found: 968.5; *m/z* expected for [M+4H]⁴⁺: 1245.3, *m/z* found: 1245.4; *m/z* expected for [M+3H]³⁺: 1660.0, *m/z* found: 1660.3.

HR-MS/TOF-MS-ES+: *m/z* expected for [M+3H]³⁺: 1660.0208, *m/z* found: 1660.0006; *m/z* expected for [M+4H]⁴⁺: 1245.2675, *m/z* found: 1245.2483; *m/z* expected for [M+5H]⁵⁺: 996.4156, *m/z* found: 996.6104

PNA1-A1-D: C-Ter: Lys(ACT GG^AG ATT CAC -Ac)-Dabcyl

Chemical Formula: C₁₆₄H₂₀₈N₇₈O₄₅ Exact Mass: 3989.639 Molecular Weight: 3991.969

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 666.3, *m/z* found: 666.4; *m/z* expected for [M+5H]⁵⁺: 799.3, *m/z* found: 799.5; *m/z* expected for [M+4H]⁴⁺: 998.9, *m/z* found: 990.0; *m/z* expected for [M+3H]³⁺: 1331.6, *m/z* found: 1331.5.

MALDI-TOF-MS: m/z expected for $[M+Na]^+$: 4014.641, m/z found: 4015.324. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-A1-F: C-Ter: GTG AAT CC^AC AGT-Lys(FITC)-Ac

Chemical Formula: C₁₇₀H₂₀₆N₇₆O₄₉S Exact Mass: 4127.568 Molecular Weight: 4130.061

LC-MS-ESI+: m/z expected for $[M+5H]^{5+}$: 826.9, m/z found: 827.0; m/z expected for $[M+4H]^{4+}$: 1033.4, m/z found: 1033.5; m/z expected for $[M+3H]^{3+}$: 1377.5, m/z found: 1377.7. (0.1% aqueous TFA solution and 0.1% TFA in HPLC grade acetonitrile used as eluents.)

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 4130.594, *m/z* found: 4130.669.

HR-MS/TOF-MS-ES+: *m/z* expected for [M+4H]⁴⁺: 1033.4011, *m/z* found: 1033.3933

PNA1-A4-D: C-Ter: Lys(AC^AT GG^AG AT^AT CA^AC -Ac)-Dabcyl

Chemical Formula: C₂₀₀H₂₆₅N₈₇O₆₃ Exact Mass: 4893.021 Molecular Weight: 4895.866

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 816.8, *m/z* found: 817.1; *m/z* expected for [M+5H]⁵⁺: 980.0, *m/z* found: 980.3; *m/z* expected for [M+4H]⁴⁺: 1224.8, *m/z* found: 1225.0; *m/z* expected for [M+3H]³⁺: 1632.7, *m/z* found: 1632.9.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 4896.017, m/z found: 4896.514. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-A4-F: C-Ter: GT^AG AA^AT CC^AC AG^AT-Lys(FITC)-Ac

Chemical Formula: C₂₀₆H₂₆₃N₈₅O₆₇S Exact Mass: 5030.951 Molecular Weight: 5033.958

LC-MS-ESI+: m/z expected for $[M+6H]^{6+}$: 839.8, m/z found: 840.0 m/z expected for $[M+5H]^{5+}$: 1007.6, m/z found: 1007.7; m/z expected for $[M+4H]^{4+}$: 1259.2, m/z found: 1259.3; m/z expected for $[M+3H]^{3+}$: 1678.7, m/z found: 1678.8. (0.1% aqueous TFA solution and 0.1% TFA in HPLC grade acetonitrile used as eluents.)

HR-MS/TOF-MS-ES+: *m/z* expected for [M+3H]³⁺: 1678.6598, *m/z* found: 1678.6427; *m/z* expected for [M+4H]⁴⁺: 1259.2467, *m/z* found: 1259.2367; *m/z* expected for [M+5H]⁵⁺: 1007.5990, *m/z* found: 1007.5889

20

PNA1-N1-D: C-Ter: Lys(ACT GG^NG ATT CAC -Ac)-Dabcyl

Chemical Formula: C₁₅₉H₂₀₁N₇₉O₄₀ Exact Mass: 3856.612 Molecular Weight: 3858.870

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 644.1, *m/z* found: 644.2; *m/z* expected for [M+5H]⁵⁺: 772.7, *m/z* found: 772.6; *m/z* expected for [M+4H]⁴⁺: 965.7, *m/z* found: 965.5; *m/z* expected for [M+3H]³⁺: 1287.1, *m/z* found: 1267.1.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 3859.633, m/z found: 3860.161. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-N1-F: C-Ter: GTG AAT CC^NC AGT-Lys(FITC)-Ac

Chemical Formula: C₁₆₅H₁₉₉N₇₇O₄₄S Exact Mass: 3994.542 Molecular Weight: 3996.962

LC-MS-ESI+: m/z expected for $[M+5H]^{5+}$: 800.3, m/z found: 800.4; m/z expected for $[M+4H]^{4+}$: 1000.1, m/z found: 1000.2; m/z expected for $[M+3H]^{3+}$: 1333.2, m/z found: 1333.2.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 3997.550, *m/z* found: 3997.123.

PNA1-N4-D: C-Ter: Lys(AC^NT GG^NG AT^NT CA^NC -Ac)-Dabcyl

Chemical Formula: C₁₈₀H₂₃₇N₉₁O₄₃ Exact Mass: 4360.916 Molecular Weight: 4363.470

LC-MS-ESI+: *m/z* expected for [M+7H]⁷⁺: 624.3, *m/z* found: 624.4; *m/z* expected for [M+6H]⁶⁺: 728.2, *m/z* found: 728.3; *m/z* expected for [M+5H]⁵⁺: 873.6, *m/z* found: 873.8; *m/z* expected for [M+4H]⁴⁺: 1091.7, *m/z* found: 1091.8.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 4363.937, m/z found: 4363.583. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-N4-F: C-Ter: GT^NG AA^NT CC^NC AG^NT-Lys(FITC)-Ac

Chemical Formula: C₁₈₆H₂₃₅N₈₉O₄₇S Exact Mass: 4498.846 Molecular Weight: 4501.562

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 751.1, *m/z* found: 751.3; *m/z* expected for [M+5H]⁵⁺: 901.2, *m/z* found: 901.3; *m/z* expected for [M+4H]⁴⁺: 1126.2, *m/z* found: 1126.3; *m/z* expected for [M+3H]³⁺: 1501.3, *m/z* found: 1501.3.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 4501.872, *m/z* found: 4501.810.

PNA1-G1-D: C-Ter: Lys(ACT GG^GG ATT CAC -Ac)-Dabcyl

Chemical Formula: C160H203N81O40 Exact Mass: 3898.634 Molecular Weight: 3900.911

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 651.1, *m/z* found: 651.2; *m/z* expected for [M+5H]⁵⁺: 781.1, *m/z* found: 781.1; *m/z* expected for [M+4H]⁴⁺: 976.2, *m/z* found: 976.2; *m/z* expected for [M+3H]³⁺: 1031.2, *m/z* found: 1031.0.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 3901.648, m/z found: 3901.030. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-G1-F: C-Ter: GTG AAT CC^GC AGT-Lys(FITC)-Ac

Chemical Formula: C₁₆₆H₂₀₁N₇₉O₄₄S Exact Mass: 4036.564 Molecular Weight: 4039.003

LC-MS-ESI+: m/z expected for $[M+5H]^{5+}$: 808.7, m/z found: 808.8; m/z expected for $[M+4H]^{4+}$: 1010.6, m/z found: 1010.7; m/z expected for $[M+3H]^{3+}$: 1347.0, m/z found: 1347.0.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 4039.563, *m/z* found: 4039.329.

PNA1-G4-D: C-Ter: Lys(AC^GT GG^GG AT^GT CA^GC -Ac)-Dabcyl

Chemical Formula: C₁₈₄H₂₄₅N₉₉O₄₃ Exact Mass: 4529.003 Molecular Weight: 4531.634

LC-MS-ESI+: m/z expected for $[M+5H]^{5+}$: 907.2, m/z found: 907.3; m/z expected for $[M+4H]^{4+}$: 1133.8, m/z found: 1133.9; m/z expected for $[M+3H]^{3+}$: 1511.3, m/z found: 1511.2. (0.1% aqueous TFA solution and 0.1% TFA in HPLC grade acetonitrile used as eluents.)

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 4532.004, m/z found: 4532.629. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-G4-F: C-Ter: GT^GG AA^GT CC^GC AG^GT-Lys(FITC)-Ac

Chemical Formula: C₁₉₀H₂₄₃N₉₇O₄₇S Exact Mass: 4666.933 Molecular Weight: 4669.726

LC-MS-ESI+: m/z expected for $[M+6H]^{6+}$: 779.2, m/z found: 779.3; m/z expected for $[M+5H]^{5+}$: 934.8, m/z found: 935.2; m/z expected for $[M+4H]^{4+}$: 1168.2, m/z found: 1168.5; m/z expected for $[M+3H]^{3+}$: 1557.3, m/z found: 1557.3. (0.1% aqueous TFA solution and 0.1% TFA in HPLC grade acetonitrile used as eluents.)

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 4669.931, *m/z* found: 4669.190.

PNA1-P1-D: C-Ter: Lys(ACT GG^PG ATT CAC -Ac)-Dabcyl

Chemical Formula: C159H201N78O43P Exact Mass: 3921.568 Molecular Weight: 3923.834

LC-MS-ESI+: *m/z* expected for [M+6H]⁶⁺: 654.9, *m/z* found: 655.3; *m/z* expected for [M+5H]⁵⁺: 785.7, *m/z* found: 786.1; *m/z* expected for [M+4H]⁴⁺: 981.9, *m/z* found: 982.2; *m/z* expected for [M+3H]³⁺: 1308.8, *m/z* found: 1308.8.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 3924.575, m/z found: 3924.998. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-P4-D: C-Ter: Lys(AC^PT GG^PG AT^PT CA^PC -Ac)-Dabcyl

Chemical Formula: C₁₈₀H₂₃₇N₈₇O₅₅P₄ Exact Mass: 4620.737 Molecular Weight: 4623.325

LC-MS-ESI+: m/z expected for $[M+5H]^{5+}$: 925.6, m/z found: 926.1; m/z expected for $[M+4H]^{4+}$: 1156.9, m/z found: 1157.0; m/z expected for $[M+3H]^{3+}$: 1541.9, m/z found: 1542.3.

MALDI-TOF-MS: m/z expected for $[M+H]^+$: 4624.752, m/z found: 4623.978. In all PNAs containing Dabcyl quencher have a secondary peak with a -132 m/z corresponding to a fragmentation of the quencher.

PNA1-P1-F: C-Ter: GTG AAT CC^PC AGT-Lys(FITC)-Ac

Chemical Formula: C₁₆₅H₁₉₉N₇₆O₄₇PS Exact Mass: 4059.498 Molecular Weight: 4061.926

LC-MS-ESI+: m/z expected for $[M+4H]^{4+}$: 1016.4, m/z found: 1016.8; m/z expected for $[M+3H]^{3+}$: 1354.8, m/z found: 1354.8. (0.1% aqueous TFA solution and 0.1% TFA in HPLC grade acetonitrile used as eluents.)

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 4062.514, *m/z* found: 4061.662.

31

PNA1-P4-F: C-Ter: GT^PG AA^PT CC^PC AG^PT-Lys(FITC)-Ac

Chemical Formula: C₁₈₆H₂₃₅N₈₅O₅₉P₄S Exact Mass: 4758.667 Molecular Weight: 4761.417

LC-MS-ESI+: m/z expected for $[M+5H]^{5+}$: 953.1, m/z found: 953.3; m/z expected for $[M+4H]^{4+}$: 1191.2, m/z found: 1191.3; m/z expected for $[M+3H]^{3+}$: 1587.9, m/z found: 1587.7.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 4761.677, *m/z* found: 4761.874.

PNA3-Bt: C-Ter: GG ATT CAC-Lys(Bt)-Ac

Chemical Formula: C107H143N51O31S Exact Mass: 2670.090 Molecular Weight: 2671.707

LC-MS-ESI+: m/z expected for $[M+4H]^{4+}$: 668.8, m/z found: 669.0; m/z expected for $[M+3H]^{3+}$: 891.1, m/z found: 891.6; m/z expected for $[M+2H]^{2+}$: 1336.6, m/z found: 1336.6.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 2672.104, *m/z* found: 2672.439.

PNA3-AAmm-Bt: C-Ter: GG AAT CAC-Lys(Bt)-Ac

Chemical Formula: C₁₀₇H₁₄₂N₅₄O₂₉S Exact Mass: 2679.102 Molecular Weight: 2680.722

LC-MS-ESI+: m/z expected for $[M+4H]^{4+}$: 671.0, m/z found: 671.2; m/z expected for $[M+3H]^{3+}$: 894.4, m/z found: 894.6; m/z expected for $[M+2H]^{2+}$: 1341.1, m/z found: 1341.2.

PNA2-ach: C-Ter: GTG AAT CC -Ac

Chemical Formula: C₈₈H₁₁₁N₄₇O₂₅ Exact Mass: 2225.886 Molecular Weight: 2227.160

LC-MS-ESI+: *m/z* expected for [M+4H]⁴⁺: 557.7, *m/z* found: 557.8; *m/z* expected for [M+3H]³⁺: 743.3, *m/z* found: 743.4; *m/z* expected for [M+2H]²⁺: 1114.5, *m/z* found: 1114.5.

MALDI-TOF-MS: *m/z* expected for [M+Na]⁺: 2227.901, *m/z* found: 2227.556.

PNA2-H1: C-Ter: GTG AA^HT CC -Ac

Chemical Formula: C₁₀₀H₁₃₂N₅₀O₃₀ Exact Mass: 2513.034 Molecular Weight: 2514.476

LC-MS-ESI+: *m/z* expected for [M+4H]⁴⁺: 629.5, *m/z* found: 629.7; *m/z* expected for [M+3H]³⁺: 839.0, *m/z* found: 839.0; *m/z* expected for [M+2H]²⁺: 1258.0, *m/z* found: 1257.8.

MALDI-TOF-MS: *m/z* expected for [M+Na]⁺: 2537.030, *m/z* found: 2536.576.

PNA2-H3: C-Ter: GT^HG AA^HT CC^H -Ac

Chemical Formula: C₁₂₄H₁₇₄N₅₆O₄₀ Exact Mass: 3087.330 Molecular Weight: 3089.108

LC-MS-ESI+: *m/z* expected for [M+4H]⁴⁺: 773.3, *m/z* found: 773.2; *m/z* expected for [M+3H]³⁺: 1030.4, *m/z* found: 1030.4; *m/z* expected for [M+2H]²⁺: 1545.2, *m/z* found: 1544.8.

MALDI-TOF-MS: *m/z* expected for [M+Na]⁺: 3111.313, *m/z* found: 3110.563.

PNA2-A3: C-Ter: GT^AG AA^AT CC^A -Ac

Chemical Formula: C₁₂₄H₁₆₈N₅₆O₄₃ Exact Mass: 3129.268 Molecular Weight: 3131.057

LC-MS-ESI+: m/z expected for $[M+4H]^{4+}$: 783.6, m/z found: 783.6; m/z expected for $[M+3H]^{3+}$: 1044.4, m/z found: 1044.4; m/z expected for $[M+2H]^{2+}$: 1566.1, m/z found: 1565.8.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 3131.282, *m/z* found: 3130.871.

PNA2-N3: C-Ter: GT^NG AA^NT CC^N -Ac

Chemical Formula: C₁₀₉H₁₄₇N₅₉O₂₈ Exact Mass: 2730.189 Molecular Weight: 2731.760

LC-MS-ESI+: m/z expected for $[M+4H]^{4+}$: 683.8, m/z found: 684.0; m/z expected for $[M+3H]^{3+}$: 911.4, m/z found: 911.6; m/z expected for $[M+2H]^{2+}$: 1366.6, m/z found: 1366.7.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 2732.194, *m/z* found: 2732.269.

PNA2-G3: C-Ter: GT^GG AA^GT CC^G-Ac

Chemical Formula: C113H154N64O28 Exact Mass: 2855.259 Molecular Weight: 2856.895

LC-MS-ESI+: *m/z* expected for [M+4H]⁴⁺: 715.1, *m/z* found: 715.5; *m/z* expected for [M+3H]³⁺: 953.1, *m/z* found: 953.5; *m/z* expected for [M+2H]²⁺: 1429.1, *m/z* found: 1429.6.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 2857.269, *m/z* found: 2857.701.

PNA2-P3: C-Ter: GT^PG AA^PT CC^P -Ac

Chemical Formula: C₁₁₀H₁₄₈N₅₅O₃₇P₃ Exact Mass: 2924.060 Molecular Weight: 2925.663

LC-MS-ESI+: m/z expected for $[M+4H]^{4+}$: 732.3, m/z found: 732.7; m/z expected for $[M+3H]^{3+}$: 976.0, m/z found: 976.6; m/z expected for $[M+2H]^{2+}$: 1463.5, m/z found: 1464.0.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 2926.089, *m/z* found: 2926.953.

PNA2-pc-ach: C-Ter: GTG⁺AAT C⁺C -Ac

Chemical Formula: C₉₇H₁₂₁N₄₈O₂₇⁺ Exact Mass: 2389.957 Molecular Weight: 2391.343

LC-MS-ESI+: *m/z* expected for [M+3H]⁴⁺: 598.5, *m/z* found: 598.8; *m/z* expected for [M+2H]³⁺: 797.7, *m/z* found: 797.8; *m/z* expected for [M+H]²⁺: 1196.0, *m/z* found: 1196.1.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 2390.968, *m/z* found: 2390.723.

PNA2-pc-H3: C-Ter: GT^HG⁺AA^HT C⁺C^H -Ac

Chemical Formula: $C_{133}H_{184}N_{57}O_{42}^+$ Exact Mass: 3251.401 Molecular Weight: 3253.291

LC-MS-ESI+: m/z expected for $[M+3H]^{4+}$: 813.9, m/z found: 814.2; m/z expected for $[M+2H]^{3+}$: 1084.8, m/z found: 1084.9; m/z expected for $[M+H]^{2+}$: 1626.7, m/z found: 1626.6.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 3252.420, *m/z* found: 3252.451.

PNA2-pc-A1: C-Ter: GTG⁺ AA^AT C⁺C -Ac

Chemical Formula: C₁₀₉H₁₄₀N₅₁O₃₃⁺ Exact Mass: 2691.084 Molecular Weight: 2692.642

LC-MS-ESI+: m/z expected for $[M+3H]^{4+}$: 673.8, m/z found: 673.8; m/z expected for $[M+2H]^{3+}$: 898.0, m/z found: 898.2; m/z expected for $[M+H]^{2+}$: 1346.5, m/z found: 1346.4.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 2692.079, *m/z* found: 2692.257.

PNA2-pc-A3: C-Ter: GT^AG⁺ AA^AT C⁺C^A -Ac

Chemical Formula: C₁₃₃H₁₇₈N₅₇O₄₅⁺ Exact Mass: 3293.339 Molecular Weight: 3295.240

LC-MS-ESI+: *m/z* expected for [M+3H]⁴⁺: 824.3, *m/z* found: 827.7; *m/z* expected for [M+2H]³⁺: 1098.8, *m/z* found: 1098.9; *m/z* expected for [M+H]²⁺: 1647.7, *m/z* found: 1647.8.

MALDI-TOF-MS: *m/z* expected for [M+H]⁺: 3294.351, *m/z* found: 3294.365.

Copies of the SPR response curves and the 1:1 binding model fitting curves.

PNA2-H1

PNA2-H3

PNA2-A3

PNA2-pc-H3

PNA2-pc-A1

PNA2-pc-A3

PNA2-ach

PNA2-H1

PNA2-G3

40 nM

PNA3-AAmm-Bt on chip A:A mismatch

PNA-H3

PNA2-N3

2 μM

DNA7-Bt on chip A:A mismatch (No binding observed at the concentrations tested)

PNA2-N3

PNA2-G3

PNA2-H1

Copies of the ¹H and ¹³C NMR spectra for compounds Az-A/H/N/G/P

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

59

References

(1) Chouikhi, D.; Ciobanu, M.; Zambaldo, C.; Duplan, V.; Barluenga, S.; Winssinger, N. Expanding the scope of PNA-encoded synthesis (PES): Mtt-protected PNA fully orthogonal to fmoc chemistry and a broad array of robust diversity-generating reactions. *Chemistry* **2012**, *18* (40), 12698-12704.

(2) Lopez-Tena, M.; Farrera-Soler, L.; Barluenga, S.; Winssinger, N. Pseudo-Complementary G:C Base Pair for Mixed Sequence dsDNA Invasion and Its Applications in Diagnostics (SARS-CoV-2 Detection). *JACS Au* **2023**, *3* (2), 449-458.

(3) Khiar, N.; Leal, M. P.; Baati, R.; Ruhlmann, C.; Mioskowski, C.; Schultz, P.; Fernandez, I. Tailoring carbon nanotube surfaces with glyconanorings: new bionanomaterials with specific lectin affinity. *Chem Commun (Camb)* **2009**, (27), 4121-4123.

(4) Xiao, S.; Fu, N.; Peckham, K.; Smith, B. D. Efficient synthesis of fluorescent squaraine rotaxane dendrimers. *Org Lett* **2010**, *12* (1), 140-143.