Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting information

Determination of the amino linkage of D-Dab residue of occidiofungins A-D cyclic lipooctapeptides and antifungal activity of their analogues

Rin Kainuma, Shigekazu Yano, Hiroyuki Konno*

Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan

*Corresponding author should be addressed

Phone and Fax: +81-238-26-3131.

E-mail: konno@yz.yamagata-u.ac.jp

Keywords: occidiofungin, burkholdine, NMR analysis, 2,4-diamino butyric acid, potent antifungal activity

	Tyr-αDab-Gly (11a)	DTyr-αDab-Gly (11b)	Tyr-γDab-Gly (12a)	DTyr-γDab-Gly (12b)
TyrNH ₂	8.09, d, <i>J</i> 3.4	8.09, d, <i>J</i> 3.4	8.25, d, <i>J</i> 4.5	8.25, d, <i>J</i> 4.5
2	3.94, m	3.96, m	3.80, m	3.81, m
3	2.92, dd, J14.3, 5.7	2.94, dd, J13.7, 5.7	2.92, dd, J14.0, 6.5	2.88, dd, J13.8, 6.8
3	2.79, dd, J14.3, 7.8	2.74, dd, J13.8, 8.3	2.88, dd, J14.0, 7.5	2.81, dd, J13.5, 7.5
Ph2,6	6.96, d, <i>J</i> 8.6	7.01, d, <i>J</i> 8.0	6.97, d, <i>J</i> 8.0	6.96, d, <i>J</i> 8.6
Ph3,5	6.64, d, <i>J</i> 8.0	6.69, d, <i>J</i> 8.6	6.67, d, <i>J</i> 8.6	6.67, d, <i>J</i> 9.0
ОН	4.73, brs	4.73, brs	5.0x	5.0x
DabNH	8.79, d, <i>J</i> 8.6	8.86, d, <i>J</i> 7.7	8.84, t, <i>J</i> 5.7	8.52, t, <i>J</i> 5.4
2	4.41, q, <i>J</i> 7.3	4.44, q, <i>J</i> 7.3	3.80, m	3.80, m
3	1.93, m	1.88, m	1.81, m	1.79, m
3	1.80, m	1.77, m	1.81, m	1.79, m
4	2.79, m	2.74, m	3.17, m	3.17, m
5NH ₂	7.90, s	7.83, s	8.13, d, <i>J</i> 4.5	8.13, d, <i>J</i> 5.5
GlyNH	8.36, t, <i>J</i> 6.0	8.51, t, <i>J</i> 5.7	8.50, t, J5.7	8.84, t, <i>J</i> 5.7
2	3.82, dd, <i>J</i> 17.8, 6.3	3.78, dd, <i>J</i> 17.5, 6.0	3.91, dd, <i>J</i> 17.8, 6.3	3.90, dd, <i>J</i> 17.8, 5.7
2	3.71, dd, <i>J</i> 17.8, 5.7	3.74, dd, <i>J</i> 17.0, 5.5	3.80, dd, <i>J</i> 17.5, 5.5	3.80, dd, <i>J</i> 17.5, 5.5
ОН	9.38, brs	9.35, brs	9.38, brs	9.38, brs

Table S1. ¹H-NMR assignments of the tripeptides (11a-b, 12a-b)

	Ocf A (5)	Ocf B (6)	Bk-1119 (10)
TyrNH ₂	8.00	8.00	8.05, m, 1H
2	4.42	4.42	4.13, m, 1H
3	5.16	5.16	5.03, brs, 1H
3			
Ph2,6	7.17	7.17	7.12, d, J8.0, 2H
Ph3,5	6.76	6.76	6.63, d, J8.0, 2H
ОН	-	-	5.68, s, 1H
DabNH	8.04	8.04	7.69, m, 1H
2	4.39	4.39	4.35, m, 1H
3	1.96	1.96	1.86, m, 1H
3	2.15	2.15	2.03, m, 1H
4	2.90	2.90	2.86, m, 2H
5NH ₂	7.49	7.49	
GlyNH	7.93	7.93	7.95, brs, 1H
2	3.72	3.72	3.63, m, 1H
2	3.94	3.94	3.72, m, 1H
ОН			

Table S2. ¹H-NMR assignments of Ocf A (5), Ocf B (6), Bk-1119 (5)

Reference

- Lin, Z.; Falkinham, J. O. III; Tawfik, K. A.; Jeffs, P.; Bray, B.; Dubay, G.; Cox, J. E.; Schmidt, E. W. Burkholdines from Burkholderia: antifungal agents and possible virulence factors. *J. Nat. Prod.* 2012, 75, 1518-1523.
- Lu, S.-E.; Novak, J.; Austin, F. W.; Gu, G.; Ellis, D.; Kirk, M.; Wilson-Stanford, S.; Tonelli, M.; Smith, L. *Biochemistry* 2009, 48, 8312-8321

Table S3. ¹H-and ¹³C-NMR of Ocfs A (**5**), E (**9**), and isolated Bk-1119 (**5**)

	Ocf E (DMSO-		O-d6)	Ocf A (5)		Bk-1119 (10) ³ (DMSO-d6)		Δ	Δ
AA				(DMSO-	d6)			E-Bk	A-Bk
		$^{1}\mathrm{H}$	¹³ C	¹ H	¹³ C	$^{1}\mathrm{H}$	¹³ C		
	1								
	NH	7.95		8.02		8.05, m		-0.1	-0.03
	2	4.14		4.18	63.1	4.13, m	60.8	0.01	0.05
	3	5.09		5.08	73.9	5.03, brs	71.7	0.06	0.05
lyr	Ph1						131.0		
	Ph2,6	7.15				7.12, d (8.0)	128.0	0.03	
	Ph3,5	6.68				6.63, d (8.0)	115.4	0.05	
	Ph4								
	ОН	5.73,9.33				5.68, s		0.05	
	1				172.1				
	NH	7.65		7.71		7.69, brs		-0.04	0.02
	2	4.42		4.39	53.9	4.35, m	51.3	0.07	0.04
Dab	3	2.11, 1.89		2.11.	32.8	2.03, m,	30.3	0.08	0.08
				1.91		1,86, m		0.03	0.05
	4	2.92		2.92	32.8	2.86, m,	36.7	0.06	0.06
	NH ₂	7.75							
	1				170.9				
Cly	NH	7.98		7.93		7.95, brs		0.03	-0.02
Gly	2	3.81, 3.64		3.81,	45.1	3.72, m,	42.8	0.09	0.09
				3.64		3.63, m		0.01	0.01
	1								
	NH	8.41		8.36		8.29, m		0.12	0.07
Acr	2	4.57		4.58	58.7	4.52, m	50.4	0.05	0.06
(Asp)	3	2.76, 2.50	38.6	2.63, 2.41	40.1	2.56, m,	37.5	0.2	0.07
(Asp)						2.37, m		0.13	0.04
	4								
	NH ₂	7.41							
	1				169.6				
Car I	NH	7.80		7.81		8.02, m		-0.22	-0.21
Ser I	2	4.23	58.3	4.20	58.7	4.18, m	56.4	0.05	0.02
	3	3.58	64.2	3.62	63.1	3.38, m, 3.29, m	61.9	0.20, 0.29	0.24,0.33

						1			
									0.33
	OH	4.83							
	1								
	1NH	8.09		8.13	172.7	8.04, m		0.05	0.09
	2	4.52		4.53	52.9	4.48, m	50.5	0.04	0.05
AsnII	3	2.52, 2.35		2.58,	40.1	2.48, m,	37.9	0.04	0.1
				2.36		2.31, m		0.04	0.05
	4								
	NH ₂	7.26,6.86		7.23,					
	OH			6.84					
	1				170.9				
	2	2.40, 2.32		2.38	40.0	2.36, m,	41.4	0.04	0.02
						2.29, m		0.03	0.09
	3	4.15	47.4	4.14	47.5	4.11, m	45.1	0.04	0.03
	NH	7.53		7.49		7.48, brs		0.05	0.01
	4	1.76, 1.35		1.77	41.3	1.72, m,	N.D	0.03	0.05
						1.40, m		-0.05	
ATHOD	5	3.51				3.40, m	67.9	0.11	
ATTIOD	50H	4.17							
	6	3.05				3.07, m	75.6	-0.02	
	60H	4.08							
	7	3.75				3.68, m	77.8	0.07	
	8	1.36				1.51, m,	30.6	-0.15	
						1.50, m			
	9-17	1.31				1.24, m	23-32	0.07	
	18	0.86				0.82, t (6.5)	14.8	0.04	
	1								
	NH	8.07		8.13		7.72, d (6.6)		0.35	0.41
SerII	2	4.18		4.21	58.9	4.16, m	56.3	0.02	0.05
	3	3.42				3.55, m	61.9	-0.07	
	ОН	4.97				4.78, brs		0.21	
37.1	H1	4.18				4.14, m	102.7	0.04	
Xyl	H2	2.99				2.94, m	73.7	0.05	

Н3	3.28,4.94		3.06, m	77.2	0.22
H4	3.10,4.93		3.26, m	70.2	-0.16
Н5	3.72, 3.06		3.67, m,	66.3	0.05
			3.01, m		0.05

Fig. S1a. Difference between chemical shifts of Ocf E (9), Ocf A (5) and Bk-1119 (5)

Fig. S1b. Difference in chemical shifts between Ocf E (9), OcfA (5) and Bk-1119(5)

entry	peptide	Ηα	$\operatorname{Ocf} \mathcal{A}(5)(\Delta)$	$Ocf B (\boldsymbol{6}) (\Delta)$	11a (Δ)	11b (Δ)	12a (Δ)	12b (Δ)
1	13	4.50	-0.11	-0.11	-0.08	-0.07	-0.60	-0.59
2	14	4.21	0.18	0.18	0.21	0.22	-0.31	-0.46
3	15	4.38	0.01	0.01	0.04	0.05	-0.48	-0.47
4	16	4.44	-0.05	-0.05	-0.02	-0.01	-0.54	-0.53
5	17	3.88	0.51	0.51	0.54	0.55	0.02	0.03
6	18	3.77	0.62	0.62	0.65	0.66	0.13	0.14

Table S4. Difference in ¹H-chemical shifts between the values of 5, 6 11a-b, 12a-b and

H α (ppm) = chemical shift of α -proton of DAB residue of cyclic peptides

Ocf A (5) (Δ) = 4.39 ppm – H α ; Ocf B (6) (Δ) = 4.39 ppm – H α ; 11a (Δ) = 4.42 ppm –

Hα; **11b** (Δ) = 4.43 ppm – Hα; **12a** (Δ) = 3.90 ppm – Hα; **12b** (Δ) = 3.91 ppm – Hα.

Appl. Environ. Microbiol. 2011, 77, 6189-6198. Appl. Environ. Microbiol. 2013, 79, 2899-2905.

13-18.

HPLC spectra

L-Tyr-L- α Dab-Gly (11a)

D-Tyr-L- α Dab-Gly (11b)

L-Tyr-L- γ Dab-Gly (12a)

D-Tyr-L-γDab-Gly (**12b**)

L-LAP-D-Ser(tBu)-D-Tyr(tBu)-D- α Dab(Boc)-Gly-Asn(Trt)-Ser(tBu)-Asn(Trt)

Cyclo-[L-LAP-D-Ser-D-Tyr-D-αDab-Gly-Asn-Ser-Asn] (13)

 $L-LAP-D-Ser(tBu)-D-Tyr(tBu)-L-\alpha Dab(Boc)-Gly-Asn(Trt)-Ser(tBu)-Asn(Trt)$

 $D-LAP-D-Ser(tBu)-D-Tyr(tBu)-D-\alpha Dab(Boc)-Gly-Asn(Trt)-Ser(tBu)-Asn(Trt)$

Cyclo-[D-LAP-D-Ser-D-Tyr-D-αDab-Gly-Asn-Ser-Asn] (15)

 $D-LAP-D-Ser(tBu)-D-Tyr(tBu)-L-\alpha Dab(Boc)-Gly-Asn(Trt)-Ser(tBu)-Asn(Trt)$

Cyclo-[D-LAP-D-Ser-D-Tyr-L-αDab-Gly-Asn-Ser-Asn] (16)

L-LAP-D-Ser(*t*Bu)-D-Tyr(*t*Bu)-L- γ Dab(Boc)-Gly-Asn(Trt)-Ser(*t*Bu)-Asn(Trt)

 $Cyclo-[L-LAP-D-Ser(tBu)-D-Tyr(tBu)-L-\gamma Dab(Boc)-Gly-Asn(Trt)-Ser(tBu)-Asn(Trt)]$

Cyclo-[L-LAP-D-Ser-D-Tyr-L-γDab-Gly-Asn-Ser-Asn] (17)

D-LAP-D-Ser(*t*Bu)-D-Tyr(*t*Bu)-L- γ Dab(Boc)-Gly-Asn(Trt)-Ser(*t*Bu)-Asn(Trt)

Cyclo-[D-LAP-D-Ser-D-Tyr-L-yDab-Gly-Asn-Ser-Asn] (18)

NMR spectra

D-Tyr-L-αDab-Gly (11b)

L-Tyr-L-γDab-Gly (12a)

D-Tyr-L-γDab-Gly (12b)

Cyclo-[L-LAP-D-Ser-D-Tyr-D- α Dab-Gly-Asn-Ser-Asn] (13)

Cyclo-[L-LAP-D-Ser-D-Tyr-L- α Dab-Gly-Asn-Ser-Asn] (14)

Cyclo-[D-LAP-D-Ser-D-Tyr-D- α Dab-Gly-Asn-Ser-Asn] (15)

Cyclo-[D-LAP-D-Ser-D-Tyr-L-aDab-Gly-Asn-Ser-Asn] (16)

Cyclo-[L-LAP-D-Ser-D-Tyr-L-γDab-Gly-Asn-Ser-Asn] (17)

Cyclo-[D-LAP-D-Ser-D-Tyr-L-γDab-Gly-Asn-Ser-Asn] (18)

3. ¹³C NMR spectra

L-Tyr-L-αDab-Gly (11a)

D-Tyr-L-αDab-Gly (11b)

L-Tyr-L-γDab-Gly (12a)

D-Tyr-L-γDab-Gly (12b)

IR spectra

L-Tyr-L-αDab-Gly (11a)

D-Tyr-L-αDab-Gly (11b)

L-Tyr-L-γDab-Gly (12a)

