#### SUPPORTING INFORMATION

#### for

# Accessing diverse bicyclic peptide conformations using 1,2,3-TBMB as a linker

Haritha Krishna Sudhakar,<sup>1</sup> Jackie Tsz Ki Yau<sup>1</sup>, Lisa J. Alcock,<sup>1\*</sup> Yu Heng Lau<sup>1,2\*</sup>

<sup>1</sup> School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia

<sup>2</sup> ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia

\*Corresponding authors emails yuheng.lau@sydney.edu.au; lisa.alcock@sydney.edu.au

# **Table of Contents**

| 1 Exp   | erimental methods                                       |    |
|---------|---------------------------------------------------------|----|
| 1.1     | General protocol for peptide synthesis                  |    |
| 1.2     | Linker synthesis                                        | 4  |
| 1.3     | Bicyclisation protocols                                 | 6  |
| 2 Pilo  | t study of bicyclisation with 1,2,3-TBMB using Method A | 7  |
| 2.1     | Summary of peptides used in pilot study                 | 7  |
| 2.2     | Reactivity of selected peptides with 1,2,3-TBMB         | 8  |
| 3 Dete  | ection of free thiols by Ellman's assay                 | 9  |
| 3.1     | Method for Ellman's assay                               | 9  |
| 3.2     | Results of Ellman's assay                               | 9  |
| 4 Con   | nparison with peptides bicyclised with 1,3,5-TBMB       | 10 |
| 4.1     | Summary of peptides bicyclised with 1,3,5-TBMB          | 10 |
| 4.2     | Characterisation of P3 with different linkers           | 10 |
| 5 2D I  | NMR analysis of cP15                                    | 11 |
| 5.1     | Characterisation of cP15                                | 11 |
| 5.2     | 2D NMR methods                                          | 11 |
| 5.3     | 2D NMR spectra of cP15 isomers                          | 11 |
| 6 Stud  | ly of bicyclisation reactions using Method B            | 16 |
| 6.1     | Summary of hydrophobic peptides                         | 16 |
| 6.2     | Peptide bicyclisation at homocysteine using Method B    | 17 |
| 6.3     | Reactivity of TCEP with various crosslinkers            | 18 |
| 7 CD    | spectroscopy methods                                    | 19 |
| 8 Bicy  | clisation of crude peptides from a 96-well plate        | 20 |
| 9 LCN   | IS data for crude peptide bicyclisation reactions       | 23 |
| 9.1     | Pilot study peptides                                    | 23 |
| 9.2     | Peptides for 2D NMR                                     | 38 |
| 9.3     | Hydrophobic peptides by Method B                        | 39 |
| 9.4     | Bicyclisation reactions with 1,3,5-TBMB                 | 44 |
| 9.5     | Selected bicyclisation reactions in 96-well plates      | 46 |
| 10 LCN  | IS characterisation of HPLC-purified peptides           | 48 |
| 10.1    | Pilot peptides for Ellman's assay                       | 48 |
| 10.2    | Peptides for bicyclisation with 1,3,5-TBMB              | 54 |
| 10.3    | Peptides for 2D NMR                                     | 62 |
| 11 Refe | erences                                                 | 64 |

# **1** Experimental methods

### **1.1 General protocol for peptide synthesis**

Manual peptide synthesis was performed on Merck Rink Amide MBHA resin (0.52-0.65 mmol/g loading). Couplings were carried out by adding HATU (4 eq) and *N*,*N*diisopropylethylamine (4 eq) to a solution of the Fmoc-protected amino acid (4 eq) in DMF. This pre-activated mixture was then added to the resin in DMF and shaken for 1 h. The side chain protecting groups used were: *t*-Bu for Asp, Glu, Ser, Thr, Tyr; Boc for Lys, Trp; Pbf for Arg; Trt for Asn, Gln, His. *N*-terminal acetyl capping was carried out by adding Ac<sub>2</sub>O (4 eq) and DIPEA (4 eq) in DMF to resin and shaking for 45 min.

Completion of peptide couplings was determined by a chloranil test, in which acetaldehyde (200  $\mu$ L) and a saturated solution of chloranil in toluene (50  $\mu$ L) were added to a small amount of resin swelled in CH<sub>2</sub>Cl<sub>2</sub>. After five minutes shaking at rt, no change in colour indicated complete coupling, whilst green colouration of the resin indicated incomplete coupling. Any incomplete couplings were submitted to a second round of coupling.

Fmoc deprotection was carried out with 20% piperidine in DMF ( $2 \times 1 \text{ min}$ ,  $1 \times 10 \text{ min}$ ). Cleavage from the resin was achieved with TFA containing 2.5% triisopropylsilane and 2.5% H<sub>2</sub>O for 2 h. After cleavage, the mixture was concentrated under a stream of nitrogen. The crude residue was triturated with diethyl ether (15-20 mL) before purification by reverse-phase chromatography.

Automated flash reverse-phase column chromatography was carried out on a Biotage Selekt using pre-packed Biotage Sfär C18 column (30 g or 60 g cartridges) for initial purification of peptides.

Semi-preparative reverse-phase HPLC was performed on a Waters 2545 quaternary pump with a Waters 2707 autosampler using a Waters Sunfire C18 OBD Prep Column (10 mm × 250 mm, 5  $\mu$ m), or on a Waters 1525 binary pump with a Waters 2707 autosampler using a XBridge Peptide BEH C18 OBD Prep Column (10 mm × 250 mm, 5  $\mu$ m). Peptide samples were eluted with a linear gradient system running with 0.1% (v/v) TFA in MilliQ water (solvent A) and 0.1% (v/v) TFA in MeCN (solvent B) over 30 min at a flow rate of 4 mL/min. Fractions were collected with Waters Fraction Collector III. Peptides were monitored by UV absorbance at 220 nm on a Waters 2998 PDA Detector or Waters 2489 UV Detector with semi-prep cell.

LCMS chromatograms were obtained using a Shimadzu Nexera-I LC-2040C Plus coupled to a Shimadzu LCMS-2020 mass spectrometer ESI single quadrupole mass detector. Reverse phase separation was performed on a Shimadzu Shim-Pack Sceptor C18-120 (2.1 mm × 100 mm, 3  $\mu$ m) run at 0.4 mL/min or Shimadzu ShimPack Velox SP-C18 (2.1 mm × 50 mm, 2.7  $\mu$ m) run at 0.5 mL/min. The mobile phases were water (solvent A) and MeCN (solvent B), both containing 0.1% (v/v) formic acid. The gradient used was 5-95% B over 12 or 6.4 min respectively for each column. UV absorbance was monitored at 220 and 254 nm. Mass spectra were obtained by electrospray ionisation in both positive and negative modes, scanning between *m/z* 200 and 2000.

### 1.2 Linker synthesis

#### 1.2.1 Synthetic methods

*N*-Bromosuccinimide was recrystallised from water prior to use. UV illumination was carried out using LED light (Detroit, 10W Heavy Duty clamp LED work light).

Flash chromatography was carried out on a Biotage Selekt using Silica Gel 60 LR 0.04-0.06 mm (230-400 mesh ASTM, ChemSupply).

NMR spectra were collected on a Bruker Avance III 300 MHz spectrometer. Nuclear magnetic resonance (NMR) were collected on a Bruker Avance III 300 MHz Spectrometer. Where CDCl<sub>3</sub> was used as the solvent and internal lock, spectra were referenced to residual solvent for CHCl<sub>3</sub> ( $\delta_H$  7.26 ppm) for <sup>1</sup>H NMR and ( $\delta_C$  77.0 ppm) for <sup>13</sup>C NMR. Chemical shift values are reported in parts per million, <sup>1</sup>H-<sup>1</sup>H coupling constants are reported in hertz and H multiplicity is abbreviated as; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal.

#### 1.2.2 Synthesis of 1,2,3-TBMB



**Scheme S1.** Synthesis of 1,2,3-tris(bromomethyl)benzene **1,2,3-TBMB** using a modified method based on a literature protocol.<sup>1</sup>

A mixture of 1,2,3-trimethylbenzene (500 mg, 4.16 mmol, 1 eq) and *N*bromosuccinimide (2.37 g, 13.3 mmol, 3.2 eq) in chloroform (20 mL) was heated at reflux overnight under UV illumination. The reaction mixture was cooled to room temperature then washed with aqueous NaHCO<sub>3</sub> (2 × 10 mL) and saturated brine (2 × 10 mL) and concentrated *in vacuo* before purification by flash chromatography with hexane to give **1,2,3-TBMB** as a white solid (454 mg, 31%).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  7.28–7.37 (3H, m, aromatic CH), 4.83 (2H, s, CH<sub>2</sub>), 4.62 (4H, s, CH<sub>2</sub>). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  138.1 (2 × aromatic C<sub>q</sub>), 135.8 (aromatic C<sub>q</sub>), 131.9 (2 × aromatic CH), 129.8 (aromatic CH), 29.8 (2 × CH<sub>2</sub>), 24.7 (CH<sub>2</sub>).

Characterisation data matches that reported in the literature.<sup>1</sup>





Figure S1. <sup>1</sup>H NMR spectrum of 1,2,3-tris(bromomethyl)benzene.



Figure S2. <sup>13</sup>C NMR spectrum of 1,2,3-tris(bromomethyl)benzene.

# **1.3 Bicyclisation protocols**

Bicyclisation reactions were carried out on an Eppendorf ThermoMixer C, shaken at 1000 rpm at the temperatures specified.

Percent conversion was calculated based on a ratio of the area underneath the extracted ion chromatogram peaks corresponding to the expected masses of the linear and bicyclised peptides. In the few cases where full clean conversion was not achieved, the percentage conversion represents an upper bound and may be lower due to the formation of byproducts.

#### 1.3.1 Method A bicyclisation

From a 20 mM stock solution of HPLC-purified linear peptide in DMSO, the peptide was diluted to 520  $\mu$ M using 50% MeCN in 100 mM NaHCO<sub>3</sub> buffer at pH 8 (final volume 500  $\mu$ L). TCEP was added (1 mM, 2 eq) and the mixture was shaken at 30 °C for 30 min. **1,2,3-TBMB** (750  $\mu$ M, 1.5 eq) in MeCN (15  $\mu$ L of a 25 mM stock) was added and the reaction mixture was shaken at 30 °C for 1-2 h. Where required, the bicyclic peptides were purified by semi-preparative HPLC.

#### 1.3.2 Method B bicyclisation

This method was used for hydrophobic peptide sequences **P16-18**.

HPLC-purified linear peptide was dissolved to 1 mM in 1:1 MeCN/H<sub>2</sub>O (1 mL). TCEP (1 mM, 1 eq) was added, followed by DIPEA (0.1% v/v 1  $\mu$ L). **1,2,3-TBMB** (1.5 mM, 1.5 eq) in MeCN (13  $\mu$ L of a 25 mM stock) was then added and the reaction mixture was shaken at 30 °C for 1-2 h. Where required, the crude bicyclic peptides were then purified by semi-preparative HPLC.

#### 1.3.3 Bicyclisation of peptides from 96-well plates

Peptides were obtained from Genscript in crude purity in 96-well plate format.

Crude peptides were dissolved in DMSO (20 mM), then diluted to 520  $\mu$ M using 50% MeCN in 100 mM NaHCO<sub>3</sub> buffer at pH 8 (final volume 280  $\mu$ L). TCEP was added (1 mM, 2 eq) and the mixtures were shaken at 30 °C for 30 min. **1,2,3-TBMB** (750  $\mu$ M, 1.5 eq) in MeCN (6.5  $\mu$ L of a 25 mM stock) was added and the reactions were shaken at 30 °C for 1 h then analysed by LCMS.

# 2 Pilot study of bicyclisation with 1,2,3-TBMB using Method A

# 2.1 Summary of peptides used in pilot study

**Table S1.** List of peptide sequences tested in bicyclisation reactions with **1,2,3-TBMB** using Method A, showing the calculated m/z, observed m/z, and estimated percentage conversion by LCMS. hC = homocysteine. Further LCMS data for the bicyclisation reactions are shown in ESI Section 9.1.

| Name    | Sequence                                                   | Calc. <i>m/z</i>            | Obs. <i>m/z</i> | %   |
|---------|------------------------------------------------------------|-----------------------------|-----------------|-----|
| P1      | Ac-GTEP <u>C</u> L <u>C</u> S <u>C</u> HN-NH <sub>2</sub>  | [M+H] <sup>+</sup> =1318.50 | 1318.55         | >95 |
| P2      | Ac-YIECQPCDCW-NH <sub>2</sub>                              | [M+H] <sup>+</sup> =1414.53 | 1414.32         | >95 |
| P3      | Ac-ACQYCDGCER-NH <sub>2</sub>                              | [M+H] <sup>+</sup> =1302.47 | 1302.50         | >95 |
| P4      | Ac- <u>C</u> FV <u>C</u> G <u>C</u> MSENQ-NH <sub>2</sub>  | [M+H] <sup>+</sup> =1375.49 | 1375.60         | >95 |
| P5      | Ac-VGCKCDCWYQ-NH <sub>2</sub>                              | [M+H] <sup>+</sup> =1359.53 | 1359.60         | >95 |
| P6      | Ac-MCTCSCNER-NH <sub>2</sub>                               | [M+H] <sup>+</sup> =1201.43 | 1201.40         | >95 |
| P6-hCys | Ac-M <u>hC</u> T <u>hC</u> S <u>hC</u> NER-NH <sub>2</sub> | [M+H⁺ = 1243.47             | 1243.45         | >95 |
| P7      | Ac-AL <u>C</u> GCNRCWE-NH2                                 | [M+H] <sup>+</sup> =1309.53 | 1309.55         | >95 |
| P8      | Ac-AW <u>C</u> NI <u>C</u> F <u>C</u> MR-NH <sub>2</sub>   | [M+H] <sup>+</sup> =1401.57 | 1401.60         | >95 |
| P9      | Ac-DNGFHCWICRC-NH <sub>2</sub>                             | [M+H] <sup>+</sup> =1508.59 | 1508.60         | >95 |
| P10     | Ac-NCWCHCLT-NH <sub>2</sub>                                | [M+H] <sup>+</sup> =1134.43 | 1134.40         | >95 |
| P11     | Ac-ACKRTCLNPC-NH₂                                          | [M+H] <sup>+</sup> =1263.56 | 1263.60         | >95 |
| P12     | Ac-ACNEDGCRKTHC-NH2                                        | [M+H]⁺ =1491.68             | 1492.95         | >95 |
| P13     | Ac- <u>C</u> FQYEW <u>C</u> LAEGI <mark>C</mark> -NH₂      | [M+H]⁺ =1719.70             | 1719.20         | >95 |
| P14     | Ac-CRPQKWYCNMSTEAC-NH2                                     | [M+2H] <sup>+</sup> =988.41 | 998.50          | 91  |

#### 2.2 Reactivity of selected peptides with 1,2,3-TBMB

The following LC UV chromatograms show conversion from linear to bicyclic peptides for selected examples with different cysteine spacings and sequences. The LCMS full data set is available in ESI Section 9.1.



Figure S3. LC UV chromatograms monitored at 220 nm, showing overlay of linear peptide (blue) and crude bicyclisation reaction (purple) for peptides (A) P1, (B) P3, (C) P4, (D) P11, (E) P12. Multiple peaks correspond to different isomers of bicyclic peptides.

# 3 Detection of free thiols by Ellman's assay

#### 3.1 Method for Ellman's assay

Reaction buffer consisting of 0.1 M sodium phosphate at pH 8.0 with 1 mM EDTA was prepared. To construct the standard curve (Figure S4a), cysteine hydrochloride (Cys-HCl) was dissolved in the reaction buffer to a concentration of 2 mM, and two-fold serial dilutions performed. Ellman's reagent (4 mg) was dissolved in the prepared buffer (1 mL). In a 96-well plate, Ellman's reagent (5  $\mu$ L), reaction buffer (250  $\mu$ L), and the appropriate concentration of Cys-HCl solution (25  $\mu$ L) were added to each well. The plate was incubated at room temperature for 15 min, after which absorbance was measured at 412 nm using an Enspire Multimodal Plate Reader (Perkin-Elmer).

Peptide samples were dissolved in 50% MeCN in water to a concentration of 1 mM and used in the assay in place of Cys-HCl. The concentration of free thiols in the peptide samples was calculated using the standard curve.

#### 3.2 Results of Ellman's assay

The ratio of observed thiol concentration to prepared peptide concentration (1 mM) was calculated, where the theoretical ratio for linear peptides is 3, while bicyclised peptides is 0.

Experimentally, ratios of less than 3 are expected due to the formation of peptide disulfide bonds during the assay, as Ellman's reagent is incompatible with reducing agents that lead to false positive signals.



**Figure S4. (A)** Standard curve of cysteine thiols determined using Ellman's assay. The equation was then used to determine the number of free cysteines in the linear and cyclic peptides based on a 1:1 reactivity of Ellman's reagent with cysteine. **(B)** Ellman's assay results showing the ratio of detected thiols to peptide concentration for linear and cyclic peptides (**P2**, **P4**, **P6**). A ratio of 1 indicates one free thiol detected per peptide.

## 4 Comparison with peptides bicyclised with 1,3,5-TBMB

#### 4.1 Summary of peptides bicyclised with 1,3,5-TBMB

**Table S2.** List of peptides with different cysteine spacings used in bicyclisation reactions with **1,3,5-TBMB**. The calculated m/z, measured m/z, and estimated percentage conversion by LCMS is reported. LCMS data for the bicyclisation reactions are shown in ESI Section 9.4.

| Name | Sequence          | Calc. <i>m/z</i>             | Obs. <i>m/z</i> | 1,3,5-TBMB (%) |
|------|-------------------|------------------------------|-----------------|----------------|
| P3   | Ac-ACQYCDGCER-NH2 | [M+H] <sup>+</sup> = 1302.47 | 1302.50         | >95            |
| P7   | Ac-ALCGCNRCWE-NH2 | [M+H]⁺ = 1309.53             | 1309.50         | >95            |

#### 4.2 Characterisation of P3 with different linkers



**Figure S5.** Comparison of **1,2,3-TBMB** and **1,3,5-TBMB** linker reactivity and resulting conformational changes with peptide **P3**. (**A**) Structure and mass spectrum of **cP3**, with one possible isomer shown. (**B**) Structure and mass spectrum of **cP3**<sub>1,3,5</sub>. (**C**) LCMS UV chromatograms monitored at 220 nm for crude bicyclisation reaction mixtures of **P3** using Method A with either **1,2,3-TBMB** (purple) or **1,3,5-TBMB** (green). The **1,2,3-TBMB** reaction shows two distinct peaks with identical m/z, while the **1,3,5-TBMB** reaction has a single peak. No linear product is observed in either trace after bicyclisation. Brackets indicate peaks that correspond to the mass spectra displayed in panels A and B. (**D**) CD spectra of linear **P3** (blue), bicyclised **cP3**<sub>pk1</sub> (purple), **cP3**<sub>pk2</sub> (pink), and **cP3**<sub>1,3,5</sub> (green).

# 5 2D NMR analysis of cP15

### 5.1 Characterisation of cP15

**Table S3.** LCMS characterisation of **P15** bicyclisation with **1,3,5-TBMB**. The calculated *m/z*, measured *m/z*, and estimated percentage conversion is reported. Further LCMS data for the **cP15** bicyclisation reaction are shown in ESI Section 9.2. LCMS data for purified **cP15**<sub>pk1</sub> and **cP15**<sub>pk2</sub> are shown in ESI Section 10.3.

| Name | Sequence                                               | Calc. <i>m/z</i> | Obs. m/z | %   |
|------|--------------------------------------------------------|------------------|----------|-----|
| P15  | Ac-R <u>C</u> T <u>C</u> YA <u>C</u> G-NH <sub>2</sub> | [M+H]⁺ = 1031.39 | 1031.35  | >95 |

#### 5.2 2D NMR methods

Peptides were dissolved in DMSO-d<sub>6</sub> as 2 mM stocks. All spectra were acquired at 298 K using a Bruker Avance III 600 MHz NMR spectrometer fitted with TCI probe heads and spectra were processed using TOPSPIN3 (Bruker, Karlsruhe, Germany). All 2D spectra were analysed using CCPN software.<sup>2</sup>

#### 5.3 2D NMR spectra of cP15 isomers



**Figure S6.** 2D <sup>1</sup>H-<sup>1</sup>H TOCSY (blue) and 2D <sup>1</sup>H-<sup>1</sup>H COSY (pink) of **cP15**<sub>pk1</sub> showing the fingerprint region between 6.5-9 ppm on the horizontal axis. The TOCSY and COSY overlapping signals in this spectrum are the alpha amide ( $\alpha$ -NH) of which there are >9, indicating more than one species is present.



**Figure S7.** 2D <sup>1</sup>H-<sup>1</sup>H TOCSY overlay of **cP15**<sub>pk1</sub> (blue) and **cP15**<sub>pk2</sub> (red) showing the fingerprint region between 6.5-9 ppm on the horizontal axis. There are no significant overlaps between the spectra showing that the two samples have different peptide backbone signals and hence, different conformations.



**Figure S8.** Labelled 2D <sup>1</sup>H-<sup>1</sup>H TOCSY of **cP15**<sub>pk2</sub> showing the fingerprint region between 6.5-9 ppm on the horizontal axis. There are 9 alpha amide ( $\alpha$ -NH) signals, indicating one species is present.



Figure S9. Labelled 2D  $^{1}$ H- $^{1}$ H TOCSY of **cP15**<sub>pk2</sub> showing the region between 2-5 ppm on the horizontal axis.



**Figure S10.** 2D <sup>1</sup>H-<sup>1</sup>H NOESY of **cP15**<sub>pk2</sub> showing the fingerprint region between 6.5-9 ppm on the horizontal axis. Full structure of the corresponding isomer **cP15**<sub>b</sub> is shown, with dashed arrows indicating additional NOE cross peaks between peptide backbone amide protons and benzylic CH<sub>2</sub> protons at C2 (brown), and C3 (green). NOE cross peaks involving linker aromatic CH protons at C4Ar (purple) and C6Ar (pink) are also shown.



Figure S11. 2D  $^{1}$ H- $^{1}$ H NOESY of **cP15**<sub>pk2</sub> showing the region between 2-5 ppm on the horizontal axis.

# 6 Study of bicyclisation reactions using Method B

#### 6.1 Summary of hydrophobic peptides

**Table S4.** List of hydrophobic peptide sequences tested in bicyclisation reactions with **1,2,3-TBMB** using Method B, showing the calculated m/z, the observed m/z, and estimated percentage conversion. hC = homocysteine. Full LCMS data is available in ESI Section 9.3.

| Name | Sequence                                                     | Calc. <i>m</i> /z                        | Obs. <i>m/z</i> | %   |
|------|--------------------------------------------------------------|------------------------------------------|-----------------|-----|
| P16  | Ac-DRRCVCFCLGF-NH2                                           | [M+H] <sup>+</sup> =1474.66 <sup>a</sup> | 1474.80         | >95 |
| P17  | Ac-DRR <u>hC</u> V <u>hC</u> F <u>hC</u> LGF-NH <sub>2</sub> | [M+H] <sup>+</sup> =1515.71              | 1515.90         | 53  |
| P18  | Ac-DRR <u>hC</u> VCFhCLGF-NH <sub>2</sub>                    | [M+H] <sup>+</sup> =1502.69 <sup>a</sup> | 1502.90         | >95 |

<sup>a</sup> Calculated masses correspond to the most abundant monoisotopic mass observed by LCMS.



Figure S12. (A) LC UV chromatograms monitored at 220 nm showing overlay of linear peptide (blue) and crude bicyclisation reaction using Method B (purple) for peptide P16. (B) Circular dichroism spectra of linear P16 and bicyclic cP16 as a mixture of isomers. (C) Ellman's assay for linear P16 and bicyclic cP16.





**Figure S13.** Bicyclisation under Method B for peptides containing homocysteine. **(A)** LCMS UV chromatograms monitoring at 220 nm for the attempted bicyclisation reaction on **P17**, showing the linear peptide (blue) and crude reaction mixture at 1 h (orange), 3 h (green) and overnight (purple). Linear product can still be observed after overnight reaction with only ~53% conversion to the expected bicyclised product. Adduct formation between TCEP and linker increases over time. **(B)** LCMS UV chromatograms of **P18** showing linear (blue) and crude bicyclised reaction (purple). The mass spectrum of the product peak is shown, where the two distinct LCMS peaks have the identical *m/z*. No mass corresponding to the linear product was observed.

#### 6.3 Reactivity of TCEP with various crosslinkers

Similar reactivity of TCEP with maleimide and  $\alpha$ -haloacyl groups has been observed in the literature. <sup>3</sup> The phosphine of TCEP can likely act as a nucleophile in a substitution reaction with crosslinkers containing alkyl bromides. The observed *m/z* match the possible structures postulated below, although no further characterisation was performed to confirm these proposed structures.



**Figure S14.** Reactivity of a range of commonly used crosslinkers with TCEP using Method B conditions. (A) Mass spectrum and possible structure of adduct with **1,2,3-TBMB** linker. (B) Mass spectrum and possible structure of adduct with **1,3,5-TBMB** linker. (C) Mass spectrum and possible structure of adduct with 4,4-bis(bromomethyl)biphenyl linker. (D) Mass spectrum and possible structure of adduct with *trans*-1,4-dibromo-2-butene linker.

# 7 CD spectroscopy methods

CD spectra were obtained on a JASCO J-815 Circular Dichroism Spectrometer at 20 °C with a 0.1 cm path-length quartz cuvette, scanning from 260 to 190 nm at 20 nm/min, bandwidth 1.0 nm and response time 2 s. Each spectrum is an average of three measurements and smoothed with Savitzky-Golay at a convolution width of 21 on a JASCO spectra analysis 2.0 software.

HPLC purified peptides were dissolved up to 1 mg/mL using 20% MeCN in water, then diluted to 0.3 mg/mL using 20% MeCN in 10 mM sodium phosphate buffer at pH 7.4 with 1 mM TCEP. Peptide quantities were determined by weighing on a five-digit analytical balance. The molar residue ellipticity (MRE) was calculated using:

$$MRE = \frac{\theta}{l \times r \times c}$$

Where  $\theta$  is the CD signal (mdeg), *l* is path length (mm), *r* is number of residues in peptide and *c* is total molar concentration of peptide (M).

# 8 Bicyclisation of crude peptides from a 96-well plate

The peptides were tested as crude purity directly obtained from commercial vendors in a 96-well plate. LCMS was conducted on the crude linear starting materials and the reaction mixtures after bicyclisation to calculate percentage conversion by integration of *m*/*z* peaks, assuming the linear and cyclised peptides have similar ionisation efficiency in MS. This method for determining %conversion by MS has previously been reported for linear and cyclic peptides.<sup>4</sup>

**Table S5.** Data for 96-well plate format peptide bicyclisation showing the expected m/z for linear and bicyclic peptides, m/z peak integration for the linear and bicyclic peptides, and estimated percentage conversion based on these integrals. All sequences are *N*-terminal acetylated and *C*-terminal amidated. LCMS data for the selected  $_{96w}$ P15 and  $_{96w}$ P51 bicyclisation reaction are shown in ESI Section 9.5.

|                    |             | Expected <i>m/z</i> [M+H] <sup>+</sup> |         | Peak integration by m/z |           |      |
|--------------------|-------------|----------------------------------------|---------|-------------------------|-----------|------|
| ID                 | Sequence    | Linear                                 | Cyclic  | Linear                  | Cyclic    | %    |
| <sub>96w</sub> P1  | YIECQPCDCW  | 1300.49                                | 1414.49 | 2191053                 | 85209597  | >95  |
| <sub>96w</sub> P2  | KLWCLCTCFAA | 1299.63                                | 1413.63 | 948630                  | 171826480 | >95  |
| <sub>96w</sub> P3  | EDACRCWCMAW | 1414.66                                | 1528.66 | 112058479               | 107766020 | 49.0 |
| <sub>96w</sub> P4  | YTDCHCDCLTK | 1342.53                                | 1456.53 | 2071338                 | 245903282 | >95  |
| <sub>96w</sub> P5  | GFICICECAPH | 1233.49                                | 1347.49 | 88977676                | 167900465 | 65.4 |
| <sub>96w</sub> P6  | QYECMCKCIEH | 1427.70                                | 1541.70 | 7725488                 | 299435943 | >95  |
| <sub>96w</sub> P7  | AYLCHCGCDHL | 1275.49                                | 1389.49 | 215375190               | 498219711 | 69.8 |
| <sub>96w</sub> P8  | VVQCGCRCEHI | 1287.54                                | 1401.54 | 3925119                 | 215944314 | >95  |
| <sub>96w</sub> P9  | AQMCQCNCVNP | 1251.49                                | 1365.49 | 2935303                 | 100985624 | >95  |
| <sub>96w</sub> P10 | MNDCNCMCPRA | 1298.57                                | 1412.57 | 12304616                | 136602534 | 91.7 |
| <sub>96w</sub> P11 | GLMCQCGCNHE | 1235.44                                | 1349.44 | 86159254                | 184648794 | 68.2 |
| <sub>96w</sub> P12 | LSICTCDCHSP | 1219.42                                | 1333.42 | 49524224                | 147579186 | 74.9 |
| <sub>96w</sub> P13 | GQDCDCRCSPM | 1255.43                                | 1369.43 | 22511345                | 105211871 | 82.4 |
| <sub>96w</sub> P14 | ENMCLCYCFPI | 1376.69                                | 1490.69 | 65829834                | 108730670 | 62.3 |
| <sub>96w</sub> P15 | TYMCECRCPWD | 1447.69                                | 1561.69 | 74727478                | 109074026 | 59.3 |
| <sub>96w</sub> P16 | WTRCHCPCMMD | 1423.74                                | 1537.74 | 137494541               | 212859399 | 60.8 |
| <sub>96w</sub> P17 | MYGCDCMCLQF | 1354.67                                | 1468.67 | 19317868                | 88409793  | 82.1 |
| <sub>96w</sub> P18 | SRMCKCMCENF | 1392.72                                | 1506.72 | 46303602                | 321029225 | 87.4 |
| <sub>96w</sub> P19 | SMICQCPCKWM | 1370.76                                | 1484.76 | 4466679                 | 159403626 | >95  |
| <sub>96w</sub> P20 | TQSCFCACHYS | 1290.45                                | 1404.45 | 13099804                | 90273050  | 87.3 |
| <sub>96w</sub> P21 | NSGCHCSCHSY | 1238.34                                | 1352.34 | 73164995                | 160205859 | 68.6 |
| <sub>96w</sub> P22 | IETCHCRCADL | 1304.53                                | 1418.53 | 126296266               | 272241784 | 55.9 |
| <sub>96w</sub> P23 | GHDCWCMCWMH | 1300.49                                | 1414.49 | 957419                  | 81033099  | >95  |
| <sub>96w</sub> P24 | FMPCSCFCWYE | 1195.40                                | 1309.40 | 3443725                 | 141216980 | >95  |
| <sub>96w</sub> P25 | AACTLCKCLLQ | 1207.54                                | 1321.54 | 565043                  | 15343512  | >95  |
| <sub>96w</sub> P26 | QYCWICTCDMQ | 1434.69                                | 1548.69 | 2268095                 | 63077787  | >95  |
| <sub>96w</sub> P27 | PGCDLCNCNLL | 1205.43                                | 1319.43 | 9049658                 | 149633237 | 94.3 |
| <sub>96w</sub> P28 | TRCHFCLCIYH | 1436.73                                | 1550.73 | 1421342                 | 117978659 | >95  |
| <sub>96w</sub> P29 | IRCVRCNCILM | 1364.78                                | 1478.78 | 16820021                | 270970670 | 94.2 |
| <sub>96w</sub> P30 | QPCDVCYCGRV | 1283.51                                | 1397.51 | 1323112                 | 128701836 | >95  |
| <sub>96w</sub> P31 | VFCMVCLCNSR | 1315.66                                | 1429.66 | 10123771                | 234505160 | >95  |
| <sub>96w</sub> P32 | LFCKPCFCYMH | 1432.81                                | 1546.81 | 4012069                 | 265839914 | >95  |
| <sub>96w</sub> P33 | GPCWLCVCMVG | 1208.55                                | 1322.55 | 874316                  | 79135984  | >95  |
| <sub>96w</sub> P34 | FFCVRCHCVPH | 1388.69                                | 1502.69 | 1254746                 | 110071089 | >95  |

| DOC                |               | 4 4 0 0 7 0 | 4540.70 | 4405040   | 55400000  | . 05 |
|--------------------|---------------|-------------|---------|-----------|-----------|------|
| <sub>96w</sub> P35 | PROLHCRUYKI   | 1432.79     | 1546.79 | 1105210   | 55488938  | >95  |
| <sub>96w</sub> P36 | EQCHNCECKLN   | 1361.53     | 1475.53 | 4549086   | 232504050 | >95  |
| <sub>96w</sub> P37 | PHCFGCRCKFE   | 1367.63     | 1481.63 | 1425754   | 250054605 | >95  |
| <sub>96w</sub> P38 | RGCFICDCKQV   | 1312.59     | 1426.59 | 7084532   | 318658650 | >95  |
| <sub>96w</sub> P39 | YGCQDCSCRAS   | 1233.36     | 1347.36 | 1464141   | 75825525  | >95  |
| <sub>96w</sub> P40 | RLCPSCMCGHS   | 1234.50     | 1348.50 | 1778687   | 284381177 | >95  |
| <sub>96w</sub> P41 | PQCNGCACVWY   | 1284.49     | 1398.49 | 916290    | 57577900  | >95  |
| <sub>96w</sub> P42 | YLCNQCMCVVM   | 1347.72     | 1461.72 | 1918006   | 28983221  | 93.8 |
| <sub>96w</sub> P43 | KPCKECRCIWP   | 1403.75     | 1517.75 | 4446998   | 71677043  | 94.2 |
| <sub>96w</sub> P44 | PLCIACGCTDW   | 1222.46     | 1336.46 | 166210608 | 153795219 | 48.1 |
| <sub>96w</sub> P45 | WGCVYCSCWLI   | 1373.67     | 1487.67 | 747521    | 50531763  | >95  |
| <sub>96w</sub> P46 | RECTPCSCIML   | 1296.61     | 1410.61 | 132631740 | 107504818 | 44.8 |
| <sub>96w</sub> P47 | STCDTCKCKQQ   | 1285.48     | 1399.48 | 873258    | 164215226 | >95  |
| <sub>96w</sub> P48 | ANCKICWCARK   | 1195.40     | 1309.40 | 2634421   | 128481971 | >95  |
| <sub>96w</sub> P49 | SRDCFCRECKM   | 1318.58     | 1432.58 | 326935    | 85497145  | >95  |
| <sub>96w</sub> P50 | VSECGCQLCLK   | 1223.49     | 1337.49 | 2662979   | 242387399 | >95  |
| <sub>96w</sub> P51 | YGACFCKWCDR   | 1392.64     | 1506.64 | 749244    | 280793932 | >95  |
| <sub>96w</sub> P52 | RRACFCKKCYL   | 1431.80     | 1545.80 | 228460    | 81323358  | >95  |
| <sub>96w</sub> P53 | EINCGCDHCDL   | 1262.40     | 1376.40 | 4745814   | 159162495 | >95  |
| <sub>96w</sub> P54 | DRPCDCVECLK   | 1321.55     | 1435.55 | 1967223   | 495735654 | >95  |
| <sub>96w</sub> P55 | IKECMCPDCNK   | 1324.62     | 1438.62 | 1669761   | 307987297 | >95  |
| <sub>96w</sub> P56 | GQHCICNACLT   | 1203.42     | 1317.42 | 2995434   | 182224046 | >95  |
| <sub>96w</sub> P57 | GKACWCIQCMF   | 1330.67     | 1444.67 | 1330901   | 197060397 | >95  |
| <sub>96w</sub> P58 | VSMCACKVCVS   | 1170.50     | 1284.50 | 1264312   | 143284913 | >95  |
| <sub>96w</sub> P59 | VYNCKCKHCHH   | 1412.67     | 1526.67 | 1351068   | 162776218 | >95  |
| <sub>96w</sub> P60 | SYGCNCAVCHW   | 1283.47     | 1397.47 | 3852799   | 132480262 | >95  |
| <sub>96w</sub> P61 | FIPCDCTQCGP   | 1224.44     | 1338.44 | 866129    | 173717015 | >95  |
| <sub>96w</sub> P62 | KLKCTCEYCEP   | 1357.63     | 1471.63 | 26415423  | 338958669 | 92.8 |
| <sub>96w</sub> P63 | HMFCGCWVCKD   | 1369.67     | 1483.67 | 794293    | 305541141 | >95  |
| <sub>96w</sub> P64 | LMGCYCNYCWF   | 1443.74     | 1557.74 | 645994    | 109499687 | >95  |
| <sub>96w</sub> P65 | IRICFCSQCKM   | 1372.75     | 1486.75 | 3297581   | 320933363 | >95  |
| <sub>96w</sub> P66 | THACGCKDCNM   | 1223.43     | 1337.43 | 1648556   | 275291527 | >95  |
| <sub>96w</sub> P67 | MFFCTCVTCPT   | 1293.61     | 1407.61 | 357618    | 116876923 | >95  |
| <sub>96w</sub> P68 | NMNCYCNPCEY   | 1394.58     | 1508.58 | 1510116   | 38261208  | >95  |
| <sub>96w</sub> P69 | SYSCTCYGCSV   | 1213.37     | 1327.37 | 271193    | 37652452  | >95  |
| <sub>96w</sub> P70 | LPVCSCTNCLF   | 1240.52     | 1354.52 | 3946181   | 174051371 | >95  |
| <sub>96w</sub> P71 | RWPCWCNECIV   | 1449.73     | 1563.73 | 9146828   | 130419372 | 93.4 |
| <sub>96w</sub> P72 | DKFCYCNWCHE   | 1318.58     | 1432.58 | 596884    | 47324406  | >95  |
| <sub>96w</sub> P73 | PLCDVCLLCLK   | 1188.32     | 1302.32 | 2105701   | 154839684 | >95  |
| <sub>96w</sub> P74 | MNCQVCGSCAP   | 1153.38     | 1267.38 | 6078698   | 86141111  | 93.4 |
| 96wP75             | MPCLVCGECMM   | 1257.66     | 13/1.66 | 2652658   | 179206156 | >95  |
| <sub>96w</sub> P76 | EFCLHCSFCFR   | 1432.70     | 1546.70 | /648851   | 336224424 | >95  |
| 96wP77             | SYCRHCLRCLG   | 1351.63     | 1465.63 | 2422847   | 204328726 | >95  |
| <sub>96w</sub> P78 | AACKKCPHCTY   | 1265.53     | 13/9.53 | 2411424   | 261691936 | >95  |
| <sub>96w</sub> P79 |               | 1402.59     | 1516.59 | /0482/8   | 133671661 | >95  |
| 96wP80             |               | 1168.48     | 1282.48 | 48278870  | 148986838 | 75.5 |
| 96wP81             |               | 12/8.49     | 1392.49 | 20052949  | 45261583  | 69.3 |
| 96wP82             | EACAFCIVCRN   | 1257.47     | 13/1.4/ | 987921    | 246638821 | >95  |
| 96wP83             | YNCQECMGCYR   | 1410.63     | 1524.63 | 8/4645    | 53939920  | >95  |
| 96wP84             |               | 1314.59     | 1428.59 | 4466990   | 206225896 | >95  |
| 96wP85             | SLCKNCKPCRF   | 1339.66     | 1453.66 | 2/28/95   | 184264370 | >95  |
| 96wP86             | Y I CIVUMSCEH | 1347.66     | 1461.66 | 1186016   | 88531685  | >95  |
| <sub>96w</sub> P87 | TECWNCPWCAD   | 1308.52     | 1482.52 | 3104203   | 09917034  | >95  |

| <sub>96w</sub> P88 | GYCEWCKICNF | 1406.66 | 1520.66 | 7441305 | 173062618 | >95 |
|--------------------|-------------|---------|---------|---------|-----------|-----|
| <sub>96w</sub> P89 | SKCNACPYCSE | 1245.41 | 1359.41 | 762289  | 107820646 | >95 |
| <sub>96w</sub> P90 | LTCIYCVRCDN | 1343.60 | 1457.60 | 7660020 | 225950172 | >95 |
| <sub>96w</sub> P91 | DQCANCNPCMP | 1236.43 | 1350.43 | 3178027 | 102484977 | >95 |
| <sub>96w</sub> P92 | ASCAVCWYCKP | 1271.54 | 1385.54 | 9367165 | 215362599 | >95 |
| <sub>96w</sub> P93 | EECPICTQCPW | 1349.56 | 1463.56 | 543933  | 172032330 | >95 |
| <sub>96w</sub> P94 | DQCIICGDCLE | 1252.44 | 1366.44 | 6717334 | 146929430 | >95 |
| <sub>96w</sub> P95 | FTCGTCHDCKQ | 1283.46 | 1397.46 | 1120848 | 202834702 | >95 |
| <sub>96w</sub> P96 | GHLHICMLCHY | 1188.32 | 1302.32 | 2277512 | 147922641 | >95 |

# 9 LCMS data for crude peptide bicyclisation reactions

Note: Raw file names do not necessarily match final compound numbers in the manuscript.

### 9.1 Pilot study peptides



**Figure S15.** LCMS of crude reaction using Method A for **cP1** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S16.** LCMS of crude reaction using Method A for **cP2** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S17.** LCMS of crude reaction using Method A for **cP3** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S18.** LCMS of crude reaction using Method A for **cP4** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S19.** LCMS of crude reaction using Method A for **cP5** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S20.** LCMS of crude reaction using Method A for **cP6** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S21.** LCMS of crude reaction using Method A for **cP6-hCys** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S22.** LCMS of crude reaction using Method A for **cP7** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S23.** LCMS of crude reaction using Method A for **cP8** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S24.** LCMS of crude reaction using Method A for **cP9** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S25.** LCMS of crude reaction using Method A for **cP10** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S26.** LCMS of crude reaction using Method A for **cP11** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S27.** LCMS of crude reaction using Method A for **cP12** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S28.** LCMS of crude reaction using Method A for **cP13** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S29.** LCMS of crude reaction using Method A for **cP14** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

#### 9.2 Peptides for 2D NMR



**Figure S30.** LCMS of crude reaction using Method A for **cP15** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

9.3

#### 3 Hydrophobic peptides by Method B



**Figure S31.** LCMS of crude reaction using Method B for **cP16** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S32.** LCMS of crude reaction at 1 h using Method B for **cP17** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).





**Figure S33.** LCMS of crude reaction at 3 h using Method B for **cP17** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S34.** LCMS of crude reaction left overnight using Method B for **cP17** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

mV



**Figure S35.** LCMS of crude reaction using Method B for **cP18** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

#### 9.4 Bicyclisation reactions with 1,3,5-TBMB



**Figure S36.** LCMS of crude reaction using Method A for **cP3**<sub>1,3,5</sub> showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S37.** LCMS of crude reaction using Method A for **cP7**<sub>1,3,5</sub> showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).





**Figure S38.** LCMS of crude reaction using Method A for <sub>96w</sub>cP15 showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S39.** LCMS of crude reaction using Method A for <sub>96w</sub>**cP51** showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

# 10 LCMS characterisation of HPLC-purified peptides



#### 10.1 Pilot peptides for Ellman's assay

**Figure S40.** LCMS for purified peptide **P2** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S41.** LCMS for purified peptide **cP2** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S42.** LCMS for purified peptide **P4** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S43.** LCMS for purified peptide **cP4** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S44.** LCMS for purified peptide **P6** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S45.** LCMS for purified peptide **cP6** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

10.2 Peptides for bicyclisation with 1,3,5-TBMB



**Figure S46.** LCMS for purified peptide **P3** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S47.** LCMS for purified peptide **cP3**<sub>pk1</sub> showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S48.** LCMS for purified peptide  $cP3_{pk2}$  showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S49.** LCMS for purified peptide **cP3**<sub>1,3,5</sub> showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S50.** LCMS for purified peptide **P7** showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S51.** LCMS for purified peptide  $cP7_{pk1}$  showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S52.** LCMS for purified peptide  $cP7_{pk2}$  showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S53.** LCMS for purified peptide **cP7**<sub>1,3,5</sub> showing LC UV trace at 220 and 254 nm, (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

#### 10.3 Peptides for 2D NMR



**Figure S54.** LCMS for purified peptide  $cP15_{pk1}$  for NMR showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).



**Figure S55.** LCMS for purified peptide  $cP15_{pk2}$  for NMR showing LC UV trace at 220 and 254 nm (top), TIC (middle), and MS (+ve and -ve) at selected product peak (bottom).

# 11 References

- 1. M. Nakazaki, K. Yamamoto and Y. Miura, *J. Chem. Soc., Chem. Commun.*, 1977, DOI: 10.1039/C39770000206, 206-207.
- 2. S. P. Skinner, R. H. Fogh, W. Boucher, T. J. Ragan, L. G. Mureddu and G. W. Vuister, *J. Biomol. NMR*, 2016, **66**, 111-124.
- 3. D. E. Shafer, J. K. Inman and A. Lees, *Anal. Biochem.*, 2000, **282**, 161-164.
- 4. Q. Xiao and D. Pei, *J. Med. Chem.*, 2007, **50**, 3132-3137.