Solid-state synthesis of polyfunctionalized 2-pyridones and conjugated dienes

Anđela Stanisavljević,¹ Jovana Aleksić,² Milovan Stojanović,^{2*} Marija Baranac-Stojanović,^{1*}

 ¹ University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O.Box 158, 11000 Belgrade, Serbia
² University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O.Box 473, 11000 Belgrade, Serbia

Supplementary Information

Table of Contents

Experimental Part	S2
General Information	S2
General Procedure for Solid-State Reactions	S2
Isolation of amines 1i and 1l from hydrochlorides	S3
Synthesis of enaminones 3	S3
Synthesis of dienes 4	S4
Synthesis of 2-pyridones 5	S12
Synthesis of compounds 6-8, 10 and 11	S25
References	S27
Table S1. Optimization of reaction conditions for the synthesis of dienes 4	S29
Copies of 1D and 2D NMR spectra	S31
Enaminones 3	S31
Dienes 4	S38
2-Pyridones 5	S91
Compounds 6-8	S163
Determination of structure of compound 8	S170
Compounds 10 and 11	S173

Experimental Part

General Information

All materials were purchased from commercial suppliers and were used without further purification. All solvents were distilled before use. Solid state reactions were performed with silica gel 60 (0.063-0.200 mm, Merck) in Thermo ScientificTM Reacti-VialsTM Small Glass Reaction Vials.¹ For gram-scale reactions PYREX® 11 mL Screw Cap Culture Tubes with Phenolic Caps, 16x100 mm were used.² Silica gel containing 15% of Cs₂CO₃ was prepared by mixing silica gel (4.25 g) with powdered Cs₂CO₃ (0.75 g) in boiling EtOH (20 mL). After 10 min stirring, the solvent was evaporated under reduced pressure and the residue was heated in a laboratory drier at 120 °C for 2 h. Silica gel containing 1% of H₂SO₄ was obtained by mixing silica gel (9.9 g) with conc. H₂SO₄ (54 µL, 0.1 g) and acetone (10 mL). The suspension was stirred overnight in a closed roundbottom flask, at room temperature. Then, acetone was evaporated under reduced pressure and the residue was heated in a laboratory drier at 120 °C for 2 h. Both solid phases were stored in a dessicator over anh. CaCl₂. Course of reactions was monitored by thin layer chromatography (TLC) which was performed on precoated silica gel 60 F₂₅₄ (Merck). TLC spots were visualized by UV light and iodine vapour. Preparative TLC was carried out on TLC plates 20×20 cm, with 0.5 mm layer of silica gel 60 GF254 (Merck). The quoted reaction temperatures refer to the temperature of a laboratory drier, or room temperature (rt). Melting points were determined on Stuart SMP10 apparatus. IR spectra were recorded on Thermo Scientific Nicolet 6700 FT-IR spectrometer using ATR technique. NMR spectra were recorded in $CDCl_3$ and $DMSO-d_6$ on Bruker Avance III spectrometer, operating at 500.3 MHz for ¹H and 125.8 MHz for ¹³C, or on Bruker Ascend 400 spectrometer, operating at 400.1 MHz for ¹H and 100.6 MHz for ¹³C. Chemical shifts are given as δ values in ppm and are referenced to tetramethylsilane (TMS) proton signal ($\delta = 0$ ppm) for ¹H NMR spectra and to the solvent carbon resonance ($\delta = 77.0$ ppm CDCl₃, $\delta = 39.5$ ppm DMSO-d₆) for ¹³C NMR spectra. Coupling constants J are given in Hz. HRMS was recorded for new compounds on Orbitrap Exploris 240 mass spectrometer.

General Procedure for Solid-State Reactions

Reactants were dissolved in a small volume of DCM and mixed with silica gel. The solvent was evaporated and the solid residue was transferred to the reaction vial. After completion of the reaction, monitored by TLC, crude mixture was exctracted with ethyl acetate and purified by preparative TLC using toulene:ethyl acetate (T:EA) as eluent, unless otherwise stated. Other details are provided in experimental procedures that follow.

Isolation of amines 1i and 1l from commercially available hydrochlorides

Amines 1i and 1l are commercially available as hydrochlorides, which were neutralized with K_2CO_3 (2 equiv.) in MeCN in the presence of 1 mole of 2a. After filtration, another mole of 2a and SiO₂ were added and solvent was evaporated.

Synthesis of enamino amide 3d and enamino esters 3e,f

(E) 3-(benzylamino)acrylamide (3d)

BnHN CONH2

A solution of **1e** (42.0 mg, 0.39 mmol) and **2d** (28.1 mg, 0.40 mmol) in EtOH (2.0 mL) was heated under reflux for 3 h yielding **3d** (68.0 mg, 100%) as a pale yellow solid, mp 105-106 °C, containing a mixture of isomers, *Z/E* 4:1; compound is unstable and should be used after preparation; IR (ATR, mixture of isomers): 3464, 3325, 3203, 1651, 1573, 1495, 1306, 1233 cm⁻¹; ¹H NMR (500.3 MHz, DMSO-*d*₆): 7.34 (t, 2H, *J* = 7.0 Hz), 7.24-7.29 (m, 4H), 6.89 (m, 1H), 4.68 (d, 1H, *J* = 13.5 Hz), 4.12 (d, 2H, *J* = 6.0 Hz); ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): *Z* isomer, 169.9, 146.2, 138.8, 128.4, 127.2, 126.9, 88.4, 47.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₀H₁₂N₂NaO 199.08418; Found 199.08446.

```
(Z) ethyl 3-(benzylamino)but-2-enoate (3e)<sup>3</sup>
```

From **1e** (60.0 mg, 0.56 mmol) and **2e** (62.8 mg, 0.56 mmol) on silica gel (500.0 mg). Reaction temperature: 60 °C; reaction time: 3 h; eluent: toluene; white amorphous substance; 64.5 mg, 52% yield; Alternatively, **1e** (60.0 mg, 0.56 mmol) and **2e** (62.8 mg, 0.56 mmol) were dissolved in DMSO (0.3 mL) and stirred at rt for 3 days. Reaction mixture was directly applied to a silica gel plate and purified as described above giving **3e** (86.83 mg; 70%); IR (ATR): 3292, 1651, 1608, 1289, 1236, 1172; ¹H NMR (500.3 MHz, CDCl₃): 8.95 (broad s, 1H), 7.34 (t, 2H, J = 7.5 Hz), 7.25-7.27 (m, 3H), 4.53 (s, 1H), 4.43 (d, 2H, J = 6.5 Hz), 4.10 (q, 2H, J = 7.0 Hz), 1.91 (s, 3H), 1.25 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 170.6, 161.8, 138.7, 128.8, 127.3, 126.7, 83.2, 58.4, 46.8, 19.4, 14.6.

(Z) ethyl 3-(benzylamino)-3-phenylacrylate $(3f)^4$

COOEt BnHN

From **1e** (60.0 mg, 0.56 mmol) and **2f** (97.6 mg, 0.56 mmol) on silica gel (500.0 mg). Reaction temperature: 60 °C; reaction time: 3 h; eluent: toluene; white crystals; mp 70-72 °C; 55.0 mg, 35% yield; Alternatively, **1e** (60.0 mg, 0.56 mmol) and **2f** (97.6 mg, 0.56 mmol) were dissolved in DMSO (0.3 mL) and stirred at rt for 3 days. Reaction mixture was directly applied to a silica gel plate and purified as described above giving **3f** (119.7.0 mg; 76%); IR (ATR): 3285, 1652, 1612, 1595, 1302, 1173, 1143 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 8.90 (broad s, 1H), 7.32-7.38 (m, 5H), 7.29 (t, 2H, J = 7.0 Hz), 7.22 (t, 1H, J = 7.0 Hz), 7.17 (d, 1H, J = 7.0 Hz), 4.67 (s, 1H), 4.26 (d, 2H, J = 6.5 Hz), 4.15 (q, 2H, J = 7.0 Hz), Hz), 1.27 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 170.4, 164.7, 139.2, 135.9, 129.2, 128.6, 128.3, 127.9, 127.2, 126.8, 86.2, 58.8, 48.3, 14.6.

Synthesis of dienes 4

Dienes 4a-e, 4g and 4m-r were synthesized as described previuosly.⁵

(2E, 4Z)-diethyl 4-((((S)-1-phenylethyl)amino)methylene)pent-2-enedioate (4f)

H COOEt N COOEt COOEt

From **1f** (50.3 mg, 0.41 mmol) and **2a** (80.5 mg, 0.82 mmol) on silica gel (350.0 mg). Reaction temperature: 60 °C; reaction time: 3 h; eluent: T:EA 9:1 v/v; colourless oil; 89.4 mg, 69 % yield; IR (ATR): 3279, 1697, 1661, 1597, 1274, 1225, 1157 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 9.25 (dd, 1H, J = 6.0, 13.5 Hz), 7.28-7.38 (m, 4H), 7.26 (d, 2H, J = 7.0 Hz), 7.21 (d, 1H, J = 13.5 Hz), 6.01 (d, 1H, J = 16.0 Hz), 4.53 (quintet, 1H, J = 6.5 Hz), 4.26 (q, 2H, J = 7.0 Hz), 4.17 (q, 2H, J = 7.0 Hz), 1.60 (d, 3H, J = 7.0 Hz), 1.36 (t, 3H, J = 7.0 Hz), 1.27 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 169.1, 168.8, 155.6, 143.2, 142.2, 129.0, 127.9, 126.0, 108.2, 95.2, 59.5, 57.9, 23.2, 14.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NNaO₄ 340.15193; Found 340.15069.

Diethyl (2E, 4Z)-4-(((2-(1H-indol-2-yl)ethyl)amino)methylene)pent-2-enedioate (4h)⁶

From **1h** (200.0 mg, 1.24 mmol) and **2a** (269.0 mg, 2.75 mmol) on silica gel (938.0 mg). Reaction temperature: 60 °C; reaction time: 3 h; T:EA 6:4 v/v; white solid; mp 99-100 °C; 306.0 mg, 68% yield; IR (ATR): 3320, 1660, 1594, 1296, 1232, 1112 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.97 (t, 1H, J = 6.4 Hz), 8.17 (s, 1H), 7.55 (d, 1H, J = 8.0 Hz), 7.38 (d, 1H, J = 8.0 Hz), 7.30 (d, 1H, J = 15.6 Hz), 7.22 (t, 1H, J = 7.2 Hz), 7.14 (t, 1H, J = 7.2 Hz), 7.04 (d, 1H, J = 14.0 Hz), 7.02 (s, 1H), 5.93 (d, 1H, J = 15.6 Hz), 4.22 (q, 2H, J = 7.2 Hz), 4.17 (q, 2H, J = 7.2 Hz), 3.58 (q, 2H, J = 6.4 Hz), 3.04 (t, 2H, J = 6.4 Hz), 1.32 (t, 3H, J = 7.2 Hz), 1.28 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 169.1, 169.0, 157.2, 143.4, 136.3, 126.8, 122.5, 122.3, 119.6, 118.3, 111.5, 111.4, 107.5, 94.4, 59.8, 59.6, 49.8, 27.1, 14.5, 14.4.

Diethyl (2E,4Z)-4-(((3-methoxy-3-oxopropyl)amino)methylene)pent-2-enedioate (4i)

MeOOC

From **1i**×HCl (56.0 mg, 0.40 mmol), **2a** (39.7 mg, 0.40 mmol) and K₂CO₃ (110.2 mg, 0.80 mmol) in MeCN (2 mL). After stirring at 80 °C for 1 h and filtration, another mole of **2a** and SiO₂ (300.0 mg) were added, solvent was evaporated under reduced pressure and the reaction mixture was transferred to the reaction vial. Reaction temperature: 30 °C; reaction time: 15 h; T:EA 5:5 v/v; pale yellow solid; mp 64 °C; 50.1 mg, 42% yield (based on **1i**×HCl); IR (ATR): 3302, 1727, 1700, 1654, 1621, 1597, 1289, 1226, 1159 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 9.04 (broad t, 1H, J = 10.4 Hz), 7.37 (d, 1H, J = 15.6 Hz), 7.24 (d, 1H, J = 13.2 Hz), 6.04 (d, 1H, J = 15.6 Hz), 4.25 (q, 2H, J = 7.2 Hz), 4.18 (q, 2H, J = 7.2 Hz), 3.72 (s, 3H), 3.58 (q, 2H, J = 6.0 Hz), 2.62 (t, 2H, J = 6.0 Hz), 1.35 (t, 3H, J = 7.2 Hz), 1.29 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 171.3, 168.9, 168.7, 157.0, 143.1, 108.2, 95.2, 59.8, 59.5, 52.0, 44.8, 35.1, 14.39, 14.36; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₂₁NNaO₆ 322.12611; Found 322.12475.

From 1j⁷ (51.0 mg, 0.50 mmol) and 2a (98.0 mg, 1.00 mmol) on silica gel (298.0 mg). Reaction temperature: 50 °C; reaction time: 8 h; EA:MeOH 9:1 v/v; pale yellow solid; mp 95-96 °C; 53.0 mg, 36% yield; IR (ATR): 3294, 1670, 1618, 1583, 1226, 1178 cm⁻¹; ¹H NMR (400.1 MHz,

CDCl₃): 8.92 (broad t, 1H, J = 6.8 Hz), 7.35 (d, 1H, J = 15.8 Hz), 7.18 (d, 1H, J = 13.2 Hz), 6.24 (broad s, 1H), 6.02 (d, 1H, J = 15.8 Hz), 4.25 (q, 2H, J = 7.2 Hz), 4.18 (q, 2H, J = 7.2 Hz), 3.43 (m, 4H), 2.00 (s, 3H), 1.35 (t, 3H, J = 7.2 Hz), 1.29 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 170.8, 169.1, 168.8, 157.2, 143.0, 108.3, 95.3, 59.9, 59.7, 48.7, 40.4, 23.1, 14.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₂₂N₂NaO₅ 321.14209; Found 321.14134.

Diethyl (2E,4Z)-4-(((2-hydroxyethyl)amino)methylene)pent-2-enedioate (4k)

From **1k** (80.0 mg, 1.31 mmol) and **2a** (257.0 mg, 2.62 mmol) on silica gel (674.0 mg). Reaction temperature: 50 °C; reaction time: 3.5 h; T:EA 3:7 v/v; pale yellow solid; mp 103-104 °C; 150.0 mg, 44% yield; IR (ATR): 3440, 3300, 1663, 1596, 1287, 1226, 1182 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 9.02 (s, 1H), 7.39 (d, 1H, J = 15.6 Hz), 7.26 (d, 1H, J = 13.6 Hz), 6.04 (d, 1H, J = 15.6 Hz), 4.26 (q, 2H, J = 7.2 Hz), 4.19 (q, 2H, J = 7.2 Hz), 3.78 (q, 2H, J = 5.6 Hz), 3.44 (q, 2H, J = 5.6 Hz), 1.80 (t, 1H, J = 5.6 Hz), 1.36 (t, 3H, J = 7.2 Hz), 1.29 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 169.3, 168.9, 157.6, 143.2, 108.3, 95.2, 62.1, 59.9, 59.7, 51.2, 14.5; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₉NNaO₅ 280.11554; Found 280.11639.

Diethyl (2E,4Z)-4-(((2-chloroethyl)amino)methylene)pent-2-enedioate (4I)

From **1**×HCl (177.2 mg, 1.01 mmol), **2a** (100.1 mg, 1.01 mmol) and K₂CO₃ (278.8 mg, 2.02 mmol) in MeCN (2 mL). After stirring at rt for 6 h and filtration, another mole of **2a** and SiO₂ (700.0 mg) were added, solvent was evaporated under reduced pressure and the reaction mixture was transferred to the reaction vial. Reaction temperature: 60 °C; reaction time: 1.5 h; T:EA 9:1 v/v; pale yellow solid; mp 77-78 °C; 107.9 mg, 39% yield (based on **1**I×HCl); IR (ATR): 3311, 1680, 1649, 1603, 1374, 1271, 1218, 1143 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 9.12 (d, 1H, J = 13.2 Hz), 7.37 (d, 1H, J = 15.6 Hz), 7.22 (d, 1H, J = 13.2 Hz), 6.07 (d, 1H, J = 15.6 Hz), 4.27 (q, 2H, J = 7.2 Hz), 4.19 (q, 2H, J = 7.2 Hz), 3.63 (s, 4H) 1.36 (t, 3H, J = 7.2 Hz), 1.29 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 169.1, 168.7, 156.8, 142.8, 109.1, 95.9, 60.0, 59.7, 50.7, 43.9, 14.43, 14.40; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₈ClNNaO₄ 298.08166; Found 298.08166.

(2E,2'E,4Z,4'Z)-tetraethyl 4,4'-((propane-1,3-diylbis(azanediyl))bis(methanylylidene))bis(pent-2-enedioate) (4s)

From **1s** (58.1 mg, 0.78 mmol) and **2a** (307.6 mg, 3.14 mmol) on silica gel (800.0 mg). Reaction temperature: 100 °C; reaction time: 4 h; not isolated, 29% yield (based on NMR integrals); ¹H NMR (500.3 MHz, CDCl₃): signals indicating a diene 9.01 (broad s, 2H), 7.45 (d, 2H, J = 15.5 Hz), 7.29 (d, 2H, J = 13.0 Hz), 6.13 (d, 2H, J = 15.5 Hz), 3.48 (q, 4H, J = 6.5 Hz), 2.00 (quintet, 2H, J = 6.5 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): signals indicating a diene 169.2, 168.6, 156.5, 142.7, 108.6, 95.5, 59.9, 59.6, 46.0, 31.7, 14.44, 14.38.

Diethyl (2E, 4Z)-4-(aminomethylene)pent-2-enedioate (4t)

From **1t** (79.0 mg, 0.92 mmol, as a 20% aq. solution) and **2a** (181.2 mg, 1.85 mmol) on silica gel (500.0 mg). Reaction temperature: 60 °C; reaction time: 1.5 h; T:EA 5:5 v/v; white solid; mp 104-105 °C; 40.2 mg, 20% yield; IR (ATR): 3412, 3319, 1667, 1603, 1214, 1163 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.44 (broad s, 1H), 7.35 (d, 1H, J = 16.0 Hz), 7.33 (t, 1H, J = 11.6 Hz), 6.10 (d, 1H, J = 16.0 Hz), 5.69 (broad s, 1H), 4.27 (q, 2H, J = 7.2 Hz), 4.19 (q, 2H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.2 Hz), 1.29 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 168.9, 168.7, 154.5, 143.3, 109.6, 97.1, 59.9, 59.8, 14.42, 14.40; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₀H₁₅NNaO₄ 236.08933; Found 236.09001.

(2E,4Z)-ethyl 4-((benzylamino)methylene)-5-oxohex-2-enoate (4u)

From **3b** (55.8 mg, 0.32 mmol), obtained by mixing **1e** and **2b**, and **2a** (31.5 mg, 0.32 mmol) on silica gel (250.0 mg). Reaction temperature: 60 °C; reaction time: 1.5 h; T:EA 7:3 v/v; yellow oil; 16.1 mg, 18% yield; IR (ATR): 3195, 1697, 1644, 1599, 1223, 1170 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 11.15 (broad s, 1H), 7.69 (d, 1H, J = 15.6 Hz), 7.46 (d, 1H, J = 12.8 Hz), 7.32-7.39 (m, 3H), 7.24 (d, 2H, J = 7.2 Hz), 5.66 (d, 1H, J = 15.6 Hz), 4.50 (d, 2H, J = 6.0 Hz), 4.20 (q, 2H, J = 7.2 Hz), 2.32 (s, 3H), 1.29 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 197.4, 167.9, 154.2, 143.5, 136.2, 129.0, 128.2, 127.3, 106.3, 104.5, 59.8, 53.4, 27.9, 14.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₉NNaO₃ 296.12571; Found 296.12538.

(2E,4Z)-ethyl 4-benzoyl-5-(benzylamino)penta-2,4-dienoate (4v)

COPh BnHN COOEt

From **3c** (73.5 mg, 0.31 mmol), obtained by mixing **1e** and **2c**, and **2a** (30.5 mg, 0.31 mmol) on silica gel (250.0 mg). Reaction temperature: 80 °C; reaction time: 4 h; T:EA 8:2 v/v; pale yellow solid; mp 128-130 °C; 27.3 mg, 26% yield; IR (ATR): 3208, 1692, 1632, 1600, 1273, 1239, 1165 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 11.33 (broad s, 1H), 7.66 (d, 1H, J = 13.0 Hz), 7.61 (d, 1H, J = 15.5 Hz), 7.48-7.50 (m, 2H), 7.39-7.45 (m, 5H), 7.35 (t, 1H, J = 7.0 Hz), 7.30 (d, 2H, J = 7.0 Hz), 5.60 (d, 1H, J = 15.5 Hz), 4.58 (d, 2H, J = 6.0 Hz), 4.13 (q, 2H, J = 7.0 Hz), 1.23 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 195.1, 167.7, 155.6, 144.8, 140.1, 136.0, 130.5, 129.1, 128.4, 128.2, 128.0, 127.5, 106.4, 103.7, 59.8, 53.6, 14.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₁NNaO₃ 358.14136; Found 358.14040.

Ethyl (2E,4Z)-5-(benzylamino)-4-carbamoylpenta-2,4-dienoate (4w)

CONH₂ BnHN COOEt

From **3d** (43.0 mg, 0.44 mmol) and **2a** (43.2 mg, 0.44 mmol) in EtOH (2 mL). Reaction temperature: reflux; reaction time: 2 h; EA; light brown solid; mp 144-146 °C; 23.3 mg, 19% yield; IR (ATR): 3403, 3185, 1734, 1687, 1646, 1599, 1266, 1175 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 9.71 (broad s, 1H), 7.23-7.39 (m, 5H), 7.18 (d, 1H, J = 13.2 Hz), 5.70 (d, 1H, J = 15.6 Hz), 5.62 (broad s, 2H), 4.43 (d, 2H, J = 6.0 Hz), 4.18 (q, 2H, J = 7.2 Hz), 1.28 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 171.1, 168.2, 155.5, 144.0, 137.0, 128.9, 128.0, 127.2, 106.6, 96.7, 59.8, 52.8, 14.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₈N₂NaO₃ 297.12096; Found 297.12201.

(2E,4Z)-diethyl 4-(1-(benzylamino)ethylidene)pent-2-enedioate (4x)

BnHN Me

From **3e** (30.0 mg, 0.14 mmol) and **2a** (13.7 mg, 0.14 mmol) on silica gel (350.0 mg). Reaction temperature: rt; reaction time: 2.5 h; T:EA 9:1 v/v; yellow oil; 29.8 mg, 67% yield; IR (ATR): 3065, 1732, 1693, 1643, 1572, 1281, 1201, 1156 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 10.96 (broad s, 1H), 7.76 (d, 1H, J = 15.5 Hz), 7.36 (t, 2H, J = 7.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.25 (d, 2H, J = 7.5 Hz), 6.11 (d, 1H, J = 15.5 Hz), 4.56 (d, 2H, J = 6.0 Hz), 4.25 (q, 2H, J = 7.0 Hz), 4.19 (q, 2H, J

= 7.0 Hz), 2.25 (s, 3H), 1.36 (t, 3H, J = 7.0 Hz), 1.29 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 170.5, 169.6, 166.5, 140.6, 137.1, 129.0, 127.8, 126.8, 110.6, 94.0, 59.8, 59.6, 47.8, 16.0, 14.5, 14.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NNaO₄ 340.15193; Found 340.15121.

(2E,4Z)-diethyl 4-((benzylamino)(phenyl)methylene)pent-2-enedioate (4y)

From **3f** (30.0 mg, 0.11 mmol) and **2a** (10.8 mg, 0.11 mmol) on silica gel (350.0 mg). Reaction temperature: rt; reaction time: 21 h; T:EA 9:1 v/v; pale yellow solid; mp 89-91 °C; 30.0 mg, 72% yield; IR (ATR): 3180, 1697, 1645, 1608, 1560, 1289, 1267, 1152 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 10.71 (broad s, 1H), 7.46-7.47 (m, 3H), 7.25-7.32 (m, 3H), 7.17-7.19 (m, 2H), 7.11 (d, 2H, J = 7.6 Hz), 7.05 (d, 1H, J = 15.6 Hz), 6.05 (d, 1H, J = 15.6 Hz), 4.32 (q, 2H, J = 7.2 Hz), 4.15 (d, 2H, J = 6.0 Hz), 4.03 (q, 2H, J = 7.2 Hz), 1.40 (t, 3H, J = 7.2 Hz), 1.15 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 170.6, 169.2, 169.1, 142.4, 137.6, 133.2, 129.6, 129.0, 128.8, 128.0, 127.6, 127.0, 109.9, 95.4, 60.1, 59.3, 49.1, 14.5, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₅NNaO₄402.16758; Found 402.16583.

Triethyl (*1Z*,*3Z*)- and (*1E*,*3Z*) 4-(benzylamino)buta-1,3-diene-1,2,3-tricarboxylate (**4za**)

From **3a** (75.6 mg, 0.37 mmol), obtained by mixing **1e** and **2a**, and **2g** (62.6 mg, 0.37 mmol) on silica gel (300.0 mg). Reaction temperature: rt; reaction time: 1.5 h; T:EA 9:1 v/v; colourless oil; 84.2 mg, 61% yield (31% *1E,3Z* and 30% *1Z,3Z*); IR (ATR): *1Z,3Z* isomer, 3292, 1727, 1666, 1579, 1267, 1215, 1182, *IE,3Z* isomer, 3306, 1716, 1672, 1615, 1251, 1214, 1188 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): *IZ,3Z* isomer, 9.20 (broad s, 1H), 7.30-7.39 (m, 3H), 7.24 (d, 2H, J = 7.6 Hz), 7.15 (d, 1H, J = 13.6 Hz), 6.01 (s, 1H), 4.44 (d, 2H, J = 6.0 Hz), 4.28 (q, 2H, J = 7.2 Hz), 4.13-4.22 (m, 4H), 1.25-1.34 (m, 9H), *IE,3Z* isomer, 8.80 (broad s, 1H), 7.26-7.38 (m, 5H), 7.16 (d, 1H, J = 13.2 Hz), 6.41 (s, 1H), 4.45 (d, 2H, J = 6.0 Hz), 4.22 (q, 2H, J = 7.2 Hz), 4.13 (q, 2H, J = 7.2 Hz), 4.09 (q, 2H, J = 7.2 Hz), 1.30 (t, 3H, J = 7.2 Hz), 1.25 (t, 3H, J = 7.2 Hz), 1.19 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): *IZ,3Z* isomer, 169.0, 168.2, 165.9, 154.8, 146.9, 136.7, 128.9, 128.0, 127.3, 111.9, 94.4, 61.4, 60.2, 60.0, 53.0, 14.22, 14.17, 13.8, *IE,3Z* isomer, 168.6, 168.4,

166.0, 155.8, 143.9, 137.5, 128.8, 127.8, 127.4, 121.5, 90.3, 61.5, 60.4, 59.4, 52.8, 14.22, 14.18, 14.1; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₅NNaO₆ 398.15741; Found 398.15617.

Diethyl 2-((Z)-1-(benzylamino)-3-oxobut-1-en-2-yl)maleate (4zb)

COMe BnHN COOEt

From **3b** (80.0 mg, 0.46 mmol), obtained by mixing **1e** and **2b**, and **2g** (78.3 mg, 0.46 mmol) on silica gel (500.0 mg). Reaction temperature: rt; reaction time: 48 h; T:EA 6:4 v/v; redish oil; 46.1 mg, 29% yield; IR (ATR): 1730, 1640, 1592, 1259, 1211, 1178 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 10.80 (broad s, 1H), 7.29-7.37 (m, 3H), 7.23 (d, 2H, J = 7.0 Hz), 7.08 (d, 1H, J = 13.0 Hz), 5.76 (s, 1H), 4.43 (d, 2H, J = 6.0 Hz), 4.29 (q, 2H, J = 7.0 Hz), 4.18 (q, 2H, J = 7.0 Hz), 2.22 (s, 3H), 1.31 (t, 3H, J = 7.0 Hz), 1.28 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 196.3, 168.8, 165.2, 154.4, 147.4, 136.5, 128.9, 128.0, 127.2, 117.6, 105.1, 61.6, 60.5, 53.0, 28.6, 14.1, 13.8; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₃NNaO₅ 368.14684; Found 368.14706.

```
Diethyl 2-((Z)-1-(benzylamino)-3-oxo-3-phenylprop-1-en-2-yl)maleate and diethyl <math>2-((Z)-1-(benzylamino)-3-oxo-3-phenylprop-1-en-2-yl)fumarate (4zc)
```

COPh BnHN COOEt

From **3c** (30.0 mg, 0.13 mmol), obtained by mixing **1e** and **2c**, and **2g** (22.1 mg, 0.13 mmol) on silica gel (350.0 mg). Reaction temperature: rt; reaction time: 22 h; T:EA 8:2 v/v; yellow solid; mp 100-102 °C; 31.2 mg, 59% yield; maleate/fumarate 1 : 0.8; IR (ATR): 3246, 1714, 1634, 1368, 1250, 1188 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): maleate 10.69 (broad s, 1H), 7.58-7.59 (m, 2H), 7.26-7.41 (m, 9H), 5.49 (s, 1H), 4.50 (d, 2H, J = 6.0 Hz), 4.07 (q, 2H, J = 7.0 Hz), 4.02 (q, 2H, J = 7.0 Hz), 1.19 (t, 3H, J = 7.0 Hz), 1.15 (t, 3H, J = 7.0 Hz), fumarate 10.92 (broad s, 1H), 7.49-7.50 (m, 2H), 7.26-7.41 (m, 8H), 7.22 (d, 1H, J = 13.0 Hz), 6.49 (s, 1H), 4.52 (d, 2H, J = 6.0 Hz), 4.15 (q, 2H, J = 7.0 Hz), 3.81 (q, 2H, J = 7.0 Hz), 1.24 (t, 3H, J = 7.0 Hz), 0.98 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 194.1, 193.1, 168.3, 167.6, 166.1, 165.3, 158.0, 155.6, 147.2, 145.5, 141.6, 140.2, 136.8, 136.3, 130.5, 130.1, 129.0, 128.8, 128.3, 128.2, 127.9, 127.8, 127.6, 127.5, 127.4, 122.5, 117.4, 104.3, 101.2, 61.6, 61.4, 60.6, 60.4, 53.2, 53.1, 14.1, 14.0, 13.7; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₂₅NNaO₅ 430.16249; Found 430.16181.

Diethyl 2-((Z)-3-amino-1-(benzylamino)-3-oxoprop-1-en-2-yl)maleate (4zd)

BnHN COOEt

From **3d** (120.0 mg, 0.59 mmol) and **2g** (111.8 mg, 0.66 mmol) in MeCN (2 ml). Reaction temperature: reflux; reaction time: 1 h; EA:MeOH 9:1 v/v; yellow solid; mp 105-106 °C; 92.0 mg, 44% yield; IR (ATR): 3414, 3185, 1716, 1695, 1650, 1573, 1271, 1171 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 9.57 (broad s, 1H), 7.36 (t, 2H, J = 7.5 Hz), 7.30 (t, 1H, J = 7.5 Hz), 7.25 (t, 2H, J = 7.5 Hz), 6.96 (d, 1H, J = 13.0 Hz), 5.80 (s, 1H), 4.40 (d, 2H, J = 6.0 Hz), 4.32 (q, 2H, J = 7.0 Hz), 4.17 (q, 2H, J = 7.0 Hz), 1.32 (t, 3H, J = 7.0 Hz), 1.27 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 170.3, 169.3, 165.3, 153.0, 148.4, 137.3, 128.8, 127.8, 127.2, 114.2, 95.6, 62.0, 64.0, 52.7, 14.2, 13.9; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₂₂N₂NaO₅ 369.14209; Found 369.14120.

Triethyl (1Z,3Z)-4-(benzylamino)penta-1,3-diene-1,2,3-tricarboxylate (4ze)

BnHN Me COOEt

From **3e** (30.0 mg, 0.14 mmol) and **2g** (23.8 mg, 0.14 mmol) on silica gel (350.0 mg). Reaction temperature: rt; reaction time: 3 h; T:EA 9:1 v/v; yellow oil; 32.2 mg, 59% yield; IR (ATR): 3259, 1720, 1653, 1597, 1244, 1096, 1035 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 9.95 (broad s, 1H), 7.25-7.37 (m, 5H), 6.77 (s, 1H), 4.50 (d, 2H, J = 6.4 Hz), 4.23 (q, 2H, J = 7.2 Hz), 4.14 (q, 2H, J = 7.2 Hz), 4.01-4.12 (2 × q, 2H, J = 7.2 Hz), 1.87 (s, 3H), 1.29 (t, 3H, J = 7.2 Hz), 1.24 (t, 3H, J = 7.2 Hz), 1.16 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 168.5, 168.2, 165.4, 161.9, 142.9, 138.2, 128.8, 127.4, 127.1, 126.8, 89.9, 61.4, 60.4, 59.0, 47.2, 16.4, 14.3, 14.2; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₇NNaO₆ 412.17306; Found 412.17356.

Triethyl (3Z)-4-(benzylamino)-4-phenylbuta-1,3-diene-1,2,3-tricarboxylate (4zf)

From **3f** (40.0 mg, 0.14 mmol) and **2g** (23.8 mg, 0.14 mmol) on silica gel (350.0 mg). Reaction temperature: rt; reaction time: 3 h; T:EA 9:1 v/v; yellow oil; 27.8 mg, 44% yield; the stereochemistry of the C1C2 double bond has not been unequivocally established; IR (ATR): 3424, 3306, 1720, 1656, 1608, 1589, 1573, 1248, 1164, 1131, 1037 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃):

9.79 (broad s, 1H), 7.15-7.37 (m, 10H), 6.34 (s, 1H), 4.02-4.15 (m, 8H), 1.15-1.24 (m, 9H); $^{13}C{^{1}H}$ NMR (100.6 MHz, CDCl₃): 168.6, 168.0, 165.4, 163.3, 142.8, 138.8, 133.7, 129.1, 128.5, 127.7, 127.1, 126.8, 92.0, 61.2, 60.2, 59.3, 48.4, 14.3, 14.14, 14.08; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₉NNaO₆ 490.18362; Found 490.18237.

(2E,4Z)-Diethyl 4-((benzylamino)(phenyl)methylene)-3-phenylpent-2-enedioate (4ff)

BnHN Ph Ph

From **3f** (60.0 mg, 0.21 mmol) and **2f** (36.6 mg, 0.21 mmol) on $1\%H_2SO_4/SiO_2$ (500.0 mg). Reaction temperature: 100 °C; reaction time: 24 h; T:EA 9:1 v/v; yellow oil; 19.1 mg, 20% yield; IR (ATR): 3264, 1711, 1648, 1608, 1585, 1571, 1266, 1159 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 9.85 (broad t, 1H, J = 6.0 Hz), 7.05-7.30 (m, 13H), 6.82 (broad t, 1H, J = 7.2 Hz), 6.49 (broad d, 1H, J = 6.4 Hz), 5.93 (s, 1H), 4.08-4.21 (m, 6H), 1.29 (t, 3H, J = 7.2 Hz), 1.11 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 169.4, 166.4, 162.5, 153.5, 143.3, 139.1, 134.0, 128.8, 128.5, 128.3, 128.0, 127.8, 127.7, 127.2, 127.1, 126.9, 119.6, 96.6, 59.6, 59.1, 48.3, 14.4, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₉H₂₉NNaO₄ 478.19888; Found 478.19841.

Synthesis of 2-pyridones 5

Ethyl 1-(tert-butyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (5a)

From **4a** (74.0 mg, 0.27 mmol) on 15%CsCO₃/SiO₂ (894.0 mg). Reaction temperature: 110 °C; reaction time: 7 h; T:EA 8:2 v/v; yellow oil; 48.5 mg, 79% yield; IR (ATR): 1714, 1666, 1281, 1196, 1104 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.44 (s, 1H), 7.77 (d, 1H, J = 9.4 Hz), 6.44 (d, 1H, J = 9.4 Hz), 4.32 (q, 2H, J = 7.2 Hz), 1.71 (s, 9H),1.36 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.8, 163.7, 139.6, 137.2, 121.3, 109.0, 62.5, 60.8, 28.2, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₇NNaO₃ 246.11006; Found 246.10968.

Ethyl 1-methyl-6-oxo-1,6-dihydropyridine-3-carboxylate (5b)⁸

From **4b** (32.4 mg, 0.14 mmol) on 15%CsCO₃/SiO₂ (456.0 mg). Reaction temperature: 110 °C; reaction time: 1 h; T:EA 6:4 v/v; colourless amorphous substance; 14.6 mg, 58% yield; IR (ATR): 1715, 1668, 1296, 1111, 1052 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.21 (d, 1H, J = 1.6 Hz), 7.87 (dd, 1H, J = 1.6, 9.6 Hz), 6.54 (d, 1H, J = 9.6 Hz), 4.33 (q, 2H, J = 7.2 Hz), 3.61 (s, 3H), 1.36 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.1, 162.9, 143.4, 138.6, 119.2, 109.8, 60.9, 38.2, 14.2.

Ethyl 6-oxo-1-propyl-1,6-dihydropyridine-3-carboxylate (5c)⁹

From **4c** (50.0 mg, 0.20 mmol) on 15%CsCO₃/SiO₂ (651.6 mg). Reaction temperature: 110 °C; reaction time: 2 h; T:EA 8:2 v/v; yellow oil; 33.0 mg, 79% yield; IR (ATR): 1716, 1667, 1297, 1239, 1110 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 8.16 (s, 1H), 7.84 (d, 1H, J = 9.5 Hz), 6.53 (d, 1H, J = 9.5 Hz), 4.33 (q, 2H, J = 7.0 Hz), 3.95 (t, 2H, J = 7.0 Hz), 1.81 (sext, 2H, J = 7.0 Hz), 1.36 (t, 3H, J = 7.0 Hz), 0.98 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 164.2, 162.4, 142.7, 138.3, 119.6, 109.7, 60.9, 51.9, 22.4, 14.2, 10.9.

Ethyl 1-allyl-6-oxo-1,6-dihydropyridine-3-carboxylate (**5d**)

From **4d** (47.8 mg, 0.19 mmol) on 15%CsCO₃/SiO₂ (620.0 mg). Reaction temperature: 110 °C; reaction time: 1 h; T:EA 9:1 v/v; colourless amorphous substance; 26.3 mg, 67% yield; IR (ATR): 1717, 1668, 1296, 1236, 1112 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.16 (s, 1H), 7.86 (d, 1H, J = 9.4 Hz), 6.55 (d, 1H, J = 9.4 Hz), 5.92-6.02 (m, 1H), 5.32 (d, 1H, J = 10.4 Hz), 5.26 (d, 1H, J = 17.2 Hz), 4.61 (d, 2H, J = 5.6 Hz), 4.32 (q, 2H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.1, 162.1, 142.3, 138.5, 131.6, 119.6, 119.3, 110.0, 60.9, 51.5, 14.2; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₁H₁₃NNaO₃ 230.07876; Found 230.07825.

Ethyl 1-benzyl-6-oxo-1,6-dihydropyridine-3-carboxylate (5e)¹⁰

From 4e (33.0 mg, 0.11 mmol) on 15%CsCO₃/SiO₂ (355.0 mg). Reaction temperature: 110 °C; reaction time: 45 min; T:EA 4:1 v/v; white solid; mp 56-57 °C; 25.1 mg, 89% yield; IR (ATR): 1715, 1668, 1296, 1232, 1112 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.18 (s, 1H), 7.84 (dd, 1H, J = 1.2, 9.6 Hz), 7.31-7.37 (m, 5H), 6.57 (d, 1H, J = 9.6 Hz), 5.17 (s, 2H), 4.29 (q, 2H, J = 7.2 Hz), 1.33 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 162.4, 142.5, 138.5, 135.5, 129.0, 128.3, 128.1, 119.9, 110.3, 61.0, 52.7, 14.3.

Ethyl (S)-6-oxo-1-(1-phenylethyl)-1,6-dihydropyridine-3-carboxylate (5f)

From **4f** (27.0 mg, 0.08 mmol) on 15%CsCO₃/SiO₂ (277.0 mg). Reaction temperature: 110 °C; reaction time: 1 h; T:EA 8:2 v/v; colourless amorphous substance; 15.4 mg, 67% yield; IR (ATR): 1716, 1667, 1295, 1240, 1110 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.05 (d, 1H, J = 2.4 Hz), 7.81 (dd, 1H, J = 2.4, 9.6 Hz), 7.30-7.40 (m, 5H), 6.57 (d, 1H, J = 9.6 Hz), 6.40 (q, 1H, J = 7.2 Hz), 4.26 (q, 2H, J = 7.2 Hz), 1.76 (d, 3H, J = 7.2 Hz), 1.30 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 162.3, 139.7, 139.4, 137.9, 129.0, 128.3, 127.3, 119.4, 110.4, 60.9, 53.4, 19.3, 14.2; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₇NO₃ 294.11006; Found 294.10922.

Ethyl 6-oxo-1-phenethyl-1,6-dihydropyridine-3-carboxylate (5g)

From **4g** (60.0 mg, 0.19 mmol) on 15%CsCO₃/SiO₂ (490.0 mg). Reaction temperature: 110 °C; reaction time: 2 h; T:EA 8:2 v/v; yellow oil; 49.0 mg, 96% yield; IR (ATR): 1716, 1668, 1297, 1112 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.79-7.84 (m, 2H), 7.29 (t, 2H, J = 7.2 Hz), 7.23 (t, 1H, J = 7.2 Hz), 7.16 (d, 2H, J = 7.2 Hz), 6.54 (d, 1H, J = 9.6 Hz), 4.26 (q, 2H, J = 7.2 Hz), 4.19 (t, 2H, S14

J = 7.2 Hz), 3.06 (t, 2H, J = 7.2 Hz), 1.31 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.1, 162.3, 142.9, 138.6, 137.2, 128.8, 128.7, 126.9, 119.6, 109.5, 60.8, 52.3, 35.0, 14.2; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₇NNaO₃ 294.11006; Found 294.10941.

Ethyl 1- $(2-(1H-indol-3-yl)ethyl)-6-oxo-1, 6-dihydropyridine-3-carboxylate (5h)^6$

From **4h** (58.0 mg, 0.16 mmol) on 15%CsCO₃/SiO₂ (530.0 mg). Reaction temperature: 110 °C; reaction time: 1 h; T:EA 7:3 v/v; pale yellow solid; mp 99-100 °C; 39.2 mg, 78% yield; Gram-scale synthesis; from **1h** (1 g, 6.26 mmol) and **2a** (1.23 g, 12.58 mmol) on SiO₂ (4.6 g); after 1.5 h at 60 °C, Cs₂CO₃ (3.06 g) in EtOH (50 mL) was added together with SiO₂ (12.2 g) and the solvent was evaporated; in this way 15%CsCO₃/SiO₂ was obtained; reaction temperature: 110 °C; reaction time: 2 h; column chromatography, gradient petrol ether (40-60 °C):EA 100:0 to 60:40 v/v; 1.03 g, 53% yield (based on **1h**); IR (ATR): 3325, 1716, 1661, 1298, 1114 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.33 (broad s, 1H), 7.80 (d, 1H, *J* = 9.6 Hz), 7.74 (s, 1H), 7.63 (d, 1H, *J* = 8.0 Hz), 7.35 (d, 1H, *J* = 8.4 Hz), 7.20 (t, 1H, *J* = 7.4 Hz), 7.13 (t, 1H, *J* = 7.4 Hz), 6.91 (s, 1H), 6.54 (d, 1H, *J* = 9.6 Hz), 4.26 (t, 2H, *J* = 6.8 Hz), 4.19 (q, 2H, *J* = 7.2 Hz), 3.22 (t, 2H, *J* = 6.8 Hz), 1.24 (t, 3H, *J* = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 162.5, 143.1, 140.2, 138.6, 136.4, 126.9, 122.6, 122.2, 119.6, 119.4, 118.4, 111.3, 111.2, 109.3, 60.8, 51.1, 24.8, 14.2.

Ethyl 1-(3-methoxy-3-oxopropyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (5i)

From **4i** (54.3 mg, 0.18 mmol) on 15%CsCO₃/SiO₂ (585.0 mg). Reaction temperature: 110 °C; reaction time: 0.5 h; T:EA 9:1 v/v; pale yellow solid; mp 145-146 °C; 18.7 mg, 40% yield; IR (ATR): 1737, 1717, 1667, 1298, 1174 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.31 (d, 1H, J = 2.0 Hz), 7.86 (dd, 1H, J = 2.0, 9.6 Hz), 6.52 (d, 1H, J = 9.6 Hz), 4.33 (q, 2H, J = 7.2 Hz), 4.23 (t, 2H, J = 6.4 Hz), 3.69 (s, 3H), 2.88 (t, 2H, J = 6.4 Hz), 1.36 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6

MHz, CDCl₃): 171.5, 164.2, 162.4, 143.8, 139.0, 119.6, 110.0, 61.0, 52.0, 47.0, 32.6, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₅NNaO₅ 276.08424; Found 276.08513.

Ethyl 1-(2-acetamidoethyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (5j)

From **4j** (29.4 mg, 0.1 mmol) on 15%CsCO₃/SiO₂ (320.0 mg). Reaction temperature: 110 °C; reaction time: 0.5 h; T:EA 9:1 v/v; pale yellow solid; mp 144-145 °C; 15.2 mg, 61% yield; IR (ATR): 3333, 1702, 1677, 1654, 1299, 1112 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.15 (d, 1H, J = 2.0 Hz), 7.89 (dd, 1H, J = 2.0, 9.6 Hz), 6.53 (d, 1H, J = 9.6 Hz), 6.48 (broad s, 1H), 4.33 (q, 2H, J = 7.2 Hz), 4.16 (t, 2H, J = 6.0 Hz), 3.60 (dt, 2H, J = 5.6, 6.0 Hz), 1.97 (s, 3H), 1.36 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 170.9, 163.9, 163.1, 143.0, 139.2, 119.5, 110.5, 61.1, 49.6, 39.2, 23.0, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₆N₂NaO₄ 275.10023; Found 275.10051.

Ethyl 1-(2-hydroxyethyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (**5k**)

From **4k** (165.1 mg, 0.64 mmol) on 15%CsCO₃/SiO₂ (1.387 g). Reaction temperature: 100 °C; reaction time: 4 h; T:EA 3:7 v/v; white solid; mp 89-90 °C; 37.3 mg, 36% yield; IR (ATR): 3257, 1703, 1664, 1593, 1295, 1238, 1162 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.24 (d, 1H, J = 2.0 Hz), 7.88 (dd, 1H, J = 2.0, 9.6 Hz), 6.53 (d, 1H, J = 9.6 Hz), 4.31 (q, 2H, J = 7.2 Hz), 4.15 (t, 2H, J = 4.8 Hz), 3.95 (t, 2H, J = 4.8 Hz), 3.07 (broad s, 1H), 1.35 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 163.2, 143.8, 139.1, 119.4, 110.2, 61.1, 60.8, 53.4, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₀H₁₃NNaO₄234.07368; Found 234.07416.

Ethyl 1-(2-chloroethyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (51)

From **41** (23.1 mg, 0.08 mmol) on 15%CsCO₃/SiO₂ (275.0 mg). Reaction temperature: 110 °C; reaction time: 1 h; T:EA 3:7 v/v; white solid; mp 94-95 °C; 19.3 mg, 65% yield; IR (ATR): 3253, 1705, 1662, 1593, 1294, 1239, 1165 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 8.23 (d, 1H, J = 2.5 Hz), 7.88 (dd, 1H, J = 2.5, 9.5 Hz), 6.55 (d, 1H, J = 9.5 Hz), 4.32 (q, 2H, J = 7.0 Hz), 4.16 (t, 2H, J = 5.0 Hz), 3.97 (t, 2H, J = 5.0 Hz), 1.36 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 164.2, 163.3, 143.8, 139.2, 119.5, 110.2, 61.1, 61.0, 53.5, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₀H₁₃NNaO₄ 234.07368; Found 234.07345 (Cl is substituted by OH¹¹).

Ethyl 6-oxo-1-phenyl-1,6-dihydropyridine-3-carboxylate (5m)

From **4m** (30.0 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 100 °C; reaction time: 2.5 h; T:EA 8:2 v/v; white solid; mp 80-82 °C; 15.3 mg, 63% yield; Gram-scale synthesis: from **4m** (1 g, 3.45 mmol) on 15%CsCO₃/SiO₂ (11.27 g). Reaction temperature: 100 °C; reaction time: 6 h; column chromatography, gradient petrol ether (40-60 °C):EA 100:0 to 90:10; 0.438 g, 52% yield; IR (ATR): 1717, 1676, 1309, 1261, 1104 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.22 (d, 1H, J = 2.4 Hz), 7.93 (dd, 1H, J = 2.4, 9.6 Hz), 7.53 (t, 2H, J = 7.2 Hz), 7.47 (t, 1H, J = 7.2 Hz), 7.39 (d, 2H, J = 7.6 Hz), 6.64 (d, 1H, J = 9.6 Hz), 4.33 (q, 2H, J = 7.2 Hz), 1.35 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 162.2, 143.1, 140.2, 139.0, 129.5, 129.1, 126.4, 120.6, 110.2, 61.1, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₃NNaO₃ 266.07876; Found 266.07813.

Ethyl 1-(4-methoxyphenyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (5n)

From **4n** (32.0 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 100 °C; reaction time: 3 h; T:EA 8:2 v/v; colourless oil; 19.9 mg, 73% yield; IR (ATR): 1715, 1675, 1512, 1310, 1262, 1106 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.20 (d, 1H, J = 2.4 Hz), 7.91 (dd, 1H, J = 2.4, 9.6 Hz), 7.30 (d, 2H, J = 9.2 Hz), 7.01 (d, 2H, J = 9.2 Hz), 6.62 (d, 1H, J = 9.6 Hz), 4.32 (q, 2H, J = 7.2 Hz), 3.86 (s, 3H), 1.35 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 162.5, 159.8, 143.5, 138.8, 133.0, 127.5, 120.4, 114.7, 110.0, 61.1, 55.6, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₅NNaO₄ 296.08933; Found 296.08859.

Ethyl 6-oxo-1-(*p*-tolyl)-1,6-dihydropyridine-3-carboxylate (**50**)

From **4o** (30.3 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 100 °C; reaction time: 3 h; T:EA 8:2 v/v; white crystals; mp 141-143 °C; 15.7 mg, 61% yield; IR (ATR): 1711, 1671, 1512, 1311, 1276, 1104 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.21 (d, 1H, J = 2.4 Hz), 7.92 (dd, 1H, J = 2.4, 9.6 Hz), 7.32 (d, 2H, J = 8.0 Hz), 7.26 (d, 2H, J = 8.0 Hz), 6.62 (d, 1H, J = 9.6 Hz), 4.32 (q, 2H, J = 7.2 Hz), 2.42 (s, 3H), 1.34 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 162.3, 143.3, 139.2, 138.8, 137.7, 130.1, 126.1, 120.5, 110.0, 61.1, 21.2, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₅NNaO₃ 280.09441; Found 280.09360.

Ethyl 1-(4-fluorophenyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (5p)

From **4p** (30.7 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 100 °C; reaction time: 3 h; T:EA 8:2 v/v; white crystals; mp 104-106 °C; 16.7 mg, 64% yield; IR (ATR): 1720, 1661, 1506, 1264, 1125, 1106 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.19 (d, 1H, J = 2.4 Hz), 7.93 (dd, 1H, J = 2.4, 9.6 Hz), 7.36-7.39 (m, 2H), 7.20 (t, 2H, J = 8.4 Hz), 6.63 (d, 1H, J = 9.6 Hz), 4.33 (q, 2H, J = 7.2 Hz), 1.35 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.2, 162.5 (d, $J_{CF} = 249.5$ Hz), 162.1, 143.0, 139.0, 136.0, 128.3 (d, $J_{CF} = 8.0$ Hz), 120.5, 116.5 (d, $J_{CF} = 23.1$

Hz), 110.3, 61.2, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₂FNNaO₃ 284.06934; Found 284.06851.

Ethyl 1-(4-iodophenyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (5q)

From **4q** (41.5 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 100 °C; reaction time: 3 h; T:EA 8:2 v/v; white crystals; mp 154-156 °C; 25.5 mg, 69% yield; IR (ATR): 1720, 1670, 1539, 1264, 1118, 1106 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.17 (d, 1H, J = 2.4 Hz), 7.92 (dd, 1H, J = 2.4, 9.6 Hz), 7.85 (d, 2H, J = 8.4 Hz), 7.15 (d, 2H, J = 8.0 Hz), 6.62 (d, 1H, J = 9.6 Hz), 4.33 (q, 2H, J = 7.2 Hz), 1.35 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.0, 161.8, 142.6, 139.8, 139.1, 138.7, 128.2, 120.6, 110.5, 94.6, 61.2, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₂INNaO₃ 391.97541; Found 391.97469.

From **4n** (33.4 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 100 °C; reaction time: 3 h; T:EA 8:2 v/v; white solid; mp 204-206 °C; 15.0 mg, 52% yield; IR (ATR): 1712, 1655, 1523, 1260, 1128, 1111 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.40 (d, 2H, J = 8.8 Hz), 8.20 (d, 1H, J = 2.4 Hz), 7.96 (dd, 1H, J = 2.4, 9.6 Hz), 7.63 (d, 2H, J = 8.8 Hz), 6.66 (d, 1H, J = 9.6 Hz), 4.35 (q, 2H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 163.8, 161.5, 147.9, 145.1, 141.8, 139.4, 127.7, 124.9, 121.0, 111.1, 61.4, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₂N₂NaO₅ 311.06384; Found 311.06309.

Diethyl 1,1'-(propane-1,3-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylate) (5s)

From **4s** (120.0 mg, 0.26 mmol) on 15%CsCO₃/SiO₂ (1.680 g). Reaction temperature: 100 °C; reaction time: 4 h; T:EA 3:7 v/v; white solid; mp 123-124 °C; 21.0 mg, 22% yield; IR (ATR): 1716, 1668, 1338, 1298, 1110 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 8.22 (d, 2H, J = 2.5 Hz), 7.86 (dd, 2H, J = 2.5, 9.5 Hz), 6.54 (d, 2H, J = 9.5 Hz), 4.33 (q, 4H, J = 7.2 Hz), 4.07 (t, 4H, J = 7.2 Hz), 2.27 (quint, 2H, J = 7.2 Hz), 1.37 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 164.0, 162.4, 142.6, 138.8, 119.8, 110.4, 61.1, 47.9, 29.0, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₂N₂NaO₆ 397.13701; Found 397.13617.

Ethyl 6-oxo-1,6-dihydropyridine-3-carboxylate (5t)¹²

From **4t** (38.5 mg, 0.18 mmol) on 15%CsCO₃/SiO₂ (590.0 mg). Reaction temperature: 110 °C; reaction time: 1.25 h; EA; white solid; mp 139-140 °C; 24.2 mg, 80% yield; IR (ATR): 3118, 3041, 1708, 1603, 1298, 1269, 1228, 1118, 1107 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 13.3 (broad s, 1H), 8.23 (d, 1H, J = 2.4 Hz), 8.03 (dd, 1H, J = 2.4, 9.6 Hz), 6.58 (d, 1H, J = 9.6 Hz), 4.33 (q, 2H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 165.6, 164.0, 141.0, 139.7, 119.4, 111.4, 61.1, 14.2.

5-Acetyl-1-benzylpyridin-2(1H)-one (5u)¹³

From **4u** (27.3 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.0 mg). Reaction temperature: 110 °C; reaction time: 1 h; T:EA 7:3 v/v; colourless oil; 15.0 mg, 67% yield; IR (ATR): 1660, 1295, 1188, 1146 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.10 (d, 1H, J = 2.4 Hz), 7.86 (dd, 1H, J = 2.4, 9.6 Hz), 7.31-7.39 (m, 5H), 6.61 (d, 1H, J = 9.6 Hz), 5.19 (s, 2H), 2.39 (s, 3H); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 193.0, 162.3, 142.0, 137.6, 135.3, 129.1, 128.5, 128.2, 120.2, 118.0, 52.8, 25.7.

5-Benzoyl-1-benzylpyridin-2(1H)-one (5v)¹⁴

From **1e** (30.5 mg, 0.28 mmol), **2c** (36.5 mg, 0.28 mmol) and **2a** (28.0 mg, 0.28 mmol) on silica gel (200.0 mg). Crude **4v** was extracted with ethyl acetate, 15%CsCO₃/SiO₂ (910.0 mg) was added and solvent was evaporated under reduced pressure. Reaction temperature: 110 °C; reaction time: 1 h; T:EA 8:2 v/v; white solid; mp 104-105 °C; 24.4 mg, 30% yield based on **1e**; IR (ATR): 1731, 1673, 1644, 1295, 1266, 1180 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.97 (s, 1H), 7.87 (d, 1H, *J* = 9.6 Hz), 7.54-7.60 (m, 3H), 7.44 (t, 2H, *J* = 7.2 Hz), 7.30-7.38 (m, 5H), 6.64 (d, 1H, *J* = 9.6 Hz), 5.16 (s, 2H); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 191.6, 162.2, 144.1, 139.0, 135.4, 132.3, 129.1, 129.0, 128.50, 128.47, 128.3, 120.1, 117.4, 52.6.

1-Benzyl-6-oxo-1,6-dihydropyridine-3-carboxamide (5w)¹⁵

From **4w** (34.3 mg, 0.12 mmol) on 15%CsCO₃/SiO₂ (405.0 mg). Reaction temperature: 110 °C; reaction time: 2 h; EA:MeOH 9:1 v/v; white solid; m.p. 161-163 °C; 19.1 mg, 68% yield; IR (ATR): 3350, 3174, 1733, 1674, 1602, 1265, 1178 cm⁻¹; ¹H NMR (400.1 MHz, DMSO- d_6): 8.44 (s, 1H), 7.85 (d, 1H, J = 9.6 Hz), 7.76 (broad s, 1H), 7.24-7.34 (m, 6H), 6.41 (d, 1H, J = 9.6 Hz), 5.11 (s, 2H); ¹³C{¹H} NMR (100.6 MHz, DMSO- d_6): 165.1, 161.4, 141.7, 138.3, 137.0, 128.7, 127.82, 127.75, 118.6, 112.8, 51.8.

Ethyl 1-benzyl-2-methyl-6-oxo-1,6-dihydropyridine-3-carboxylate (5x)¹⁴

From **4x** (32.0 mg, 0.1 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 110 °C; reaction time: 2 h; T:EA 9:1 v/v; pale yellow oil; 18.1 mg, 67% yield; IR (ATR): 1713, 1667, 1538, 1268, 1148, 1121 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.91 (d, 1H, *J* = 9.6 Hz), 7.22-7.31 (m, 3H),

7.10 (d, 2H, *J* = 7.6 Hz), 6.53 (d, 1H, *J* = 9.6 Hz), 5.42 (broad s, 2H), 4.26 (q, 2H, *J* = 7.2 Hz), 2.69 (s, 3H), 1.33 (t, 3H, *J* = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 165.6, 163.2, 153.9, 140.0, 135.6, 128.9, 127.5, 126.2, 116.6, 109.8, 61.0, 47.5, 17.6, 14.2.

Ethyl 1-benzyl-6-oxo-2-phenyl-1,6-dihydropyridine-3-carboxylate (5y)

From **4y** (30.0 mg, 0.08 mmol) on 15%CsCO₃/SiO₂ (263.1 mg). Reaction temperature: 100 °C; reaction time: 2 h; T:EA 9:1 v/v; white solid; mp 119-121 °C; 16.3 mg, 61% yield; IR (ATR): 1727, 1701, 1671, 1302, 1286, 1112 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.00 (d, 1H, J = 9.6 Hz), 7.41 (t, 1H, J = 7.6 Hz), 7.30 (t, 2H, J = 7.6 Hz), 7.17-7.18 (m, 3H), 6.98 (d, 2H, J = 7.6 Hz), 6.79-6.80 (m, 2H), 6.72 (d, 1H, J = 9.6 Hz), 5.08 (s, 2H), 3.93 (q, 2H, J = 7.2 Hz), 0.91 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 164.9, 162.9, 139.9, 136.6, 134.0, 129.1, 128.3, 128.2, 128.0, 127.2, 126.6, 118.9, 110.9, 60.7, 49.0, 13.6; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₁₉NNaO₃ 356.12571; Found 356.12414.

Diethyl 1-benzyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (5za)¹⁶

From **4za** (30.0 mg, 0.08 mmol) on 15%CsCO₃/SiO₂ (260.0 mg). Reaction temperature: rt; reaction time: 1 h; T:EA 8:2 v/v; white solid; mp 115-116 °C; 13.4 mg, 51% yield; IR (ATR): 1736, 1673, 1313, 1265, 1113 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 8.12 (s, 1H), 7.30-7.40 (m, 5H), 6.60 (s, 1H), 5.16 (s, 2H), 4.37 (q, 2H, J = 7.2 Hz), 4.26 (q, 2H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.2 Hz), 1.30 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 166.2, 163.1, 161.5, 144.1, 143.2, 135.0, 129.1, 128.6, 128.2, 118.9, 107.8, 62.2, 61.5, 52.8, 14.1, 14.0.

Ethyl 5-acetyl-1-benzyl-2-oxo-1,2-dihydropyridine-4-carboxylate (5zb)

From **4zb** (31.0 mg, 0.09 mmol) on 15%CsCO₃/SiO₂ (293.2 mg). Reaction temperature: 110 °C; reaction time: 0.5 h; T:EA 6:4 v/v; pale brown solid; mp 123-125 °C; 14.6 mg, 54% yield; IR (ATR): 1736, 1668, 1318, 1262, 1034 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 7.91 (s, 1H), 7.34-7.41 (m, 3H), 7.30-7.32 (m, 2H), 6.62 (s, 1H), 5.17 (s, 2H), 4.38 (q, 2H, J = 7.0 Hz), 2.32 (s, 3H), 1.36 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 192.1, 166.6, 161.4, 143.4, 142.4, 134.8, 129.2, 128.7, 128.2, 119.6, 116.7, 62.2, 52.6, 25.9, 13.9; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₇NNaO₄ 322.10498; Found 322.10577.

Ethyl 5-benzoyl-1-benzyl-2-oxo-1,2-dihydropyridine-4-carboxylate (5zc)

From **4zc** (30.0 mg, 0.07 mmol) on 15%CsCO₃/SiO₂ (228.1 mg). Reaction temperature: 110 °C; reaction time: 15 min; T:EA 8:2 v/v; yellow oil; 12.2 mg, 48% yield; IR (ATR): 1734, 1678, 1652, 1324, 1261, 1050 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 7.69 (s, 1H), 7.68 (d, 2H, J = 7.5 Hz), 7.56 (t, 1H, J = 7.5 Hz), 7.43 (t, 2H, J = 7.5 Hz), 7.33-7.37 (m, 3H), 7.29-7.31 (m, 2H), 6.93 (s, 1H), 5.15 (s, 2H), 4.07 (q, 2H, J = 7.0 Hz), 1.14 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 191.1, 165.3, 161.4, 143.0, 142.2, 137.1, 135.0, 133.0, 129.2, 129.1, 128.6, 128.4, 121.3, 117.0, 62.2, 52.6, 13.6; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₁₉NNaO₄ 384.12063; Found 384.12024.

Ethyl 1-benzyl-6-oxo-2,4-diphenyl-1,6-dihydropyridine-3-carboxylate (5ff)

From **4ff** (16.0 mg, 0.04 mmol) on 15%CsCO₃/SiO₂ (114.0 mg). Reaction temperature: 110 °C; reaction time: 1 h; T:EA 9:1 v/v; colourless oil; 10.4 mg, 74% yield; IR (ATR): 1726, 1663, 1289,

1211, 1104 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.40 (broad s, 6H), 7.31 (t, 1H, J = 7.6 Hz), 7.20 (m, 3H), 7.11 (d, 2H, J = 7.2 Hz), 6.88 (m, 2H), 6.71 (s, 1H), 5.13 (s, 2H), 3.62 (q, 2H, J = 7.2 Hz), 0.65 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 166.5, 162.3, 150.9, 148.9, 137.9, 136.6, 132.7, 129.6, 129.1, 128.8, 128.5, 128.3, 128.1, 127.3, 127.2, 127.0, 119.2, 115.7, 61.0, 48.8, 13.2; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₇H₂₃NNaO₃ 432.15701; Found 432.15542.

Ethyl 1-benzyl-4-methyl-6-oxo-2-phenyl-1,6-dihydropyridine-3-carboxylate (5fe)

From **3f** (28.1 mg, 0.10 mmol) and **2a** (11.2 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 120 °C; reaction time: 7 h; T:EA 8:2 v/v; pale yellow oil; 4.5 mg, 13% yield; IR (ATR): 1720, 1666, 1289, 1133, 1064 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 7.38 (t, 1H, J = 7.5 Hz), 7.28 (t, 2H, J = 7.5 Hz), 7.16-7.17 (m, 3H), 7.04 (d, 2H, J = 7.5 Hz), 6.80-6.82 (m, 2H), 6.55 (s, 1H), 5.07 (s, 2H), 3.81 (q, 2H, J = 7.0 Hz), 2.62 (s, 3H), 0.79 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 166.5, 162.3, 148.5, 148.0, 136.8, 133.2, 129.4, 129.0, 128.3, 128.1, 127.1, 126.8, 119.2, 116.3, 61.0, 48.6, 20.2, 13.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₁NNaO₃ 370.14136; Found 370.14135.

Ethyl 1-benzyl-4-methyl-6-oxo-2-phenyl-1,6-dihydropyridine-3-carboxylate (5ef)

From **3e** (22.0 mg, 0.10 mmol) and **2f** (17.4 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 120 °C; reaction time: 7 h; T:EA 8:2 v/v; pale yellow oil; 4.8 mg, 14% yield; IR (ATR): 1719, 1661, 1283, 1116, 1045 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.39-7.40 (m, 3H), 7.33-7.34 (m, 4H), 7.29 (d, 1H, J = 7.2 Hz), 7.22 (d, 2H, J = 7.6 Hz), 6.56 (s, 1H), 5.43 (s, 2H), 3.90 (q, 2H, J = 7.2 Hz), 2.42 (s, 3H), 0.382 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 167.8, 162.6, 151.4, 147.0, 138.8, 135.8, 128.9, 128.6, 128.5, 127.6, 127.0, 126.6, 117.5, 114.2, 61.4, 47.6, 17.9, 13.4; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₁NNaO₃ 370.14136; Found 370.14127. Ethyl 1-benzyl-2,4-dimethyl-6-oxo-1,6-dihydropyridine-3-carboxylate (5ee)

From **3e** (22.0 mg, 0.10 mmol) and **2e** (11.2 mg, 0.10 mmol) on 15%CsCO₃/SiO₂ (325.8 mg). Reaction temperature: 120 °C; reaction time: 7 h; T:EA 8:2 v/v; pale yellow oil; 8.5 mg, 20% yield; IR (ATR): 1720, 1666, 1284, 1173, 1136 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.40 (broad s, 6H), 7.31 (t, 1H, J = 7.6 Hz), 7.25 (t, 1H, J = 7.6 Hz), 7.14 (d, 2H, J = 7.6 Hz), 6.41 (s, 1H), 5.36 (s, 2H), 4.32 (q, 2H, J = 7.2 Hz), 2.31 (s, 3H), 2.20 (s, 3H), 1.35 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 167.7, 162.7, 147.8, 145.8, 136.0, 128.8, 127.4, 126.4, 117.6, 115.2, 61.4, 47.2, 20.5, 18.0, 14.2; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₉NNaO₃ 308.12571; Found 308.12556.

N-benzyl-3-phenylpropiolamide (6)¹⁷

From **1e** (50.0 mg, 0.47 mmol) and **2f** (81.9 mg, 0.47 mmol) on silica gel (500.0 mg). Reaction temperature: 60 °C; reaction time: 3 h; white solid; mp 109-111 °C; 44.2 mg, 40% yield; IR (ATR): 3273, 1726, 2220, 1635, 1548, 1312 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.50 (d, 2H, J = 8.4 Hz), 7.29-7.42 (m, 8H), 6.23 (broad s, 1H), 4.53 (d, 2H, J = 6.0 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 153.2, 137.2, 132.5, 130.1, 128.8, 128.5, 128.0, 127.8, 120.1, 85.1, 82.8, 44.0.

Ethyl 3-oxo-3-phenylpropanoate $(7)^{18}$

From 1e (50.0 mg, 0.47 mmol) and 2f (81.9 mg, 0.47 mmol) on silica gel (500.0 mg). Reaction temperature: 60 °C; reaction time: 3 h; toluene; pale yellow oil; 9.0 mg, 10% yield; IR (ATR): 3063, 1741, 1688, 1268, 1198, 1148 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): keto form 7.95 (d, 2H, J = 7.2 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.49 (t, 1H, J = 7.2 Hz), 4.22 (q, 2H, J = 7.2 Hz), 4.00 (s, 2H), 1.26 (t, 3H, J = 7.2 Hz), enol form 12.59 (s, 1H), 7.78 (d, 2H, J = 7.2 Hz), 7.40-7.45 (m, 3H), 5.67 (s, 1H), 4.27 (q, 2H, J = 7.2 Hz), 1.34 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): keto

+ enol form 192.5, 167.5, 136.0, 133.7, 131.2, 128.7, 128.50, 128.47, 126.0, 87.4, 61.5, 60.3, 46.0, 14.3, 14.0.

2-Benzyl-1H-pyrrolo[3,4-c]pyridine-1,4,6(2H,5H)-trione (8)

From **4zd** (31.0 mg, 0.09 mmol) in EtOH (2 mL) containing Cs_2CO_3 (44.0 mg, 0.13 mmol). Reaction temperature (of an oil bath): 50 °C; reaction time: 15 min; after completion of the reaction, water (3 mL) and few drops of 36% HCl were added and the mixture was extracted with DCM (3×3mL). Organic layer was dried with anh. Na₂SO₄ and solvent was evaporated under reduced pressure to give **8**; dark greenish oil; 21.1 mg, 93% yield; IR (ATR): 3380, 1732, 1673, 1027, 1007 cm⁻¹; ¹H NMR (500.3 MHz, DMSO-*d*₆): 11.53 (s, 1H), 8.75 (s, 1H), 7.29-7.35 (m, 5H), 6.76 (s, 1H), 5.19 (s, 2H); ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): 166.6, 166.3, 162.0, 142.4, 138.5, 136.4, 128.6, 127.87, 127.82, 113.3, 109.1, 42.4; HRMS (HESI) m/z: [M–H][–] Calcd. for C₁₄H₉N₂O₃ 253.06187; Found 253.06198.

N-benzyl-3-oxobutanamide (10)

From **1e** (30.0 mg, 0.28 mmol) and **2e** (62.8 mg, 0.56 mmol) on silica gel (500.0 mg). Reaction temperature: 60 °C (3 h), 100 °C (22 h); T:EA 3:7 v/v; white solid; m.p. 101-103 °C; 13.9 mg, 26% yield; IR (ATR): 3302, 1720, 1651, 1551, 1360, 1160, 1030 cm⁻¹; ¹H NMR (500.3 MHz, CDCl₃): 7.27-7.34 (m, 5H, overlapped with CDCl₃ residual peak), 7.23-7.26 (m, 1H), 4.46 (d, 1H, J = 5.5 Hz), 3.44 (s, 2H), 2.26 (s, 3H); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): 204.5, 165.4, 137.9, 128.7, 127.7, 127.5, 49.5, 43.5, 31.0.

Ethyl 2-(benzylamino)-4-hydroxy-6-methylbenzoate (11)

From **3e** (44.0 mg, 0.20 mmol) and **2e** (22.4 mg, 0.20 mmol) on silica gel containing 1% of H₂SO₄ (500.0 mg). Reaction temperature: 100 °C; reaction time: 24 h; T:EA 9:1 v/v; pale brown solid; m.p. 102-104 °C; 29.7 mg, 52% yield; IR (ATR): 3360, 1664, 1594, 1249, 1182, 1124, 1096 cm⁻¹; ¹H NMR (400.1 MHz, CDCl₃): 7.81 (s, 1H), 7.29-7.32 (m, 4H), 7.23-7.26 (m, 1H), 5.97 (m, 1H), 5.92 (d, 1H, J = 1.6 Hz), 4.28-4.33 (m, 4H), 2.44 (s, 3H), 1.35 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): 169.7, 159.0, 153.0, 144.0, 138.8, 128.6, 127.08, 127.07, 107.5, 105.8, 95.6, 60.2, 47.4, 24.4, 14.3; HRMS (HESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₉NNaO₃ 308.12571; Found 308.12547.

References

- 1. https://www.thermofisher.com/order/catalog/product/TS-13097.
- https://ecatalog.corning.com/life-sciences/b2c/US/en/Glassware/Tubes,-Glass/PYREX%C2%AE-Culture-Tube,-Screw-Cap/p/9825-16.
- J. Huang, Y. Liang, W. Pan, Y. Yang, D. Dong, Efficient Synthesis of Highly Substituted Pyrrolin-4-ones via PIFA-Mediated Cyclization Reactions of Enaminones. *Org. Lett.* 2007, 9, 5345-5348.
- M. Wu, Y. Jiang, Z. An, Z. Qi, R. Yan, Iron-Catalyzed Synthesis of Substituted Thiazoles from Enamines and Elemental Sulfur through C-S Bond Formation. *Adv. Synth. Catal.* 2018, 360, 4236-4240.
- J. Aleksić, M. Stojanović, M. Baranac-Stojanović, Silica Gel as a Promoter of Sequential Aza-Michael/Michael Reactions of Amines and Propiolic Esters: Solvent- and Metal-Free Synthesis of Polyfunctionalized Conjugated Dienes. *Chem. Asian J.* 2018, *13*, 1811-1835.
- A. R. Stoit, U. K. Pandit, Models of Folate Cofactors 18. Application in an Approach to the Synthesis of Indoloquinilizine Alkaloids. *Tetrahedron* 1988, 44, 6187-6195.
- 7. M. Jasiński, G. Mlostoń, P. Mucha, A. Linden, H. Heimgartner, Synthesis of New Bisimidazole Derivatives. *Helv. Chim. Acta* 2007, *90*, 1765-1780.
- Y. Jin, L. Ou, H. Yang, H. Fu, Visible-Light-Mediated Aerobic Oxidation of N-Alkylpyridinium Salts under Organic Photocatalysis. J. Am. Chem. Soc. 2017, 139, 14237-14243.
- 9. V. Kvita, H. Sauter, G. Rihs, On the reaction of some 2*H*-pyran-2-one derivatives with primary amines. *Helv. Chim. Acta* **1991**, *74*, 407-416.
- N. Anghelide, C. Draghici, D. Raileanu, New Dienamino Esters and Their Cyclization to α-Pyridones of Nicotinic acid. *Tetrahedron* 1974, *30*, 623-632.

- H. Tong, D. Bell, K. Tabei, M. M. Siegel, Automated data massaging, interpretation, and emailing modules for high throughput open access mass spectrometry. J. Am. Soc. Mass Spectrom. 1999, 10, 1174-1187.
- 12. A. Sobczak, W. Z. Antkowiak, Synthesis of 2,3-Disubstituted 4-Pyridone From a β-Aminocarboxylate Derivative and Acetoacetate. *Synth. Comm.* **2005**, *35*, 2993-3001.
- 13. A. A. Bisset, A. Dishington, T. Jones, G. J. Clarkson, M. Wills, Synthesis and reduction reactions of pyridones and 5-acyl-2-methoxypyridines. *Tetrahedron* **2014**, *70*, 7207-7220.
- S. Zhou, D.-Y. Liu, S. Wang, J.-S. Tian, T.-P. Loh, An efficient method for the synthesis of 2-pyridones via C–H bond functionalization. *Chem. Comm.* 2020, *56*, 15020-15023.
- 15. S. A. G. F. Angelino, D. J. Buurman, H.C.van der Plas, F. Müller, The use of immobilized enzymes in organic synthesis. Part 8. Oxidation of 1-aryl-3-carbamoylpyridinium chlorides by rabbit liver aldehyde oxidase and bovine milk xanthine oxidase. *Recl. Trav. Chim. Pays-Bas* 1983, *102*, 331-336.
- B. Manesh, K. M. K. Reddy, G. R. Reddy, N. M. Reddy, C. S. Reddy, Synthesis of ester functionalized 2-pyridone derivatives using KF/Alumina as a catalyst. *Org. Commun.* 2016, 9, 15-22.
- R. E. Rodríguez-Lugo, M. Trincado, H. Grützmacher, Direct Amidation of Aldehydes with Primary Amines under Mild Conditions Catalyzed by Diolefin-Amine–RhI Complexes. *Chem. Cat. Chem.* 2013, *5*, 1079-1083.
- T. Y. Ko, S. W. Youn, Cooperative Indium(III)/Silver(I) System for Oxidative Coupling/Annulation of 1,3-Dicarbonyls and Styrenes: Construction of Five-Membered Heterocycles. *Adv. Synth. Catal.* 2016, 358, 1934-1941.

$R^{NH_{2}} + \left\ \begin{array}{c} R_{2} \\ R_{1} \end{array} \right\ _{R_{1}} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{1} \\ R_{3} \\ R_{3} \\ R_{1} \\ R_{3} \\ R_{2} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_$										
	1e	2		3	2'		4			
Entry Compound Synthesis of enaminone 3 .										
		R	R ₁		R ₂	Solid phase or solvent	Reaction temperature (°C)	Reaction time (h)	Yield (%) ^b	
1	3 e	Bn	Me		CO ₂ Et	SiO ₂	60	3	52	
2						DMSO	rt	72	70	
3	3f	Bn	Ph		CO ₂ Et	SiO ₂	60	3	35	
4						DMSO	rt	72	76	
	Compound	Synthesis of dien	es 4 .							
		R	R ₁	R ₂	R ₃	Solid phase or solvent	Reaction temperature (°C)	Reaction time (h)	Yield (%) ^b	
5	4i	(CH ₂) ₂ CO ₂ Me	Н	CO ₂ Et	Н	SiO ₂	rt	18	27	
6						SiO ₂	30	15	42	
7						SiO ₂	60	2	33	
8						SiO ₂	100	2	0	
9	4j	(CH ₂) ₂ CONH ₂	Н	CO ₂ Et	Н	SiO ₂	60	3	12	
10						SiO ₂	50	8	36	
11	4k	(CH ₂) ₂ OH	Н	CO ₂ Et	Н	SiO ₂	50	0.75	44	
12						EtOH	reflux	0.5	0	
13	41	$(CH_2)_2Cl$	Н	CO ₂ Et	Н	SiO ₂	50	2	36	
14						SiO ₂	60	1.5	39	
15	4t°	Н	Н	CO ₂ Et	Н	SiO ₂	25	18	0	
16						SiO ₂	50	3	19	
17						SiO ₂	60	1.5	20	
18						H ₂ O	60	1	0	
19						МеОН	30	18	16	
20						МеОН	reflux	1	0	
21						EtOH	reflux	1	0	
22						THF	reflux	1	0	
23	4u	Bn	Н	COMe	Н	SiO ₂	60	1	0	
24						SiO ₂	70	1.5	18	
25						МеОН	reflux	2	0	
26	4v	Bn	Н	COPh	Н	SiO ₂	60	1	0	

27						SiO ₂	70	1	0	
28						SiO ₂	80	4	26	
29	4w	Bn	Н	CONH ₂	Н	SiO ₂	60	1	0	
30						MeCN	reflux	3	25	
31						EtOH	reflux	2	19	
32	4x	Bn	Me	CO ₂ Et	Н	SiO ₂	60	2.5	48	
33						SiO ₂	rt	2.5	67	
34	4y	Bn	Ph	CO ₂ Et	Н	SiO ₂	60	7	15	
35						SiO ₂	rt	21	72	
36						EtOH	reflux	14	30	
37	4za	Bn	H	CO ₂ Et	CO ₂ Et	SiO ₂	60	1	0	
38						SiO ₂	rt	1.5	61	
39	4zd	Bn	Н	CONH ₂	CO ₂ Et	SiO ₂	25	0.5	0	
40						EtOH	reflux	1	0	
41						MeCN	reflux	1	44	
42	4ee	Bn	Me	CO ₂ Et	Me	SiO ₂	rt	22	0	
43						SiO ₂	60	22	0	
44						SiO ₂	100	22	0	
45						EtOH	reflux	22	0	
46						1%H ₂ SO ₄ /SiO ₂	100	24	0	
47	4ff	Bn	Ph	CO ₂ Et	Ph	SiO ₂	rt	22	0	
48						SiO ₂	60	22	0	
49						SiO ₂	100	22	0	
50						EtOH	reflux	22	0	
51						$1\%H_2SO_4/SiO_2$	100	24	20	
52	4fe	Bn	Ph	COOEt	Me	1%H ₂ SO ₄ /SiO ₂	100	24	0	
53	4ef	Bn	Me	COOEt	Ph	$1\%H_2SO_4/SiO_2$	100	24	0	
^a The b	^a The best conditions are shaded grey. ^b Yield of isolated product. ^c From 20% NH ₃ /H ₂ O.									

Copies of ¹H NMR and ¹³C NMR spectra of synthesized compounds

Enaminones 3

¹**H NMR** (500.3 MHz, DMSO-*d*₆)

¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆)

S33

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

S35

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃), expanded aromatic region

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃, reaction mixture, signals indicating a diene are marked)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹H NMR (500.3 MHz, CDCl₃)

¹H NMR (500.3 MHz, CDCl₃) expanded aromatic region

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃) expanded aromatic region

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

A part of NOESY spectrum of 4za (mixture of 1Z,3Z and 1E,3Z isomers) used to distinguish between the isomers.

¹H NMR (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

A part of NOESY spectrum of 4zb showing cross-peak between the two vinyl hydrogen atoms and Z stereochemistry of the C1C2 double bond (maleic acid fragment).

¹³C{¹H} NMR (125.8 MHz, CDCl₃) maleate/fumarate 1 : 0.8

¹³C{¹H} NMR (125.8 MHz, CDCl₃) expanded

COSY spectrum of 4zc used to unequivocally determine the position of the C4-H atoms of the two isomers. They couple with the adjacent NH proton.

A part of NOESY spectrum of 4zc used to distinguish the two isomers around the C1C2 double bond.

¹**H NMR** (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

A part of NOESY spectrum of 4zd showing cross-peak between the two vinyl hydrogen atoms and Z stereochemistry of the C1C2 double bond (maleic acid fragment).

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

A part of **NOESY** spectrum of **4ze** showing the *Z* stereochemistry at the C1 double bond.

¹H NMR (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃) expanded aromatic region

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

Т

¹³C{¹H} NMR (100.6 MHz, CDCl₃), expanded aromatic region

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹H NMR (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃) expanded aromatic region

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃) expanded aromatic region

¹**H NMR** (400.1 MHz, DMSO-*d*₆)

¹³C{¹H} NMR (100.6 MHz, DMSO-*d*₆)

EtOOC

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹**H NMR** (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹**H NMR** (500.3 MHz, CDCl₃)

¹H NMR (500.3 MHz, CDCl₃), expanded aromatic region

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃) expanded aromatic region

¹**H NMR** (400.1 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃), expanded aromatic region

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃), expanded aromatic region

¹**H NMR** (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃), expanded aromatic region

¹**H NMR** (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃) expanded aromatic region

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹H NMR (400.1 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃) expanded aromatic region

¹**H NMR** (400.1 MHz, CDCl₃)

¹**H NMR** (500.3 MHz, DMSO-*d*₆)

¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆)

Determination of structure of compound 8

Product of cyclization of diene **4zd** shows four singlets in ¹H NMR spectrum: δ 11.53 ppm (s, 1H, NH), 5.19 ppm (s, 2H, Bn), 8.75 ppm and 6.76 ppm, belonging to two vinyl hydrogen atoms (NMR spectrum on p. S168). The position of the =CH atom (8.75 ppm) within the structure was unequivocally determined by the NOESY cross-peak between 5.19 ppm (Bn) and 8.75 ppm (=CH) (see, NOESY spectrum below). The assignment of signals belonging to carbonyl groups was made on the basis of the HMBC cross-peak: the signal at 162.0 ppm was assigned to carbonyl group near the Bn group due to the presence of the cross-peak, visible in HMBC spectrum on p. S172. Therefore, the other two carbonyl groups show very close signals at 166.3 ppm and 166.6 ppm. Additional evidence for this is the HMBC cross-peak between the carbonyl signals at 166.3/166.6 ppm and signal of the NH hydrogen atom (p. S172). Finally, the evidence for structure **8** came from the HMBC cross-peak between the =CH (6.76 ppm) and C=O (166.6 ppm), but not between the 6.76 ppm and 162.0 ppm signals, thus ruling out the structure **9**.

A part of **NOESY** spectrum of **8** used to distinguish between the two vinyl hydrogen atoms.

A part of HMBC spectrum of 8 used to distinguish between the two isomeric structures.

¹**H NMR** (500.3 MHz, CDCl₃)

¹³C{¹H} NMR (125.8 MHz, CDCl₃)

¹³C{¹H} NMR (100.6 MHz, CDCl₃)