Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Entry to 4,5-Fused Coumarin frameworks via Radical-Promoted Alkylative Intramolecular C5-Annulation

Chada Raji Reddy,^{*a,b} Venkatareddy Edhara,^b Ankita Kumari, ^{a,b} Amol D. Patil^{a,b} and Karthikeyan Thandavamurthy^b

^aDepartment of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India ^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India E-mail: <u>rajireddy@iict.res.in</u>

Table of Contents

1. Structures of starting materials used in this study	S2
2. Preparation of <i>N</i> -acryloyl amino coumarin	S2-S6
3. Control Experiment	S6-S7
4. X-ray Data	S7-S8
5. ¹ H NMR and ¹³ C NMR spectra	S9-S71

Figure S1: Structures of starting materials used in this study

EXPERIMENTAL SECTION

2. Preparation of *N*-acryloyl amino coumarin:

4-Hydroxy-2H-chromen-2-one (I) (5 g, 1 equiv) and a catalytic amount of DMF were dissolved in 25 mL of toluene, triethylamine (6.5 mL, 1.5 equiv) and phosphorus oxychloride (5.8 mL, 2

equiv) were added. The mixture was heated to $100 \,^{\circ}$ C for 12 h. The reaction was quenched with water (100 mL) and extracted with toluene (2 x 50 mL). Separated organic layer and concentrated. The crude product was purified by flash column chromatography on silica gel to give 4-Chloro-2H-chromen-2-one (**II**) as cream solid.

4-Chloro-2H-chromen-2-one (**II**) (2 g, 1 equiv) is dissolved in DMF in 10 mL, potassium carbonate (2.15 g, 1.5 equiv) and n-butylamine (2 mL, 2 equiv) was added. The mixture was heated to 100 °C for 12 h. The reaction was quenched with water (40 mL) and extracted with ethyl acetate (2 x 30 mL). Separated organic layer and concentrated. The crude product was purified by flash column chromatography on silica gel to give 4-Amino coumarin (**III**) as light yellow solid.

To a solution of 4-amino coumarin III (1.9 g, 1.0 equiv) in DCM (30 mL), was added triethylamine (4.0 equiv) and the mixture was stirred at 0 °C, and methacryloyl chloride (2.0 equiv) was slowly added under nitrogen atmosphere. The resulting solution was stirred at rt. After completion, the reaction was quenched with 30 mL water and separated organic layer was washed with 30 mL of NaHCO₃ saturated solution), brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give *N*-acryloyl amino coumarin (1).

N-Butyl-*N*-(2-oxo-2*H*-chromen-4-yl)methacrylamide (1a): On 7.0 mmol scale, pale yellow viscous oil; yield (1a): 90% (1.8 g), ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.59 (m, 1H), 7.48 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.41 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.36 – 7.32 (m, 1H), 6.23 (s, 1H), 5.10 – 5.07 (m, 2H), 3.76

(br s, 2H), 1.88 (s, 3H), 1.63 – 1.58 (m, 2H), 1.33 (dd, *J* = 15.1, 7.5 Hz, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.3, 160.8, 154.9, 154.1, 140.1, 132.8, 124.7, 124.2,

119.3, 117.8, 117.7, 114.3, 49.1, 29.9, 20.1, 20.1, 13.7; **HRMS**: calcd. For C₁₇H₂₀NO₃ [M + H]⁺ 286.1443, found 286.1439.

N-Benzyl-*N*-(2-oxo-2H-chromen-4-yl)methacrylamide (1b): On 1.0 mmol scale, white solid (mp: 118–120 °C); yield (1b): 82% (261.6 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.56 (m, 1H), 7.43 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.37 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.32 – 7.23 (m, 6H), 5.95 (s,

1H), 5.16 – 5.09 (m, 4H), 1.89 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.3, 160.6, 154.3, 153.9, 139.9, 135.9, 132.8, 128.8, 128.7, 128.2, 124.7, 124.1, 119.8, 117.7, 117.6, 114.7, 52.2, 20.1; HRMS: calcd. For C₂₀H₁₇NO₃Na [M + Na]⁺ 342.1101, found 342.1092.

N-Isopropyl-*N*-(2-oxo-2H-chromen-4-yl)methacrylamide (1c): On 1.0 mmol scale, white solid (mp: 88–90 °C); yield (1c): 82% (216.8 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 1H), 7.48 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.39 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.34 – 7.30 (m, 1H), 6.27 (s, 1H), 5.07 (s,

1H), 5.04 (d, J = 0.9 Hz, 1H), 4.78 – 4.72 (m, 1H), 1.86 (s, 3H), 1.31 (d, J = 4.2 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.2, 160.7, 153.8, 153.3, 140.7, 132.8, 124.8, 124.5, 119.3, 119.2, 117.6, 115.6, 50.4, 20.8, 20.2; HRMS: calcd. For C₁₆H₁₈NO₃ [M + H]⁺ 272.1287, found 272.1272.

N-Allyl-*N*-(2-oxo-2H-chromen-4-yl)methacrylamide (1d): On 1.0 mmol scale, white solid (mp: 77–79 °C); yield (1d): 78% (209.8 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.59 (m, 1H), 7.49 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.40 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.36 – 7.32 (m, 1H), 6.21 (s, 1H), 5.97 – 5.87 (m,

1H), 5.22 (dd, J = 10.2, 1.0 Hz, 1H), 5.21 – 5.12 (m, 3H), 4.37 (br s, 2H), 1.90 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.2, 160.7, 154.5, 154.0, 139.9, 132.8, 131.6, 124.7, 124.1, 119.9,

119.8, 117.7, 117.7, 114.2, 51.8, 19.9; **HRMS**: calcd. For C₁₆H₁₆NO₃ [M + H]⁺ 270.1113, found 270.1130.

N-Butyl-*N*-(2-oxo-2H-chromen-4-yl)-2-phenylacrylamide (1e): On 1.0 mmol scale, pale yellow viscous oil; yield (1e): 85% (295.4 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.53 – 7.47 (m, 2H), 7.43 – 7.37 (m, 6H), 5.97 (s, 1H), 5.95 (s, 1H), 3.95 – 3.91

(m, 2H), 1.70 - 1.62 (m, 2H), 1.30 - 1.26 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.2, 164.9, 144.9, 142.1, 135.0, 133.3, 132.8, 129.3, 129.1, 129.0, 128.9, 128.8, 126.9, 125.8, 124.6, 122.3, 50.5, 30.3, 20.0, 13.6; HRMS: calcd. For C₂₂H₂₂NO₃ [M + H]⁺ 347.1421, found 347.1411.

N-Butyl-*N*-(7-methyl-2-oxo-2H-chromen-4-yl)methacrylamide (1f): On 1.0 mmol scale, white solid (mp: 82–84 °C); yield (1f): 83% (248.5 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 1H), 7.20 (s, 1H), 7.14 (d, J = 8.2 Hz, 1H), 6.15 (s, 1H), 5.07 (d, J = 14.0 Hz, 2H), 3.75 (br s, 2H),

2.47 (s, 3H), 1.88 (s, 3H), 1.61 – 1.57 (m, 2H), 1.32 (dd, J = 15.1, 7.5 Hz, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.2, 161.2, 154.9, 154.2, 144.4, 140.1, 125.9, 123.9, 119.2, 117.8, 115.38, 113.0, 49.1, 29.9, 21.7, 20.1, 13.7; HRMS: calcd. For C₁₈H₂₂NO₃ [M + H]⁺ 300.1594, found 300.1589.

N-Butyl-*N*-(7-methoxy-2-oxo-2H-chromen-4-yl)methacrylamide (1g): On 1.0 mmol scale, white solid (mp: 95–97 °C); yield (1g): 85% (268.1 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.7 Hz, 1H), 6.90 - 6.87 (m, 2H), 6.06 (s, 1H), 5.09 (s, 1H), 5.05 (s, 1H), 3.90 (s, 3H), 3.71 (br s,

2H), 1.88 (s, 3H), 1.62 (d, J = 7.9 Hz, 1H), 1.56 (d, J = 7.9 Hz, 1H), 1.32 (dd, J = 15.1, 7.5 Hz,

2H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.21, 163.52, 161.40, 155.96, 155.13, 140.07, 125.23, 119.12, 113.07, 111.20, 110.86, 101.41, 55.96, 49.12, 30.00, 20.14, 20.12, 13.76; HRMS: calcd. For C₁₈H₂₂NO₄ [M + H]⁺ 316.1533, found 316.1549.

N-Butyl-*N*-(6-chloro-2-oxo-2H-chromen-4-yl)methacrylamide (1h): On 1.0 mmol scale, pale pink solid (mp: 115–117 °C); yield (1h): 79% (252.6 mg), ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.41 (d, *J* = 2.4 Hz, 1H), 7.35 (d, *J* = 8.8 Hz, 1H), 6.26 (s, 1H), 5.11 (s,

2H), 3.84 - 3.75 (m, 2H), 1.91 (s, 3H), 1.64 - 1.60 (m, 1H), 1.56 (s, 1H), 1.34 (dd, J = 15.2, 7.4 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.1, 160.2, 153.9, 152.34, 140.0, 132.8, 130.4, 123.6, 119.6, 119.2, 119.0, 114.8, 49.3, 30.0, 20.1, 13.7; HRMS: calcd. For C₁₇H₁₉NO₃Cl [M + H]⁺ 320.1040, found 320.1053.

3. Control Experiments: Radical trapping with 2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO):

To the solution of *N*-acryloyl amino coumarin **1a** (1.0 equiv, 0.5 mmol scale) in CH₃CN:H₂O (1:1, 3 mL), isobutyric acid **2c** (2.0 equiv.) were added. K₂S₂O₈ (4.0 equiv), and Ag₂CO₃ (10 mol%), and 2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) (2.0 equiv) was added to the mixture and stirred for 3 h at 50 °C (an oil bath). The progress of the reaction was monitored by TLC and found that the reaction inhibited and intermediate was confirmed by HRMS. **HRMS**: calcd for C₁₂H₂₆NO (M+H)⁺ 200.20089, found 200.20098.

4. X-ray Data:

X-ray data for the compound **3f** was collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-III detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms].

Crystal structure determination of 3f:

Crystal Data for C₂₆H₂₉NO₃ (*M* =403.50 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 21.6934(12) Å, *b* = 9.8813(12) Å, *c* = 10.474(3) Å, β = 101.399(6)°, *V* = 2201.0(7) Å³, *Z* = 4, *T* = 294.15 K, μ (MoK α) = 0.079 mm⁻¹, *Dcalc* = 1.218 g/cm³, 25218 reflections measured (4.546° $\leq 2\Theta \leq 61.004°$), 6461 unique ($R_{int} = 0.0588$, $R_{sigma} = 0.0879$) which were used in all calculations. The final R_1 was 0.0632 (I > 2 σ (I)) and wR_2 was 0.1473 (all data). CCDC No. 2360230 contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/.</u>

Figure caption: ORTEP diagram of **3f** compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

5. References:

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin,

USA.

2. Sheldrick G. M. (2015). ActaCrystallogr C71: 3-8.

6. ¹H NMR and ¹³C NMR spectra:

S16

S69

