Supporting Information

Metal and acid-free synthesis of acenaphthenone-2-ylidene ketones in PEG 400 and their radical nitration by TBN in water.

Tiyasa Dhar,^a Debasish Bera,^a Tandrima Chaudhuri^b and Chhanda Mukhopadhyay^{*a}

^aDepartment of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India *E-mail: <u>cmukhop@yahoo.co.in</u>

^bDepartment of Chemistry, Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Burdwan 713407, India.

Table of contents

1.	General information of material and instruments
2.	Procedure for synthesis of compound 3a , 3b , 5a and 5b 3-18
3.	¹ H NMR and ¹³ C NMR of compound 3aa-3as
4.	¹ H NMR and ¹³ C NMR of compound 3ba-3bd
5.	¹ H NMR and ¹³ C NMR of compound 5aa-5as
6.	¹ H NMR and ¹³ C NMR of compound 5ba-5bd
7.	Mass spectrum of the crude reaction mixture65
8.	Experiment to prove the geometry of the synthesized
9.	HSQC of compound 3ai and 5ai 69-70
10	. Table 1 : Optimization of reaction condition
11	.Green metrics calculation

General information of materials and instruments :

All commercially available chemicals were purchased from Aldrich, USA or Spectrochem, India, and used without further purification. All solvents were used as received. The progress of the reaction was checked by glass sheets pre-coated TLC with silica gel (with binder, 300 mesh, Spectrochem) and column chromatography was performed using silica gel (100-200 mesh). Bruker 300 MHz and 400 MHz instruments were used for ¹H and ¹³C NMR spectra at 300 MHz, 400 MHz and 75 MHz, 100 MHz respectively. Chemical shifts are reported in parts per million (ppm) downfield from an internal TMS (tetramethylsilane) reference. Coupling constants (J) are reported in hertz (Hz), and spin multiplicities are represented by the symbols s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). HRMS with an ESI resource were acquired using a Waters XEVO-G2S Q TOF mass spectrometer. 2400 Series II CHNS Analyzer, Perkin Elmer USA was used for elemental analyses. For all four compounds, the ground state geometries were optimized using the hybrid density functional B3LYP method, i.e., Becke's three parameter nonlocal-exchange functional [1] with the nonlocal correlation functional of Lee, Yang and Parr [2], with high angular momentum basis set 6-31G (d, p) [3]. Optimization is followed by frequency calculation using the same basis set to obtain the appropriate stationary point for each compound. All the calculations have been performed starting from a Molecular Mechanics [4] optimized geometry of the compounds using Gaussian'09.

Procedure for synthesis of compound (E)-3aa :

Acenaphthylene 1,2 dione **1** (1 mmol), Acetophenone **2aa** (1 mmol) were added with 1 ml of PEG 400 in a dry 10 ml round bottom flask with a magnetic stirrer bar. Then the reaction mixture was allowed to run at 110 °C for 2.5 hour. After reaching the completion, which was further monitored by TLC the reaction mixture was cooled to room temperature and diluted with 10 ml of ice cooled water and extracted with EtOAc (3×5 ml). The organic layer was combined and washed with brine and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by column chromatography using 100-200 mesh silica gel and petroleum ether-ethyl acetate mixture as the eluent to afford the desired product (**E**)-**3aa**.

Procedure for synthesis of compound (E)-3ba :

Acenaphthylene 1,2 dione 1 mmol) 2-(1 ,Methyl (triphenylphosphoranylidene)acetate 2ba (1 mmol) were added with 1 ml of PEG 400 in a dry 10 ml round bottom flask with a magnetic stirrer bar. Then the reaction mixture was allowed to run at 110 °C for 2.5 hour . After reaching the completion, which was further monitored by TLC the reaction mixture was cooled to room temperature and diluted with 10 ml of ice cooled water and extracted with EtOAc (3×5 ml). The organic layer was combined and washed with brine and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by column chromatography using 100-200 mesh silica gel and petroleum ether-ethyl acetate mixture as the eluent to afford the desired product (E)-3ba.

Procedure for synthesis of compound (Z)-5aa :

(E)-2-(2-oxo-2-phenylethylidene)acenaphthylen-1(2H)-one (**3aa**) (1mmol), **4** (1.2 mmol) were added with 1 ml of H₂O in a dry 10 ml round bottom flask with a magnetic stirrer bar . Then the reaction mixture was allowed to run at 80 °C for 2 hour . After reaching the completion, which was further monitored by TLC the reaction mixture was cooled to room temperature and diluted with 10 ml of ice cooled water and extracted with EtOAc (3×5 ml). The organic layer was combined and washed with brine and dried over anhydrous Na₂SO₄ .After the solvent was removed under reduced pressure, the crude product was purified by column chromatography using 100-200 mesh silica gel and petroleum ether-ethyl acetate mixture as the eluent to afford the desired product (**Z**)-**5aa**.

Gram scale synthesis of (Z)- 5aa :

(E)-2-(2-oxo-2-phenylethylidene)acenaphthylen-1(2H)-one (**3aa**) (1.57 gm, 6 mmol, 1.0 equiv), **4** (7.2 mmol, 1.2 equiv) were added with 5 ml of H₂O in a dry 10 ml round bottom flask with a magnetic stirrer bar . Then the reaction mixture was allowed to run at 80 °C for 2 hour . After reaching the completion, which was further monitored by TLC the reaction mixture was cooled to room temperature and diluted with 20 ml of ice cooled water and extracted with EtOAc (3×10 ml). The organic layer was combined and washed with brine and dried over anhydrous Na₂SO₄ .After the solvent was removed under reduced pressure, the crude product was purified by column chromatography using 100-200 mesh silica gel and petroleum ether-ethyl acetate mixture as the eluent to afford the desired product (**Z**)-5aa.

Procedure for synthesis of compound (Z)- 5ba :

Methyl (E)-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate (**3ba**) (1 mmol), **4** (1.2 mmol) were added with 1 ml of H₂O in a dry 10 ml round bottom flask with a magnetic stirrer bar . Then the reaction mixture was allowed to run at 80 °C for 2 hour. After reaching the completion, which was further monitored by TLC the reaction mixture was cooled to room temperature and diluted with 10 ml of ice cooled water and extracted with EtOAc (3×5 ml). The organic layer was combined and washed with brine and dried over anhydrous Na₂SO₄ .After the solvent was removed under reduced pressure, the crude product was purified by column chromatography using 100-200 mesh silica gel and petroleum ether-ethyl acetate mixture as the eluent to afford the desired product (**Z**)-**5ba** .

Gram scale synthesis of (Z)-5ba :

Methyl (E)-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate (**3ba**) (1.35gm, 6 mmol, 1.0 equiv), **4** (7.2 mmol, 1.2 equiv) were added with 5 ml of H₂O in a dry 10 mL round bottom flask with a magnetic stirrer bar . Then the reaction mixture was allowed to run at 80 °C for 2 hour . After reaching the completion, which was further monitored by TLC the reaction mixture was cooled to room temperature and diluted with 20 ml of ice cooled water and extracted with EtOAc (3×10 ml). The organic layer was combined and washed with brine and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by column chromatography using 100-200 mesh silica gel and petroleum ether-ethyl acetate mixture as the eluent to afford the desired product (**Z**)-5ba.

(*E*)-2-(2-oxo-2-phenylethylidene)acenaphthylen-1(2H)-one (Table 2, entry 1, **3aa**)

Yellow solid, Yield: 90% ; Rf : 0.2 (8% Ethyl Acetate in Petroleum Ether) ; M.P. = 126-128 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.73 (d, J = 9 Hz , 1H), 8.18 (t, 3H) ,8.11 (d, J = 6 Hz, 2H), 8.02 (d, J = 6 Hz, 1H), 8.01 (d, J = 8 Hz, 1H), 7.99 (s, 1H) , 7.81-7.70 (m, 2H) , 7.66 (d, J = 9 Hz , 1H) , 7.58 (t, 2H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 190.6 , 186.4 ,143.5 , 135.2 , 134.6 , 132.6 , 130.8 , 130.4 , 130.0 , 129.9 , 129.6 , 129.2 , 129.1 , 129.0 , 128.5 , 127.0 , 125.9 , 123.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₂O₂] : 284.0837 ; Found : 284.0830 .

(*E*)-2-(2-oxo-2-(*p*-tolyl)ethylidene)acenaphthylen-1(2H)-one(Table 2, entry 2, **3ab**)

Yellow solid, Yield: 93% ; Rf : 0.2 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 132-134 0 C ;¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.68 (d, J = 9 Hz, 1H), 8.13 (d, J = 6 Hz, 1H), 8.09 (d, J = 9 Hz, 3H), 7.99 (d, J = 9 Hz, 1H), 7.96 (s, 1H) , 7.78-7.67 (m, 2H), 7.36 (d, J = 9 Hz, 2H) , 2.47 (s, 3H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 192.8 , 191.4 , 144.8 , 142.8 , 142.0 , 135.5 , 131.8 , 131.4 , 130.8 , 130.6 , 129.6 , 129.0 , 128.8 , 128.0 , 127.8 , 125.2 , 124.2 , 121.9 , 21.8 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₄O₂] : 298.0994 ; Found : 298.0992 .

(*E*)-2-(2-(4-*methoxyphenyl*)-2-*oxoethylidene*)*acenaphthylen-1*(2*H*)-*one* (Table 2, entry 3, **3ac**)

Yellow solid, Yield: 92% ; Rf : 0.25 (8% Ethyl Acetate in Petroleum Ether) ; M.P. = 130-132 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.64 (d, J = 8 Hz , 1H), 8.19 (d, J = 8 Hz, 2H) ,8.16 (d, J = 8 Hz, 1H), 8.11 (d, J = 8 Hz, 1H), 8.01 (d, J = 8 Hz, 1H), 7.97 (s, 1H) , 7.81- 7.69 (m, 2H) , 7.04 (d, J = 8 Hz , 2H) , 3.93 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 192.9 , 190.4 , 164.2, 142.7 , 141.7 , 131.8 , 131.5 , 131.3 , 131.0 , 130.9 , 130.7 , 128.8 , 127.9 , 127.8 , 125.1 , 124.6 , 121.9 , 114.2 , 55.6 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₄O₃] : 314.0943 ; Found : 314.0949 .

(*E*)-2-(2-(2-*methoxyphenyl*)-2-*oxoethylidene*)*acenaphthylen*-1(2*H*)-*one* (Table 2, entry 4, **3ad**)

Yellow solid, Yield: 89% ; Rf : 0.3 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 131-133 0 C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.82 (d, J = 8 Hz , 1H), 8.14 (d, J = 8 Hz , 1H) ,8.08 (d, J = 4 Hz , 1H), 8.00 (d , J = 12 Hz, 1H) ,7.91 (s, 1H), 7.89 (d, J = 8Hz, 1H), 7.78-7.70 (m , 2H), 7.56 (t, 1H) , 7.12 (t, 1H), 7.05 (t, 1H), 3.95 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 193.5 , 192.8 , 159.2 ,142.6 ,139.9 ,134.5 ,131.7 ,131.6 ,131.2 ,130.9 ,130.6 ,128.9 ,128.8 ,128.7 ,127.8 ,127.7 ,125.0 ,121.7 ,120.9 ,111.9 ,55.9 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₄O₃] : 314.0943 ; Found : 314.0948 .

(*E*)-2-(2-(4-ethoxyphenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 5, **3ae**)

Yellow solid, Yield: 91%; Rf : 0.25 (10% Ethyl Acetate in Petroleum Ether); M.P. = 138-140 0 C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.62 (d, J = 6 Hz,

1H), 8.15 (t, 3H), 8.09 (d, J = 6 Hz, 1H), 7.99 (d, J = 6 Hz, 1H), 7.94 (s, 1H), 7.76 (t, 1H), 7.69 (t, 1H), 7.01 (d, J = 9 Hz, 2H), 4.19- 4.12 (m, 2H), 1.48 (t, 3H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 192.8, 190.3, 163.6, 141.6, 132.6, 131.8, 131.4, 131.3, 131.0, 130.8, 130.6, 128.8, 128.5, 127.8, 127.8, 125.1, 124.6, 122.1, 121.9, 114.6, 63.9, 14.7; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₂H₁₆O₃] : 328.1099; Found : 328.1090.

(*E*)-2-(2-oxo-2-(4-proposyphenyl)ethylidene)acenaphthylen-1(2H)-one (Table 2, entry 6, **3af**)

Yellow solid, Yield: 90%; Rf : 0.2 (12% Ethyl Acetate in Petroleum Ether); M.P. = 143-145 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.63 (d, J = 6 Hz , 1H), 8.18- 8.10 (m, 4H) , 8.00 (d, J = 9 Hz , 1H), 7.96 (s, 1H), 7.80 – 7.68 (m, 2H), 7.02 (d, J = 6Hz, 1H), 4.04 (t, 2H), 1.91 – 1.84 (m, 2H) , 1.08 (t, 3H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 192.9 , 190.4 , 163.8 , 141.6 , 131.8 , 131.5 , 131.3 , 130.9 , 130.8 , 130.7 , 130.6 , 128.8 , 127.8 , 127.8 , 125.1 , 124.7 , 121.9 , 114.6 , 114.1 , 69.9 , 22.5 , 10.4 ppm ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₃H₁₈O₃] : 342.1256 ; Found : 342.1258.

(*E*)-2-(2-(4-hydroxyphenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 7, **3ag**)

Yellow solid, Yield: 90%; Rf : 0.2 (8% Ethyl Acetate in Petroleum Ether); M.P. = $152-154 \ ^{0}C$; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 10.81 (s, 1H), 8.62 (d, J = 8 Hz, 1H), 8.17 (d, J = 8 Hz, 2H), 8.14 (d, J = 8 Hz, 1H), 8.09 (d, J = 8 Hz, 1H), 8.01 (d, J = 8 Hz, 1H), 7.96 (s, 1H), 7.79 - 7.69 (m, 2H), 7.03 (d, J = 8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 192.8, 190.3, 157.1, 141.5, 131.7, 131.4, 131.3, 130.8, 130.8, 130.6, 130.6, 128.7, 127.8, 127.8, 125.0, 124.7, 121.9, 114.6, 114.1; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₂O₃] : 300.0786; Found : 300.0780.

(*E*)-2-(2-(3-hydroxyphenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 8, **3ah**)

Yellow solid, Yield: 91%; Rf : 0.2 (10% Ethyl Acetate in Petroleum Ether); M.P. = 150-152 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.71 (d, J = 6 Hz , 1H), 8.17 (d, J = 6 Hz , 1H) ,8.13 (d, J = 3 Hz, 1H), 8.03 (d, J = 6 Hz, 1H), 7.97 (s, 1H), 7.81-7.73 (m, 2H), 7.70 (d, J = 6 Hz, 2H), 7.45 (t, 1H) , 7.17 (d, J = 6 Hz , 1H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 192.6 , 190.3 , 156.3 , 132.0 , 130.7 , 130.3 , 128.8 , 128.2 , 127.9 , 125.3 , 123.9 , 122.1 , 121.5 , 121.1 , 115.0 ;

HRMS (ESI/TOF-Q) M/Z : $[M+H]^+$ Calcd. for $[C_{20}H_{12}O_3]$: 300.0786 $\,$; Found : 300.0789 $\,$.

(*E*)-2-(2-(4-chlorophenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 9, **3ai**)

Yellow solid, Yield: 93% ; Rf : 0.2 (8% Ethyl Acetate in Petroleum Ether) ; M.P. = 151-153 0 C ;¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.76 (d, J = 9 Hz , 1H), 8.17 (d, J= 12 Hz, 2H) ,8.12 (d, J = 6 Hz, 2H), 8.05 (d, J = 6 Hz, 1H), 7.94 (s, 1H) , 7.83- 7.72 (m, 2H) , 7.55 (d, J = 6 Hz, 2H) ; 13 C NMR (100 MHz, CDCl₃), δ (ppm) = 192.6 , 190.5 , 143.1 , 142.9 , 140.3 , 136.3 , 131.9 , 131.2 , 130.7 , 130.6 , 130.2 , 129.3 , 128.8 , 128.4 , 128.0 , 125.5 , 123.0 , 121.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁ClO₂] : 318.0448 ; Found : 318.0448.

(*E*)-2-(2-(2-*chlorophenyl*)-2-*oxoethylidene*)*acenaphthylen-1*(2*H*)-*one*(Table 2, entry 10, **3aj**)

White solid, Yield: 91% ; Rf : 0.25 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 150-152 0 C ;¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.98 (d, J = 8 Hz , 1H), 8.16 (d, J = 8 Hz , 1H) ,8.09 (d, J = 8 Hz , 1H), 8.05 (d , J = 8 Hz , 1H) ,7.79-7.75 (m , 3H), 7.73 (s , 1H) ,7.51 (d, J = 4 Hz , 2H) ,7.45-7.41 (m, 1H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 192.9 ,191.0 ,150.0 ,143.2 ,142.2 ,139.2 ,132.7 ,132.2 ,131.9 ,131.2 ,130.8 ,130.7 ,130.2 ,128.9 ,128.6 ,127.9 ,127.2 ,125.9 ,125.6 ,122.0 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁ClO₂] : 318.0448 ; Found : 318.0443.

(*E*)-2-(2-(2,4-dichlorophenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 11, **3ak**)

Yellow solid, Yield: 93% ; Rf : 0.3 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 155-157 ${}^{0}C$; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.99 (d, J = 9 Hz , 1H), 8.19 (d, J = 6 Hz , 1H) ,8.10 (t , 2H), 7.83-7.77 (m , 2H), 7.73 (d, J = 9 Hz, 1H) ,7.70 (s,1H) , 7.55 (d, J = 3 Hz, 1H) ,7.43 (d, J = 6 Hz , 1H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 192.7 ,191.7 ,143.4 ,142.7 ,138.4 ,137.5 ,131.9 ,131.3 ,131.2 ,130.7 ,128.9 ,128.8 ,128.0 ,127.6 ,126.0 ,125.0 ,122.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀Cl₂O₂] : 352.0058 ; Found : 352.0055.

Yellow solid, Yield: 90% ; Rf : 0.2 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 158-160 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.76 (d, J = 8 Hz , 1H), 8.19 (d, J = 8 Hz , 1H), 8.13 (d, J = 8 Hz , 1H), 8.08-8.04 (m , 3H), 7.94 (s, 1H), 7.83-7.74 (m, 2H), 7.72 (d, J = 8Hz , 2H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.7 , 188.1 145.9 , 143.7 , 134.2 , 132.7 , 132.7 , 132.5 , 131.9 , 131.7 , 130.8 , 130.5 , 130.2 , 129.0 , 128.5 , 128.5 , 126.8 , 126.1 , 123.3 , 122.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁BrO₂] : 361.9942 ; Found : 361.9949 .

(*E*)-2-(2-(3-bromophenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 13, **3am**)

Yellow solid, Yield: 89% ; Rf : 0.3 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 155-157 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.79 (d, J = 4 Hz , 1H), 8.33 (d, J = 4 Hz, 1H) ,8.18 (d, J = 8 Hz, 1H), 8.13 (d, J = 8 Hz, 2H), 8.06 (d, J = 8 Hz, 1H), 7.93 (s, 1H) , 7.83-7.74 (m, 3H) ,7.46 (t , 1H) , ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 192.6 , 190.3 , 143.3 , 143.2 , 139.7 , 136.5 , 132.0 , 131.7 , 131.2 , 130.7 , 130.6 , 130.5 , 128.8 , 128.5 , 128.0 , 127.4 , 125.6 , 123.3 , 122.7 , 122.2 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁BrO₂] : 361.9942 ; Found : 361.9940 .

(*E*)-2-(2-(2-bromophenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 14, **3an**)

Yellow solid, Yield: 87%; Rf : 0.2 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 159-161 0 C ; 1 H NMR (400 MHz, CDCl₃): δ (ppm) = 9.03 (d, J = 4 Hz , 1H), 8.18 (d, J = 8 Hz , 1H), 8.11 (d, J = 4 Hz , 1H), 8.08 (d, J = 8 Hz , 1H), 7.79 (t, 2H), 7.73 – 7.69 (m, 3H), 7.48 (t, 1H), 7.41 (t, 1H) ; 13 C NMR (100 MHz, CDCl₃), δ (ppm) = 193.7 , 192.8 , 143.3 , 142.4 , 141.3 , 133.9 , 132.6 , 131.9 , 131.2 , 130.8 , 130.7 , 130.0 , 128.9 , 128.7 , 127.9 , 127.7 , 126.1 , 125.3 , 122.1 , 120.2 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁BrO₂] : 361.9942 ; Found : 361.9948 .

(*E*)-2-(2-(4-iodophenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 15, **3ao**)

Yellow solid, Yield: 88%; Rf : 0.3 (10% Ethyl Acetate in Petroleum Ether); M.P. = 163-165 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.76 (d, J = 9 Hz , 1H), 8.17 (d, J = 9 Hz , 1H), 8.11 (d, J = 6 Hz , 1H), 8.04 (d, J = 9 Hz , 1H), 7.94 (d, J = 9 Hz , 1H), 7.90 (s, 1H), 7.88 (d, J = 6 Hz , 2H), 7.81 - 7.71 (m, 2H); ¹³C NMR

(75 MHz, CDCl₃), δ (ppm) = 192.6, 190.9, 143.1, 143.0, 138.2, 137.3, 131.9, 131.2, 130.7, 130.1, 128.8, 128.4, 127.9, 125.5, 122.8, 122.1, 102.0; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁IO₂] : 409.9804; Found : 409.9805.

(*E*)-2-(2-(4-fluorophenyl)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 16, **3ap**)

Yellow solid, Yield: 96% ; Rf : 0.2 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 139-141 0 C ;¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.72 (d, J = 8 Hz, 1H), 8.25 (d, J = 4 Hz, 1H) ,8.22 (d, J = 8 Hz, 1H), 8.17 (d, J = 8 Hz, 1H), 7.94 (s, 1H) , 7.82- 7.72 (m, 2H) , 7.25 (t , 2H) , ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.6 , 185.0 , 145.6 , 143.6 , 132.7 , 132.0 , 131.9 , 131.9 , 131.8 , 130.8 , 130.1 , 129.9 , 129.0 , 128.5 , 126.8 , 125.9 , 123.2 , 116.6 , 116.4 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁FO₂] : 302.0743 ; Found : 302.0748.

(*E*)-2-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethylidene)acenaphthylen-1(2H)-one (Table 2, entry 17, **3aq**)

White solid, Yield: 95% ; Rf : 0.25 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 163-165 0 C ;¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.23 (d, J = 8 Hz , 1H), 8.07 (d, J = 8 Hz , 1H) ,8.01 (d, J = 8 Hz , 1H) ,7.95-7.88 (m , 2H), 7.80 (d, J = 8 Hz, 1H) ,7.76 (t ,1H) , 7.69- 7.65 (m, 3H) ,7.62 (t , 1H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 204.2 , 196.8 , 142.1 , 133.5 , 131.2 , 129.5 , 128.2 , 128.0 , 127.9 , 126.7 , 126.6 , 125.2 , 125.0 , 124.5 , 124.1 , 124.0 , 124.0 , 123.1 , 123.0 , 121.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₁F₃O₂] :352.0711 ; Found : 352.0710.

(*E*)-2-(2-(*naphthalen-2-yl*)-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 2, entry 18, **3ar**)

Yellow solid, Yield: 94% ; Rf : 0.3 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 146-148 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.89 (d, J = 9 Hz, 1H), 8.81 (d, J = 9 Hz, 1H), 8.19 (d, J = 9 Hz, 1H), 8.13 (d, J = 6 Hz, 2H), 8.09-7.96 (m, 3H), 7.91 (s, 1H), 7.80 (t, 1H), 7.76-7.68 (m, 2H), 7.65-7.56 (m, 2H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 194.9, 192.8, 143.0, 142.0, 135.7, 134.0, 133.9, 131.9, 131.4, 130.8, 130.7, 130.5, 130.0, 128.8, 128.7, 128.5, 128.2, 127.9, 12.1, 126.8, 125.8, 125.4, 124.6, 122.0; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₄H₁₄O₂] : 334.0994 ; Found : 334.0999.

(*E*)-2-(2-oxo-2-(thiophen-3-yl)ethylidene)acenaphthylen-1(2H)-one (Table 2, entry 19, **3as**)

Yellow solid, Yield: 88% ; Rf : 0.2 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 121-123 ${}^{0}C$; ${}^{1}H$ NMR (300 MHz, CDCl₃): δ (ppm) = 8.91 (d, J = 9 Hz , 1H), 8.38 (s,1H), 8.17 (d, J = 9 Hz , 1H) , 8.11 (d, J = 9 Hz , 1H), 8.04 (d , J = 9 Hz, 1H) , 7.88 (s, 1H), 7.80 – 7.73 (m, 3H), 7.44 (d, J = 3 Hz, 1H) ; ${}^{13}C$ NMR (75 MHz, CDCl₃), δ (ppm) = 192.9 , 185.1 , 143.6 , 143.1 , 142.4 , 133.7 , 131.9 , 131.3 , 130.8 , 130.7 , 128.8 , 128.3 , 127.9 , 127.3 , 127.0 , 125.9 , 123.9 , 122.0 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₈H₁₀O₂S] : 290.0402 ; Found : 290.0408.

methyl (E)-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate(Table 4, entry 1, 3ba)

Yellow solid, Yield: 92% ; Rf : 0.25 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 122-124 0 C ;¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.93 (d, J = 9 Hz, 1H), 8.16 (d, J = 9 Hz, 1H), 8.07 (d, J = 6 Hz, 1H), 8.02 (d, J = 9 Hz, 1H), 7.79-7.73 (m, 2H), 6.99 (s, 1H), 3.94 (s,3H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 192.1, 166.8, 143.9, 143.0, 131.8, 131.1, 130.6, 130.4, 128.8, 128.0, 127.9, 126.3, 122.0, 119.7, 52.2 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₅H₁₀O₃] : 238.0630 ; Found : 238.0637.

ethyl (*E*)-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate(Table 4, entry 2, **3bb**)

Yellow solid, Yield: 90% ; Rf : 0.2 (10% Ethyl Acetate in Petroleum Ether) ; M.P. = 127-129 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.86 (d, J = 6 Hz , 1H), 8.08 (d, J = 3 Hz , 1H), 8.00- 7.9(m , 2H), 7.74- 7.66 (m, 2H), 6.94 (d, J = 6Hz , 1H), 4.42-4.35 (m, 2H), 1.42 (t, 3H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 192.0 , 166.3 , 143.6 , 142.8 , 131.7 , 131.1 , 130.5 , 130.4 , 128.8 , 127.9 , 127.8 , 126.3 , 121.9 , 120.2 , 61.2 , 14.3 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₆H₁₂O₃] : 252.0786 ; Found : 252.0789.

tert-butyl (*E*)-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate (Table 4, entry 3, **3bc**)

Yellow solid, Yield: 89% ; Rf : 0.2 (8% Ethyl Acetate in Petroleum Ether) ; M.P. = 133-135 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.66 (d, J = 8 Hz , 1H), 8.13 (d, J = 8 Hz , 1H), 7.96 (d, J = 8 Hz , 1H), 7.92 (d, J = 4 Hz , 1H), 7.83 (d, J = 8 Hz , 1H), 7.68 (t,1H), 7.57 (t, 1H) 7.73 – 7.69 (m, 3H), 7.48 (t, 1H), 7.41 (t, 1H) , 1.42 (s, 9H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 188.0 , 165.3 , 145.6 142.4 , 132.7 , 131.7 , 128.7 , 128.4 , 127.7 , 127.6 , 125.9 , 122.3 , 121.9 , 121.7 , 81.7 , 28.0 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₈H₁₆O₃] : 280.1099 ; Found : 280.1095.

benzyl (E)-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate (Table 4, entry 4, **3bd**)

Yellow solid, Yield: 91% ; Rf : 0.3 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 142-144 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.92 (d, J = 6 Hz, 1H), 8.16 (d, J = 9 Hz, 1H) , 8.08-8.01 (m, 2H) , 7.80-7.72 (m, 2H) , 7.48 (t, 2H) , 7.45-7.38 (m, 3H) , 7.05 (s, 1H) , 5.38 (s, 2H) ; ¹³C NMR (75 MHz, CDCl₃) , δ (ppm) =192.0 , 166.1 , 144.1 , 143.0 , 135.6 , 131.8 , 131.1 , 130.6 , 130.4 , 128.8 , 128.7 , 128.5 , 128.4 , 128.1 , 127.9 , 126.4 , 122.0 , 119.8 , 66.9 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₄O₃] : 314.0943 ; Found : 314.0949.

(Z)-2-(1-nitro-2-oxo-2-phenylethylidene)acenaphthylen-1(2H)-one (Table 6, entry 1, 5aa)

Orange solid, Yield: 86% ; Rf : 0.2 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 198-200 0 C ;¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.40 (d, J = 6 Hz, 1H) , 8.23 (d, J = 6 Hz, 1H), 8.21- 8.09 (m, 3H), 7.98 (d, J = 6Hz, 1H), 7.86-7.77 (m, 2H), 7.67 (t, 1H), 7.54 (t, 2H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 190.6, 186.4 , 143.5 , 135.2 , 134.6 , 132.6 , 130.8 , 130.4 , 130.0 , 130.0 , 129.6 , 129.2 , 129.1 , 129.0 , 128.5 , 127.0 , 125.8 , 123.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁NO₄] : 329.0688 ; Found : 329.0681.

(*Z*)-2-(*1-nitro-2-oxo-2-(p-tolyl)ethylidene)acenaphthylen-1(2H)-one* (Table 6, entry 2, **5ab**)

Orange solid, Yield: 90% ; Rf : 0.3 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 204-206 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.36 (d, J= 8 Hz , 1H) , 8.23 (d, J= 12 Hz , 1H) , 8.15 (d, J= 8 Hz , 1H) , 7.99 (t , J= 8 Hz , 3H) , 7.85-7.78 (m , 2H) , 7.34 (d, J= 8 Hz , 2H) , 2.46 (s , 3H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.6 , 185.9 , 145.9 , 143.4 , 132.8 , 132.5 , 132.1 , 130.8 , 130.7 , 130.3 , 130.0 , 129.9 , 129.9 , 129.4 , 129.0 , 128.5 , 127.0 , 125.6 , 123.0 , 21.9 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₃H₁₁NO₄] : 343.0845 ; Found : 343.0847.

(Z)-2-(2-(4-methoxyphenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)one(Table 6, entry 3, **5ac**)

Orange solid, Yield: 87%; Rf : 0.2 (15% Ethyl Acetate in Petroleum Ether); M.P. = 207-209 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.30 (d, J= 4 Hz , 1H), 8.22 (d , J= 8 Hz , 1H) , 8.14 (d, J = 8 Hz , 1H), 8.08 (d , J= 8 Hz, 2H) , 7.99 (d, J= 4Hz, 1H), 7.83-7.78 (m, 2H), 7.01 (d, J = 12 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.5, 184.6, 164.8, 146.6, 143.1, 135.2, 132.5, 131.8, 131.7, 130.8, 130.1, 129.7, 128.9, 128.5, 128.3, 127.5, 127.0, 125.2, 125.0, 123.0, 55.6; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₃NO₅] : 359.0794; Found : 359.0790.

(Z)-2-(2-(2-*methoxyphenyl*)-1-*nitro*-2-*oxoethylidene*)*acenaphthylen*-1(2H)-*one* (Table 6, entry 4, **5ad**)

Orange solid, Yield: 86% ; Rf : 0.25 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 206-208 0 C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.63 (d, J = 6 Hz, 1H) , 8.31 (d, J = 6 Hz, 1H), 8.19 (d, J = 6 Hz, 1H), 8.12 (d, J = 6 Hz, 1H), 7.95(d, J = 6 Hz, 1H) , 7.84-7.73 (m, 2H), 7.60 (t, 1H) 7.20 (t,1H) , 6.96 (d, J = 6 Hz, 1H), 3.74 (s, 3H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 191.5 , 184.2 , 159.8 , 143.5 , 135.9 , 132.4 , 131.5 , 130.7 , 130.6 , 130.1 , 129.6 , 129.0 , 128.2 , 128.0 , 126.8 , 124.6 , 122.7 , 121.6 , 112.0 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₃NO₅] : 359.0794 ; Found : 359.0798.

(Z)-2-(2-(4-ethoxyphenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)one(Table 6, entry 5, **5ae**)

Orange solid, Yield: 87% ; Rf : 0.2 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 210-212 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.29 (d, J = 9 Hz ,1H), 8.21 (d, J = 3 Hz ,1H), 8.13 (d, J = 6 Hz, 1H), 8.06 (d, J = 9 Hz ,4H), 7.98 (d, J = 6 Hz ,1H), 7.83-7.77 (m ,2H) , 4.18-4.09 (m, 2H) , 1.47 (t, 3H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 190.4 , 184.7 , 164.3 , 143.1 , 133.3 , 132.4 , 132.3 , 132.1 , 132.0 , 131.8 , 129.7 , 129.0 , 128.4 , 125.1 , 124.6 , 123.2 , 123.0 , 115.0 , 114.9 , 114.1 , 64.0 , 14.6 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₂H₁₅NO₅] : 373.0950 ; Found : 373.0958.

(Z)-2-(1-nitro-2-oxo-2-(4-propoxyphenyl)ethylidene)acenaphthylen-1(2H)one(Table 6, entry 6, **5af**)

Orange solid, Yield: 89% ; Rf : 0.3 (20% Ethyl Acetate in Petroleum Ether) ; M.P. =215-217 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.28 (d, J = 8 Hz, 1H), 8.22 (d, J = 8 Hz, 1H), 8.14 (d, J = 8 Hz, 1H), 8.06 (d, J = 8 Hz, 1H), 7.98 (d, J = 8 Hz, 1H), 7.80 (d, J = 8 Hz, 2H), 6.99 (d, J = 4 Hz, 2H), 4.02 (t, 2H), 1.88-1.82 (m 2H), 1.06 (t, 3H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.4 , 184.5 , 164.5 , 143.1 , 133.2 , 132.4 , 131.8 , 130.8 , 130.2 , 129.7 , 128.9 , 128.4 , 128.0 , 127.0 ,

125.1 , 123.0 , 114.9 , 69.9 , 22.4 , 10.5 ; HRMS (ESI/TOF-Q) M/Z : $[M+H]^+$ Calcd. for $[C_{23}H_{17}NO_5]$: 387.1107 ; Found : 387.1109.

(Z)-2-(2-(4-hydroxyphenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 6, entry 7, **5ag**)

Orange solid, Yield: 86% ; Rf : 0.25 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 207-209 0 C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 11.04 (s, 1H), 8.77 (d, J = 4 Hz, 1H), 8.47 (d, J = 8 Hz, 1H) , 8.34 (d, J = 8 Hz, 1H), 8.25 (d, J = 8 Hz, 1H), 8.19 (d, J = 8 Hz, 1H), 7.98 (d, J = 8 Hz, 1H), 7.87-7.79 (m, 2H) , 7.34 (d, J = 8Hz, 1H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) =.190.8 , 183.8 , 159.2 , 143.9 , 137.0 , 133.5 , 133.3 , 132.9 , 130.8 , 130.5 , 129.6 , 129.1 , 128.6 , 128.5 , 127.7 , 127.1 , 126.6 , 123.3 , 121.3 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁NO₅] : 345.0637 ; Found : 345.0630.

(Z)-2-(2-(3-hydroxyphenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 6, entry 8, **5ah**)

Orange solid, Yield: 85% ; Rf : 0.3 (20% Ethyl Acetate in Petroleum Ether) ; M.P. = 203-205 0 C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 10.61 (s, 1H), 8.92 (d, J = 12 Hz , 1H), 8.32 (d, J = 12 Hz , 1H), 8.21 (d, J = 12 Hz , 1H), 8.16-8.09 (m , 2H), 7.96 (d, J = 4Hz , 1H), 7.91 (s, 1H) , 7.5-7.74 (m, 3H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 192.4 , 186.2 , 155.1 , 144.4 , 143.6 , 132.0 , 130.7 , 129.1 , 128.8 , 128.0 , 126.0 , 125.9 , 122.3 , 121.4 , 120.6 , 119.5 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₁NO₅] : 345.0637 ; Found : 345.0635.

(Z)-2-(2-(4-chlorophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 6, entry 9, **5ai**)

Orange solid, Yield: 88% ; Rf : 0.25 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 208-210 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.43(d, J= 9 Hz , 1H) , 8.24 (d, J= 6 Hz , 1H) , 8.18 (d , J= 9 Hz , 1H), 8.04-7.98 (m, 3H) , 7.87-7.79 (m , 2H) , 7.52 (d, J = 9 Hz , 2H) ;¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 190.7 , 185.5 , 143.7 , 141.1, 133.8 , 132.8 , 132.7 , 130.8 , 130.5 , 130.2 , 129.8 , 129.5 , 129.0 , 128.5 , 126.8 , 126.1 , 123.2 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀ClNO₄] : 363.0298 ; Found : 363.0299.

(Z)-2-(2-(2-chlorophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 6, entry 10, **5aj**) Orange solid, Yield: 87% ; Rf : 0.3 (20% Ethyl Acetate in Petroleum Ether) ; M.P. = 205-207 0 C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 9.09 (d, J = 8 Hz, 1H), 8.70 (d, J = 8 Hz, 1H), 8.58 (d, J = 8 Hz, 1H), 8.53 (d, J = 8 Hz, 2H), 8.20 (t, 3H), 7.79 (t, 2H), 7.51 (d, J = 8 Hz, 1H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 191.1 , 184.8 , 143.8 , 134.9 , 134.3 , 132.6 , 132.5 , 132.4 , 131.7 , 131.7 , 130.7 , 130.3 , 129.1 , 128.4 , 127.3 127.3 , 126.9 , 125.3 , 124.7 , 123.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀ClNO₄] : 363.0298 ; Found : 363.0291.

(Z)-2-(2-(2,4-dichlorophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)one(Table 6, entry 11, **5ak**)

Orange solid, Yield: 88% ; Rf : 0.2 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 214-216 0 C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.62 (d, J = 8 Hz, 1H), 8.24 (d, J = 8 Hz, 1H), 8.17 (t, 2 H), 8.00 (d, J = 8 Hz, 1H), 7.87-7.79 (m, 2H), 7.53 (d, J = 4 Hz, 1H), 7.45 (d, J = 8 Hz, 1H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 191.2 , 183.9 , 144.1 , 140.2 , 135.1 , 133.2 , 132.7 , 132.2 , 131.4 , 130.8 , 130.5 , 129.6 , 129.1 , 128.5 ,127.8 , 127.2 , 125.6 , 124.8 , 123.3 , 122.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₉Cl₂NO₄] : 396.9909 ; Found : 396.9905.

(Z)-2-(2-(4-bromophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 6, entry 12, **5al**)

Orange solid, Yield: 89% ; Rf : 0.3 (20% Ethyl Acetate in Petroleum Ether) ; M.P. = 220-222 0 C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.44 (d, J= 12 Hz , 1H) , 8.25 (d, J= 12 Hz , 1H) , 8.18 (d , J = 12 Hz , 1H) , 8.00 (d, J = 8 Hz , 1H), 7.96 (d, J= 12 Hz, 2H) , 7.87-7.79 (m, 2H) , 7.69 (d, J = 12 Hz , 2H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.7 , 188.1, 145.9 , 143.7 , 134.2 , 132.7 , 132.7 , 132.5 , 131.9 , 131.7 , 130.8 , 130.5 , 130.2 , 129.0 , 128.5 , 128.5 , 126.8 , 126.1 , 123.3 , 122.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀BrNO₄] : 406.9793 ; Found : 406.9790.

(Z)-2-(2-(3-bromophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)one(Table 6, entry 13, **5am**)

Orange solid, Yield: 88% ; Rf : 0.25 (20% Ethyl Acetate in Petroleum Ether) ; M.P. = 219-221 0 C ;¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.49 (d, J= 8 Hz , 1H) , 8.26-8.18 (m , 3H) , 8.01 (d , J = 4 Hz , 2H) , 7.88-7.78 (m , 3H) , 7.42 (t ,

1H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.7 , 185.5 , 145.1 , 143.9 , 137.3 , 137.1 , 133.2 , 132.8 , 131.8 , 130.8 , 130.6 , 130.4 , 129.7 , 129.1 , 128.5 , 127.7 , 126.8 , 126.5 , 123.4 , 123.3 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀BrNO₄] : 406.9793 ; Found : 406.9799.

(Z)-2-(2-(2-bromophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)one(Table 6, entry 14, **5an**)

Orange solid, Yield: 89% ; Rf : 0.3 (20% Ethyl Acetate in Petroleum Ether) ; M.P. = 217-219 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 9.05 (d, J = 12 Hz, 1H), 8.66 (d, J = 8 Hz, 1H), 8.45 (d, J = 8 H, 1H), 8.40 (d, J = 8 Hz, 1H), 8.18 (d, J = 8 Hz, 1H), 8.12 (d, J = 8 Hz, 1H), 7.75 (t, 2H), 7.44 (t, 2H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.8 , 185.3 , 143.62 , 135.4 , 135.3 , 134.7 , 134.2 , 132.7 , 132.6 , 130.3 , 129.0 , 128.5 , 127.8 , 127.7 , 127.6 , 126.5 , 124.9 , 124.8 , 123.2 , 122.6 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀BrNO₄] : 406.9793 ; Found : 406.9797.

(Z)-2-(2-(4-iodophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)-one (Table 6, entry 15, **5ao**)

Orange solid, Yield: 84% ; Rf : 0.25 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 223-225 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 9.12 (d, J = 9 Hz, 1H) , 8.71(d, J = 9 Hz, 1H), 8.64 (d, J = 6Hz, 1H), 8.37 (d, J = 3 Hz, 1H), 8.34 (d, J = 3 Hz, 1H), 7.90 (d, J= 9 Hz, 3H), 7.81 (d, J = 9 Hz, 2H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 190.6 , 186.1 , 143.6 , 138.7 , 138.5 , 135.4 , 133.5 , 132.7 , 132.2 , 130.4 , 130.3 , 129.0 , 128.5 , 127.5 , 127.2 126.1 , 124.8 , 124.2 , 123.2 , 122.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀INO₄] : 454.9655 ; Found : 454.9652.

(Z)-2-(2-(4-fluorophenyl)-1-nitro-2-oxoethylidene)acenaphthylen-1(2H)-one(Table 6, entry 16, **5ap**)

Orange solid, Yield: 86% ; Rf : 0.2 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 207-209 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.30 (d , J= 8 Hz , 1H) , 8.14 (d, J = 8 Hz , 1H) , 8.08-8.02 (m , 3H) , 7.9 (d, J= 8 Hz , 1H), 7.76-7.71 (m, 2H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.6 , 185.0 , 165.3 , 143.6 , 132.7 , 132.6 , 132.0 , 131.9 , 131.9 , 131.8 , 130.8 , 130.1 , 129.9 , 129.0 , 128.5 , 126.8 , 125.9 , 123.2 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₀H₁₀FNO₄] : 347.0594 ; Found : 347.0599.

(Z)-2-(1-nitro-2-oxo-2-(4-(trifluoromethyl)phenyl)ethylidene)acenaphthylen-1(2H)-one (Table 6, entry 17, **5aq**)

Orange solid, Yield: 88% ; Rf : 0.2 (20% Ethyl Acetate in Petroleum Ether) ; M.P. = 213-215 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.51 (d, J = 8 Hz, 1H), 8.26 (d, J = 8 Hz, 1H) , 8.20 (d, J = 8 Hz, 3H), 8.00 (d, J = 8 Hz, 1H), 7.87 (t, 1H), 7.82 (t, 3H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.8 , 185.9 , 144.0 , 138.0 , 133.4 , 132.8 130.8 , 130.5 , 129.6 , 129.5 , 129.3 , 129.1 , 128.6 , 126.7 , 126.6 , 126.3 , 126.2 , 126.2 , 126.1 , 123.4 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₀F₃NO₄] : 397.0562 ; Found : 397.0560.

(Z)-2-(2-(*naphthalen-2-yl*)-1-*nitro-2-oxoethylidene*)*acenaphthylen-1*(2*H*)-*one* (Table 6, entry 18, **5ar**)

Orange solid, Yield: 90% ; Rf : 0.3 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 204-206 0 C ;¹H NMR (400 MHz, CDCl₃): δ (ppm) = 9.35 (d, J = 8 Hz, 1H), 8.31 (d, J = 8 Hz, 1H), 8.21-8.10 (m, 4H), 7.97 (d, J = 4 Hz, 1H), 7.92 (d, J = 4 Hz, 1H), 7.82 (t, 2H), 7.76 (t, 1H), 7.67 (t, 1H) , 7.48 (t, 1H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 190.7 , 187.2 , 147.7 , 143.2 , 135.6 , 134.1 , 132.6 , 132.5 , 131.7 , 131.6 , 131.1 , 130.8 , 129.8 , 129.5 , 129.0 , 128.7 , 128.5 , 127.2 , 126.3 , 125.2 , 124.3 , 123.0 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₄H₁₃NO₄] : 347.0594 ; Found : 347.0598 .

(*Z*)-2-(*1-nitro-2-oxo-2-(thiophen-2-yl)ethylidene)acenaphthylen-1(2H)-one*(Table 6, entry 19, **5as**)

Orange solid, Yield: 87% ; Rf : 0.3 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 199-201 0 C; 1 H NMR (400 MHz, CDCl₃): δ (ppm) = 8.31 (d, J = 12 Hz, 2H), 8.27 – 8.20 (m, 2H), 8.12 (d, J = 8 Hz, 2H), 7.87 (t, 2H) , 7.79 (t, 1H) ; 13 C NMR (100 MHz, CDCl₃), δ (ppm) = 188.1 , 179.3 , 145.9 , 135.3 , 132.7 , 132.6 , 131.0 , 129.9 , 129.0 , 128.6 , 128.5 , 128.5 , 127.6 , 127.5 , 126.9 , 125.4 , 123.1 ,122.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₈H₉NO₄S] : 335.0252 ; Found : 335.0251 .

methyl (*Z*)-2-*nitro*-2-(2-*oxoacenaphthylen*-1(2*H*)-*ylidene*)*acetate*(Table 7, entry 1, **5ba**)

Orange solid, Yield: 88% ; Rf : 0.2 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 195-197 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.89 (d, J = 8 Hz,

1H), 8.18 (d , J = 8 Hz, 1H), 8.10 (d , J = 8 Hz, 1H), 8.04 (d , J = 8 Hz, 1H), 7.79 (d, J = 8 Hz, 2H), 4.04 (s ,3H) ; 13 C NMR (100 MHz, CDCl₃), δ (ppm) = 189.7 , 185.0 , 160.0 , 143.0 , 132.6 , 132.4 , 130.0 , 129.0 , 128.5 , 128.5 , 128.4 , 128.0 , 123.1 , 123.0 , 54.0 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₅H₉NO₅] : 283.0481 ; Found : 283.0483 .

ethyl (*Z*)-2-*nitro*-2-(2-*oxoacenaphthylen*-1(2*H*)-*ylidene*)*acetate* (Table 7, entry 2, **5bb**)

Orange solid, Yield: 90% ; Rf : 0.25 (15% Ethyl Acetate in Petroleum Ether) ; M.P. = 201-203 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.37 (d, J = 4 Hz, 1H), 8.15 (t, 2H), 8.10-8.04 (m, 2H), 8.00 (d, J = 8 Hz, 1H), 7.73 (d, J = 8 Hz, 2H) 4.62-4.57 (M, 2H), 1.49 (t, 3H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 189.6, 180.0, 160.1, 143.4, 132.5, 132.3, 130.4, 129.9, 129.0, 128.3, 128.0, 126.9, 123.0, 122.9, 63.6, 13.8 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₆H₁₁NO₅] : 297.0637 ; Found : 297.0639 .

tert-butyl (Z)-2-*nitro-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate*(Table 7, entry 3, **5bc**)

Orange solid, Yield: 89% ; Rf : 0.2 (12% Ethyl Acetate in Petroleum Ether) ; M.P. = 210-212 0 C ; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.38 (d, J = 4 Hz, 1H), 8.17 (t, 2H), 8.12-8.02 (m, 2H) , 8.00 (d, J = 8 Hz, 1H) , 7.74 (d, J = 8 Hz , 2H) , 1.44 (s, 9H) ; ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 188.9, 165.4, 145.7, 143.1, 132.7, 131.7, 128.7, 128.4, 127.8, 127.7, 125.9, 122.3, 121.9, 121.7, 81.9, 28.1 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₁₆H₁₁NO₅] : 325.0950 ; Found : 325.0955 .

benzyl (*Z*)-2-*nitro*-2-(2-*oxoacenaphthylen*-1(2*H*)-*ylidene*)*acetate* (Table 7, entry 4, **5bd**)

Orange solid, Yield: 87% ; Rf : 0.3 (20% Ethyl Acetate in Petroleum Ether) ; M.P. = 217-219 0 C ; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.48 (d, J = 9 Hz, 1H) , 8.19 (d, J = 9Hz, 1H) , 8.13- 8.05 (m, 2H) , 7.82- 7.73 (m, 2H) , 7.52 (d, J = 6 Hz , 2H) , 7.42 (d, J = 6 Hz , 3H), 5.56 (s,2H) ; ¹³C NMR (75 MHz, CDCl₃), δ (ppm) = 189.7 , 160.2 , 143.6 , 134.4 , 132.5 , 130.6 , 130.6 , 129.7 , 129.1 , 129.0 , 128.8 , 128.8 , 128.7 , 128.7 , 128.4 , 128.4 , 127.3 , 126.8 , 123.1 , 69.3 ; HRMS (ESI/TOF-Q) M/Z : [M+H]⁺ Calcd. for [C₂₁H₁₃NO₅] : 359.0794 ; Found : 359.0792.

¹³C NMR Spectrum of (E)-3aa

¹³C NMR Spectrum of (E)-3ab

A.8.3 A.8.4 A.8.4

¹³C NMR Spectrum of (E)-3ad

¹³C NMR Spectrum of (E)-3ae

¹³C NMR Spectrum of (E)-3af

¹³C NMR Spectrum of (E)-3ag

28.72 28.18 28.18 28.18 28.18 28.12 28.12 29.12 29.12 29.12 29.12 29.12 29.12 20.120

¹³C NMR Spectrum of (E)-3ah

¹³C NMR Spectrum of (E)-3ai

¹³C NMR Spectrum of (E)-3aj

¹³C NMR Spectrum of (E)-3ak

¹³C NMR Spectrum of (E)-3al

¹³C NMR Spectrum of (E)-3am

¹³C NMR Spectrum of (E)-3an

¹³C NMR Spectrum of (E)-3ao

-1.62

¹³C NMR Spectrum of (E)-3ap

¹³C NMR Spectrum of (E)-3aq

(8) (9) (9) (9) (10) (11) <l

¹³C NMR Spectrum of (E)-3as

¹³C NMR Spectrum of (E)-3ba

¹³C NMR Spectrum of (E)-3bb

¹³C NMR Spectrum of (E)-3bc

¹³C NMR Spectrum of (E)-3bd

¹³C NMR Spectrum of (Z)-5aa

-2.46

-1.60

110 100 f1 (ppm) ò

¹³C NMR Spectrum of (Z)-5ab

¹³C NMR Spectrum of (Z)-5ae

¹³C NMR Spectrum of (Z)-5af

¹³C NMR Spectrum of (Z)-5ag

¹³C NMR Spectrum of (Z)-5ah

¹³C NMR Spectrum of (Z)-5ai

¹³C NMR Spectrum of (Z)-5aj

8,63 8,61 8,19 8,19 8,19 8,11 8,11 8,11 7,139 7,749 7,749 7,

¹³C NMR Spectrum of (Z)-5ak

¹³C NMR Spectrum of (Z)-5al

¹³C NMR Spectrum of (Z)-5am

¹³C NMR Spectrum of (Z)-5an

¹³C NMR Spectrum of (Z)-5ao

¹³C NMR Spectrum of (Z)-5ap

¹³C NMR Spectrum of (Z)-5aq

9,936 (9,336) (9,337) (9,337) (9,337) (9,337) (9,337) (9,337) (9,337) (9,337) (1,337)

¹³C NMR Spectrum of (Z)-5ar

¹³C NMR Spectrum of (Z)-5as

¹³C NMR Spectrum of (Z)-5ba

¹³C NMR Spectrum of (Z)-5bb

¹³C NMR Spectrum of (Z)-5bc

¹³C NMR Spectrum of (Z)-5bd

Mass spectrum of the crude reaction mixture

-

, t

• .

۵ °**.**

.

Experiment to prove the geometry of the synthesized compound (Z)-5ab :

Initially we took 1.1 equiv. of (**Z**)-**5ab** in a dry 10 ml round bottomed flask in dry CH₂Cl₂ (5 ml) in presence of 1 equiv. of anhydrous AlCl₃. After 48 hours the reaction was quenched in an aqueous solution of saturated NaHCO₃, extracted with CH₂Cl₂ and the column chromatography was performed to obtain both the diastereomer of **5ab** in the ratio of 80:20 yield. This is due to the fact that the 2 carbonyl group must have to lie in the same side in order to form chelation with 1.1 equiv. of AlCl₃. From the ¹H NMR spectrum of both the diastereomer we have found out that the NMR spectrum of major diastereomer is different from the ¹H NMR spectrum of group diastereomer (δ 8.56 ppm) is more deshielded than (**Z**)-**5ab**. This fact indicates that the major diastereomer is in (**E**) configuration. The H_a proton of (**E**) diastereomer is more deshielded compare to the (**Z**) diastereomer because the higher paramagnetic deshielding effect of NO₂ group.

On the other hand the minor one has exactly the same ¹H NMR spectrum as (Z)-**5ab** which implies the minor diastereomer is in (Z) configuration. Therefore the starting **5ab** has the (Z) configuration.

^aReaction conditions: 1) (Z)-5ab (1 equiv.) and anhydrous AlCl₃ (1.1equiv.) in dry CH₂Cl₂ (5 ml) at room temperature (25-30 °C) for 48 hours. 2) (Z)-5ab (1 equiv.) and anhydrous AlCl₃ (2.2 equiv.) in dry CH₂Cl₂ (5 ml) at room temperature (25-30 °C) for 48 hours.

If the same reaction was performed in presence of 2.2 equiv. of anhydrous $AlCl_3$ instead of 1.1 equiv. of $AlCl_3$, we obtained (Z)-5ab as the major diastereomer which was concluded from the ¹H NMR spectrum of the final compound. From

this experiment we can conclude that the geometry of our final product 5ab is (Z).

Also we have done same experiment with (Z)-5aa and we have observed the changes in δ value of H_a proton of final product (E)-5aa and the experimental ¹H NMR data has been given in.

¹H NMR spectrum of (Z)-5aa

HSQC of compound 3ai and 5ai

HSQC of compound 5ai

Figure 3 represents the 400 MHz HSQC spectra of (E)-3ai and (E)-5ai. The molecule (E)-3ai exhibits a two-bond correlation between its proton and carbon (shown in oval shape) and indicated by the peak (δ 7.96, 123.8). However, in (E)-5ai, this bond correlation is absent, indicating that the proton that was present in the preceding compound has disappeared. On the other hand, the ipso carbon containing the NO₂ has appeared at δ 143.7.

Table 1: Optimization of reaction condition

^a**Reaction condition** : A mixture of acenaphthylene 1,2-dione 1(1mmol) and 2ba (1 mmol) was reacted in various solvent (1 ml) at different temperature for 2.5 hour. ^b Yield after column purification. ^cReaction mixture was run for 5 hours.

We examined the following reaction with different solvent at different temperature but it seems that PEG 400 at 110 °C is best suitable to obtain the desired products **(Table 1).**

Analysis of green chemistry metrics

The following equations have been used for calculating Effective Mass Yield (EMY), Atom Economy (AE), Carbon Efficiency (CE), Reaction Mass Efficiency (RME) and E-factor. Calculated data for compound 3aa ,3ba ,5aa and 5ba have been shown in **Table X.**

EMY (%) =
$$\frac{\text{Mass of the product}}{\text{Mass of the nonbenign reagents}} \times 100$$

AE (%) =
$$\frac{\text{Molecular weight of the product}}{\text{Total molecular weight of the reactants}} \times 100$$

$$CE (\%) = \frac{Amount of carbon in the product}{Total carbon present in the reactants} \times 100$$

RME (%) =
$$\frac{\text{Mass of the isolated product}}{\text{Total mass of the reactants}} \times 100$$

E-factor $(g/g) = \frac{\text{Total mass of wastes}}{\text{Mass of the product}} = \frac{(\text{Mass of raw materials-mass of product})}{\text{Mass of the the product}}$ This Work : $\begin{array}{c} & & & & \\ & & &$
Reactants	Amount used for Molecular weight reaction (g) (1.00 (MW)		No of C-atom
	mmol)	()	reactant
, K	0.182	182.0368	12
(1)			
C ⁱ	0.120	120.0575	8
(2aa)			
Ph ₃ P	0.348	348.1279	22
(2ba)			
t-BuONO (4)	0.103	103.0633	4
	0.284	284.0837	20
(E)-3aa	0.000		4.5
	0.238	238.0630	15
(E)-3ba			

Materials and their respective amount used for metrics calculations :

Product	Molecular	Yield	Amount of	No of C-atom	Mole no of
	weight	(%)	product (g) present in		product
	(MW)			product	
Заа	284.0837	95	0.270	20	0.0009504241179
3ba	238.0630	92	0.219	15	0.0009199245577
5aa	329.0688	86	0.283	20	0.0008600025283
5ba	283.0481	88	0.249	15	0.0008797091377

Representative calculations of green metrics for (E)-2-(2-oxo-2-phenylethylidene)acenaphthylen-1(2H)-one derivative (**3aa**):

$$\operatorname{EMY}(\%) = \frac{\operatorname{Mass of the product}}{\operatorname{Mass of the nonbenign reagents}} \times 100 = \frac{0.270}{0.182 \pm 0.120} \times 100 = 89.40\%$$

$$\operatorname{AE}(\%) = \frac{\operatorname{Molecular weight of the product}}{\operatorname{Total molecular weight of the reactants}} \times 100 = \frac{284.0837}{182.0368 \pm 120.0575} \times 100 = 94.03\%$$

$$\operatorname{CE}(\%) = \frac{\operatorname{Amount of carbon in the product}}{\operatorname{Total carbon present in the reactants}} \times 100 = \frac{(0.0009504241179 \times 20)}{(0.001 \times 12) \pm (0.001 \times 8)} \times 100 = 95.04\%$$

$$\operatorname{RME}(\%) = \frac{\operatorname{Mass of the isolated product}}{\operatorname{Total mass of the reactants}} \times 100 = \frac{284.0837}{182.0368 \pm 120.0575} \times 100 = 94.03\%$$

$$\operatorname{E-factor}(g/g) = \frac{\operatorname{Total mass of wastes}}{\operatorname{Mass of the product}} = \frac{(\operatorname{Mass of raw materials-mass of product)}}{\operatorname{Mass of the the product}} = \frac{(0.302 - 0.270)}{0.302} = 0.11$$

Table X. Green Metrics (EMY, AE, CE, RME and E-factor) for 3aa, 3ba , 5aa and 5ba compound :

Product	Yield	EMY (%)	AE (%)	CE (%)	RME (%)	E-factor
	(%)					(g/g)
3aa	95	89.40	94.03	95.04	94.03	0.11
3ba	92	41.32	44.90	40.58	44.90	0.59
5aa	86	73.13	85.00	71.67	85.00	0.27
5ba	88	73.02	67.38	69.45	67.38	0.27