Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

HMPA-H₂O mediated oxygenative carbocyclization of 2alkynylphenyl-substituted *p*-quinone methides to indenones

Shaheen Fatma, Feroz Ahmad, Yogesh A. Pankhade, Pavit K. Ranga, and Ramasamy Vijaya Anand*

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO). Punjab – 140306, India.

E-mail: rvijayan@iisermohali.ac.in

Table of Contents

1. General methods	S2
2. Characterisation of products (2a to 2u)	S2–S11
3. Characterisation of products (3a to 3g)	S11–S14
4. Characterisation of products (6 & 7)	S14–S15
5. Procedure for gram scale synthesis of (2a)	S15
6. References	S15
7. X-ray crystallographic analysis of compound 2a	S 16
8. NMR spectra of products (2a to 2u)	S17–S39
9. NMR spectra of products (3a to 3g)	S39–S46
10. NMR spectra of products (6 & 7)	S47–S48
11. HRMS data of the crude mixture	S49
12. HRMS data of H ₂ O ¹⁸ labelling experiment	S50
13. HRMS data for 2a	S51

Experimental Section

1. *General Information.* All reactions were carried out in an oven dried round bottom flask. All the solvents were distilled before use and stored under nitrogen atmosphere. Most of the reagents and starting materials were purchased from commercial sources and used as such. HMPA (98.5 % purity; contains 1.5 % H₂O) used was purchased from BLD pharma. All the 2alkynated *p*-Quinone Methides were prepared by following a literature procedure.¹ Melting points were recorded on SMP20 melting point apparatus and are uncorrected. ¹H, ¹³C and ¹⁹F spectra were recorded in CDCl₃ (400, 100 and 376 MHz respectively) on Bruker FT–NMR spectrometer. Chemical shift (δ) values are reported in parts per million relative to TMS and the coupling constants (*J*) are reported in Hz. High resolution mass spectra were recorded on a Perkin-Elmer FTIR spectrometer. Thin layer chromatography was performed on Merck silica gel 60 F₂₅₄ TLC pellets and visualized by UV irradiation and KMnO₄ stain. Column chromatography was carried out through silica gel (100–200 mesh) using EtOAc/hexane as an eluent.

General procedure for the synthesis of indenone derivatives (2a-u and 3a-f):

HMPA [(98.5 % purity with 1.5% water), 1 mL] was added to a round bottom flask containing 2-alkynylphenyl-substituted *p*-quinone methide (50 mg) and the reaction mixture was stirred at 140 °C in a preheated oil bath for 8 h. The reaction mixture was then diluted with water (5 mL) and extracted with ether (10 mL x 2). The combined organic layer was dried over anhydrous sodium sulphate, filtered and concentrated under reduced pressure. The residue was then purified through a silica gel column chromatography, using hexane/EtOAc mixture as an eluent to get the pure indenone product.

2. Characterisation of products (2a to 2u)

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenyl-1*H*-inden-1-one (2a).

The reaction was performed at 0.12 mmol scale of **1a**; red solid (40 mg, 78% yield); m. p. = 220–222 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.1 Hz, 1H), 7.41 (td, J = 7.4, 1.2 Hz, 1H), 7.33 – 7.29 (m, 3H), 7.28 – 7.25 (m, 4H), 7.24 (s, 2H), 5.47 (s, 1H), 1.34 (s, 18H); ¹³C{¹H} NMR (100 MHz, 100 MHz).

CDCl₃) δ 196.7, 156.6, 155.3, 145.1, 136.0, 133.2, 131.8, 131.7, 131.6, 130.2, 128.9, 128.1, 127.5, 126.4, 123.3, 122.8, 121.5, 34.4, 30.2; FT-IR (thin film, neat): 3629, 2957, 2924, 1700, 1601, 1256, 1238, 769, 699 cm⁻¹;HRMS (ESI): m/z calcd for C₂₉H₃₁O₂ [M+H]⁺: 411.2324; found : 411.2328.

3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(*p*-tolyl)-1*H*-inden-1-one (2b).

The reaction was performed at 0.12 mmol scale of **1b**; red solid (28 mg, 55% yield); m. p. = 200–202 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.0 Hz 1H), 7.39 – 7.35 (m, 1H), 7.28 – 7.26 (m, 2H), 7.22 (s, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 5.43 (s, 1H),

2.31 (s, 3H), 1.32 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.0, 155.9, 155.2, 145.3, 137.3, 135.9, 133.2, 131.7, 131.6, 130.0, 128.8, 128.75, 128.74, 126.4, 123.4, 122.8, 121.4, 34.4, 30.3, 21.4; FT-IR (thin film, neat): 3624, 2959, 2923, 1700, 1259, 1239, 751; HRMS (ESI): *m/z* calcd for C₃₀H₃₃O₂ [M+H]⁺: 425.2481; found : 425.2484.

2-(4-(*tert*-butyl)phenyl)-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1H-inden-1-one (2c).

The reaction was performed at 0.11 mmol scale of **1c**; red solid (32 mg, 63% yield); m. p. = 223–225 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.0 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.32 – 7.26 (m, 4H), 7.21 (s, 2H),

7.15 (d, J = 8.3 Hz, 2H), 5.44 (s, 1H), 1.32 (s, 18H), 1.30 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 196.9, 156.3, 155.2, 150.4, 145.1, 135.8, 133.1, 131.9, 131.8, 129.8, 128.9, 128.8, 126.6, 125.2, 123.3, 122.8, 121.4, 34.7, 34.4, 31.4, 30.2; FT-IR (thin film, neat): 2958, 2923, 1734, 1611, 1259, 816; HRMS (ESI): m/z calcd for C₃₃H₃₉O₂ [M+H]⁺: 467.2950; found : 467.2973.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-pentylphenyl)-1H-inden-1-one (2d).

The reaction was performed at 0.11 mmol scale of **1d**; red solid (30 mg, 59% yield); m. p. = 170–172 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 6.9 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.31 – 7.26 (m, 2H) 7.24 (s, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 5.45 (s, 1H),

2.58 (t, J = 7.6 Hz, 2H), 1.62 – 1.55 (m, 2H), 1.34 (s, 18H), 1.32 – 1.28 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.0, 156.0, 155.2, 145.2, 142.4, 135.9, 133.1, 131.8, 131.7, 130.0, 129.0, 128.7, 128.3, 126.4, 123.4, 122.8, 121.4, 35.9, 34.4, 31.5, 31.3, 30.3, 22.7, 14.2; FT-IR (thin film, neat): 3628, 2957, 2928, 1784, 1259, 1084, 801; HRMS (ESI): m/z calcd for C₃₄H₄₁O₂ [M+H]⁺: 481.3107; found : 481.3125.

2-([1,1'-biphenyl]-4-yl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1H-inden-1-one (2e).

The reaction was performed at 0.11 mmol scale of **1e**; red solid (35 mg, 69% yield); m. p. = 221–223 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 5H), 7.46 – 7.40 (m, 3H), 7.36 – 7.31 (m, 5H), 7.28 (s, 2H), 5.49 (s, 1H), 1.35 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ , 196.8,

156.7, 155.4, 145.1, 141.2, 140.2, 136.0, 133.3, 131.7, 131.2, 130.9, 130.6, 129.0, 128.9, 127.4, 127.2, 126.9, 126.5, 123.3, 122.9, 121.6, 34.5, 30.3; FT-IR (thin film, neat): 3626, 2960, 2924, 1702, 1259, 1030, 799; HRMS (ESI): *m/z* calcd for C₃₅H₃₅O₂ [M+H]⁺: 487.2637; found : 487.2651.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3,5-dimethoxyphenyl)-1H-inden-1-one (2f).

The reaction was performed at 0.11 mmol scale of **1f**; dark red solid (44 mg, 86% yield); m. p. = $187-189 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 6.4 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.32 – 7.30 (m, 2H), 7.27 (s, 2H), 6.43 (s, 2H), 6.39 (s, 1H), 5.50 (s, 1H), 3.67 (s, 6H), 1.38 (s, 18H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.4, 160.4, 157.1, 155.3, 145.0, 136.1, 133.5, 133.2, 131.6, 131.5, 129.0, 126.3, 123.4, 122.8, 121.6, 108.0, 100.5, 55.3, 34.5, 30.3; FT-IR (thin film, neat): 3624, 2958, 1703, 1594, 1360, 1155, 750; HRMS (ESI): *m/z* calcd for C₃₁H₃₅O₄ [M+H]⁺: 471.2535; found : 471.2520.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3,5-dimethylphenyl)-1H-inden-1-one (2g).

The reaction was performed at 0.12 mmol scale of **1g**; red solid (42 mg, 83% yield); m. p. = 155–157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.0 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 6.9 Hz, 2H), 7.26 (s, 2H), 6.89 (s, 1H), 6.86 (s, 2H), 5.46 (s, 1H), 2.24 (s, 6H), 1.35 (s, 18H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.7, 158.0, 157.0, 147.0, 139.2, 137.7, 134.9, 133.8, 133.5, 133.3, 131.1, 130.6, 129.7, 128.2, 125.3, 124.6, 123.3, 36.3, 32.1, 23.2; FT-IR (thin film, neat): 3632, 2960, 2920, 1728, 1608, 1259, 802; HRMS (ESI): *m*/*z* calcd for C₃₁H₃₅O₂ [M+H]⁺: 439.2637; found : 439.2676.

3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(2,4,5-trimethylphenyl)-1H-inden-1-one (2h).

The reaction was performed at 0.11 mmol scale of **1h**; red solid (20 mg, 40% yield); m. p. = 161–163 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.0 Hz, 1H), 7.40 (d, J = 6.4 Hz, 2H), 7.31 – 7.27 (m, 1H), 7.21 (s, 2H), 6.93 (s, 1H), 6.86 (s, 1H), 5.43 (s, 1H), 2.21 (s, 3H), 2.17 (s, 3H),

1.88 (s, 3H), 1.30 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ, 197.0, 156.7, 155.2, 145.0, 136.2, 135.8, 134.5, 133.7, 133.4, 132.9, 132.1, 131.6, 131.5, 129.2, 128.7, 126.1, 123.9, 122.8, 121.5, 34.4, 30.2, 19.6, 19.5, 19.3; FT-IR (thin film, neat): 3624, 2957, 1700, 1456, 1267, 866, 750; HRMS (ESI): *m/z* calcd for C₃₂H₃₇O₂ [M+H]⁺: 453.2794; found : 453.2796.

3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-fluorophenyl)-1*H*-inden-1-one (2i).

The reaction was performed at 0.12 mmol scale of **1i**; red solid (36 mg, 70% yield); m. p. = 206–208 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.4 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.31 – 7.28 (m, 2H), 7.26 – 7.24 (m, 2H), 7.22 (s, 2H), 7.00 (t, J = 8.8 Hz, 2H), 5.48 (s, 1H), 1.35 (s, 18H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.7, 162.3 (d, ¹*J*_{*C*-*F*} = 245.8 Hz), 156.6, 155.4, 145.0, 136.1, 133.3, 132.0 (d, ³*J*_{*C*-*F*} = 7.8 Hz), 131.5, 130.4, 129.0, 127.8 (d, ⁴*J*_{*C*-*F*} = 3.3 Hz), 126.3, 123.1, 122.9, 121.6, 115.2 (d, ²*J*_{*C*-*F*} = 21.3 Hz), 34.5, 30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ - 114.1; FT-IR (thin film, neat): 3628, 2960, 2924, 1696, 1496, 1234, 840; HRMS (ESI): *m*/*z* calcd for C₂₉H₃₀FO₂ [M+H]⁺: 429.2230; found : 429.2247.

2-(4-chlorophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1H-inden-1-one (2j).

The reaction was performed at 0.11 mmol scale of **1j**; red solid (34 mg, 67% yield); m. p. = 212–214 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.57 (m, 1H), 7.43 – 7.39 (m, 1H), 7.32 – 7.25 (m, 4H), 7.22 – 7.20 (m, 4H), 5.50 (s, 1H), 1.36 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

196.4, 157.1, 155.5, 144.9, 136.2, 133.4, 133.3, 131.53, 131.51, 130.3, 130.2, 129.1, 128.3, 126.3, 123.0, 122.9, 121.7, 34.5, 30.3; FT-IR (thin film, neat): 3627, 2923, 1703, 1490, 1257, 1092, 730; HRMS (ESI): *m/z* calcd for C₂₉H₃₀ClO₂ [M+H]⁺: 445.1934; found : 445.1926.

2-(4-bromophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1H-inden-1-one (2k).

The reaction was performed at 0.11 mmol scale of **1k**; red solid (33 mg, 65% yield); m. p. = 214–216 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.57 (m, 1H), 7.43 – 7.39 (m, 3H), 7.32 – 7.29 (m, 2H), 7.22 (s, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 5.51 (s, 1H), 1.36 (s, 18H); ¹³C{¹H} NMR

(100 MHz, CDCl₃) δ 196.3, 157.1, 155.5, 144.9, 136.2, 133.3, 131.8, 131.5, 131.3, 130.8, 130.2, 129.1, 126.3, 123.0, 122.9, 121.71, 121.67, 34.5, 30.3; FT-IR (thin film, neat): 3634, 2921, 1700, 1456, 1238, 765, 751; HRMS (ESI): *m*/*z* calcd for C₂₉H₃₀BrO₂ [M+H]⁺: 489.1429; found : 489.1422.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-fluorophenyl)-1H-inden-1-one (2l).

The reaction was performed at 0.12 mmol scale of **1**l; red solid (38 mg, 74% yield); m. p. = 142–144 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.1 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.33 – 7.28 (m, 3H), 7.24 (s, 2H), 7.06 (d, J = 7.7 Hz, 1H), 6.99-6.93 (m, 2H), 5.50 (s, 1H), 1.35 (s,

18H), ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.1, 162.6 (d, ¹*J*_{*C*-*F*} = 243.5 Hz), 157.5, 155.6, 144.8, 136.2, 134.0 (d, ³*J*_{*C*-*F*} = 8.0 Hz), 133.3, 131.5, 130.2 (d, ⁵*J*_{*C*-*F*} = 2.2 Hz), 129.6 (d, ³*J*_{*C*-*F*} = 8.6 Hz), 129.2, 126.3, 126.0 (d, ⁴*J*_{*C*-*F*} = 2.6 Hz), 123.0, 122.9, 121.8, 117.0 (d, ²*J*_{*C*-*F*} = 22.0 Hz), 114.4 (d, ²*J*_{*C*-*F*} = 21.0 Hz), 34.5, 30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.7; FT-IR (thin film, neat): 3626, 2957, 2922, 1699, 1497, 1237, 805; HRMS (ESI): *m*/*z* calcd for C₂₉H₃₀FO₂ [M+H]⁺: 429.2230; found : 429.2247.

2-(2-chlorophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1H-inden-1-one (2m).

The reaction was performed at 0.11 mmol scale of **1m**; red solid (32 mg, 63% yield); m. p. = 205–207 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.0 Hz, 1H), 7.45 – 7.41 (m, 3H), 7.33 (td, *J* = 6.8, 2.0 Hz, 1H), 7.28 – 7.20 (m, 4H), 7.11 (dd, *J* = 7.3, 5.6 Hz, 1H), 5.47 (s, 1H), 1.32 (s, 18H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.4, 158.3, 155.5, 144.5, 135.9, 134.9, 133.1, 132.3, 132.1, 132.0, 131.2, 129.7, 129.2, 129.1, 126.8, 126.1, 123.4, 123.0, 122.0, 34.4, 30.2; FT-IR (thin film, neat): 3628, 2960, 2918, 1684, 1260, 1047, 750; HRMS (ESI): *m/z* calcd for C₂₉H₃₀ClO₂ [M+H]⁺: 445.1934; found : 445.1937.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-nitrophenyl)-1H-inden-1-one (2n).

The reaction was performed at 0.11 mmol scale of **1n**; red solid (44 mg, 87% yield); m. p. = 186–188 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.15 (m, 1H), 8.11 – 8.09 (m, 1H), 7.65 – 7.61 (m, 2H), 7.48 – 7.43 (m,

2H), 7.37 - 7.32 (m, 2H), 7.22 (s, 2H), 5.55 (s, 1H), 1.34 (s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 195.6, 158.8, 155.9, 148.2, 144.5, 136.7, 136.3, 133.8, 133.5, 131.3, 129.6, 129.0, 128.8, 126.1, 125.1, 123.2, 122.5, 122.2, 122.1, 34.5, 30.2; FT-IR (thin film, neat): 3634, 2963, 1703, 1261, 1090, 1041, 799; HRMS (ESI): m/z calcd for C₂₉H₃₀NO₄ [M+H]⁺: 456.2175; found : 456.2177.

2-(3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-oxo-1H-inden-2-yl)benzonitrile (20).

The reaction was performed at 0.11 mmol scale of **10**; red solid (30 mg, 59% yield); m. p. = 194–196 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.3 Hz, 2H), 7.58 (td, *J* = 7.7, 6.6 Hz, 1H), 7.47 – 7.33 (m, 5H), 7.17 (s, 2H), 5.52 (s, 1H), 1.31 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

194.8, 160.2, 155.9, 144.2, 136.8, 136.2, 133.3, 133.2, 132.5, 131.8, 131.7, 129.7, 129.1, 128.0, 126.6, 123.4, 122.7, 122.3, 118.0, 113.8, 34.4, 30.2; FT-IR (thin film, neat): 3631, 2959, 1704,

1352, 1274, 1077, 764; HRMS (ESI): *m*/*z* calcd for C₃₀H₃₀NO₂ [M+H]⁺: 436.2277; found : 436.2267.

Methyl 4-(3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-oxo-1H-inden-2-yl) benzoate (2p).

The reaction was performed at 0.11 mmol scale of **1p**; red solid (39 mg, 77% yield); m. p. = 235–237 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.95 (m, 2H), 7.60 – 7.58 (m, 1H), 7.44 – 7.40 (m, 1H), 7.36-7.31 (m, 4H), 7.22 (s, 2H), 5.51 (s, 1H), 3.91 (s, 3H), 1.34 (s, 18H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ , 196.1, 167.1, 158.1, 155.7, 144.8, 136.9, 136.3, 133.4, 131.6, 130.3, 130.2, 129.33, 129.30, 128.7, 126.3, 123.0, 122.9, 121.9, 52.2, 34.5, 30.3; FT-IR (thin film, neat): 3593, 2962, 1733, 1611, 1276, 1031, 800; HRMS (ESI): m/z calcd for C₃₁H₃₃O₄ [M+H]⁺: 469.2379; found : 469.2388.

3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(2-(trifluoromethyl)phenyl)-1H-inden-1-one (2q).

The reaction was performed at 0.11 mmol scale of **1q**; red solid (26 mg, 50% yield); m. p. = 209–211 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.6 Hz 1H), 7.61 (d, *J* = 7.0 Hz 1H), 7.52 – 7.40 (m, 4H), 7.33 (td, *J*₁ = 7.1, *J*₂ = 1.6 Hz, 1H), 7.19 (s, 2H), 7.16 (d, *J* = 7.4 Hz 1H), 5.45 (s, 1H),

1.29 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.6, 157.7, 155.5, 144.7, 135.9, 133.1, 132.5, 132.1 (q, ⁵*J*_{*C-F*} = 2.2 Hz), 131.9, 131.8, 131.5, 130.5 (q, ²*J*_{*C-F*} = 29.8 Hz), 129.1, 128.1, 126.80 (q, ³*J*_{*C-F*} = 4.9 Hz), 126.4, 124.1 (q, ¹*J*_{*C-F*} = 272.3 Hz), 123.1, 123.0, 122.2, 34.4, 30.2: ¹⁹F NMR (376 MHz, CDCl₃) δ -60.0; FT-IR (thin film, neat): 3628, 2964, 1696, 1256, 1041, 764; HRMS (ESI): *m*/*z* calcd for C₃₀H₃₀F₃O₂ [M+H]⁺: 479.2198; found : 479.2193.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(thiophen-3-yl)-1H-inden-1-one (2r).

The reaction was performed at 0.12 mmol scale of **1r**; red solid (31 mg, 60% yield); m. p. = 208–210 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.66 (m, 1H), 7.54 (d, *J* = 7.0 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.28 (s, 2H), 7.26 (s, 1H), 7.20 – 7.15 (m, 2H), 6.86 (d, *J* = 5.0 Hz, 1H), 5.49 (s,

1H), 1.40 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.9, 155.3, 155.1, 145.7, 136.2, 133.4, 131.7, 131.5, 128.8, 128.2, 126.7, 125.9, 125.8, 124.3, 123.7, 122.8, 121.4, 34.5, 30.4; FT-IR (thin film, neat): 2963, 2932, 1705, 1275, 1267, 750; HRMS (ESI): m/z calcd for C₂₇H₂₉O₂S [M+H]⁺: 417.1888; found : 417.1873.

2-cyclopentyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1H-inden-1-one (2s).

The reaction was performed at 0.12 mmol scale of **1s**; red solid (27 mg, 52% yield); m. p. = 195–197 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 6.8 Hz, 1H), 7.30 – 7.26 (m, 3H), 7.19 – 7.15 (m, 1H), 7.02 (d, J = 7.2 Hz, 1H), 5.46 (s, 1H), 2.97 – 2.88 (m, 1H), 2.02 – 1.85 (m, 4H), 1.80 – 1.73

(m, 2H), 1.59 - 1.54 (m, 2H), 1.49 (s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 198.4, 156.3, 154.8, 145.6, 136.3, 136.1, 133.0, 131.9, 128.1, 125.3, 124.0, 122.0, 120.5, 36.7, 34.6, 32.3, 30.4, 26.7; FT-IR (thin film, neat):3626, 2963, 1699, 1260, 1038, 800, 752; HRMS (ESI): m/z calcd for C₂₈H₃₅O₂ [M+H]⁺: 403.2637; found : 403.2624.

2-cyclohexyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1H-inden-1-one (2t).

The reaction was performed at 0.12 mmol scale of **1t**; orange solid (20 mg, 39% yield); m. p. = 197–199 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 6.9 Hz, 1H), 7.30 – 7.26 (m, 3H), 7.17 (t, J = 7.4 Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 5.46 (s, 1H), 2.59 – 2.53 (m, 1H), 2.02 – 1.92 (m, 2H), 1.68

-1.62 (m, 2H), 1.49 (s, 18H), 1.29 -1.18 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.6, 155.7, 154.8, 145.6, 137.7, 136.0, 132.9, 131.7, 128.1, 125.3, 124.0, 122.0, 120.7, 36.4, 34.6, 31.2, 30.4, 26.9, 26.0; FT-IR (thin film, neat): 3640, 2956, 2924, 1702, 1461, 765, 750; HRMS (ESI): m/z calcd for C₂₉H₃₇O₂ [M+H]⁺: 417.2794; found : 417.2787.

2-cyclopropyl-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1*H*-inden-1-one (2u).

The reaction was performed at 0.13 mmol scale of **1u**; orange solid (21 mg, 40% yield); m. p. = 192–194 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 2H), 7.37 (d, *J* = 7.0 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.1 (t, *J* = 7.4 Hz, 1H), 7.0 (d, *J* = 7.2 Hz, 1H), 5.46 (s, 1H), 1.76 – 1.69 (m, 1H), 1.49 (s, 18H),

0.89-0.77 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.9, 156.3, 154.8, 145.5, 136.0, 133.1, 133.0, 131.6, 127.9, 125.6, 123.9, 122.11, 122.10, 34.6, 30.5, 8.7, 7.4; FT-IR (thin film, neat): 3546, 2956, 2914, 1693, 1374, 1109, 724; HRMS (ESI): *m/z* calcd for C₂₆H₃₁O₂ [M+H]⁺: 375.2324; found : 375.2329.

3. Characterisation of products 3a to 3f

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-methyl-2-phenyl-1H-inden-1-one (3a).

The reaction was performed at 0.12 mmol scale of **1v**; red solid (31 mg, 61% yield); m. p. = 180–182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.30 – 7.25 (m, 7H), 7.21 (s, 2H), 5.47 (s, 1H), 2.41 (s, 3H), 1.35 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.0, 156.8, 155.3,

142.2, 139.2, 135.9, 133.1, 132.02, 132.00, 131.1, 130.2, 128.1, 127.4, 126.4, 124.0, 123.4, 121.4, 34.4, 30.2, 21.5; FT-IR (thin film, neat): 3628, 2958, 2923, 1701, 1348, 794, 695; HRMS (ESI): *m/z* calcd for C₃₀H₃₃O₂ [M+H]⁺: 425.2481; found : 425.2495.

3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5-methoxy-2-phenyl-1*H*-inden-1-one (3b).

The reaction was performed at 0.11 mmol scale of **1w**; dark red solid (27 mg, 53% yield); m. p. = 198–200 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 1H), 7.30 – 7.23 (m, 5H), 7.20 (s, 2H), 6.88 (d, *J* = 1.9 Hz, 1H), 6.68 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.9 Hz, 1H), 5.44 (s, 1H),

3.85 (s, 3H), 1.33 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.4, 164.2, 155.1, 154.3, 147.7, 136.0, 133.0, 131.9, 130.2, 128.1, 127.5, 126.4, 124.6, 124.3, 123.2, 110.6, 110.5, 55.8, 34.4, 30.3; FT-IR (thin film, neat): 3626, 2958, 1775, 1705, 1597, 1236, 749; HRMS (ESI): m/z calcd for C₃₀H₃₃O₃ [M+H]⁺: 441.2430; found : 441.2438.

3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-4,6-dimethoxy-2-phenyl-1H-inden-1-one (3c).

The reaction was performed at 0.11 mmol scale of **1x**; dark red solid (28 mg, 55% yield); m. p. = 190–192 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.19 (m, 4H), 7.18 – 7.14 (m, 1H),7.08 – 7.06 (m, 2H), 6.89 (d, *J* = 2.2 Hz, 1H), 6.48 (d, *J* = 2.1 Hz, 1H), 5.35 (s, 1H), 3.87 (s, 3H),

3.69 (s, 3H), 1.30 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.1, 162.8, 160.2, 154.9, 154.8, 135.4, 134.4, 132.4, 130.7, 130.3, 127.9, 127.4, 126.8, 124.3, 121.8, 103.7, 102.5, 56.0, 55.6, 34.3, 30.3; FT-IR (thin film, neat): 3626, 2959, 1700, 1600, 1260, 1031, 799; HRMS (ESI): *m*/*z* calcd for C₃₁H₃₅O₄ [M+H]⁺: 471.2535; found : 471.2531. HRMS (ESI): *m*/*z* calcd for C₃₁H₃₅O₄ [M+H]⁺: 471.2535; found : 471.2531.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-fluoro-2-phenyl-1H-inden-1-one (3d).

The reaction was performed at 0.12 mmol scale of **1y**; red solid (18 mg, 35% yield); m. p. = 203–205 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.9, 5.2 Hz, 1H), 7.32 – 7.24 (m, 5H), 7.20 (s, 2H), 7.01 (dd, J = 8.7,

2.0 Hz, 1H), 6.96 - 6.91 (m, 1H), 5.48 (s, 1H), 1.34 (s, 18H); ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, CDCl₃) δ 195.0, 166.2 (d, ${}^{1}J_{C-F} = 251.6$ Hz), 155.4, 154.4 (d, ${}^{5}J_{C-F} = 2.3$ Hz), 148.4 (d, ${}^{3}J_{C-F} = 9.2$ Hz), 136.1, 132.8, 131.4, 130.1, 128.2, 127.8, 127.4 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 126.2, 124.5 (d, ${}^{3}J_{C-F} = 9.7$ Hz), 122.8, 114.3 (d, ${}^{2}J_{C-F} = 22.9$ Hz), 110.5 (d, ${}^{2}J_{C-F} = 24.8$ Hz), 34.4, 30.2; ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -104.6; FT-IR (thin film, neat): 3627, 2963, 1711, 1260, 1031, 866, 799; HRMS (ESI): m/z calcd for C₂₉H₃₀FO₂ [M+H]⁺: 429.2230; found : 429.2238.

5-chloro-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenyl-1H-inden-1-one (3e).

The reaction was performed at 0.11 mmol scale of **1z**; red solid (31 mg, 60% yield); m. p. = 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.3 Hz, 1H), 7.29 – 7.24 (m, 7H), 7.21 (s, 2H), 5.50 (s, 1H), 1.34

(s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 195.2, 155.5, 155.3, 147.1, 139.3, 136.2, 132.6, 131.4, 130.2, 129.8, 128.4, 128.2, 127.8, 126.3, 123.7, 122.8, 122.4, 34.5, 30.2; FT-IR (thin film, neat):3629, 2959, 1701, 1603, 1260, 1081, 750; HRMS (ESI): m/z calcd for C₂₉H₃₀ClO₂ [M+H]⁺:445.1934; found : 445.1931.

2-(4-bromophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-methyl-1H-inden-1-one (3f).

The reaction was performed at 0.102 mmol scale of **1aa**; red solid (28 mg, 54% yield); m. p. = 225–227 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.40 (s, 2H), 7.21 (s, 2H), 7.18 (d, *J* = 2.4 Hz, 2H), 7.15 (s, 1H), 7.13 (s, 1H), 5.49 (s, 1H), 2.38 (s, 3H), 1.35 (s,

18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.6, 157.4, 155.5, 142.0, 139.5, 136.1, 133.2, 131.9, 131.8, 131.3, 131.0, 129.7, 126.3, 124.1, 123.2, 121.6, 121.5, 34.5, 30.3, 21.5; FT-IR (thin film, neat): 3627, 2957, 1698, 1345, 1238, 1010, 819 ; HRMS (ESI): *m/z* calcd for C₃₀H₃₂BrO₂ [M+H]⁺: 503.1586; found : 503.1589.

3-(4-hydroxy-3,5-diisopropylphenyl)-2-phenyl-1H-inden-1-one (3g).

The reaction was performed at 0.136 mmol scale of **1ab**; red solid (42 mg, 80% yield); m. p. = 192–194 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 6.7 Hz, 1H), 7.41– 7.38 (m, 1H), 7.30 – 7.26 (m, 7H), 7.10 (s, 2H), 5.12 (s, 1H), 3.15 – 3.08 (m, 2H), 1.14 (d, J = 6.6 Hz, 12H). ¹³C{¹H}

NMR (100 MHz, CDCl₃) *δ* 196.8, 156.4, 151.3, 145.2, 133.9, 133.3, 131.7, 131.5, 130.1, 128.9, 128.2 (2C), 127.5, 124.8, 124.5, 122.9, 121.5, 27.0, 22.7; FT-IR (thin film, neat): 3627, 2957, 1698, 1345, 1238, 1010, 819; HRMS (ESI): *m*/*z* calcd for C₂₇H₂₇O₂ [M+H]⁺: 383.2011; found : 383.2023.

4. Characterisation of products 6 & 7

2,6-di-*tert*-butyl-4-(2-((3,5-dimethoxyphenyl)-ethynyl)-4,6-dimethoxybenzylidene)cyclohexa-2,5-dien-1-ol (6).

The reaction was performed at 0.46 mmol scale of **4**; dark purple solid (162 mg, 68% yield); m. p. = 158–160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 2.2 Hz, 1H), 7.20 (s, 1H), 7.12 (d, J = 2.2 Hz, 1H), 6.77 (d, J = 2.3 Hz, 1H), 6.51 (d, J = 2.3 Hz, 1H), 6.41 – 6.38 (m, 3H), 3.89

(s, 3H), 3.84 (s, 3H), 3.70 (s, 6H), 1.33 (s, 9H) 1.14 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 187.0, 161.1, 160.6, 159.0, 147.13, 147.10, 137.9, 135.2, 132.9, 130.6, 124.7, 124.0, 120.3, 109.2, 108.4, 102.6, 99.7, 93.5, 88.4, 55.9, 55.7, 55.5, 35.3, 35.1, 29.7, 29.5; FT-IR (thin film, neat): 3626, 2956, 2152, 1690, 1594, 1310, 1142, 795; HRMS (ESI): *m/z* calcd for C₃₃H₃₉O₅ [M+H]⁺: 515.2797; found 515.2783.

3-(3,5-di*-tert*-butyl-4-hydroxyphenyl)-2-(3,5-dimethoxyphenyl)-4,6-dimethoxy-1*H*inden-1-one (7).

The reaction was performed at 0.097 mmol scale of **6**; dark purple solid (27 mg, 53% yield); m. p. = $211-213 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 2H), 6.88 (d, *J* = 2.1 Hz, 1H), 6.47 (d, *J* = 2.1 Hz, 1H), 6.29 (t, *J* = 2.3 Hz, 1H), 6.22 (d, *J* = 2.3 Hz, 2H), 5.36 (s, 1H),

3.87 (s, 3H), 3.69 (s, 3H), 3.58 (s, 6H), 1.32 (s, 18H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 195.7, 162.9, 160.7, 160.2, 154.9, 154.8, 135.2, 134.6, 133.9, 130.5, 127.1, 124.8, 121.7, 107.9, 103.6, 102.5, 100.1, 56.1, 55.6, 55.2, 34.3, 30.4; FT-IR (thin film, neat): 3626, 2957, 1697, 1598, 1312, 1152, 803; HRMS (ESI): m/z calcd for C₃₃H₃₉O₆ [M+H]⁺: 531.2747; found : 531.2753.

5. Procedure for gram scale synthesis of 2a.

Commercially available HMPA (5 mL) was added to a RB flask containing 2-alkynylphenylsubstituted *p*-QM **1a** (1.00 g, 2.54 mmol) and the reaction mixture was stirred at 140 °C for 8 h. The reaction mixture was then diluted with water (10 mL) and extracted with ether (15 mL x 3). The combined organic layer was dried over anhydrous sodium sulphate, filtered and concentrated under reduced pressure. The residue was then purified through a silica gel column to get **2a** as a red solid (645 mg, 62% yield).

6. References:

(1) A. S. Jadhav, Y. A. Pankhade and R. V. Anand, J. Org. Chem., 2018, 83, 8596 – 8606.

X-ray crystallographic analysis for compound 2a:

Complex	SF-28-II
Empirical formula	$C_{58}H_{60}O_4$
Formula Weight	821.06
Crystal system	Monoclinic
Space group	P21/c
<i>T</i> [K]	298k
<i>a</i> [Å]	11.6424(5)
<i>b</i> [Å]	21.0313(8)
<i>c</i> [Å]	19.3533(15)
α [°]	90.00
в [°]	90.006(4)
γ [°]	90.00
<i>V</i> [ų]	4738.8(5)
Z	4
D(calcd.) [g·cm ^{−3}]	1.151
μ (Mo-K _{$lpha$}) [mm ⁻¹]	0.070
Reflections collected	44402
Independent reflections	15523
Data/restraints/parameters	15523/0/573
R1, wR₂[I>2σ(I)] ^[a]	0.0835, 0.2014
<i>R1, wR</i> ₂ (all data) ^[a]	0.1724, 0.2625
GOF	1.103
CCDC	2307508

Table 2. Crystal data and structure refinement for compound 2a (CCDC 2307508)

Datablock sf-28-ii_rt - ellipsoid plot

¹H NMR (400 MHz, CDCl₃) spectrum of **2a**

¹H NMR (400 MHz, CDCl₃) spectrum of $\mathbf{2b}$

¹H NMR (400 MHz, CDCl₃) spectrum of 2c

¹H NMR (400 MHz, CDCl₃) spectrum of 2d

¹H NMR (400 MHz, CDCl₃) spectrum of **2e**

¹H NMR (400 MHz, CDCl₃) spectrum of **2f**

¹H NMR (400 MHz, CDCl₃) spectrum of 2g

1 H NMR (400 MHz, CDCl₃) spectrum of **2h**

¹H NMR (400 MHz, CDCl₃) spectrum of **2i**

 1 H NMR (400 MHz, CDCl₃) spectrum of **2j**

¹³C{1H} NMR (100 MHz, CDCl₃) spectrum of **2j**

¹H NMR (400 MHz, CDCl₃) spectrum of 2k

$^{13}C\{1H\}$ NMR (100 MHz, CDCl₃) spectrum of 2k

 ^1H NMR (400 MHz, CDCl₃) spectrum of 2l

 $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR (376 MHz, CDCl₃) spectrum of 2l

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 2m

¹H NMR (400 MHz, CDCl₃) spectrum of **2n**

¹H NMR (400 MHz, CDCl₃) spectrum of **20**

¹H NMR (400 MHz, CDCl₃) spectrum of **2p**

¹H NMR (400 MHz, CDCl₃) spectrum of 2q

 $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR (376 MHz, CDCl₃) spectrum of $\mathbf{2q}$

¹H NMR (400 MHz, CDCl₃) spectrum of 2r

$^{13}C\{1H\}$ NMR (100 MHz, CDCl₃) spectrum of 2r

10.0 9.5 7.5 7.0 5.5 5.0 4.5 f1 (ppm) 3.0 2.0 1.5 -0.5 9.0 8.5 8.0 6.5 6.0 4.0 3.5 2.5 1.0 0.5 0.0

¹³C{1H} NMR (100 MHz, CDCl₃) spectrum of **2s**

$^{13}C{1H}$ NMR (100 MHz, CDCl₃) spectrum of **2t** 155.7120 154.8224 ✓ 137.7266 ✓ 137.7266 ✓ 136.0083 ✓ 138.0083 ✓ 131.7267 ✓ 128.1399 ✓ 128.1399 ✓ 128.339724 ✓ 122.0300 ✓ 122.0300 ✓ 120.0812 77.4780 77.1604 76.8429 ✓ 36.3872 → 34.5970 ✓ 31.1865 ✓ 30.4434 ✓ 26.8912 ✓ 25.9740 ŅН ^tBu Bu 110 100 f1 (ppm)

$^{13}C\{1H\}$ NMR (100 MHz, CDCl₃) spectrum of 2u

¹³C{1H} NMR (100 MHz, CDCl₃) spectrum of **3a**

¹H NMR (400 MHz, CDCl₃) spectrum of $\mathbf{3b}$

S41

¹H NMR (400 MHz, CDCl₃) spectrum of 3d

¹H NMR (400 MHz, CDCl₃) spectrum of **3e**

¹H NMR (400 MHz, CDCl₃) spectrum of 3f

^1H NMR (400 MHz, CDCl₃) spectrum of 3g

S46

¹H NMR (400 MHz, CDCl₃) spectrum of $\mathbf{6}$

¹H NMR (400 MHz, CDCl₃) spectrum of **7**

11. HRMS analysis of crude reaction mixture: (indicating the presence of Intermediate I or IV)

12. HRMS analysis of the reaction of 1a with ¹⁸O-labeled water: (H₂O¹⁸)

13. HRMS data for 2a

