Electronic Supplementary Information

Potent Pincer-Zinc Catalyzed Homogeneous α-Alkylation and Friedländer Quinoline Synthesis of Secondary alcohols/Ketones with Primary Alcohols

Debashis Jana^a, Sima Roy^a, Srijita Naskar^a, Supriyo Halder^a, Gopal Kanrar^b, Kausikisankar Pramanik^{a*}

^aDepartment of Chemistry, Jadavpur University, Kolkata – 700032, India ^bDepartment of Chemistry, St. Xavier's College (Autonomous), Kolkata – 700016, India

> *To whom correspondence should be addressed. kpramanik@hotmail.com Tel: +91 94333 66013

INDEX

1	Crystallographic details of complexes	S3-S4
2	Physical measurements, computational study, synthetic procedure for	S5-S7
	the preparation of ligands, complexes.	
3	NMR Spectrum of Complexes	S8-S9
4	MO Contributions and optimized geometry of complexes	S10-S11
5	Optical Transitions of Complexes and NTOs of Complexes	S11-S18
6	MO Diagram of Complexes	S19-S20
7	Theoretical and experimental absorption spectrum	S21
8	Coordinates of Optimized Geometry	S21-S23
9	IR spectrum of reaction mixture, electronic spectra for the detection of	S24
	H_2O_2 , electrochemical study of complex 1a	
10	X-Ray crystallographic information of 10aj and 5ag	S25-S26
11	Optimization table for Friedländer Quinoline Synthesis	S27-S28
12	General procedure for Zn-catalyzed reactions	S29
13	Characterization data of alkylated ketones	S29-S32
14	Characterization data of quinolines	S32-S38
15	NMR spectra of alkylated ketones	S39-S53
16	NMR spectra of quinolines	S54-S85
16	Some NMR spectra and HRMS for mechanistic study	S86-S89
17	Appendix: supplementary data	S90
18	References	S90-S92

	1a	1b				
Empirical formula	$C_{17}H_{12}N_5Cl_3Zn$	$C_{17}H_{13}N_5Cl_2Zn$				
T/K	298K	298K				
fw	458.04	847.19				
Crystal system	Monoclinic	Orthorhombic				
Space Group	C12/c1	Pbca				
a/Å	14.0244(8)	13.2739(4)				
b/Å	15.2683(9)	13.0215(4)				
c/ Å	19.1822(11)	41.0373(12)				
a/deg	90	90				
β/deg	105.697(2)	90				
γ/deg	90	90				
V/\AA^3	3954.3(4)	7093.1(4)				
Z	8	8				
D _c /Mgm ⁻³	1.539	1.587				
μ/mm^{-1}	1.658	1.696				
F(000)	1840	3424				
cryst size/mm ³	0.5 imes 0.3 imes 0.2	0.5 imes 0.3 imes 0.2				
θ/deg	2.091 - 25.712	2.405 - 28.733				
Measured reflns	9889	9139				
Unique reflns	3912	10062				
^a GOF on F ²	1.117	1.191				
R1 ^b , wR2 ^c [$I > 2\sigma(I)$]	0.0425, 0.0986	0.0368, 0.0827				
R1, wR2	R1, wR2 0.0521, 0.1045 0.0423, 0.0858					
$a \text{GOF} = \{\Sigma[w($	$(F_o^2 - F_c^2)2]/(n-p)\}^{1/2}$. ${}^{b}R1 = \Sigma$ [$ \mathbf{F}_{\mathrm{o}} $ - $ \mathbf{F}_{\mathrm{c}}]/\Sigma \mathbf{F}_{\mathrm{o}} .$				
${}^{c}wR2 = \left[\Sigma \left[w(F_{o}{}^{2}-F_{c}{}^{2})^{2}\right]/\Sigma \left[w(F_{o}{}^{2})^{2}\right]\right]^{1/2} \text{ where } w = 1/\left[\sigma^{2}(F_{o}{}^{2})+(aP)^{2}+bP\right], P = (F_{o}{}^{2}+2F_{c}{}^{2})/3.$						

 Table S1. Crystallographic Details of complexes 1a and 1b.

	1 a		1b			
Parameter	Expt.	Theo.	Parameter	Expt.(average)	Theo.	
Zn1–Cl1	2.2125(9)	2.349	Zn1–Cl1	2.221(7)	2.299	
Zn1–Cl2	2.2272(9)	2.355	Zn1–Cl2	2.210(7)	2.283	
Zn1–N1	2.167(3)	2.228	Zn1–N1	2.170(19)	2.279	
Zn1–N3	2.127(2)	2.245	Zn1–N3	2.126(17)	2.246	
Zn1–N4	2.466(3)	2.593	Zn1–N4	2.452(17)	2.451	
N2-N3	1.260(3)	1.261	N2-N3	1.259(2)	1.261	
N4-N5	1.263(4)	1.263	N4N5	1.257(3)	1.265	
Cl1Zn1Cl2	123.35(4)	129.99	Cl1Zn1Cl2	126.54(3)	132.27	
Cl1Zn1N4	94.71(6)	97.82	Cl1Zn1N4	95.78(5)	100.58	
Cl2Zn1N4	98.87(6)	96.67	Cl2Zn1N4	96.53(5)	96.89	
N1Zn1Cl1	99.51(7)	99.76	N1Zn1Cl1	99.90(5)	97.66	
N1Zn1Cl2	100.84(7)	99.57	N1Zn1Cl2	99.98(5)	96.39	
N1Zn1N4	143.59(9)	139.22	N1Zn1N4	143.54(6)	140.26	
N3Zn1Cl1	126.89(7)	127.45	N3Zn1Cl1	115.64(5)	107.27	
N3Zn1Cl2	109.54(7)	102.35	N3Zn1Cl2	117.54(5)	120.41	
N3Zn1N1	73.25(9)	71.54	N3Zn1N1	73.14(7)	70.10	
N3Zn1N4	71.40(9)	68.88	N3Zn1N4	72.51(6)	70.86	
C1N1Zn1	128.9(2)	127.08	C1N1Zn1	128.99(17)	126.89	
C5N1Zn1	113.5(2)	114.02	C5N1Zn1	113.04(2)	114.16	
N3N2C5	113.6(2)	114.92	N3N2C5	113.30(17)	114.25	
C6N3Zn1	123.02(19)	123.35	C6N3Zn1	122.48(13)	120.81	
N2N3C6	116.0(2)	117.11	N2N3C6	116.38(17)	117.51	
N2N3Zn1	120.85(19)	119.38	N2N3Zn1	120.73(13)	121.50	
C11N4Zn1	110.28(18)	110.20	C11N4Zn1	110.11(12)	112.27	
N5N4C11	112.4(3)	113.42	N5N4C11	113.04(18)	113.33	
N5N4Zn1	135.2(2)	133.11	N5N4Zn1	134.57(15)	132.25	
N4N5C12	116.6(3)	118.24	N4N5C12	116.34(19)	118.41	

Table S2. Selected Experimental and Theoretical Bond Parameters of 1a and 1b complex.

Physical measurements

NMR spectra (¹H, ¹³C, and ¹⁹F) of all complexes were obtained from Brucker FT 300 and 400 MHz spectrometer. Electron Paramagnetic Resonance (EPR) spectrum was taken for the sample in standard quartz EPR tubes using a JEOL JES-FA200 X-band spectrometer. Instrument settings: microwave frequency, 9.458 GHz; microwave power, 0.998 mW; modulation frequency, 100 kHz. According to residual protium in the NMR solvent (CHCl₃ = δ 7.26), chemical shifts for protons are reported in parts per million downfield from tetramethylsilane. The chemical shifts for carbon produced from tetramethylsilane are given in parts per million with references to the carbon resonances of the solvent (CDCl₃ = δ 77.16). The following data are shown: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, ddd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, tt = triplet of triplets, td = triplet of doublets, coupling constants in Hertz (Hz), integration. Elemental analysis (C, H, N) was done on a Perkin Elmer 2400 series II Analyzer. Infrared spectra were acquired from PerkinElmer L-0010 spectrometer. The absorption spectra were recorded using PerkinElmer LAMDA 25 spectrometer with solute concentration about 10⁻⁵ M.

Computational Study

The singlet ground state (S₀) and excited state molecular geometries of synthesised complex **1a** and **1b** were computed by DFT method by employing (R)B3LYP^{1.2} in GAUSSIAN 09³ programme package. The solution phase optimised geometries of the complexes were found without applying any geometry constraints. In order to verify all stationary points as the true minima in potential energy surface, frequency calculation was executed. The absence of any imaginary frequency (NImag = 0) indicates that all the obtained stationary points are indeed the true minima in potential energy surface. The X-Ray positional coordinates of complex **1a** and **1b** were directly used as the initial input for geometry optimisation calculation. By using these ground state optimised geometries as well as excited state geometries, we performed subsequent Single Point Energy and TD-DFT⁴⁻⁷calculation. In TD-DFT calculation we employ conductor like continuum model (CPCM) ⁸⁻¹⁰ and dichloromethane (CH₂Cl₂) as solvent to simulate absorption spectra in dichloromethane solvent. The lowest 100 singlet-singlet transitions in absorption and emission processes for the complex **1a** and **1b** were evaluated gradually. The experimental results and the results obtained from TD calculations were qualitatively comparable. Presently the approach of

TD-DFT is documented as a rigorous formalism for the electronic excitation energies among the DFT framework for calculating spectral properties of many transitions metal complexes¹¹⁻¹⁴. In order to acquire the information and nature of absorption and emission processes natural transition orbital (NTO) analysis was executed. This method delivers the most accurate representation of the transition density between the ground and excited states in terms of an expansion into singleparticle transitions (hole and electron states for each given excitation). we refer to the unoccupied and occupied NTOs as "electron" and "hole" transition orbitals. The computed vertical transitions were calculated at the equilibrium geometry of the S₀ state and described in terms of one-electron excitations of molecular orbitals of the corresponding S₀ geometry. The calculated transitions with moderate intensities (f > 0.02) can be envisaged going from the lower to the higher energy region of the spectrum. The zinc atom was described by a double- ζ basis set with the effective core potential of Hay and Wadt $(LANL2DZ)^{15,16}$, and the 6-311++G(d,p)^{17,18} basis set was used for the other elements except hydrogen atom (6-31G) present in the complexes to optimize the ground state geometries. The calculated electronic density plots for frontier molecular orbitals were prepared by using the GaussView 6.0 software. GaussSum program, version 3.2¹⁹, was used to calculate the molecular orbital contributions from groups or atoms.

Synthesis of ligands:

The organic ligands L^{Cl} and L^{H} comprising two electron-deficient azo moieties along with an aromatic heterocyclic group have been prepared by condensation of (*E*)-2-((4-chlorophenyl)azo)aniline or (*E*)-2-(phenylazo)aniline with 2-nitrosopyridine using the previously reported procedure.²⁰

Synthesis of complexes:

[**Zn**($\mathbf{L^{Cl}}$)**Cl**₂] **1a** Anhydrous ZnCl₂ (136 mg, 1.00 mmol) was added to a solution of ($\mathbf{L^{Cl}}$) (354 mg, 1.10 mmol) in ethanol (25 mL) under open air. The reaction mixture was stirred at room temperature for 6 hrs. The solvent was removed under reduced pressure. Slow diffusion of the dichloromethane solution of the complex into n-hexane led to the crystallisation of **1a** as rod-shaped crystals. Yield and characterization data: Blood-red crystal, Yield 90% (412 mg). Anal. Calcd. for C₁₇H₁₂N₅Cl₃Zn: C 44.58, H 2.64, N 15.29; Found C 44.98, H 2.69, N 15.16%. ¹H-NMR (400 MHz, DMSO-*d*₆): δ (ppm) 8.76 (d, *J* = 5.4 Hz, 1H), 8.07 (t, *J* = 7.8 Hz, 1H), 7.93-7.90 (m, 2H), 7.79-7.75 (m, 4H), 7.70-7.64 (m, 3H), 7.62-7.59 (m, 1H). ¹³C-NMR (100 MHz, DMSO-*d*₆):

 δ (ppm) 163.3, 151.3, 150.0, 149.9, 147.8, 147.4, 137.0, 132.9, 132.3, 130.2, 126.6, 125.0, 124.9, 119.4, 119.0, 113.5. FT-IR (cm⁻¹): 1459, 1390 (v_{N=N}).

[**Zn**(**L**^H)**Cl**₂] **1b** The former procedure has been applied with same stoichiometrically amount to synthesised complex **1b**. Yield and characterization data: Blood-red crystal, Yield 85% (360 mg). Anal. Calcd. for C₁₇H₁₃N₅Cl₂Zn: C 48.20, H 3.09, N 16.53; Found C 48.61, H 3.13, N 16.41%. ¹H-NMR (400 MHz, DMSO-*d*₆): δ (ppm) 8.75 (d, *J* = 5.4 Hz, 1H), 8.06 (t, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 7.7 Hz, 2H), 7.79-7.74 (m, 4H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.62-7.59 (m, 4H). ¹³C-NMR (100 MHz, DMSO-*d*₆): δ (ppm) 163.4, 152.8, 149.9, 148.0, 147.4, 139.5, 132.8, 132.5, 131.9, 130.0, 129.1, 128.7, 126.6, 123.3, 119.5, 118.8, 113.4. FT-IR (cm⁻¹): 1456, 1397 (v_{N=N}).

NMR Spectrum of Complexes

Fig. S1 ¹H NMR spectrum of complex 1a (400 MHz, DMSO-*d*₆).

Fig. S2 ¹³C NMR spectrum of complex 1a (101 MHz, DMSO-*d*₆).

Fig. S3 ¹H NMR spectrum of complex **1b** (400 MHz, DMSO-*d*₆).

Fig. S4 13 C NMR spectrum of complex 1b (101 MHz, DMSO- d_6).

		Energy		Composition					
Orbital	MO	(eV)	Zn	Azo 1	Azo 2	Cl	Ру	Ph	Contribution
112	L+5	-0.80	0	0	4	0	3	93	π^{*} (Ph)
111	L+4	-0.82	0	0	5	0	2	93	π^{*} (Ph)
110	L+3	-1.27	0	5	1	0	55	39	π^* (Py + Ph)
109	L+2	-2.01	0	2	0	0	94	4	π^* (Py)
108	L+1	-3.05	1	4	46	1	3	45	π^* (Azo + Ph)
107	LUMO	-3.99	0	44	5	1	25	24	π^* (Azo +Py +Ph)
106	НОМО	-6.54	1	1	22	31	1	43	$lp (Azo) + \pi (Cl + Ph)$
105	H–1	-6.67	1	0	1	95	0	3	π (Cl + Ph)
104	H–2	-6.73	1	0	1	93	1	4	π (Cl)
103	H–3	-6.78	5	1	0	90	2	3	π (Cl)
102	H4	-6.90	9	0	4	63	0	24	π (Cl + Ph + Py + Azo)
101	H–5	-7.39	3	8	38	20	3	28	π (Azo + Ph + Cl)

 Table S3. Frontier Molecular Orbital Composition (%) in the Ground State for 1a complex.

Table S4. Frontier Molecular Orbital Composition (%) in the Ground State for 1b complex.

		Fnergy		Composition					
Orbital	МО	(eV)	Zn	Azo	Azo	Cl	Dv	Ph	Contribution
		(0, v)	ZII	1	2	CI	Тy	y Fli	
104	L+5	-0.54	0	0	3	0	0	97	π^{*} (Ph)
103	L+4	-0.67	0	1	7	0	5	87	π^{*} (Ph)
102	L+3	-1.14	0	4	1	0	55	39	π^* (Py + Ph + Azo)
101	L+2	-1.82	0	1	0	0	94	4	π^{*} (Py)
100	L+1	-2.97	1	5	45	1	3	45	π^* (Azo + Ph)
99	LUMO	-3.85	0	44	6	1	24	25	π^* (Azo +Py +Ph)
98	НОМО	-6.53	2	1	19	44	1	32	$lp (Azo) + \pi (Cl + Ph)$
97	H–1	-6.67	2	0	4	88	1	5	π (Cl)
96	H-2	-6.73	1	0	4	85	1	10	π (Cl)

95	H–3	-6.79	3	1	0	90	2	4	π (Cl)
94	H-4	-6.91	9	1	6	58	1	26	π (Cl + Ph + Azo)
93	H–5	-7.24	1	2	1	8	0	88	π (Ph + Cl)

Fig. S5 Solvent phase optimised geometry of **1a** (left) and **1b** (right) complex (H's are omitted for clarity) calculated at B3LYP/6-311+G(d,p) level of theory.

Table S5. Main Optical Transition at the TD-DFT/B3LYP/6-31+G(d,p) Level for the complex **1a** with composition in terms of Molecular Orbital Contribution of the Transition, Computed Vertical Excitation Energies, and Oscillator Strength in Dichloromethane.

Transition	CI	Composition	Ε	Oscillator	λtheo
			(eV)	Strength (f)	(nm)
$S_0 \rightarrow S_1$	0.63460	HOMO \rightarrow LUMO (81%)	2.23654	0.1586	554.39
$S_0 \rightarrow S_3$	0.51482	HOMO \rightarrow L+1 (53%)	2.7684	0.0243	447.86
$S_0 \rightarrow S_7$	0.55532	H-5→LUMO (62%)	3.0766	0.1091	402.99
	0.32956	H-4→LUMO (22%)			
$S_0 \rightarrow S_8$	0.42948	H-2→LUMO (37%)	3.1584	0.4438	392.56
	0.40887	H-3→LUMO (33%)			
$S_0 \rightarrow S_{12}$	0.42254	H-1→L+1 (36%)	3.6283	0.3418	341.71
	0.35229	H-2→L+1 (25%)			

$S_0 \rightarrow S_{14}$	0.48405	H-1→L+1 (47%)	3.7226	0.1571	333.05
	0.38441	H-3→L+1 (30%)			
$S_0 \rightarrow S_{15}$	0.67201	H-4→L+1 (90%)	3.7960	0.0121	326.62
$S_0 \rightarrow S_{17}$	0.66652	H-5→L+1 (89%)	3.8345	0.0315	323.34
$S_0 \rightarrow S_{30}$	0.52252	HOMO→L+4 (55%)	5.0444	0.0282	245.79
	0.27871	HOMO→L+3 (16%)			
$S_0 \rightarrow S_{38}$	0.50026	H-5→L+2 (50%)	5.2230	0.0294	237.38
	-0.43140	H-2→L+2 (37%)			
$S_0 \rightarrow S_{41}$	0.61394	HOMO→L+5 (75%)	5.3973	0.0176	229.72

Table S6. Main Optical Transition at the TD-DFT/B3LYP/6-31+G(d,p) Level for the complex **1b** with composition in terms of Molecular Orbital Contribution of the Transition, Computed Vertical Excitation Energies, and Oscillator Strength in Dichloromethane.

Transition	CI	Composition	Ε	Oscillator	λtheo
			(eV)	Strength (f)	(nm)
$S_0 \rightarrow S_1$	0.61198	HOMO \rightarrow LUMO (75%)	2.3093	0.1272	536.90
$S_0 \rightarrow S_3$	0.48488	$HOMO \rightarrow L+1 (47\%)$	2.8147	0.0180	440.49
$S_0 \rightarrow S_6$	0.64522	$H-4 \rightarrow LUMO (83\%)$	3.1318	0.0125	395.88
$S_0 \rightarrow S_{11}$	0.56551	$H-1 \rightarrow L+1 (64\%)$	3.6127	0.1311	343.19
$S_0 \rightarrow S_{12}$	0.49452	H-2→L+1 (49%)	3.6914	0.3604	335.87
	-0.31640	H-1→L+1 (20%)			
$S_0 \rightarrow S_{26}$	0.65379	HOMO→L+2 (85%)	4.7083	0.0162	263.33
$S_0 \rightarrow S_{35}$	0.49423	HOMO→L+4 (49%)	5.3128	0.0216	233.37
	0.39368	H-4→L+2 (31%)			

Table S7. Natural transition orbitals (NTOs) for complex **1a** illustrating the nature of singlet excited states in the absorption bands in the range 200–700 nm. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 15% to each excited state.

Wavelength	Transition	Hole	electron
500 nm	S1 w = 0.8055 f = 0.1586 554.39 nm		
500 IIII	S3 w = 0.5300 f = 0.0243 447.86 nm		
	S7 w = 0.6167 f = 0.1091 402.99 nm		
360 nm	S7 w = 0.2172 f = 0.1091 402.99 nm		

	58 w = 0.3689 f = 0.4438 392.56 nm	
	58 w = 0.3343 f = 0.4438 392.56 nm	
	S12 w = 0.3570 f = 0.1571 341.71 nm	
333 nm	S14 w = 0.4686 f = 0.1571 333.05 nm	
	S14 w = 0.2955 f = 0.1571 333.05 nm	

	S15		
v	w = 0.9031 f = 0.0121		
	7 = 0.0121		
	520.02 1111		
	S17		
v	w = 0.8885		
j j	f = 0.0315		
3	323.34 nm		
		•	•
	S30		
v	w = 0.5460		
Ĵ	f = 0.0282		
2	245.79 nm	•	
	S30		
v	w = 0.1553		
	f = 0.0282		
236 nm 2	245.79 nm		
250 mm			
	\$20		
	330		
	w = 0.3003		
	T = 0.0294		
	237.38 nm		

Table S8. Natural transition orbitals (NTOs) for complex **1b** illustrating the nature of singlet excited states in the absorption bands in the range 200–700 nm. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 15% to each excited state.

Wavelength	Transition	Hole	Electron
	S1 w = 0.7490 f = 0.1272 536.90 nm		
499 nm	S3 w = 0.4702 f = 0.0180 440.49 nm		

	56		
	w = 0.8326		
	f = 0.0125		5 B
	395.88 nm		
365 nm			
505 mm	S11		
	w = 0.6396		
	<i>f</i> = 0.1311	23	
	343.19 nm		
	612		
	S12		
	w = 0.4891		
	f = 0.3604		
	335.8/ nm	e _ e	
335 nm		•	•
	S12		-
	w = 0.2002		
	f = 0.3604		
	335.87 nm	R 9	
		•	•
	S26		
	w = 0.8548		
235 nm	f = 0.0162		
	263.33 nm		

S35 w = 0.4885 f = 0.0216 233.37 nm	
S35 w = 0.3099 f = 0.0216 233.37 nm	

Fig. S6 Partial MO diagram and isodensity surface plots (isovalue = 0.06) for selected FMOs of the **1a** complex. The arrows are used to highlight the HOMO–LUMO energy gaps. All the DFT energy values are given in eV.

Fig. S7 Partial MO diagram and isodensity surface plots (isovalue = 0.06) for selected FMOs of the **1b** complex. The arrows are used to highlight the HOMO–LUMO energy gaps. All the DFT energy values are given in eV.

Fig. S8 Experimental (red) and theoretical (black) absorption spectrum of **1a**(left) **& 1b**(right) complex in CH₂Cl₂ solution at 298 K.

Tag	Symbol	X	Y	Z
1	Zn	8.195225	9.3534933	6.8816697
2	Cl	10.5395086	9.3140769	6.7379555
3	Cl	6.7964702	9.4627584	8.7729097
4	Cl	8.5346613	5.3713459	12.8137888
5	N	7.5781739	9.0897911	4.7398266
6	N	7.3755557	10.1081465	4.0244872
7	N	7.7969172	11.3645132	6.0095758
8	N	7.7661971	6.8559533	6.3337638
9	N	7.3599379	5.878426	7.0228991
10	С	7.4901647	7.8375653	4.1101687
11	С	6.8133036	5.0961576	9.1974576
12	Н	5.940998	4.6334343	8.7459912
13	С	7.501684	11.3436185	4.6981732
14	С	7.5572423	6.6888177	4.9389039
15	С	7.330742	7.6948734 2.7190553	
16	Н	7.2814801	8.5848944 2.103042	
17	С	7.6851666	5.8475035 8.3883322	

 Table S9. Coordinates of Optimised structure of complex 1a.

18	С	7.0535772	4.9687139	10.5620618
19	Н	6.3714212	4.4110513	11.1946516
20	С	7.2441754	6.4294949	2.1549169
21	Н	7.1281834	6.3237752	1.0805968
22	С	7.4789157	5.4165197	4.3482557
23	Н	7.5609815	4.5408497	4.9813916
24	С	9.1085302	6.2623082	10.3027310
25	Н	10.0084059	6.6830454	10.7388405
26	С	8.2036428	5.5535223	11.1011149
27	С	7.9042476	12.5445906	6.6251061
28	Н	8.1378767	12.5168765	7.6851964
29	С	8.8467769	6.4155244	8.9451071
30	Н	9.5559003	6.9397604	8.3137055
31	С	7.3047263	12.5031092	3.9450312
32	Н	7.0676651	12.4223881	2.8899530
33	С	7.7294793	13.7600077	5.9508887
34	Н	7.8311258	14.6949441	6.4913524
35	С	7.3188712	5.2886223	2.9723370
36	Н	7.2645836	4.2989972	2.5283440
37	С	7.4259900	13.7363608	4.5898590
38	Н	7.2846168	14.6598917	4.0373759

 Table S10. Coordinates of Optimised structure of complex 1b.

Tag	Symbol	X	Y	Z
1	Zn	Zn 5.8497188 10.6952617		8.0950091
2	N	5.4630069	12.9379152	8.2243246
3	C	5.6604181	13.8404438	7.2637583
4	Н	5.9919415	13.4531045	6.3044442
5	C	5.4518569	15.210381	7.4702044
6	Н	5.6275327	15.9118275	6.6609138
7	С	5.0173749	15.6425416	8.7238049

8	Н	4.8460902	16.6975783	8.9172224
9	С	4.8020651	14.6974959	9.7282816
10	Н	4.4599458	14.9700212	10.721001
11	С	5.0400722	13.353528	9.4270628
12	N	4.8060736	12.4087187	10.4547683
13	Ν	5.0260824	11.2134739	10.1191645
14	С	4.8302288	10.2211965	11.0907359
15	С	4.4825731	10.5085388	12.4243122
16	Н	4.3654642	11.5446357	12.720157
17	С	4.299952	9.4750911	13.3310387
18	Н	4.0379638	9.6977853	14.3614287
19	С	4.4640754	8.1411123	12.9172608
20	Н	4.33138	7.3329533	13.6314688
21	С	4.8088633	7.8452624	11.6038152
22	Н	4.952326	6.8213612	11.2791681
23	С	4.9893165	8.8776197	10.6676221
24	N	5.3818142	8.6282055	9.3253945
25	Ν	5.1368713	7.4477	8.9428968
26	С	5.6214787	7.037783	7.6952693
27	С	4.945617	5.9401727	7.1271904
28	Н	4.0987793	5.5177564	7.6598718
29	С	5.3505882	5.439488	5.893779
30	Н	4.8145361	4.6098317	5.4414059
31	С	6.4589912	5.9999601	5.2464033
32	Н	6.7855757	5.6006153	4.2896422
33	С	7.1589088	7.0616543	5.833783
34	Н	8.0301914	7.4811185	5.3389451
35	C	6.7472981	7.5899617	7.0534580
36	Н	7.3126904	8.3912510	7.5187598
37	Cl	8.1421580	10.7701299	8.2514943
38	Cl	4.4420951	10.2952533	6.3421649

Fig. S9 (a) IR spectrum of reaction mixture showing N-D stretching during dehydrogenation of non-deuterated 1-phenylethanol (red) and deuterated 1-phenylethanol (blue). (b) Electronic spectra of the formation of I_3^- ion in presence of H_2O_2 (detection of H_2O_2 was achieved as described in the text).

Fig. S10 Cyclic voltammogram of **1a** in CH₃CN using 0.1 M Bu₄NPF₆ using a Pt working electrode at 50 mV s⁻¹ with respect to Ag/AgCl reference electrode.

X-Ray crystallographic information of 10aj and 5ag

The suitable crystals of all complexes were placed on Bruker D8 QUEST SC-XRD Diffractometer equipped with graphite monochromator (Mo K α , $\lambda = 0.71073$ Å) the crystals were kept at steady T= 273K during data collection. SAINT²¹ crystallographic programme was utilized to integrate and scale the intensity data. SADABS²² program was employed to process and rectify the integrated data. Data collection, reduction, absorption corrections were performed. The structure solution was carried out with SHELXT 2014/5²³ solution programme using iterative method and Olex2 1.5-dev²⁴ as the graphical user interface. The SHELXL 2018/3²³ programme was utilised to refine the model structure using full matrix least square minimisation on F²². Lastly, the consistency regarding thermal parameters, bond distances and estimated standard deviation (ESD) within respective atoms were refined anisotropically. Riding model was applied to determine the position of H atoms geometrically and refined. ORTEP plot was used to draw the molecular structure using Olex2 1.5-dev as GUI. Crystallographic and refinement data of both complexes are given in Table S13. Additional refinement data can be found in CIF files.

Fig. S11 ORTEP view of 10aj and 5ag (hydrogen atoms are omitted for clarity, and thermal ellipsoids are set at 30% probability).

	10aj	5ag			
Empirical formula	$C_{16}H_{12}N_1Cl_1$	C ₁₆ H ₁₆ O ₂			
<i>T</i> /K	298K	298K			
fw	253.72	240.30			
Crystal system	orthorhombic	monoclinic			
Space Group	P 2c -2n	P 1 21/n 1			
a/Å	7.6371(5)	9.1890(14)			
b/Å	12.4931(8)	5.6168(9)			
c/ Å	13.4370(8)	24.833(4)			
α/deg	90	90			
β/deg	90	90.297(6)			
γ/deg	90	90			
V/\AA^3	1282.04(14)	1281.7(3)			
Z	4	26			
D _c /Mgm ⁻³	1.314	1.245			
μ/mm^{-1}	0.277	0.081			
F(000)	528	512			
cryst size/mm ³	0.38 imes 0.24 imes 0.16	0.4 imes 0.3 imes 0.2			
θ /deg	2.226 - 25.719	2.359 - 28.481			
Measured reflns	9897	6764			
^a GOF on F ²	1.210	1.034			
R1 ^b , wR2 ^c [$I > 2\sigma(I)$]	0.0496, 0.0976	0.0543, 0.1323			
R1, wR2	0.0578, 0.1013	0.0710, 0.1479			
${}^{a}\text{GOF} = \{\Sigma[w(F_{o} {}^{2}\text{-}F_{c} {}^{2})2]/(n\text{-}p)\}^{1/2}. {}^{b}\text{R1} = \Sigma [F_{o} - F_{c}]/\Sigma F_{o} .$					
c wR2 = [Σ [w(F _o ² -F _c ²) ²]/ Σ [w	$(F_o^2)^2]^{1/2}$ where w = 1/[$\sigma^2(F_o^2)^2$	$+(aP)^{2}+bP], P = (F_{o}^{2}+2F_{c}^{2})/3.$			

Table S11. Crystallographic Details of comp	oound 10aj and 5ag.
---	---------------------

Table S12. Optimization of the reaction conditions for the zinc catalyzed acceptorless mono- and double-dehydrogenative coupling of 2-aminobenzylalcohol (**6a**) with acetophenone (**3a**) and 1-phenylethanol (**4a**)^{*a*}

Entry	Catalyst	Solvent	Base	Temp	Yield ^{b,f}	Yield ^{<i>b</i>,<i>g</i>} (%)
	(X mol%)		(Y mol%)	(°C)	(%)	
1	1a (1.00 mol%)	Toluene	KO ^t Bu (100)	85	92	90
2	1a (0.1 mol%)	Toluene	KO ^t Bu (100)	85	91	90
3	1a (0.01 mol%)	Toluene	KO ^t Bu (100)	85	92	91
4	1a (0.005 mol%)	Toluene	KO ^t Bu (100)	85	92	87
5	1a (0.001 mol%)	Toluene	KO ^t Bu (100)	85	53	47
6	1a (0.005 mol%)	Toluene	KO ^t Bu (50)	85	92	87
7	1a (0.005 mol%)	Toluene	KO ^t Bu (20)	85	92	60
8	1a (0.005 mol%)	Toluene	KO ^t Bu (40)	85	92	90
9	1a (0.005 mol%)	Toluene	NaBH4 (20)	85	74	42
10	1a (0.005 mol%)	Toluene	NaO ^t Bu (20)	85	85	57
11	1a (0.005 mol%)	Toluene	NaOH (20)	85	90	59
12	1a (0.005 mol%)	Toluene	KOH (20)	85	90	57

13	1a (0.005 mol%)	Toluene	$K_2CO_3(20)$	85	52	19
14	1a (0.005 mol%)	Xylene	KO ^t Bu (20)	85	82	55
15	1a (0.005 mol%)	THF	KO ^t Bu (20)	85	45	23
16	1a (0.005 mol%)	EtOH	KO ^t Bu (20)	85	NR	NR
17 ^c	1a (0.005 mol%)	Toluene	KO ^t Bu (20)	RT	NR	NR
18	1a (0.005 mol%)	Toluene	KO ^t Bu (20)	100	90	58
19	$ZnCl_2 + Ligand$	Toluene	KO ^t Bu (20)	85	Trace	NR
	(1:1)					
20	ZnCl ₂ (0.005 & 1	Toluene	KO ^t Bu (20)	85	NR	NR
	mol%)					
21	Ligand (1 mol%)	Toluene	KO ^t Bu (20)	85	NR	NR
22		Toluene	KO ^t Bu (20)	85	NR	NR
23 ^d	1a (0.005 mol%)	Toluene	KO ^t Bu (20)	85	trace	trace
24 ^e	1a (0.005 mol%)	Toluene	KO ^t Bu (20)	85	68	37
25	1a (0.005 mol%)	Neat	KO ^t Bu (20)	85	45	trace
26	1b (0.005 mol%)	Toluene	KO ^t Bu (20)	85	87	59
				-		

^aReaction Conditions: mono-dehydrogenation: condition A: 2-Amino benzyl alcohol 6a (1.00 mmol), acetophenone
3a (1.00 mmol). Double-dehydrogenation: condition B: 2-Amino benzyl alcohol 6a (1.00 mmol), 1-phenylethanol 4a (1.00 mmol), Base, 5.0 ml toluene, Reaction time 18 hrs, open air.

^{*b*}Isolated yield after coloumn chromatography.

^{*c*}RT = Room Temperature.

^{*d*}Under an argon atmosphere.

^{*e*}Reaction time 6 hrs, NR = No Reaction.

^{*f*} represents the yield of the mono-dehydrogenative coupling reaction.

^{*g*} represents the yield of the double-dehydrogenative coupling reaction.

General procedure for synthesis of α-alkylated ketone derivatives:

In aerial condition, a mixture of catalyst **1a** (0.008 mol%), KO^tBu (30 mol%), secondary alcohols/ketones (1.0 mmol), and primary alcohols (1.0 mmol) had been placed into a 50.0 ml round-bottom flask. The reaction mixture was then placed in a preheated oil bath at 110 °C prior 5.0 ml of toluene was added to it. The reaction was continuing for 21 hrs. Following the reaction, the resulting mixture was vacuum-concentrated and purified using column chromatography on silica gel 60-120 mesh (hexane/ethyl acetate) to afford the desired product.

General procedure for Friedländer quinoline synthesis:

Catalyst **1a** (0.005 mol%), KO^tBu (20 mol%), secondary alcohols/ketones (1.0 mmol), and 2aminobenzyl alcohol derivatives (1.0 mmol) were added to a 50.0 ml round-bottom flask under aerial condition. The reaction mixture was then placed in an oil bath that had been heated to 85 °C before 5.0 ml of toluene was added to it. The reaction continued for 18 hrs. The resulting mixture was subsequently concentrated under vacuum and purified using column chromatography on silica gel 60-120 mesh (hexane/ethyl acetate) to afford the desired product.

Characterization data of Zn catalyzed compounds:

All the reactions were carried out in 1.0 mmol scale of reactant and according to the general procedure for synthesis of α-alkylated ketone derivatives.

1,3-diphenylpropan-1-one²⁵ (**5aa**): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 88%, 185mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.00 (d, J = 7.4 Hz, 2H) 7.59 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.37 – 7.22 (m, 5H), 3.34 (t, J = 7.7 Hz, 2H), 3.11 (t, J = 7.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm)

199.3, 141.3, 136.9, 133.0, 128.6, 128.5, 128.4, 128.0, 126.2, 40.5, 30.1.

1-phenyl-3-(p-tolyl)propan-1-one²⁵ (**5ab**): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 76%, 170 mg).¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.09 – 8.05 (m, 2H), 7.64 – 7.60 (m, 1H), 7.56 – 7.52 (m, 2H), 7.29 – 7.25 (m, 4H), 3.37 – 3.31 (m, 2H), 3.19 – 3.14 (m, 2H), 2.45 (s, 3H).¹³C NMR (75 MHz, CDCl₃): δ (ppm) 198.9, 143.9, 141.4, 134.4, 129.3, 128.5, 128.4, 128.2, 126.1, 40.4, 30.2, 21.7. **1-phenyl-3-(m-tolyl)propan-1-one**²⁵ (**5ac):** Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 72%, 161 mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.99 (d, J = 8.6 Hz, 2H), 7.61- 7.56 (m, 1H), 7.51-7.45 (m, 2H), 7.22 (t, J = 7.1 Hz, 1H), 7.11-7.04 (m, 3H), 3.32 (dd, J = 8.5, 6.4 Hz, 2H). 3.09-3.03 (m, 2H), 2.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 199.4, 141.2, 138.1, 136.9, 133.0, 129.2, 128.6, 128.1, 126.9, 125.4, 40.6, 30.1, 21.4.

1-phenyl-3-(o-tolyl)propan-1-one²⁵ (**5ad**): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 69%, 155 mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.01- 7.98 (m, 2H), 7.62-7.57 (m, 1H), 7.51-7.45 (m, 2H), 7.21-7.16 (m, 4H), 3.31-3.26 (m,

199.4, 139.5, 136.9, 136.0, 133.2, 130.5, 129.4, 128.9, 128.7, 128.2, 126.4 (d, *J* = 10.4 Hz), 39.2, 27.6, 19.5.

3-(4-chlorophenyl)-1-phenylpropan-1-one²⁵ (5ae): Eluent: Hexane/Ethyl acetate (20:1). White

solid (yield = 78%, 191 mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.99-7.96 (m, 2H), 7.60-7.56 (m, 1H), 7.51-7.48 (m, 2H), 7.28-7.20 (m, 4H), 3.33-3.28 (m, 2H), 3.09-3.04 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ

2H). 3.11-3.06 (m, 2H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm)

(ppm) 198.9, 139.8, 136.8, 133.2, 131.9, 129.8, 128.7, 128.6, 128.0, 40.1, 29.4.

3-(4-fluorophenyl)-1-phenylpropan-1-one²⁵ (**5af**): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 85%, 194 mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.99-

F 7.96 (m, 2H), 7.61-7.56 (m, 1H), 7.50-7.45 (m, 2H), 7.25-7.21 (m, 2H), 7.03-6.97 (m, 2H), 3.31 (t, J = 7.5 Hz, 2H), 3.07 (t, J = 7.5 Hz, 2H).

NMR (75 MHz, CDCl₃): δ (ppm) 199.0, 163.0, 159.8, 136.8, 133.1, 129.9, 129.8, 128.6, 128.0, 115.4, 115.1, 40.4, 29.3. ¹⁹F NMR (282 MHz, CDCl₃): δ = -117.3 (s, 1F).

3-(4-methoxyphenyl)-1-phenylpropan-1-one²⁵ (**5ag**): Eluent: Hexane/Ethyl acetate (20:1).

White solid (yield = 82%, 197mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.00-7.97 (m, 2H), 7.61-7.56 (m, 1H), 7.50-7.46 (m, 2H), 7.22-7.19 (m, 2H), 6.89-6.85 (m, 2H), 3.81 (s, 3H), 3.30 (t, *J* = 7.6 Hz, 2H),

3.04 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 199.4, 158.0, 136.9, 133.3, 133.0, 129.4, 128.6, 128.0, 113.9, 55.3, 40.7, 29.3.

3-phenyl-1-(p-tolyl)propan-1-one²⁵ (**5ah**): Eluent: Hexane/Ethyl acetate (20:1). Colourless liquid (yield = 92%, 206mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.92 (d, *J* = 8.0 Hz, 2H), 7.39-7.26 (m, 7H), 3.33 (t, *J* = 7.7 Hz, 2H), 3.12 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 198.9, 143.9, 141.5, 134.5, 129.4, 128.6, 128.5, 128.3, 126.2, 40.4, 30.3, 21.7.

3-phenyl-1-(m-tolyl)propan-1-one²⁵ (**5ai**): Eluent: Hexane/Ethyl acetate (20:1). White solid $H_{3}C$ (yield = 85%, 190 mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.80-7.76 (m, 2H), 7.39-7.29 (m, 7H), 3.32 (t, J = 8.1 Hz, 2H), 3.12-3.07 (m, 2H), 2.43 (s, 3H) ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 199.5, 141.4, 138.4, 136.9, 133.8, 128.6, 128.4, 128.5, 128.4, 126.1, 125.3, 40.5, 30.2, 21.3.

3-phenyl-1-(o-tolyl)propan-1-one²⁵ (**5aj**): Eluent: Hexane/Ethyl acetate (20:1). Colorless liquid (yield = 75%, 168mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.62 (d, *J* = 7.0 Hz, 1H), 7.27-7.21 (m, 8H), 3.25 (t, *J* = 7.6 Hz, 2H), 3.07 (t, *J* = 7.6 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 203.41, 141.2, 138.1,

136.4, 136.2, 131.9, 129.4, 128.5, 128.4, 126.1, 125.7, 125.2, 43.2, 30.4, 21.3.

1-(4-methoxyphenyl)-3-phenylpropan-1-one²⁵ (5ak): Eluent: Hexane/Ethyl acetate (20:1).

White solid (yield = 93%, 223mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.97 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 6.9 Hz, 1H), 7.17 (d, J = 7.0 Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H),3.28 (t, J = 7.6 Hz, 2H),

3.09 (t, J = 7.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 197.9, 163.3, 141.5, 130.5, 129.0, 128.5, 128.4, 126.2, 113.6, 55.4, 40.1, 30.4.

1-(3-methoxyphenyl)-3-phenylpropan-1-one²⁶ (**5al**): Eluent: Hexane/Ethyl acetate (20:1). ^H₃co ^H₃co ^H₃co ^H₃co ^H₃co ^H₃co ^(h)

MHz, CDCl₃): *δ* (ppm) 199.1, 159.9, 141.3, 138.3, 129.6, 128.6, 128.5, 126.2, 120.7, 119.6, 112.3, 55.5, 40.6, 30.2.

1-(4-fluorophenyl)-3-phenylpropan-1-one²⁶ (5am): Eluent: Hexane/Ethyl acetate (20:1). White

solid (yield = 68%, 155mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.05-8.00 (m, 2H), 7.38-7.24 (m, 5H), 7.19-7.12 (m, 2H), 3.31 (t, *J* = 7.6 Hz, 2H) 3.12 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 197.6, 167.0, 164.5, 141.2, 133.47, 133.3, 130.71 (d, J = 9.3 Hz), 128.55 (d, J = 13.0 Hz), 115.71 (d, J = 21.8 Hz), 40.4, 30.1. ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -105F.2$ (s, 1F).

1-(4-Bromophenyl)-3-phenylpropan-1-one²⁶ (**5an**): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 57%, 165mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 7.33-7.30 (m, 2H), 7.25-7.21 (m, 3H), 3.32-3.26 (m, 2H), 3.11-3.06 (m, 2H). ¹³C NMR (75 MHz,

CDCl₃): *δ* (ppm) 198.2, 141.0, 135.6, 131.9, 129.6, 128.9, 128.6, 128.5, 128.5, 128.4, 128.2, 126.4, 126.2, 40.4, 30.0.

All the reactions were carried out in 1.0 mmol scale of reactant and according to the general procedure for Friedländer quinoline synthesis.

2-phenyl quinoline²⁷ (**9aa**): Eluent: Hexane/Ethyl acetate (20:1). Fawn solid (yield = 92%, 189mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.26-8.18 (m,4H), 7.92-7.84 (m, 2H), 7.78-7.73 (m,1H), 7.59-7.47 (m,4H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 157.4, 148.3, 139.7, 136.8, 129.8, 129.7, 129.4, 128.9, 127.6, 127.5,

127.2, 126.3, 119.1.

2-(p-tolyl)quinoline²⁷ (**9ab**): Eluent: Hexane/Ethyl acetate (20:1). Fawn solid (yield = 94%, 207mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.21 (d, *J* = 8.5 Hz, 2H), 8.11 (d, *J* = 8.2 Hz, 2H), 7.89-7.82 (m,2H), 7.78-7.72 (m,1H), 7.57-7.51(m, 1H), 7.37(d, *J* = 7.8 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ

(ppm) 157.4, 148.3, 139.4, 136.8 (d, *J* = 16.6 Hz), 129.6 (d, *J* = 5.7 Hz), 129.3, 128.5, 127.5, 127.1, 126.1, 118.9, 21.4.

2-(m-tolyl)quinoline²⁸ (**9ac**): Eluent: Hexane/Ethyl acetate (20:1). Yellowish Liquid (yield = 90%, 197mg). 1H NMR (300 MHz, CDCl₃): δ (ppm) 8.25-8.20 (m, 2H), 7.95 (d, J = 7.7 Hz, 1H), 7.85 (d, J = 6.6 Hz, 1H), 7.80-7.73 (m, 2H), 7.55 (t, J = 6.9 Hz, 1H), 7.47-7.37(m, 2H), 7.31 (d, J = 6.7 Hz, 1H), 2.51 (s,

3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 157.6, 148.3, 138.5, 136.7, 133.8, 130.1, 129.7, 129.6, 128.7, 128.4, 128.3, 127.4, 126.2, 124.7, 119.1, 21.6.

2-(o-tolyl)quinoline²⁸ (**9ad**): Eluent: Hexane/Ethyl acetate (20:1). Fawn solid (yield = 84%, 185mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.22 (dd, J = 15.9, 8.5 Hz, 2H), 7.89 (dd, J = 8.2, 1.5 Hz, 1H), 7.77 (m,1H), 7.62-7.51 (m,3H), 7.40-7.31 (m, 3H), 2.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 160.3, 147.9,

 $140.8,\,136.1,\,136.0,\,130.9,\,129.7,\,129.6,\,128.5,\,127.5,\,126.8,\,126.4,\,126.0,\,122.4,\,20.4.$

2-(4-methoxyphenyl)quinoline²⁷ (9ae): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield

 $= 89\%, 209 \text{mg}). \ ^{1}\text{H NMR} (300 \text{ MHz}, \text{CDCl}_{3}): \delta (\text{ppm}) 8.22-8.15 (\text{m}, 4\text{H}), \\ 7.88-7.82 (\text{m}, 2\text{H}), 7.73 (\text{t}, J = 6.9 \text{ Hz}, 1\text{H}), 7.52 (\text{t}, J = 7.5 \text{ Hz}, 1\text{H}), 7.08 \\ (\text{d}, J = 8.9 \text{ Hz}, 2\text{H}), 3.92 (\text{s}, 3\text{H}). \ ^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_{3}): \delta (\text{ppm})$

160.8, 157.0, 148.3, 136.7, 132.3, 129.6, 129.5, 128.9, 127.4, 126.9, 125.9, 118.6, 114.2, 55.4. **2-(3-methoxyphenyl)quinoline**²⁸ (**9af**): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield =

87%, 205mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.24-8.20 (m, 2H), 7.89-7.81 (m, 3H), 7.78-7.72 (m, 2H), 7.57-7.51 (m, 2H), 7.07-7.03 (m, 1H), 3.95 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 160.2, 159.8, 148.2,

141.2, 136.8, 129.8, 129.8, 129.7, 127.5, 126.4, 120.0, 119.1, 115.4, 112.8, 55.4.

2-(4-bromophenyl)quinoline²⁸ (9ag): Eluent: Hexane/Ethyl acetate (20:1). Beige solid (yield =

86%, 245mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.26 (d, J = 7.8 Hz, 1H), 8.18 (dd, J = 8.5, 1.0 Hz, 1H), 8.08 (d, J = 8.6 Hz,2H), 7.87 (d, J = 8.6 Hz,2H), 7.79-7.74(m, 1H), 7.68(d, J = 8.6 Hz, 2H), 7.57 (t, J = 6.9 Hz,1H). ¹³C NMR

(75 MHz, CDCl₃): δ (ppm) 156.1, 148.3, 138.5, 137.0, 132.0, 131.4, 129.9, 129.7, 129.1, 127.5, 127.3, 126.6, 123.9, 118.5.

2-(3-bromophenyl)quinoline²⁹ (**9ah**): Eluent: Hexane/Ethyl acetate (20:1). Beige solid (yield = 72%, 204mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.38 (s, 1H), 8.26-8.18 (m, 2H), 8.10(s, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 8.4 Hz, 2H), 7.43-7.33 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm)

155.6, 148.2, 141.7, 137.0, 132.2, 131.4, 130.6, 130.3, 129.9, 129.8, 127.5, 126.7, 126.0, 123.2, 118.7

2-(4-fluorophenyl)quinoline²⁸ (9ai): Eluent: Hexane/Ethyl acetate (20:1). Beige solid (yield =

84%, 188mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.26-8.16 (m, 4H), 7.86 (d, J = 8.6 Hz, 2H), 7.76 (t, J = 6.9 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.27-7.21(m, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ (ppm) 165.5, 162.2, 156.3, 148.2, 136.9, 135.9, 129.8, 129.5, 129.4, 127.5, 126.4, 118.7, 115.9, 115.7. ¹⁹F NMR (282 MHz, CDCl3): δ = -117.3 (s, 1F)

2-(2-fluorophenyl)quinoline²⁹ (9aj): Eluent: Hexane/Ethyl acetate (20:1). Fawn Liquid (yield = 55%, 123mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.32-8.29 (m, 1H), 8.09-8.05 (m, 2H), 8.0-7.97 (m, 1H), 7.87-7.84 (m, 1H), 7.80-7.74 (m, 1H), 7.61-7.55 (m, 1H), 7.42-7.34 (m, 1H), 7.13-7.10 (m, 1H), 7.02-6.96 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 161.0, 158.0, 144.8, 137.7, 132.1, 130.5, 127.6 (d, *J* = 4.3 Hz), 127.0, 126.7, 118.7 (d, *J* = 6.3 Hz), 117.3. ¹⁹F NMR (282 MHz, CDCl₃): δ = -117.3 (s, F).

2-(4-nitrophenyl)quinoline²⁹ (**9ak**): Eluent: Hexane/Ethyl acetate (20:1). Pastel orange solid (yield = 81%, 203mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.43-8.36 (m, 4H), 8.35-8.32 (m, 1H), 8.24-8.20 (m, 1H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.92-7.89 (m, 1H), 7.84-7.78 (m, 1H), 7.65-7.60 (m, 1H). ¹³C NMR (75)

MHz, CDCl₃): δ (ppm) 157.6, 148.4, 148.3, 145.5, 137.4, 130.3, 130.0, 128.4, 128.2, 127.6, 127.3, 124.1, 118.8.

2-(3-nitrophenyl)quinoline³⁰ (9al): Eluent: Hexane/Ethyl acetate (20:1). Pastel orange solid

^{NO₂} 8.58 (d, J = 7.8 Hz, 1H), 8.33 (d, J = 8.2 Hz, 2H), 8.22 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 6.7 Hz, 1H), 7.83-7.70 (m, 2H), 7.61

(yield = 67%, 168mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.07 (s, 1H),

(t, *J* = 6.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 154.5, 148.9, 148.3, 141.3, 137.5, 133.3, 130.2, 129.9, 129.8, 129.0, 127.6, 127.1, 123.9, 122.5, 118.4.

2-hexylquinoline³² (9am): Eluent: Hexane/Ethyl acetate (20:1). Colorless Liquid (yield = 85%, 182mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.06 (t, J = 8.1 Hz, 2H), 7.76 (dd, J = 8.1, 1.5 Hz, 1H), 7.68 (ddd, J = 8.5, 6.8, 1.5 Hz, 1H)), 7.47 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 3.00 – 2.95 (m, 2H), 1.87 – 1.77 (m, 2H), 1.37-1.27 (m, 6H), 0.93-0.87 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 163.1, 147.9, 136.1, 129.3, 128.8, 127.5, 126.7, 125.6, 121.3, 39.3, 31.7, 30.0, 29.2, 22.6, 14.1.

2-cyclohexylquinoline³³ (9an): Eluent: Hexane/Ethyl acetate (20:1). Yellowish Oil (yield = 89%, 188mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.11 (d, J = 3.0 Hz, 1H), 8.08 (d, J = 3.4 Hz, 1H), 7.79 (dd, J = 8.1, 1.5 Hz, 1H), 7.70 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.50 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 1H), 2.99-

2.93 (m, 1H), 2.09-2.03 (m, 3H), 1.95-1.90 (m, 2H), 1.69-1.48 (m, 5H). ¹³C NMR (75 MHz,

CDCl₃): δ (ppm) 166.8, 147.9, 136.2, 129.2, 129.0, 128.2, 127.4, 125.6, 119.6, 47.62, 32.8, 28.5, 26.6, 26.2, 25.7.

2-(naphthalen-2-yl)quinoline²⁸ (9ao): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield =

 $84\%, 213mg). \ ^{1}H NMR (300 MHz, CDCl_{3}): \delta (ppm) 8.65 (s, 1H), 8.41 (dd, J = 8.6, 1.8 Hz, 1H), 8.27 (dd, J = 8.5, 4.6 Hz, 2H), 8.07 - 8.02 (m, 3H), 7.94 - 7.92 (m, 1H), 7.87 (d, J = 6.7, Hz, 1H), 7.80 - 7.76 (m, 1H), 7.59 - 7.94 (m, 1H), 7.87 (m, 1H), 7.87 (m, 1H), 7.80 - 7.76 (m, 1H), 7.59 - 7.94 (m, 1H), 7.87 (m, 1H), 7.87 (m, 1H), 7.80 - 7.76 (m, 1H), 7.59 - 7.94 (m, 1H), 7.87 (m, 1H), 7.87 (m, 1H), 7.80 - 7.76 (m, 1H), 7.59 - 7.94 (m, 1H), 7.87 (m, 1H), 7.87 (m, 1H), 7.80 - 7.76 (m, 1H), 7.59 - 7.94 (m, 1H), 7.87 (m, 1H), 7.87 (m, 1H), 7.80 - 7.76 (m, 1H), 7.59 - 7.94 (m, 1H), 7.87 (m, 1H), 7.87 (m, 1H), 7.80 - 7.76 (m, 1H), 7.59 - 7.94 (m, 1H), 7.89 (m, 1H), 7.89 (m, 1H), 7.89 (m, 1H), 7.59 (m,$

7.54 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 157.2, 148.4, 137.0, 136.8, 133.9, 133.5, 129.8, 129.7, 128.8, 128.6, 128.3, 127.7. 127.5, 127.3, 127.2, 126.7, 126.4, 125.1, 119.2.

6-chloro-2-phenylquinoline³⁰ (10aa): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield =

94%, 225mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.19-8.12(m, 4H), 7.92 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 2.3 Hz, 1H), 7.68 (dd, J = 9.0, 2.3 Hz, 1H), 7.59-7.47 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 157.6, 146.7,

139.2, 135.9, 131.9, 131.3, 130.6, 129.6, 128.9, 127.7, 127.5, 126.2, 119.8.

6-chloro-2-(3-bromophenyl)quinoline (10ab): Eluent: Hexane/Ethyl acetate (20:1). White solid

(yield = 92%, 252mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.17-8.09 (m, 4H), 7.89-7.83 (m, 2H), 7.69 (dd, J = 9.0, 2.3 Hz, 1H), 7.54-7.50 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 156.2, 146.6, 137.6, 136.1,

135.8, 132.2, 131.3, 130.8, 129.1, 128.8, 127.8, 126.2, 119.4. MS (ESI+): C₁₅H₁₀BrClN ([M+H]+); calculated: 317.96, found: 317.98.

6-chloro-2-(4-bromophenyl)quinoline (10ac): Eluent: Hexane/Ethyl acetate (20:1). White solid

(yield = 92%, 252mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.17-8.09 (m, 4H), 7.89-7.83 (m, 2H), 7.69 (dd, J = 9.0, 2.3 Hz, 1H), 7.54-7.50 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 156.2, 146.6, 137.6, 136.1,

135.8, 132.2, 131.3, 130.8, 129.1, 128.8, 127.8, 126.2, 119.4. MS (ESI+): C₁₅H₁₀BrClN ([M+H]+); calculated: 317.96, found: 317.98.

6-chloro-2-(4-chlorophenyl)quinoline³⁰ (10ad): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 92%, 252mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.17-8.09 (m, 4H), 7.89-7.83 (m, 2H), 7.69 (dd, J = 9.0, 2.3 Hz, 1H), 7.54-7.50 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 156.2, 146.6, 137.6, 136.1,

135.8, 132.2, 131.3, 130.8, 129.1, 128.8, 127.8, 126.2, 119.4.

6-chloro-2-(4-fluorophenyl)quinoline (10ae): Eluent: Hexane/Ethyl acetate (20:1). White solid

(yield = 87%, 224mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.20-8.08 (m, 4H), 7.88-7.82 (m, 2H), 7.68 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.26-7.20 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 165.6, 162.3, 156.4, 146.6, 135.9,

132.0, 131.2, 130.7, 129.5, 129.3, 127.6, 126.2, 119.4, 116.0, 115.7. ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -111.9$ (s, 1F). MS (ESI+): C₁₅H₁₀ClFN ([M+H]+); calculated: 258.04, found: 258.06.

6-chloro-2-(2-fluorophenyl)quinoline (10af): Eluent: Hexane/Ethyl acetate (20:1). White solid c_1 $(v_1) = 60\%$ (154mg) ¹H NMP (300 MHz CDCh): δ (ppm) 8 16 8 10 (m

(yield = 60%, 154mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.16-8.10 (m, 3H), 7.94 (dd, J = 8.6, 2.6 Hz, 1H), 7.85 (d, J = 2.3 Hz, 1H), 7.69 (dd, J = 9.0, 2.3 Hz, 1H), 7.49-7.44 (m, 1H), 7.34 (td, J = 7.5, 1.2 Hz, 1H), 7.23 (ddd, J = 1.5, 1H), 7.5, 1

J = 9.0, 2.4 Hz, 1H), 7.07 (d, J = 8.9 Hz, 2H), 3.91 (s, 1H). ¹³C NMR (75)

 $J = 11.4, 8.2, 1.2 \text{ Hz}, 1\text{H}.^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3): \delta (\text{ppm}) 162.1, 159.6, 154.3 (d,$ *J*= 2.0 Hz), 146.7, 135.3, 132.4, 131.43 (d,*J*= 2.9 Hz), 131.3, 131.1 (d,*J*= 8.6 Hz), 130.6, 127.8, 126.2, 124.8 (d,*J*= 3.4 Hz), 123.3 (d, J = 8.4 Hz), 116.3 (d,*J* $= 22.8 \text{ Hz}). ¹⁹F NMR (282 MHz, CDCl3): <math>\delta = -117.0$ (s, 1F) MS (ESI+): C₁₅H₁₀ClFN ([M+H]+); calculated: 258.04, found: 258.06.

6-chloro-2-(4-methoxyphenyl)quinoline (10ag): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 92%, 245mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.17-8.07 (m, 4H), 7.87 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 2.3 Hz, 1H), 7.66 (dd,

MHz, CDCl₃): δ (ppm) 161.0, 157.1, 146.7, 135.7, 131.8, 131.5, 131.1, 130.5, 128.9, 127.5, 126.1, 119.4, 114.3, 55.4. MS (ESI+): C₁₆H₁₃ClNO ([M+H]+); calculated: 270.06, found: 270.07.

6-chloro-2-(3-methoxyphenyl)quinoline (**10ah**): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 90%, 240mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.13-8.07 (m, 2H), 7.86 (d, J = 9.6 Hz, 1H), 7.79-7.76 (m, 2H), 7.71-7.67 (m, 2H), 7.44 (t, J = 7.9 Hz, 1H), 7.04 (dd, J = 8.2, 2.5 Hz, 1H), 3.94 (s,

3H).¹³C NMR (75 MHz, CDCl₃): δ (ppm) 160.2, 157.3, 146.6, 140.6, 135.8, 131.9, 131.3, 130.6, 129.9, 127.8, 126.1, 119.9, 119.8, 115.6, 112.7, 55.4. MS (ESI+): C₁₆H₁₃ClNO ([M+H]+); calculated: 270.06, found: 270.07.

6-chloro-2-(m-tolyl)quinoline (10ai): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield =

92%, 233mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.12-8.06 (m, 4H), 7.88 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.66 (dd, J = 9.0, 2.4 Hz, 1H), 7.38-7.34 (m, 2H), 2.46 (s, 3H).¹³C NMR (75 MHz, CDCl₃): δ
(ppm) 157.5, 146.7 139.7, 136.4, 135.7, 131.7, 131.3, 130.5, 129.7, 129.3, 128.5, 127.6, 127.4, 126.1, 119.7, 21.4. MS (ESI+): C₁₆H₁₃ClN ([M+H]+); calculated: 254.07, found: 254.09.

6-chloro-2-(o-tolyl)quinoline (10aj): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = CI CH_3 86%, 218mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.13 (t, J = 8.1 Hz, 2H), 7.87 (d, J = 2.4 Hz, 1H), 7.69 (dd, J = 9.0, 2.3 Hz, 1H), 7.59 (d, J = 8.5 Hz, 1H), 7.53-7.50 (m, 1H), 7.41-7.32 (m, 3H) 2.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 160.5, 146.3, 140.3, 136.0, 132.1, 131.2, 130.9, 129.7, 128.7, 127.3, 126.2, 126.1, 123.3, 20.4. MS (ESI+): C₁₆H₁₃ClN ([M+H]+); calculated: 254.07, found: 254.09.

6-chloro-2-(4-nitrophenyl)quinoline (10ak): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 70%, 198mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.23 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 8.6 Hz, 2H), 7.86 (d, J = 2.3 Hz, 2H), 7.74 (d, J = 2.3 Hz, 1H), 7.45 (d, J = 2.5 Hz, 1H), 6.63 (d, J = 8.8 Hz, 1H). ¹³C

NMR (75 MHz, CDCl₃): δ (ppm) 154.7, 148.5, 146.4, 144.7, 136.6, 133.2, 131.4, 129.3, 128.4, 128.1, 126.3, 124.1, 119.7. MS (ESI+): C₁₅H₉ClN₂O₂ ([M]+); calculated: 284.03, found: 284.06. **6-chloro-2-(pyridin-4-yl)quinoline (10al)**: Eluent: Hexane/Ethyl acetate (20:1). White solid

(yield = 76%, 182mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.73 (d, J = 5.1 Hz, 2H), 8.24 – 8.06 (m, 2H), 8.01 – 7.99 (m, 2H), 7.84 (dd, J = 8.7, 3.0 Hz, 1H), 7.78 – 7.72 (m, 1H), 7.67 – 7.63 (m, 1H). ¹³C NMR (75 MHz, CDCl₃):

δ (ppm) 154.5, 150.4, 146.6, 137.3, 136.3, 132.9, 131.5, 131.0, 130.1, 129.9. 128.3, 127.6, 126.2, 121.5, 119.2. MS (ESI+): C₁₄H₉ClN₂ ([M]+); calculated: 240.04, found: 240.07.

6-chloro-2-(naphthalen-2-yl)quinoline (10am): Eluent: Hexane/Ethyl acetate (20:1). White solid (yield = 88%, 253mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.61 (s, 1H), 8.37 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (dd, J = 8.8, 4.1 Hz, 2H), 8.06 – 7.98 (m, 3H), 7.95 – 7.89 (m, 1H), 7.83 (d, J = 2.4 Hz, 1H), 7.70 (dd, J =

9.0, 2.4 Hz, 1H), 7.59 – 7.54 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 157.4, 149.8, 136.5, 135.9, 133.9, 133.5, 131.9, 131.3, 130.7, 128.9, 128.7, 127.8. 127.2, 126.9, 126.5, 126.2, 124.9, 119.9. MS (ESI+): C₁₉H₁₂ClN ([M]+); calculated: 289.06, found: 289.08.

6-chloro-2-hexylquinoline (10an): Eluent: Hexane/Ethyl acetate (20:1). Colorless Oil (yield = CI $^{CH}_{N}$ (300 MHz, CDCl₃): δ (ppm) 8.00-7.92 (m, 2H), 7.77-7.71 (m, 1H), 7.64-7.53 (m, 1H), 7.34-7.28 (m, 1H), 2.97 (dd, 2H), 7.77-7.71 (m, 1H), 7.64-7.53 (m, 1H), 7.34-7.28 (m, 1H), 2.97 (dd, 2H), 7.77-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.77-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.77-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.77-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.77-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.71 (m, 2H), 7.64-7.53 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.71 (m, 2H), 7.74-7.71 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.28 (m, 2H), 7.74-7.71 (m, 2H), 7.74-7.71

 $J = 8.6, 7.2 \text{ Hz}, 2\text{H}, 1.86-1.76 \text{ (m, 2H)}, 1.46-1.40 \text{ (m, 5H)}, 0.97-0.87 \text{ (m, 4H)}. {}^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3): \delta \text{ (ppm)} 163.5, 146.2, 135.3, 131.2, 130.4, 130.2, 127.3, 126.1, 122.3, 39.3, 31.7, 29.9, 29.2, 22.6, 14.1. MS (ESI+): C_{15}H_{19}\text{ClN} ([M+H]+); calculated: 248.120, found: 248.125.$

1H-indole³¹ (**11a**): Eluent: Hexane/Ethyl acetate (20:1). Colorless Liquid (yield = 90%, 105mg). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.17 (s, 1H), 7.70 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.45-7.41(m, 1H), 7.25-7.16(m, 3H), 6.61-6.59(m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 135.8, 127.9, 124.1, 122.0, 120.7, 119.8, 111.0, 102.6.

Fig. S12 ¹H NMR spectrum of compound 5aa (300 MHz, CDCl₃).

Fig. S13 ¹³C NMR spectrum of compound 5aa (75 MHz, CDCl₃).

Fig. S14 ¹H NMR spectrum of compound 5ab (300 MHz, CDCl₃).

Fig. S15 ¹³C NMR spectrum of compound 5ab (75 MHz, CDCl₃).

Fig. S16 ¹H NMR spectrum of compound 5ac (300 MHz, CDCl₃).

Fig. S17¹³C NMR spectrum of compound 5ac (75 MHz, CDCl₃).

Fig. S18 ¹H NMR spectrum of compound 5ad (300 MHz, CDCl₃).

Fig. S19 ¹³C NMR spectrum of compound 5ad (75 MHz, CDCl₃).

Fig. S20 ¹H NMR spectrum of compound 5ae (300 MHz, CDCl₃).

Fig. S21 ¹³C NMR spectrum of compound 5ae (75 MHz, CDCl₃).

Fig. S22 ¹H NMR spectrum of compound 5af (300 MHz, CDCl₃).

Fig. S23 ¹³C NMR spectrum of compound 5af (75 MHz, CDCl₃).

Fig. S24 ¹⁹F NMR spectrum of compound 5af (282 MHz, CDCl₃).

Fig. S25 ¹H NMR spectrum of compound 5ag (300 MHz, CDCl₃).

Fig. S26 ¹³C NMR spectrum of compound 5ag (75 MHz, CDCl₃).

Fig. S27 ¹H NMR spectrum of compound 5ah (300 MHz, CDCl₃).

Fig. S28 ¹³C NMR spectrum of compound 5ah (75 MHz, CDCl₃).

Fig. S29 ¹H NMR spectrum of compound 5ai (300 MHz, CDCl₃).

Fig. S30 ¹³C NMR spectrum of compound 5ai (75 MHz, CDCl₃).

Fig. S31 ¹H NMR spectrum of compound 5aj (300 MHz, CDCl₃).

Fig. S32 ¹³C NMR spectrum of compound 5aj (75 MHz, CDCl₃).

Fig. S33 ¹H NMR spectrum of compound 5ak (300 MHz, CDCl₃).

Fig. S34 ¹³C NMR spectrum of compound 5ak (75 MHz, CDCl₃).

Fig. S35 ¹H NMR spectrum of compound 5al (300 MHz, CDCl₃).

Fig. S36 ¹³C NMR spectrum of compound 5al (75 MHz, CDCl₃).

Fig. S37 ¹H NMR spectrum of compound 5am (300 MHz, CDCl₃).

Fig. S38 ¹³C NMR spectrum of compound 5am (75 MHz, CDCl₃).

Fig. S39 ¹⁹F NMR spectrum of compound 5am (282 MHz, CDCl₃).

Fig. S40 ¹H NMR spectrum of compound 5an (300 MHz, CDCl₃).

Fig. S41 ¹³C NMR spectrum of compound 5an (75 MHz, CDCl₃).

Fig. S42 ¹H NMR spectrum of compound 9aa (300 MHz, CDCl₃).

Fig. S43 ¹³C NMR spectrum of compound 9aa (75 MHz, CDCl₃).

Fig. S44 ¹H NMR spectrum of compound 9ab (300 MHz, CDCl₃).

Fig. S45 ¹³C NMR spectrum of compound 9ab (75 MHz, CDCl₃).

Fig. S46 ¹H NMR spectrum of compound 9ac (300 MHz, CDCl₃).

Fig. S47 ¹³C NMR spectrum of compound 9ac (75 MHz, CDCl₃).

Fig. S48 ¹H NMR spectrum of compound 9ad (300 MHz, CDCl₃).

Fig. S49 ¹³C NMR spectrum of compound 9ad (75 MHz, CDCl₃).

Fig. S50 ¹H NMR spectrum of compound 9ae (300 MHz, CDCl₃).

Fig. S51 ¹³C NMR spectrum of compound 9ae (75 MHz, CDCl₃).

Fig. S52 ¹H NMR spectrum of compound 9af (300 MHz, CDCl₃).

Fig. S53 ¹³C NMR spectrum of compound 9af (75 MHz, CDCl₃).

Fig. S54 ¹H NMR spectrum of compound 9ag (300 MHz, CDCl₃).

Fig. S55 13 C NMR spectrum of compound 9ag (75 MHz, CDCl₃).

Fig. S56 ¹H NMR spectrum of compound 9ah (300 MHz, CDCl₃).

Fig. S57 ¹³C NMR spectrum of compound 9ah (75 MHz, CDCl₃).

Fig. S58 ¹H NMR spectrum of compound 9ai (300 MHz, CDCl₃).

Fig. S59 ¹³C NMR spectrum of compound 9ai (75 MHz, CDCl₃).

-84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 f1 (ppm)

Fig. S60 ¹⁹F NMR spectrum of compound 9ai (282 MHz, CDCl₃).

Fig. S61 ¹H NMR spectrum of compound 9aj (300 MHz, CDCl₃).

Fig. S62 ¹³C NMR spectrum of compound 9aj (75 MHz, CDCl₃).

Fig. S63 ¹⁹F NMR spectrum of compound 9aj (282 MHz, CDCl₃).

Fig. S64 ¹H NMR spectrum of compound 9ak (300 MHz, CDCl₃).

Fig. S65 ¹³C NMR spectrum of compound 9ak (75 MHz, CDCl₃).

Fig. S66 ¹H NMR spectrum of compound 9al (300 MHz, CDCl₃).

Fig. S67 ¹³C NMR spectrum of compound 9al (75 MHz, CDCl₃).

Fig. S68 ¹H NMR spectrum of compound 9am (300 MHz, CDCl₃).

Fig. S69 ¹³C NMR spectrum of compound 9am (75 MHz, CDCl₃).

Fig. S70 ¹H NMR spectrum of compound 9an (300 MHz, CDCl₃).

Fig. S71¹³C NMR spectrum of compound 9an (75 MHz, CDCl₃).

Fig. S72 ¹H NMR spectrum of compound 9ao (300 MHz, CDCl₃).

Fig. S73 ¹³C NMR spectrum of compound 9ao (75 MHz, CDCl₃).

Fig. S74 ¹H NMR spectrum of compound 10aa (300 MHz, CDCl₃).

Fig. S75 ¹³C NMR spectrum of compound 10aa (75 MHz, CDCl₃).

Fig. S76 ¹H NMR spectrum of compound 10ab (300 MHz, CDCl₃).

Fig. S77 ¹³C NMR spectrum of compound 10ab (75 MHz, CDCl₃).

Fig. S78 ¹H NMR spectrum of compound 10ac (300 MHz, CDCl₃).

Fig. S79 ¹³C NMR spectrum of compound 10ac (75 MHz, CDCl₃).

Fig. S80 ¹H NMR spectrum of compound 10ad (300 MHz, CDCl₃).

Fig. S81 ¹³C NMR spectrum of compound 10ad (75 MHz, CDCl₃).

Fig. S82 ¹H NMR spectrum of compound 10ae (300 MHz, CDCl₃).

Fig. S83 ¹³C NMR spectrum of compound 10ae (75 MHz, CDCl₃).

Fig. S84 ¹⁹F NMR spectrum of compound 10ae (282 MHz, CDCl₃).

Fig. S85 ¹H NMR spectrum of compound 10af (300 MHz, CDCl₃).

Fig. S86 ¹³C NMR spectrum of compound 10af (75 MHz, CDCl₃).

Fig. S87 ¹⁹F NMR spectrum of compound 10af (282 MHz, CDCl₃).

Fig. S88 ¹H NMR spectrum of compound 10ag (300 MHz, CDCl₃).

Fig. S89 13 C NMR spectrum of compound 10ag (75 MHz, CDCl₃).

Fig. S90 ¹H NMR spectrum of compound 10ah (300 MHz, CDCl₃).

Fig. S91 ¹³C NMR spectrum of compound 10ah (75 MHz, CDCl₃).

Fig. S92 ¹H NMR spectrum of compound 10ai (300 MHz, CDCl₃).

Fig. S93 13 C NMR spectrum of compound 10ai (75 MHz, CDCl₃).

Fig. S94 ¹H NMR spectrum of compound 10aj (300 MHz, CDCl₃).

Fig. S95 ¹³C NMR spectrum of compound 10aj (75 MHz, CDCl₃).

Fig. S96 ¹H NMR spectrum of compound 10ak (300 MHz, CDCl₃).

Fig. S97 ¹³C NMR spectrum of compound 10ak (75 MHz, CDCl₃).

Fig. S98 ¹H NMR spectrum of compound 10al (300 MHz, CDCl₃).

Fig. S99 ¹³C NMR spectrum of compound 10al (75 MHz, CDCl₃).

Fig. S100 ¹H NMR spectrum of compound 10am (300 MHz, CDCl₃).

Fig. S101 ¹³C NMR spectrum of compound 10am (75 MHz, CDCl₃).

Fig. S102 ¹H NMR spectrum of compound 10an (300 MHz, CDCl₃).

Fig. S103 ¹³C NMR spectrum of compound 10an (75 MHz, CDCl₃).

Fig. S104 ¹H NMR spectrum of compound 11a (300 MHz, CDCl₃).

Fig. S105 ¹³C NMR spectrum of compound 11a (75 MHz, CDCl₃).

Fig. S106 ¹H NMR spectrum of compound 6a' (300 MHz, CDCl₃).

Fig. S107 ¹H NMR spectrum of compound 2f' (300 MHz, CDCl₃).

Fig. S108 ¹H NMR spectrum of compound 4n'' (300 MHz, CDCl₃).

Fig. S109 ¹H NMR spectrum of cyclobutanone (300 MHz, CDCl₃).

Fig. S110 HRMS of intermediates **[I2]**⁺, **[I4]**⁺: when the reaction was carried out with 1phenylethanol and catalyst **1a** in presence of base.

Fig. S111 ¹H NMR spectrum of ligand $(N_{py}^N_{inime}^N_{py} = \underline{py} - CH = \underline{N} - NH - \underline{py})$ and $[Zn(N_{py}^N_{inime}^N_{py})Cl_2]$ **1c** (400 MHz, DMSO-*d*₆).

Appendix: supplementary data

CCDC deposition numbers 2348683 (1a), 2348684 (1b), 2349095 (5ag) and 2349099 (10aj) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via <u>www.ccdc.cam</u>. ac.uk/data_request/cif or by emailing data_request@ccdc. cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; Fax: + 44 1223 336033.

References

1. A.D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.

2. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B: Condens. Matter 1988, 37, 785-789.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09 (Revision A.01), Gaussian, Inc., Wallingford, CT, (2009).

4. J. Autschbach, T. Ziegler, S.J.A. Gisbergen, E.J. Baerends, J. Chem. Phys. 2002, 116, 6930-6940.

5. K.L. Bak, P. Jørgensen, T. Helgaker, K. Rund, H.J.A. Jenson, J. Chem. Phys. 1993, 98, 8873-8887.

6. T. Helgaker, P. Jørgensen, J. Chem. Phys. 1991, 95, 2595-2601.

7. E.K.U. Gross, W. Kohn, Adv. Quantum Chem. 1990, 21, 255-291.

8. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.

S90

- 9. M. Cossi, V. Barone, J. Chem. Phys. 2001, 115, 4708-4717.
- 10. V. Barone, M. Cossi, J. Phys. Chem. 1998, 102, 1995-2001.
- 11. T. Liu, H.X. Zhang, B.H. Xia, J. Phys. Chem. 2007, 111, 8724-8730.
- 12. A. Albertino, C. Garino, S. Ghiani, J. Organomet. Chem. 2007, 692, 1377-1391.
- 13. X. Zhou, H.X. Zhang, Q.J. Pan, B.H. Xia, J. Phys. Chem. 2005, 109, 8809-8818.
- 14. X. Zhou, A.M. Ren, J.K. Feng, J. Organomet. Chem. 2005, 690, 338-347.
- 15. P.J. Hay, W.R. Wadt, J. Chem. Phys. 1985, 82, 299-310.

16. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270-283.

17. M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, *J. Am. Chem. Soc.* 1982, **104**, 2797-2803.

18. J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 1980, 102, 939-947.

19. N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 2008, 29, 839-845.

20. S. Roy, S. Pramanik, S. C. Patra, B. Adhikari, A. Mondal, S. Ganguly and K. Pramanik, *Inorg. Chem.*, 2017, **56**, 12764–12774.

21. SAINT, Data Reduction and Frame Integration Program for the CCD Area-Detector System. Bruker Analytical X-ray Systems, Madison, Wisconsin, USA, 1997–2006.

22. G.M. Sheldrick, SADABS, Program for Area Detector Absorption Correction, Institute for Inorganic Chemistry, University of Göttingen, Germany (1996).

23. G.M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3-8.

24. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.

25. A. Charvieux, J. B. Giorgi, N. Duguet, E. Métay, Green Chem. 2018, 20, 4210-4216.

26. G. Zhang, J. Wu, H. Zeng, S. Zhang, Z. Yin, S. Zheng, Org. Lett. 2017, 19, 1080–1083.

27. C. Chaudhari, K. Sato, Y. Ogura, S.-I. Miayahara, K. Nagaoka, *ChemCatChem* 2020, **12**, 2198–22.

28. B. Guo, T.-Q. Yu, H.-X. Li, S.-Q. Zhang, P. Braunstein, D. J. Young, H.-Y. Li, J.-P. Lang, *ChemCatChem* 2019, **11**, 2500–2510.

29. S. Das, S. Sinha, D. Samanta, R. Mondal, Gargi Chakraborty, P. Brandaõ, N. D. Paul, *J. Org. Chem.* 2019, **84**, 10160–10171.

30. A. Maji, A. Singh, N. Singh, K. Ghosh, ChemCatChem 2020, 12, 3108–3125.

- 31. S. Chakraborty, R. Mondal, S. Pal, A. K. Guin, L. Roy, N. D. Paul, J. Org. Chem. 2023, 88, 771–787.
- 32. K. Das, A. Mondala, D. Srimani, Chem. Commun. 2018, 54, 10582-10585.
- 33. J. Zhou, Y. Zou, P. Zhou, Z. Chen and J. Li, Org. Chem. Front., 2019, 6, 1594-1598.