Supporting Information

An AIE-active tetra-aryl imidazole-derived chemodosimeter for turn-on recognition of hydrazine and its bioimaging in living cells

Qing-Xiu Li, Yan-Ju Yuan, Rui-Xing Cheng, Yu Ma, Rui Tan*, Ya-Wen Wang*, and Yu Peng

School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China

tanruiswjtu@sohu.com, ywwang@swjtu.edu.cn

Table of Contents

1.	General methods2
2.	Summary of AIE-based fluorescent probes for hydrazine4
3.	Synthesis of the M-CHO and SWJT-317
4.	¹ H, ¹³ C NMR spectra and LC-MS of SWJT-31 8
5.	Basic properties of SWJT-3110
6.	Application of SWJT-31 as test strips17
7.	¹ H, ¹³ C NMR spectra and LC-MS of the product SWJT-N2 18
8.	Cytotoxicity of SWJT-31 in living HeLa cells20

1. General methods

Aniline, terephthalaldehyde, acetic acid, p-Anisil, ammonium acetate, malonitrile, ethanol, deionized water, N₂H₄, Cys, ClO⁻ and other analytical reagents were all purchased from Innochem Technology Co., Ltd.

¹H and ¹³C NMR spectra were measured with a Bruker AVB-600 spectrometer and Bruker AVB-600 spectrometer, TMS was used as the internal reference, and LC-MS spectra were measured with a Waterse2695 spectrometer. Fluorescence spectra were recorded by an F7000 spectrofluorimeter from Hitachi PharmaSpec. Fluorescence imaging of N_2H_4 in HeLa cells was recorded on a Nikon A1R⁺ (Japan) laser scanning confocal microscope.

SWJT-31 was dissolved in DMSO to prepare 1.0 mM stock solution, N₂H₄ and other other analytical such as: triethylamine, aniline, n-butylamine, NH₄⁺, Na⁺, K⁺, Mg²⁺, Zn²⁺, Cys, Hcy, GSH, ClO⁻, HCO₃⁻, NO₂⁻, SO₄²⁻, Br⁻, S²⁻, urea, H₂O₂, ONOO⁻, Ser, Trp, Leu, Glu were dissolved in distilled water to prepare 10.0 mM stock solution. Ultraviolet-visible absorption and fluorescence spectra were recorded after 20.0 μ L of **SWJT-31** stock solution and 20.0 μ L of N₂H₄ stock solution were diluted to 2.0 mL with DMSO/HEPES (6: 4, v/v, pH = 7.4.) buffer solution and incubated at 37°C for 30 min. The selectivity for the N₂H₄ is investigated by adding other analytical reagents solutions instead of N₂H₄ in a similar way. For fluorescence spectra of AIE effect test, the excitation was set at 420 nm, and the excitation and emission gaps were 10/5 nm. However, fluorescence spectra for detecting hydrazine hydrate, the excitation was set at 340 nm, and the excitation and emission gaps were 5/2.5 nm.

HeLa cells (human cervical cancer cells) were plated in 96-well plates and incubated in a 5% carbon dioxide, 37°C incubators for 24h. After removing the medium, add probes of different concentrations (0, 5.0 μ M, 10.0 μ M, 15.0 *M*m, 20.0 μ M) to the fresh medium for 24 hours in an incubator. Then, 10.0 μ L of MTT (5 mg/mL in PBS, pH 7.4) was added to each well, and after the cells were incubated for another 2 hours, the culture supernatant was removed, and the resulting formazan crystals were dissolved in 150 μ L of dimethyl sulfoxide. Next, the plates were incubated for an additional 10 minutes at 37°C on a shaker at 60-70 rpm. Finally, the absorbance (A) of each well at 570 nm was measured using a microplate reader. (Cell relative viability = Asample / Acontrol*100%).

HeLa cells were plated in glass bottom dishes with fresh medium and incubated in a 37° C incubator for 24 hours. After washing with PBS buffer, fresh medium and 10.0 μ M probe were added and incubated for 30 min. After washing three times with PBS buffer, the medium and 40.0 μ M N₂H₄ were added for treatment for 30 min. Finally, after washing three times with PBS buffer, the dishes were placed on a confocal laser scanning microscope for cell imaging.

2. Summary of AIE-based fluorescent probes for hydrazine.

probes	Solvent system (v/v)	LOD	Response time	reference
	DMSO/PBS (9/1)	0.11 nM	-	30
	DMSO/PBS (2/3)	11 nM	60 min	31
° − N L − N − N − N − N − N − N − N − N − N −	CH ₃ CN/H ₂ O (3/7)	2.90 ppb	45 min	32
Julion Colorer	DMSO/PBS (6/4)	0.04 µM	25 min	33
a-10-01-0	THF/H ₂ O (9:1)	0.119 nM	-	34
	DMSO/tris-HCl (3/1)	0.196 μM	20 min	35
	DMSO/PBS (9/1)	2.88 ppb	3 min	36
	DMSO/H ₂ O (1/99)	1.2 ppb	2 min	37
	CH ₃ CN/HEPES (3/97)	6.4 ppb	-	38

Table S1. The comparison of the reported AIE-based hydrazine fluorescent probes.

	DMSO/HEPES (6/4)	33.8 nM	30 min	This work
--	---------------------	---------	--------	-----------

3. Synthesis of the M-CHO and SWJT-31.

Q-CHO was synthesized according to previous work³⁶. Aniline (93 mg, 1.0 mmol) and terephthalaldehyde (134 mg, 1.0 mmol) were dissolved in acetic acid (15 mL) and reacted at room temperature. After 1 h, p–Anisil (270 mg, 1.0 mmol) and ammonium acetate (539 mg, 7.0 mmol) were added to the reaction flask to react at 120 °C for 10 h to obtain **Q-CHO**.

The synthetic procedures of **SWJT-31** were shown in Scheme 2. **Q-CHO** (92 mg, 0.2 mmol) and malononitrile (12.6 μ L, 0.2 mmol) were dissolved in anhydrous ethanol (2.0 mL), followed by piperidine (8.0 μ L). Next, the mixture was stirred at room temperature overnight, and the orange yellow precipitate was precipitated and then filtered. After precipitation and purification, the orange yellow powder **SWJT-31** (71 mg) was obtained with a yield of 69.8%.¹H NMR (600 MHz, CDCl₃): δ = 7.76 (d, *J* = 8.6 Hz, 2H), 7.66 (s, 1H), 7.59 (d, *J* = 8.6 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.39–7.33 (m, 3H), 7.10–7.03 (m, 4H), 6.83–6.76 (m, 4H), 3.79(s, 3H), 3.77 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =159.5, 158.8, 158.7, 144.1, 139.2, 136.9, 136.4, 132.3(2C), 131.8, 130.7(2C), 129.9, 129.5(2C), 129.0, 128.9(2C), 128.4(2C), 128.3(2C), 126.7, 122.1, 114.0(2C), 113.9, 113.7(2C), 112.7, 81.9, 55.2, 55.1 ppm. LC-MS: *m/z* 475.2 [M + H]⁺.

4. ¹H, ¹³C NMR spectra and LC-MS of SWJT-31.

Figure S2. ¹³C NMR spectrum of SWJT-31 in CDCl_{3.}

Figure S3. LC-MS spectrum of SWJT-31.

5. Basic properties of SWJT-31.

Figure S4. Fluorescence spectra of **SWJT-31** (10.0 µM) in the presence of different viscosity in glycerol/ DMSO fraction.

Figure S5. In DMSO/HEPES (v/v=1:99, pH = 7.4) buffer solution, absorption spectra of SWJT-31 (10.0 μ M).

Figure S6. Size distribution of SWJT-31 in the aggregated state in 99% HEPES buffer solution (pH = 7.4).

Figure S7. The fluorescence enhancement times of SWJT-31 (10.0 μ M) and SWJT-31+ N₂H₄ (100.0 μ M) in different organic phases at 497nm (λ_{ex} = 340 nm).

Figure S8. The fluorescence enhancement times of **SWJT-31** (10.0 μ M) and **SWJT-31** (10.0 μ M) in different organic phases at 497nm ($\lambda_{ex} = 340$ nm).

Figure S9. Fluorescence spectra versus the content of the DMSO/HEPES mixture of SWJT-31 in the presence of N₂H₄(100.0 μ M) (λ_{ex} = 340 nm).

Figure S10. Effects of pH on the reaction of SWJT-31 (10.0 μ M) with N₂H₄ (100.0 μ M) ($\lambda_{ex} = 340$ nm).

Figure S11. Fluorescence spectra of SWJT-31+ N_2H_4 and SWJT-31+ SO_3^{2-} .

Figure S12. In the absence or presence of N₂H₄ (10.0 μ M), time-dependent fluorescence intensity of SWJT-31 (10.0 μ M) in DMSO: HEPES (6:4, v/v, pH = 7.4) buffer solution at 497 nm (λ_{ex} = 340 nm).

Figure S13. Pseudo first-order kinetic plots of SWJT-31 (10.0 μ M) with the addition of N₂H₄ in HEPES buffer solution (60% DMSO, pH = 7.4) (λ_{ex} = 340 nm).

The result of the analysis as follows:

$$\ln \left[(F_{\text{max}} - F_{\text{t}}) / (F_{\text{max}}) \right] = -k_{\text{obst}}$$
$$t_{1/2} = \ln 2/k_{\text{obst}}$$

Where F_{max} and F_{t} are the fluorescent intensity at maximum emission wavelength, and time *t*. k_{obs} is the pseudo-first-order rate constant.

$$k_{\rm obs} = 9.06 \times 10^{-4} \, {\rm s}^{-1}$$

 $t_{1/2} = 12.74 \, {\rm min}$

6. Application of SWJT-31 as test strips.

Sample	spiked(µM)	Found mean ± SD ^a (μM)	Recovery
	0	Not Detected	
T (2	1.854±0.027	92.69%
Tape water	6	5.669±0.115	94.49%
	10	10.736±0.029	107.4%
	0	Not Detected	
G • 4	2	1.916±0.012	95.81%
Spring water	6	6.259±0.027	104.3%
	10	10.17±0.239	101.7%
	0	Not Detected	
T' T I	2	1.887±0.043	94.37%
Jing Lake	6	5.214±0.106	86.90%
	10	9.724±0.106	97.24%

Table S2. Determination of N_2H_4 in water samples.

7. ¹H, ¹³C NMR spectra and LC-MS of the product SWJT-N2.

Figure S15. ¹³C NMR spectrum of the product SWJT-N2 in CDCl₃.

Figure S16. LC-MS spectrum of the product SWJT-N2.

8. Cytotoxicity of SWJT-31 in living HeLa cells.

Figure S17. The viability of HeLa cells was determined by MTT assay after incubation with different concentrations of SWJT-31 for 24 h.