Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Selective 1,1- and 1,2-Dibromination of the Phenylethanes in the

Presence of NaBr/NaBrO₃/H₂SO₄ as the Bromination Reagent

Haohao Jiang,[‡] Kaidi Jin,[‡] Xia Lin,[‡] Mengzhao Yu, Xiaohui Xiao* and Xiaolei Huang*

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China. E-mails: xxh@zjnu.cn; huangxl@zjnu.edu.cn

Table of Contents

- I. General remarks
- II. General procedure for 1,1-dibromination of phenylethanes
- III. General procedure for direct synthesis of ketones from phenylethanes
- IV. General procedure for 1,2-dibromination of phenylethanes
- V. Optimization of elimination of **2c** for the synthesis of phenylacetylenes
- VI. General procedure for the synthesis of phenylacetylenes from $\mathbf{2}$
- VII. General procedure for the synthesis of phenylacetylenes from 4

VIII. References

IX. Copies of ¹H and ¹³C NMR spectra

I. General remarks

NMR spectra were obtained on Bruker AV-400 MHz and AV-600 MHz spectrometers. The ¹H NMR chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: $\delta = 7.26$ ppm; DMSO-*d*₆: $\delta = 2.50$ ppm). The ¹³C NMR chemical shifts were given using CDCl₃ or DMSO-*d*₆ as the internal standard (CDCl₃: $\delta = 77.16$ ppm; DMSO-*d*₆: $\delta = 39.52$ ppm). High resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). GC-MS analysis was conducted on a Thermo Scientific DSQ II single quadrupole GC-MS instrument with Agilent J & W GC column DB-5MS-UI. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification.Unless otherwise noted, all reagents were obtained from commercial suppliers and used from commercial suppliers and used without further purification.

Phenylethanes were were purchased from Alfa Aesar, J&K Scientific, and Adamas-beta Ltd. The numbers of phenylethanes are shown in Figure S1.

Figure 1. The numbers of phenylethanes.

II. General procedure for 1,1-dibromination of phenylethanes

A 50-mL boiling flask-3-neck with a magnetic stir bar was charged with 1 (3 mmol, 1

equiv), DCE (10 mL), 75% H₂SO₄ (0.52 mL, 6 mmol, 2.0 eq.), NaBr (772 mg, 7.5 mmol, 2.5 eq.). The reaction mixture was heated to 50 °C, and 0.5 mL of AIBN solution (0.8 M in DCE) was added. By Using the automatic injection pump, NaBrO₃ solution (588 mg of NaBrO₃ in 1 mL of H₂O, 1.3 eq.) and AIBN solution (1.0 mL, 0.8 M in DCE) were injected simultaneously slowly to the flask at an injection rate of 0.167 mL/h. After the injection is completed, the reaction continued for 14 h. Upon completion, the reaction mixture was cooled to rt and then quenched with 10 mL of saturated aqueous NaHSO₃. The resulting mixture was extracted with DCE (3x), and the combined organic phase was dried with Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel to give the product.

4-(1,1-Dibromoethyl)phenyl acetate (2a)

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 (v/v), R_f = 0.25) afforded the product as colorless oil (792 mg, 82%).

¹H NMR (400 MHz, CDCl₃) δ = 8.01 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 2.56 (s, 3H), 2.33 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ = 166.1, 142.6, 130.5, 130.1, 129.1, 61.2, 32.4, 14.4 ppm.

HRMS (ESI): calcd for C₁₀H₁₁Br₂O₂ [M+H]⁺ 320.9126 u, found 320.9122 u.

4-(1,1-Dibromoethyl)phenol (2b)

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 (v/v), $R_f = 0.35$) afforded the product as colorless oil (756 mg, 90%).

¹H NMR (600 MHz, CDCl₃): δ = 7.90 (d, *J* = 9.0 Hz, 2H), 7.14-7.12 (m, 2H), 6.37 (s, 1H), 2.31 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 168.9, 151.6, 130.2, 121.3, 54.6, 21.3 ppm.

HRMS (ESI): calcd for $C_8H_9Br_2O \ [M+H]^+ 278.9020 \ u$, found 278.9012 u.

1- (1,1-Dibromoethyl) -3-nitrobenzene (2c)

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), R_f = 0.3) afforded the product as a yellow solid (750 mg, 81%). M.p.: 83-85 °C.

¹H NMR (600 MHz, CDCl₃): δ = 8.59-8.58 (m, 1H), 8.19-8.16 (m, 2H), 7.58 (t, *J* = 8.4 Hz, 1H), 3.02 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 148.3, 147.8, 132.9, 129.6, 124.0, 120.6, 58.6, 40.9 ppm.

HRMS (ESI): calcd for C₈H₈Br₂NO [M+H]⁺ 307.8922 u, found 307.8930 u.

1- (1,1-Dibromoethyl) -4-nitrobenzene (2d)¹

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), $R_f = 0.3$) afforded the product as colorless oil (798 mg, 86%).

¹H NMR (600 MHz, CDCl₃): δ = 8.22-8.20 (m, 2H), 7.96-7.94 (m, 2H), 3.00 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 152.3, 147.8, 127.4, 123.6, 58.9, 41.0 ppm.

HRMS (ESI): calcd for C₈H₈Br₂NO [M+H]⁺ 307.8922 u, found 307.8928 u.

Methyl 4-(1,1-dibromoethyl)benzoate (2e)

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 (v/v), $R_f = 0.2$) afforded the product as colorless oil (822 mg, 85%).

¹H NMR (600 MHz, CDCl₃) δ = 8.02 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 2H), 3.93 (s, 3H), 2.99 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ = 166.3, 150.5, 130.7, 129.6, 126.3, 60.8, 52.5, 41.0 ppm.

HRMS (ESI): calcd for $C_{10}H_{11}Br_2O_2$ [M+H]⁺ 320.9126 u, found 320.9132 u.

4-(1,1-Dibromoethyl)benzonitrile (2f)

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), $R_f = 0.3$) afforded the product as colorless oil (708 mg, 82%).

¹H NMR (600 MHz, CDCl₃): δ = 7.89-7.87 (m, 2H), 7.67-7.65 (m, 2H), 2.97 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 150.6, 132.2, 127.0, 118.1, 113.0, 59.4, 40.8 ppm. HRMS (ESI): calcd for C₉H₇Br₂NNa [M+Na]⁺ 309.8843 u, found 309.8851 u.

(4-Chlorophenyl)(4-(1,1-dibromoethyl)phenyl)methanone (2g)

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 (v/v), $R_f = 0.3$) afforded the product as a white solid (1.06 g, 88%). M.p.: 124-127 °C.

¹H NMR (600 MHz, CDCl₃): δ = 7.90-7.88 (m, 2H), 7.78-7.75 (m, 4H), 7.49-7.47 (m, 2H), 3.02 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 194.5, 150.2, 139.4, 137.7, 135.5, 131.6, 129.9, 128.9, 126.3, 60.6, 41.0 ppm.

HRMS (ESI): calcd for $C_{15}H_{11}Br_2CINaO (M+Na)^+ 422.8763 u$, found 422.8757 u.

4-(1,1-Dibromoethyl)pyridine (2h)²

Following the general procedure, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.5$) afforded the product as colorless oil (588 mg, 74%). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.64-8.63$ (m, 2H), 7.63-7.62 (m, 2H), 2.92 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 154.1, 150.3, 120.4, 58.9, 41.6 ppm.

HRMS (ESI): calcd for C₇H₈Br₂N (M+H)⁺ 263.9023 u, found 263.9018 u.

III. General procedure for direct synthesis of ketones from phenylethanes

A 50-mL boiling flask-3-neck with a magnetic stir bar was charged with **1** (3 mmol, 1 equiv), DCE (10 mL), 75% H₂SO₄ (0.52 mL, 6 mmol, 2.0 eq.), NaBr (772 mg, 7.5 mmol, 2.5 eq.). The reaction mixture was heated to 50 °C, and 0.5 mL of AIBN solution (0.8 M in DCE) was added. By Using the automatic injection pump, NaBrO₃ solution (588 mg of NaBrO₃ in 1 mL of H₂O, 1.3 eq.) and AIBN solution (1.0 mL, 0.8 M in DCE) were injected simultaneously slowly to the flask at an injection rate of 0.167 mL/h. After the injection is completed, the reaction continued for 14 h. Upon completion, the reaction mixture was cooled to rt and then quenched with 10 mL of saturated aqueous NaHSO₃. The resulting mixture was extracted with DCE (3x), and the combined organic phase was dried with Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel to give the product.

1-(4-Bromophenyl)ethan-1-one (3a)³

Following the general procedure, purification via column chromatography on silica

gel (petroleum ether/ethyl acetate = 40/1 (v/v), R_f = 0.3) afforded the product as a white solid (510 mg, 85%). M.p.: 51-53 °C (lit.: 50-51 °C).

¹H NMR (400 MHz, CDCl₃): δ = 7.84-7.80 (m, 2H), 7.62-7.59 (m, 2H), 2.59 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 197.2, 136.0, 132.0, 130.0, 128.5, 26.7 ppm.

1-(4-Iodophenyl)ethan-1-one (3b)³

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), R_f = 0.3) afforded the product as a white solid (642 mg, 87%). M.p.: 85-87 °C (lit.: 86 °C).

¹H NMR (400 MHz, CDCl₃): δ = 7.85-7.82 (m, 2H), 7.68-7.65 (m, 2H), 2.58 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 197.5, 138.1, 136.5, 129.9, 101.2, 26.6 ppm.

HRMS (ESI): calcd for $C_8H_8IO [M+H]^+ 246.9620 \text{ u}$, found 246.9610 u.

1-([1,1'-Biphenyl]-4-yl)ethan-1-one (3c)⁴

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), R_f = 0.25) afforded the product as a white solid (492 mg, 84%). M.p.: 120-122 °C (lit.: 119-120 °C).

¹H NMR (400 MHz, CDCl₃): δ = 8.05-8.03 (m, 2H), 7.70-7.68 (m, 2H), 7.65-7.62 (m, 2H), 7.50-7.46 (m, 2H), 7.41-7.39(m, 1H), 2.64 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 197.9, 145.9, 140.0, 136.0, 129.1, 129.0, 128.4, 127.4, 127.3, 26.8 ppm.

HRMS (ESI): calcd for C₁₄H₁₃O [M+H]⁺ 197.0966 u, found 197.0960 u.

1-(2-Bromonaphthalen-1-yl)ethan-1-one (3d)⁵

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 (v/v), R_f = 0.35) afforded the product as a white solid (618 mg, 83%). M.p.: 63-65 °C (lit.: 59-61 °C).

¹H NMR (400 MHz, CDCl₃): δ = 8.74-8.69 (m, 1H), 8.35-8.31 (m, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.67-7.63 (m, 2H), 2.73 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 201.4, 135.6, 132.5, 131.4, 128.9, 128.8, 128.5, 128.4, 128.0, 127.7, 126.6, 30.3 ppm.

HRMS (ESI): calcd for C₁₂H₁₀BrO [M+H]⁺ 248.9915 u, found 248.9909 u.

IV. General procedure for 1,2-dibromination of phenylethanes

A 50-mL boiling flask-3-neck with a magnetic stir bar was charged with **1** (3 mmol, 1 equiv), DCE (10 mL), 75% H₂SO₄ (0.27 mL, 3 mmol, 1 eq.), NaBr (850 mg, 8.22 mmol, 2.74 eq.). The reaction mixture was heated to 105 °C, and 0.5 mL of AIBN solution (0.8 M in DCE) was added. By Using the automatic injection pump, NaBrO₃ solution (308 mg of NaBrO₃ in 1 mL of H₂O, 0.68 eq.) and AIBN solution (1.0 mL, 0.8 M in DCE) were injected simultaneously slowly to the flask at an injection rate of 0.167 mL/h. After the injection is completed, the reaction continued for 14 h. Upon completion, the reaction mixture was cooled to rt and then quenched with 10 mL of saturated aqueous NaHSO₃. The resulting mixture was extracted with DCE (3x), and the combined organic phase was dried with Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel to give the product.

4-(1,2-Dibromoethyl)phenyl acetate (4f)⁶

Following the general procedure, purification via column chromatography on silica

gel (petroleum ether/ethyl acetate = 40/1 (v/v), $R_f = 0.25$) afforded the product as colorless oil (600 mg, 62%).

¹H NMR (600 MHz, CDCl₃): δ = 7.42-7.41 (m, 2H), 7.13-7.11 (m, 2H), 5.14 (dd, *J* = 10.8, 5.4 Hz, 1H), 4.08-4.05 (m, 1H), 3.98 (t, *J* = 10.2 Hz, 1H), 2.31(s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 169.2, 151.1, 136.2, 129.0, 122.0, 50.2, 35.1, 21.3 ppm.

HRMS (ESI): calcd for $C_{10}H_{11}Br_2O_2$ [M+H]⁺ 320.9126 u, found 320.9122 u.

1-(1,2-Dibromoethyl)-4-methylbenzene (4d)⁷

Following the general procedure, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.42$) afforded the product as colorless oil (540 mg, 65%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31-7.29$ (m, 2H), 7.20 (d, J = 7.6 Hz, 2H), 5.15 (dd, J = 10.4, 5.6 Hz, 1H), 4.10-4.00 (m, 2H), 2.37 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 139.4$, 135.8, 129.7, 127.7, 51.2, 35.2, 21.4 ppm. GC-MS (EI): calcd for C₉H₁₀Br₂ 278.0 u, found 278.1 u.

1-(*tert*-Butyl)-3-(1,2-dibromoethyl)benzene (4e)⁸

Following the general procedure, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.45$) afforded the product as colorless oil (643 mg, 67%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.38$ (m, 2H), 7.33-7.31 (m, 1H), 7.26-7.23 (m, 1H), 5.17 (dd, J = 10.0, 5.6 Hz, 1H), 4.11-4.01 (m, 2H), 1.351-1.345 (m, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 151.9, 138.3, 128.7, 126.4, 125.0, 124.7, 51.9, 35.5, 34.9, 31.4 ppm.$

GC-MS (EI): calcd for $C_{12}H_{16}Br_2$ 320.1 u, found 320.0 u.

(1,2-Dibromoethyl)benzene (4c)⁹

Following the general procedure, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.42$) afforded the product as colorless oil (515 mg, 65%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ -7.34 (m, 5H), 5.17-5.13 (m, 1H), 4.11-4.01 (m, 2H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 138.7, 129.3, 129.0, 127.8, 60.0, 35.2 ppm.

GC-MS (EI): calcd for $C_8H_8Br_2$ 264.0 u, found 264.1 u.

1-Bromo-4-(1,2-dibromoethyl)benzene (4a)⁹

Following the general procedure, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.5$) afforded the product as a white solid (636 mg, 62%). M.p.: 60-62 °C (lit.: 60-61 °C).

¹H NMR (400 MHz, CDCl₃): δ = 7.54-7.50 (m, 2H), 7.30-7.26 (m, 2H), 5.09 (dd, J =

11.2, 5.2 Hz, 1H), 4.08-4.04 (m, 1H), 3.97 (t, *J* = 10.8 Hz, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 137.8, 132.2, 129.5, 123.3, 49.7, 34.7 ppm.

GC-MS (EI): calcd for C₈H₇Br₃ 342.9 u, found 342.9 u.

1-(1,2-Dibromoethyl)-4-fluorobenzene (4b)⁹

Following the general procedure, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.5$) afforded the product as colorless oil (468 mg, 55%). ¹H NMR (600 MHz, CDCl₃): $\delta = 7.40-7.38$ (m, 2H), 7.07 (t, J = 8.4 Hz, 2H), 5.13 (dd, J = 10.8, 4.8 Hz, 1H), 4.08 (dd, J = 10.2, 4.8 Hz, 1H), 3.98 (t, J = 10.8 Hz, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃): $\delta 163.0$ (d, $J_{C-F} = 249.15$ Hz), 134.7, 129.7 (d, $J_{C-F} = 45.6$ Hz), 116.0 (d, $J_{C-F} = 21.9$ Hz), 49.9, 35.1 ppm. ¹⁹F NMR (377 MHz, CDCl₃): $\delta -111.7$ ppm.

GC-MS (EI): calcd for $C_8H_7Br_2F$ 282.0 u, found 282.0 u.

4-(1,2-Dibromoethyl)-1,1'-biphenyl (4g)¹⁰

Following the general procedure, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.45$) afforded the product as colorless oil (612 mg, 60%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.62$ -7.59 (m, 4H), 7.49-7.44 (m, 4H), 7.37 (t, J = 7.2 Hz, 1H), 5.23 (dd, J = 10.4, 5.6 Hz, 1H), 4.14-4.05 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 142.2$, 140.4, 137.6, 129.0, 128.2, 127.8, 127.7, 127.2, 50.8, 35.0 ppm.

GC-MS (EI): calcd for $C_{14}H_{12}Br_2$ 340.1 u, found 340.1 u.

V. Optimization of elimination of 2c for the synthesis of phenylacetylenes

A 50-mL boiling flask-2-neck with a magnetic stir bar was charged with base (10.5 mmol, 2.1 equiv) and EtOH (10 mL). 1-(1,1-Dibromoethyl)-3-nitrobenzene **2c** (5 mmol, 1 equiv) was added and the resulting mixture was stirred at T ^oC for t hours. Upon completion, the mixture was filtered through a celite pad and washed with 5-10 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to give 1-ethynyl-3-nitrobenzene **5b**.

Table S1. Optimization of the elimination of $2c^a$

O ₂	D ₂ N Br Br 2c		Base (2.1 eq.) EtOH (10 mL) T ^o C, t h		O ₂ N → 5b	
	Entry	Base	T (°C)	t (h)	Yield $(\%)^b$	
	1	Na ₂ CO ₃	reflux	10	64	
	2	K_2CO_3	reflux	10	88	
	3	NaOH	reflux	10	95	
	4	KOH	reflux	10	94	
	5	NaO'Bu	reflux	10	92	
	6	KO ^t Bu	reflux	10	95	
	7	NaOH	10	10	72	
	8	NaOH	20	10	88	

9	NaOH	30	10	95
10	NaOH	40	10	94
11	NaOH	60	10	95
12	NaOH	30	4	94
13	NaOH	30	2	94
14	NaOH	30	1	91

^{*a*} Reaction conditions: **2c** (3 mmol), base (2.1 eq.) in EtOH (10 mL) at T °C for t h. ^{*b*} Isolated yields.

VI. General procedure for the synthesis of phenylacetylenes from 2

A 50-mL boiling flask-2-neck with a magnetic stir bar was charged with NaOH (6.3 mmol, 2.1 equiv) and EtOH (10 mL). 1,1-Dibromoethyl arene 2 (3 mmol, 1 equiv) was added and the resulting mixture was stirred at 30 °C for 2 hours. Upon completion, the mixture was filtered through a celite pad and washed with 5-10 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to give the alkyne **5**.

4-Ethynylphenol (5a)¹¹

When **2a** was used as starting material, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 (v/v), $R_f = 0.3$) afforded **5a** in 93% yield (330 mg). When **2b** was used as starting material, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 (v/v), $R_f = 0.3$) afforded **5a** in 92% yield (324 mg).

¹H NMR (400 MHz, CDCl₃): δ = 9.90 (s, 1H), 7.29 (d, *J* = 8.8 Hz, 2H), 6.76-6.74 (m, 2H), 3.92 (s, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 158.1, 133.3, 115.7, 112.0, 84.0, 78.4 ppm.

1-Ethynyl-3-nitrobenzene (5b)¹²

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), $R_f = 0.3$) afforded **5b** as yellow oil

(414 mg, 91%).

¹H NMR (600 MHz, CDCl₃): δ = 8.29-8.27 (m, 1H), 8.19-8.16 (m, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.52-7.49 (m, 1H), 3.22 (s, 1H). ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 148.1, 129.5, 127.0, 124.6, 123.6, 81.0, 79.8 ppm.

1-Ethynyl-4-nitrobenzene (5c)¹²

Following the general procedure, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), $R_f = 0.3$) afforded **5c** as yellow oil (396 mg, 90%).

¹H NMR (600 MHz, CDCl₃): δ = 8.20-8.18 (m, 2H), 7.64-7.62 (m, 2H), 3.36 (s, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 147.7, 133.1, 129.0, 123.7, 82.5, 81.7 ppm.

4-Ethynylbenzoic acid (5d)¹³

When **2e** was used as starting material, purification via column chromatography on silica gel (petroleum ether/ethyl acetate/AcOH = 300/100/1 (v/v/v), R_f = 0.3) afforded **5d** in 85% yield (372 mg). When **2f** was used as starting material, **5d** was obtained obtained in 90% yield (395 mg). M.p.: 225 °C (decomp) (lit.: 224 °C decomp).

¹H NMR (600 MHz, DMSO-*d*₆) δ = 13.16 (s, 1H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 4.44 (s, 1H) ppm.

(4-Chlorophenyl)(4-ethynylphenyl)methanone (5e)¹⁴

KO'Bu (2.1 eq.) and HO'Bu (10 mL) were used, purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1 (v/v), $R_f = 0.4$) afforded **5e** in 95% yield (684 mg).

¹H NMR (600 MHz, CDCl₃): δ = 7.73 (d, *J* = 8.3 Hz, 4H), 7.60 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 3.26 (s, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 194.5, 139.1, 136.9, 135.4, 132.0, 131.3, 129.7, 128.7, 126.4, 82.6, 80.3 ppm.

HRMS (ESI) calcd for C₁₅H₉ClNaO (M+Na)⁺ 263.0228 u, found 265.0234 u.

4-Ethynylpyridine (5f)

KO'Bu (2.1 eq.) and HO'Bu (10 mL) were used, purification via column chromatography on silica gel (petroleum ether, $R_f = 0.32$) afforded **5b** as colorless oil (270 mg, 87%).

¹H NMR (600 MHz, CDCl₃): δ = 8.60-8.59 (m, 2H), 7.35-7.34 (m, 2H), 3,29 (s, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ = 150.0, 130.5, 126.2, 82.0, 81.1 ppm.

HRMS (ESI) calcd for $C_7H_6N (M+H)^+$ 104.0510 u, found 104.0595 u.

VII. General procedure for the synthesis of phenylacetylenes from 4

A 50-mL boiling flask-2-neck with a magnetic stir bar was charged with NaOH (10.5 mmol, 2.1 equiv) and EtOH (10 mL). 1,2-Dibromoethyl arene **4** (5 mmol, 1 equiv) was added and the resulting mixture was stirred at 30 °C for 2 hours. Upon completion, the mixture was filtered through a celite pad and washed with 5-10 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to give the alkyne **5**.

VIII. References

(1) Zhao, M.; Li, M.; Lu, W. Synthesis 2018, 50, 4933-4939.

(2) Kutney, J. P.; Cretney, W.; Tabata, T.; Frank, M. Can. J. Chem. 1964, 42, 698-702.

(3) Plaçais, C.; Kaldas, S. J.; Donnard, M.; Panossian, A.; Bernier, D.; Pazenok, S.; Leroux, F. R. *Chem. Eur. J.* **2023**, *29*, e202301420.

(4) Xu, S. D.; Sun, F. Z.; Deng, W. H.; Hao, H.; Duan, X. H. New J. Chem. 2018, 42,

16464-16468.

- (5) Hellwinkel, D.; Bohnet, S. Chem. Ber. 1987, 120, 1151-1173.
- (6) Dağalan, Z.; Koçak, R.; Daştan, A.; Nişancı, B. Org. Lett. 2022, 24, 8261-8264.
- (7) Qi, Z.; Li, W.; Niu, Y.; Benassi, E.; Qian, B. Org. Lett. 2021, 23, 2399-2404.
- (8) Martins, N. S.; Alberto, E. E. New J. Chem. 2018, 42, 161-167.
- (9) Rubio-Presa, R.; García-Pedrero, O.; López-Matanza, P.; Barrio, P.; Rodríguez, F. *Eur. J. Org. Chem.* **2021**, 2021, 4762-4766.
- (10) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285-3289.
- (11) Wei, J.; Meng, J.; Zhang, C.; Liu, Y.; Jiao, N. Nat. Commun. 2024, 15, 1886.
- (12) Liu, S.; Chen, X.; Hu, Y.; Yuan, L.; Chen, S.; Wu, P.; Wang, W.; Zhang, S.; Zhang, W. Adv. Synth. Catal. 2015, 357, 553-560.
- (13) Mandl, F. A.; Kirsch, V. C.; Ugur, I.; Kunold, E.; Vomacka, J.; Fetzer, C.; Schneider, S.; Richter, K.; Fuchs, T. M.; Antes, I.; Sieber, S. A. *Angew. Chem., Int. Ed.* **2016**, *55*, 14852-14857.
- (14) Hong, Y. T.; Lee, J. Y.; Kim, T. H.; Yoo, D. M.; Hwang, I. J. **2014**, KR2014129469.
- (15) Lim, J.; Albright, T. A.; Martin, B. R.; Miljanić, O. Š. J. Org. Chem. 2011, 76, 10207-10219.

IX. Copies of ¹H and ¹³C NMR spectra

-3.016

Br 4d

