Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

SUPPORTING INFORMATION

Table of Content

Optical Properties	3
Acidochromic studies	3
Cyclic voltammetry	4
DFT and TD-DFT Calculations	5
Cartesian coordinates of the optimized ground-state (S_0) and excited-state (S_1) st	ructures 6
TD-DFT	13
¹ H-, ¹⁹ F-, and ¹³ C{1H}-NMR Spectra	16

Single-crystal X-ray diffraction data

Crystals were obtained by slow evaporation of Hep/CH₂Cl₂ 2:1 at 25°C. X-ray single crystal structure analysis was performed on a Bruker Apex Kappa-II CCD-diffractometer.

Figure S1. ORTEPs of crystal structures 3a, 4a and 8a (drawn with ellipsoids probability of 50%).

	3a	4a	8a
Chem. Formula	C ₂₅ H ₁₅ NS	C ₂₅ H ₁₅ NS	C ₂₉ H ₁₇ NS
Form. Weight	361.44	361.44	411.50
[g mol ⁻¹]			
Crsyt. system	triclinic	triclinic	Triclinic
Space group	P -1(-P 1)	P -1(-P 1)	P -1(-P 1)
(Hall group)			
a [Å]	7.904(6)	8.0985(9)	8.0321(4)
b [Å]	10.247(7)	10.3014(12)	10.3560(5)
c [Å]	11.533(8)	11.0803(12)	13.1722(6)
α [°]	96.72(2)	96.301(4)	105.953(2)
β [°]	102.06(2)	101.547(3)	95.907(2)
γ [°]	99.58(2)	101.238(4)	108.672(2)
V [ų]	889.5(11)	877.60(17)	975.86(8)
Z	2	2	2
N _{ref}	4082(4075)	5128(5119)	5699(5693)
θ _{max} [°]	27.490	29.997	29.999
h,k,I _{max}	10,13,14	11,14,15	11,14,18
D _x [g cm ⁻³]	1.349	1.368	1.400
μ [mm ⁻¹]	0.191	0.193	0.184
λ _{ΜοΚ\α} [A]	0.71073	0.71073	0.71073
т [К]	123	123	123

 Table S1. Single crystal X-ray diffraction data of compounds 3a, 4a and 8a.

F(000)	376.0	376.0	428.0
N _{par}	244	244	381
R	0.0704(2451)	0.0516(3778)	0.0407(4636)
wR2	0.1397(4075)	0.1255(5119)	0.1168(5693)
S	1.011	1.039	1.052

Optical Properties

Acidochromic studies

Figure S2. Absorption and emission spectra of 6a and 8a in CH_2Cl_2 ($c = 10^{-5}$ M) at 20°C with different concentration of TFA.

Cyclic voltammetry

Figure S3. Cyclic voltammograms of TNP, **5a, 6a, 8a, 5j** and **8c** measured in CH_2Cl_2 with 0.1 M n-Bu₄NPF₆ as a supporting electrolyte, glassy carbon working electrode, ANE2 as reference electrode and Pt counter-electrode with ferrocene as standard at a scan rate of 50 mV^{s-1}.

DFT and TD-DFT Calculations

Scheme S1. Calculated frontier molecular orbitals and energy levels of **5a**, **5j**, **8a** and **8c** at the B3LYP/6-311+G(d,p) level of theory within IEFPCM of dichloromethane (isovalue = 0.02 a.u.).

 Table S2. Comparision of optical, electrochemical and calculated band gap.

	5a	5j	6a	8a	8c
Е (номо) ^{СV} [eV] ^a	-5.59	-5.10	-5.63	-5.17	-5.20
Е (номо) ^{calc} [eV] ^b	-5.68	-5.29	-5.85	-5.62	-5.23
Е _(LUMO) ^{calc} [eV] ^b	-2.21	-2.20	-2.33	-2.66	-2.50
<i>E_g ^{CV} [eV]</i> ^c	3.38	2.61	3.05	2.61	2.33
Eg ^{calc} [eV] ^b	3.47	3.09	3.52	2.96	2.73
E_g^{opt} [eV] ^d	2.91	2.25	2.63	2.25	2.01

a) Calculated using the equation: $E(HOMO) = -e[E_{Ox}^{onset} vs. Fc/Fc^*)+4.80]$. b) Calculated DFT energy levels at the B3LYP/6-31G(d,p) level of theory within IEFPCM of dichloromethane. c) Calculated using correction factor: $E(LUMO) = 1.16E_g^{opt} - E(HOMO)^{cv. 45}$ d) Estimated from the intersection of normalized absorption and emission spectra. [e] Calculated TD-DFT excitation energies (ΔE) at the CAM-B3LYP/6-31+G(d,p) level of theory within IEFPCM for **5a** and **6a**. [f] Calculated TD-DFT excitation energies (ΔE) at the B3LYP/6-31+G(d,p) level of theory within IEFPCM for **5j**, **8a** and **8c**.

Cartesian coordinates of the optimized ground-state (S_0) and excited-state (S_1) structures

Calculated by (TD-)DFT at the B3LYP/6-311G(d,p) level of theory for ground state in gas phase and within IEFPCM of dichloromethane. The local minima of the optimized geometries were confirmed by frequency calculations, ensuring that no imaginary frequencies are presented. The stated Energy E for the S_0 state is the sum of electronic and zero-point Energies.

Symbol	X	Y	Z
С	-1.1900513	2.4040533	-0.0015588
С	0.0386239	1.6992679	0.0083882
С	1.2817949	2.3807005	0.0095813
С	1.2126710	3.7737565	0.0023390
С	-2.3997463	1.6443146	0.0034792
С	0.0263423	0.3001766	0.0159655
С	-1.1653025	-0.4196149	0.0407779
С	-2.4226207	0.2588899	0.0279363
С	0.9213687	-1.8280658	0.0127962
С	1.2248368	-0.4846276	-0.0044142
С	2.5002344	0.2195719	-0.0115854
С	2.4928190	1.5909060	0.0044746
н	3.4385329	2.1210592	-0.0176440
н	-3.3317345	2.1965606	0.0113678
н	2.1092864	4.3824659	0.0023365
Н	1.5919021	-2.6728341	0.0262845
S	-0.7900318	-2.1306231	0.0318656
С	-3.7154162	-0.4750174	0.0337191
С	-3.9528721	-1.5209858	0.9378792
С	-4.7360402	-0.1175638	-0.8596011
С	-5.1757294	-2.1878507	0.9479441
н	-3.1904914	-1.7957885	1.6571661
С	-5.9568077	-0.7867599	-0.8499026
н	-4.5626076	0.6782153	-1.5747442
С	-6.1809635	-1.8249201	0.0533819
н	-5.3444706	-2.9867974	1.6610140
Н	-6.7310536	-0.5006942	-1.5527470
С	3.7847510	-0.5267252	-0.0348052
С	4.8147150	-0.1965326	0.8583265
С	4.0081243	-1.5555196	-0.9629708
С	6.0309828	-0.8738379	0.8249372
Н	4.6516153	0.5832817	1.5933518
С	5.2268531	-2.2282761	-0.9984853
Н	3.2351646	-1.8103545	-1.6782187
С	6.2415569	-1.8921356	-0.1034680
Н	6.8120068	-0.6093478	1.5287703
Н	5.3852001	-3.0123119	-1.7303308
Н	7.1881713	-2.4196074	-0.1293418
Н	-7.1312826	-2.3462625	0.0602288

Table S3. Cartesian Coordinates of **5a** (S_0); E = -1414.931728 Hartree.

С	-0.0486406	4.3924432	-0.0056861
Н	-0.0986125	5.4783577	-0.0108937
N	-1.2214314	3.7614491	-0.0075917

Table S4. Cartesian Coordinates of 5i (S₀); E = -1682.940739 Hartree.

Symbol	Х	Y	Z
С	1.2080185	2.9825462	0.0127798
С	-0.0242317	2.2839389	-0.0057320
С	-1.2654965	2.9687837	-0.0099065
С	-1.1896311	4.3631177	0.0039871
С	2.4135044	2.2183946	0.0029616
С	-0.0171840	0.8845517	-0.0209353
С	1.1726849	0.1613230	-0.0491002
С	2.4372891	0.8305773	-0.0303041
С	-0.9211316	-1.2392925	-0.0362299
С	-1.2204345	0.1047442	-0.0067135
С	-2.4977393	0.8110138	0.0041170
С	-2.4781564	2.1854627	-0.0073919
Н	-3.4203312	2.7216483	0.0228918
Н	3.3463157	2.7693183	-0.0056940
Н	-2.0837136	4.9757931	0.0024155
Н	-1.5937605	-2.0816863	-0.0638367
S	0.7893079	-1.5487473	-0.0525172
С	3.7234422	0.0958593	-0.0364360
С	3.9519781	-1.0033044	-0.8779586
С	4.7849140	0.4894921	0.7928121
С	5.1680697	-1.6707447	-0.9010969
Н	3.1745836	-1.3332273	-1.5573982
С	6.0049290	-0.1690444	0.7885898
Н	4.6444810	1.3184460	1.4777365
С	6.2413504	-1.2680823	-0.0717845
Н	5.2845604	-2.5056354	-1.5775862
Н	6.7759400	0.1688429	1.4666036
С	-3.7806118	0.0744126	0.0209880
С	-4.8507979	0.4617074	-0.8005869
С	-4.0021724	-1.0182167	0.8744317
С	-6.0712753	-0.1957939	-0.7792133
H	-4.7155226	1.2831009	-1.4957410
C	-5.2191640	-1.6819834	0.9173617
H	-3.2164728	-1.3410767	1.5475423
C	-6.3002585	-1.2863902	0.0938172
H	-6.8480062	0.1353119	-1.4540637
H	-5.3310481	-2.5090911	1.6042334
N	-7.5181903	-1.9279985	0.1447976
N	7.4602854	-1.9103404	-0.1059338
C	8.4859646	-1.5734682	0.8710292
H	8.1786184	-1.8007857	1.9011362
H	9.3862404	-2.1439622	0.6502171
H	8.7461175	-0.5122563	0.8205124
<u> </u>	-7.6625355	-3.1513629	0.9212942
H	-8.6961884	-3.4870362	0.8640920
H	-7.0169894	-3.9606889	0.5540119
H	-7.4274443	-2.9816512	1.9761978
C	-8.5581445	-1.5910417	-0.8169135
L H	-9.4560056	-2.1592697	-0.5812261

Н	-8.8150709	-0.5290442	-0.7648839
Н	-8.2669062	-1.8213576	-1.8509257
С	7.6094170	-3.1423731	-0.8675387
Н	7.3776491	-2.9846855	-1.9249344
Н	8.6436815	-3.4750929	-0.8033963
Н	6.9641672	-3.9491631	-0.4937079
N	1.2452016	4.3410537	0.0255014
C	0.0736322	4.9756049	0.0210189
H	0.1277269	6.0616118	0.0314450

Table S5. Cartesian Coordinates of **5**i (S₁); E = -1682.569246 Hartree.

Symbol	Х	Y	Z
С	1.1808724	2.9606485	0.0324427
С	-0.0538477	2.2387685	-0.0127236
С	-1.3082469	2.9231693	-0.0087534
С	-1.2421026	4.3459387	0.0414448
С	2.3867821	2.2123220	0.0164656
С	-0.0282972	0.8343401	-0.0665001
С	1.1852074	0.1240253	-0.1054450
С	2.4269585	0.8076236	-0.0535638
С	-0.9029300	-1.3269540	-0.1234949
С	-1.2226846	0.0293858	-0.0771384
С	-2.4852351	0.7297866	-0.0741790
С	-2.4879172	2.1399486	-0.0619631
Н	-3.4433772	2.6587478	-0.0425062
Н	3.3200352	2.7685322	0.0271168
Н	-2.1473334	4.9478941	0.0476871
Н	-1.5582143	-2.1826495	-0.1960035
S	0.8376229	-1.6130678	-0.1476597
С	3.7324059	0.1038030	-0.0490706
С	4.0008827	-0.9978611	-0.8825102
С	4.7818032	0.5261105	0.7898834
С	5.2376235	-1.6373132	-0.8905799
Н	3.2353538	-1.3561754	-1.5653495
С	6.0227325	-0.1030619	0.8003964
Н	4.6163269	1.3568209	1.4712202
С	6.2954867	-1.2019544	-0.0535238
Н	5.3786436	-2.4761791	-1.5619862
Н	6.7792394	0.2613830	1.4854294
С	-3.7783952	0.0294440	-0.0301049
С	-4.9067864	0.5178687	-0.7430028
С	-3.9712572	-1.1432016	0.7462305
С	-6.1330066	-0.1122523	-0.6966130
Н	-4.7992046	1.4017344	-1.3634554
С	-5.1897813	-1.7876164	0.8097449
Н	-3.1455967	-1.5311874	1.3323402
С	-6.3165598	-1.2945515	0.0834352
Н	-6.9547948	0.2998599	-1.2686372
Н	-5.2822647	-2.6710648	1.4288970
N	-7.5225427	-1.9270747	0.1361644
N	7.5388612	-1.8134466	-0.0766219
C	8.5205814	-1.4804626	0.9476296
Н	8.1752718	-1.7387815	1.9616652
Н	9.4422827	-2.0293638	0.7478556
Н	8.7602882	-0.4114424	0.9288834
С	-7.7003162	-3.1316151	0.9495009

Н	-8.7267826	-3.4787556	0.8491714
Н	-7.0271846	-3.9285860	0.6153117
Н	-7.5037937	-2.9198411	2.0063586
С	-8.6709769	-1.4103976	-0.6106936
Н	-9.5262671	-2.0617160	-0.4415134
Н	-8.9291989	-0.3993344	-0.2764098
Н	-8.4561889	-1.3859891	-1.6845500
С	7.7069448	-3.0682894	-0.7982408
Н	7.4635556	-2.9465647	-1.8596635
Н	8.7510091	-3.3785011	-0.7322567
Н	7.0775602	-3.8758539	-0.3908748
Ν	1.2016799	4.3295033	0.0793880
C	0.0059525	4.9584177	0.0800146
Н	0.0573227	6.0468059	0.1167837

Table S6. Cartesian Coordinates of 6a (S_0); E = -1414.931641 Hartree.

Symbol	Х	Y	Z
С	-1.2773947	2.3791593	-0.0087608
С	-0.0310260	1.6997763	-0.0064725
С	1.1941508	2.4078591	0.0037339
С	1.0855970	3.8154910	0.0085400
С	-2.4851140	1.5803552	-0.0038227
С	-0.0192302	0.3005626	-0.0142485
С	-1.2135226	-0.4892374	0.0044443
С	-2.4920786	0.2100682	0.0119463
С	1.1761890	-0.4141400	-0.0401282
С	2.4304107	0.2688390	-0.0263938
С	2.4072666	1.6552197	-0.0006593
Н	3.3489088	2.1921631	-0.0099175
Н	-3.4211810	2.1260664	0.0164453
Н	1.9688315	4.4434352	0.0146118
С	-3.7748164	-0.5392509	0.0350593
С	-3.9916776	-1.5780394	0.9535946
С	-4.8106488	-0.2022414	-0.8488266
С	-5.2086816	-2.2541566	0.9884690
Н	-3.2150842	-1.8382171	1.6629981
С	-6.0254277	-0.8820637	-0.8157307
Н	-4.6534336	0.5864582	-1.5755673
С	-6.2289857	-1.9109292	0.1026656
Н	-5.3613450	-3.0460416	1.7130941
Н	-6.8110325	-0.6111915	-1.5120387
С	3.7244255	-0.4630547	-0.0330715
С	4.7373897	-0.1173765	0.8733016
С	3.9692459	-1.4947515	-0.9514873
С	5.9590183	-0.7851307	0.8626724
Н	4.5571069	0.6665724	1.5997623
С	5.1932807	-2.1592907	-0.9628130
Н	3.2119420	-1.7596734	-1.6797582
С	6.1911200	-1.8086442	-0.0550954
Н	6.7275045	-0.5095151	1.5758804
Н	5.3687367	-2.9469430	-1.6866722
Н	7.1421678	-2.3286092	-0.0628822
Н	-7.1744242	-2.4405732	0.1280920
C	-0.1759583	4.3920480	0.0043038
Н	-0.2664277	5.4745130	0.0075797
N	-1.3452022	3.7163290	-0.0034681

С	-0.9017110	-1.8311222	-0.0147186
Н	-1.5678489	-2.6793685	-0.0297162
S	0.8106918	-2.1264422	-0.0335404

S₀ 8a

E = -1568.607280 Hartree

Table S7. Cartesian Coordinates of **8a** (S_0); E = -1568.607280 Hartree.

Symbol	X	Y	Z
С	-1.0199210	1.9244626	-0.0030064
С	0.0673215	0.9965080	0.0084341
С	1.4061474	1.4226629	0.0102884
С	-2.3557562	1.3957502	0.0015476
С	-0.2189362	-0.3787578	0.0161272
С	-1.5237626	-0.8593523	0.0418838
С	-2.6367146	0.0452023	0.0279369
С	0.2461621	-2.6447089	0.0133432
С	0.8028892	-1.3802235	-0.0048400
С	2.1828023	-0.9359706	-0.0132383
С	2.4364223	0.4155850	0.0034064
Н	3.4706036	0.7336288	-0.0212887
Н	-3.1656037	2.1149639	0.0094419
Н	0.7420577	-3.6021724	0.0291814
S	-1.4846023	-2.6054638	0.0315505
С	-4.0419585	-0.4385114	0.0349690
С	-4.4681486	-1.4187694	0.9437124
С	-4.9786549	0.0949991	-0.8625351
С	-5.7923148	-1.8505382	0.9540137
Н	-3.7702084	-1.8248948	1.6661760
С	-6.3010138	-0.3400947	-0.8528644
Н	-4.6618758	0.8413409	-1.5818275
С	-6.7127823	-1.3149422	0.0549016
Н	-6.1052574	-2.6011948	1.6708009
Н	-7.0085537	0.0786832	-1.5594672
С	3.3039105	-1.9098922	-0.0379626
С	4.3776858	-1.7793866	0.8554462
С	3.3287803	-2.9636415	-0.9647823
С	5.4433179	-2.6750345	0.8241297
Н	4.3649845	-0.9827711	1.5904369
С	4.3980413	-3.8550514	-0.9983265
H	2.5214895	-3.0683978	-1.6798974
C	5.4576491	-3.7160272	-0.1028953
Н	6.2597864	-2.5625130	1.5284340
<u> </u>	4.4054640	-4.6556829	-1.7292519
Н	6.2872028	-4.4132901	-0.1274807
Н	-7.7423025	-1.6539858	0.0616818
<u> </u>	-0.8175171	3.2443576	-0.0091814
C	2.9108046	3.4367818	0.0108363
Н	3.7937466	2.8100313	0.0205617
C	3.0577876	4.8021708	0.0055531
Н	4.0492206	5.2398722	0.0099245
C	1.9186799	5.6442992	-0.0056953
Н	2.0477522	6.7206644	-0.0099955
C	0.6598399	5.1026272	-0.0105879
Н	-0.2266626	5.7253953	-0.0185332
C	0.4630468	3.6911520	-0.0049862
C	1.6244106	2.8349082	0.0052847

Symbol	Х	Y	Z
C	1.2103569	2.4214262	0.0098238
С	0.0068317	1.6508352	-0.0141015
С	-1.2627729	2.2535234	-0.0192990
С	2.4600766	1.7166190	0.0017346
С	0.1029578	0.2493733	-0.0311412
С	1.3315455	-0.4030595	-0.0597329
С	2.5618072	0.3381366	-0.0356792
С	-0.6666898	-1.9311304	-0.0482720
С	-1.0475939	-0.6034221	-0.0174697
С	-2.3591239	0.0212422	-0.0036480
С	-2.4191860	1.3985983	-0.0148033
Н	-3.3986078	1.8573952	0.0223019
Н	3.3591229	2.3208854	-0.0035328
Н	-1.2864397	-2.8127998	-0.0785767
S	1.0534095	-2.1281801	-0.0631056
C	3.8848993	-0.3254765	-0.0382382
C	4.1757005	-1.4129948	-0.8761954
C	4.9218610	0.1294497	0.7913323
C	5.4269362	-2.0116547	-0.8954323
Н	3.4198986	-1.7868303	-1.5571868
C	6.1761619	-0.4602203	0.7913803
H	4.7339966	0.9510745	1.4736145
C	6.4746298	-1.5476171	-0.0650095
Н	5.5916179	-2.8399881	-1.5699677
H	6.9260878	-0.0780616	1.4695940
C	-3.5979065	-0.7849800	0.0193161
C	-4.6972583	-0.4515984	-0.7880571
C	-3.7488804	-1.8966571	0.8641269
<u> </u>	-5.8770519	-1.1788086	-0.7633092
Н	-4.6169309	0.3824409	-1.4/66/52
	-4.9249178	-2.6296862	0.9109888
н	-2.9404060	-2.1796434	1.5280677
	-0.0340970	-2.2900700	1.0992024
	-0.0770005	-0.0000907	1 5010588
N	-7.21016/3	-3.00/3357	0.150/670
N	7 7261039	-2 1216352	-0.0936968
C	8 7355445	-1 7134481	0.0000000
н	8 4426128	-1 9378909	1 9076839
н	9 6637373	-2 2402735	0.6600181
H	8.9394939	-0.6409001	0.8027640
C	-7.2788199	-4.2382138	0.9206194
Ĥ	-8.2890774	-4.6380597	0.8593335
Н	-6.5832070	-5.0029667	0.5497737
Н	-7.0562172	-4.0601822	1.9769952
С	-8.2791229	-2.7150340	-0.7948554
Н	-9.1373123	-3.3423070	-0.5616019
Н	-8.6008880	-1.6720563	-0.7212376
Н	-7.9844393	-2.9084390	-1.8352481
С	7.9492437	-3.3393417	-0.8602094
Н	7.7187018	-3.1892766	-1.9191998
Н	8.9991335	-3.6163477	-0.7874952
Н	7.3450549	-4.1811895	-0.4958774
N	1.1891344	3.7582362	0.0256817
С	-2.4784862	4.4549587	-0.0182073

Table S8. Cartesian Coordinates of **8a** (S_0); E = -1836.616606 Hartree.

Н	-3.4381216	3.9534532	-0.0411355
С	-1.2861579	3.6840242	-0.0068142
С	-0.0195260	4.3738547	0.0170532
С	-0.0244039	5.7991065	0.0321552
Н	0.9383803	6.2959802	0.0508498
С	-1.1980850	6.5073731	0.0226271
Н	-1.1793071	7.5913802	0.0343095
С	-2.4405947	5.8282356	-0.0039015
Н	-3.3638256	6.3959568	-0.0131944

Table S92. Cartesian Coordinates of 8c (S_1); E = -1836.226094 Hartree.

Symbol	X	Y	Z
C	1.1834763	2.4013268	0.0033256
С	-0.0109990	1.6095913	-0.0408727
С	-1.3015393	2.2121705	-0.0469283
С	2.4354336	1.7233640	-0.0049537
С	0.1056641	0.2113367	-0.0838167
С	1.3594086	-0.4262423	-0.1156964
С	2.5617127	0.3270502	-0.0672061
С	-0.6293050	-1.9975086	-0.1493782
С	-1.0332664	-0.6687009	-0.0971812
С	-2.3424139	-0.0527640	-0.0919347
С	-2.4233765	1.3541607	-0.0913949
Н	-3.4142887	1.7954813	-0.0707715
Н	3.3321681	2.3365182	0.0066841
Н	-1.2323613	-2.8912077	-0.2222656
S	1.1183126	-2.1782940	-0.1594001
С	3.9058637	-0.3008525	-0.0585620
С	4.2462506	-1.3710258	-0.9050490
С	4.9175808	0.1671755	0.8002788
С	5.5180482	-1.9396386	-0.9049947
Н	3.5117651	-1.7609519	-1.6048292
С	6.1924009	-0.3917137	0.8182351
Н	4.6964352	0.9761049	1.4921975
С	6.5387674	-1.4585613	-0.0482516
Н	5.7142410	-2.7581293	-1.5876391
Н	6.9172745	0.0048947	1.5194290
С	-3.5852520	-0.8307286	-0.0379070
С	-4.7537362	-0.4085505	-0.7266432
C	-3.6933206	-2.0212088	0.7266569
C	-5.9358783	-1.1193714	-0.6730522
H	-4.7144278	0.4838579	-1.3435678
C	-4.8689706	-2.7417596	0.8015821
H	-2.8408081	-2.3594452	1.3053047
C	-6.0343970	-2.3182498	0.0952036
Н	-6.7877606	-0.7583884	-1.2357900
Н	-4.8969251	-3.6302005	1.4201445
N	-7.1972155	-3.0287802	0.1554637
N	7.8189720	-1.9959580	-0.0668942
C	8.7511738	-1.6454099	0.9975056
H	8.3959076	-1.9599892	1.9925851
H	9.7089302	-2.1317214	0.8041555
H	8.9286713	-0.5647955	1.0224536
C	-7.2785240	-4.2603190	0.9409540
H	-8.2752823	-4.6845173	0.8329000
Н	-6.5470023	-4.9969327	0.5900205

Н	-7.0980078	-4.0612201	2.0040259
С	-8.3898215	-2.5676291	-0.5553913
Н	-9.2073668	-3.2605104	-0.3636442
Н	-8.6898512	-1.5711309	-0.2113959
Н	-8.2113251	-2.5296532	-1.6363325
С	8.0520086	-3.2487605	-0.7746726
Н	7.8058514	-3.1501097	-1.8375234
Н	9.1109398	-3.5036709	-0.7046891
Н	7.4643331	-4.0846659	-0.3608985
N	1.1348764	3.7546487	0.0414927
С	-2.5386594	4.4159494	0.0021408
Н	-3.4971994	3.9045700	-0.0232449
С	-1.3474517	3.6632543	-0.0035624
С	-0.0836268	4.3643727	0.0356832
С	-0.1059236	5.7882696	0.0730065
Н	0.8513272	6.3025963	0.0979009
С	-1.2974411	6.4969549	0.0758888
Н	-1.2827777	7.5838575	0.1050523
C	-2.5254181	5.8094998	0.0410961
H	-3.4627014	6.3598006	0.0450547

TD-DFT

 Table S3.
 Calculated TD-DFT transitions of compound 5a at B3LYP/6-311+G(d,p) level (IEFPCM).

Sn	E (eV)	λ (nm)	f	Configuration	CI coefficient
S ₁	3.20	388	0.3528	$HOMO \rightarrow LUMO$	0.68891
S ₂	3.60	345	0.2218	$HOMO-1 \rightarrow LUMO$	0.67451
				$HOMO \rightarrow LUMO+1$	0.13125
				$\text{HOMO} \rightarrow \text{LUMO+2}$	-0.11053
S ₃	3.82	324	0.0380	$HOMO-2 \rightarrow LUMO$	0.65661
				$\text{HOMO} \rightarrow \text{LUMO+1}$	0.16623
				$\rm HOMO \rightarrow \rm LUMO+2$	-0.15601
S ₄	3.92	316	0.1430	$HOMO-2 \rightarrow LUMO$	-0.14585
				HOMO-1 \rightarrow LUMO	-0.12676
				$HOMO \rightarrow LUMO+1$	0.66034
S ₅	4.05	306	0.0013	$HOMO-6 \rightarrow LUMO$	0.65316
				$\text{HOMO-4} \rightarrow \text{LUMO}$	0.14826

Sn	E (eV)	λ (nm)	f	Configuration	CI coefficient
S ₁	2.62	473	0.2852	HOMO-1 \rightarrow LUMO	0.68233
				$\text{HOMO} \rightarrow \text{LUMO}$	0.17529
S ₂	2.71	458	0.1898	HOMO-1 \rightarrow LUMO	-0.17193
				$\text{HOMO} \rightarrow \text{LUMO}$	0.67535
S ₃	3.33	372	0.1722	$HOMO-2 \rightarrow LUMO$	0.68052
S 4	3.73	332	0.0693	$HOMO-3 \rightarrow LUMO$	-0.40939
				$HOMO-2 \rightarrow LUMO+1$	-0.16498
				$\text{HOMO-1} \rightarrow \text{LUMO+1}$	-0.10543
				$\text{HOMO} \rightarrow \text{LUMO+1}$	0.49767
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.15085
S ₅	3.83	324	0.5414	$HOMO-3 \rightarrow LUMO$	0.47848
				$\text{HOMO-2} \rightarrow \text{LUMO+2}$	0.10911
				$\text{HOMO-1} \rightarrow \text{LUMO+2}$	0.13470
				$\text{HOMO} \rightarrow \text{LUMO+1}$	0.44688
				$\text{HOMO} \rightarrow \text{LUMO+2}$	-0.13849
S ₆	3.90	318	0.1326	HOMO-1 \rightarrow LUMO+1	0.68370
				$\text{HOMO} \rightarrow \text{LUMO+1}$	0.11736

 Table S4. Calculated TD-DFT transitions of compound 5j at B3LYP/6-311+G(d,p) level (IEFPCM).

 Table S5. Calculated TD-DFT transitions of compound 6a at B3LYP/6-311+G(d,p) level (IEFPCM).

Sn	E (eV)	λ (nm)	f	Configuration	CI
					coefficient
S ₁	3.20	387	0.3932	$HOMO \rightarrow LUMO$	0.69150
S ₂	3.67	338	0.1155	$HOMO-1 \rightarrow LUMO$	0.60645
				$HOMO \rightarrow LUMO+1$	0.32022
S ₃	3.82	324	0.1389	$HOMO-2 \rightarrow LUMO$	-0.36545
				$\text{HOMO-1} \rightarrow \text{LUMO}$	-0.27906
				$\text{HOMO} \rightarrow \text{LUMO+1}$	0.52505
S ₄	3.89	319	0.0708	$HOMO-2 \rightarrow LUMO$	0.54145
				$\text{HOMO-1} \rightarrow \text{LUMO}$	-0.12988
				$HOMO \rightarrow LUMO+1$	0.32581
				$\text{HOMO} \rightarrow \text{LUMO+2}$	-0.25569
S ₅	4.24	293	0.0036	$HOMO-6 \rightarrow LUMO$	0.67995
				$\text{HOMO-5} \rightarrow \text{LUMO}$	-0.10402
				$\text{HOMO-4} \rightarrow \text{LUMO}$	0.11579
S ₆	4.24	293	0.0036	$HOMO-3 \rightarrow LUMO$	0.66175
				$\text{HOMO} \rightarrow \text{LUMO+2}$	0.16156
				$\rm HOMO \rightarrow \rm LUMO+5$	0.12377

0.69984
0.65498
2 0.21934
0.67547
0.10142
-0.14747
0.13734
0.67192
0.66669
0.10515
0 -0.15102
0.64480
-0.12234
0.19183

 Table S6. Calculated TD-DFT transitions of compound 8a at B3LYP/6-311+G(d,p) level (IEFPCM).

Table S7. Calculated TD-DFT transitions of compound **8c** at B3LYP/6-311+G(d,p) level (IEFPCM).

Sn	E (eV)	λ (nm)	f	Configuration	CI coefficient
S ₁	2.36	525	0.3593	HOMO-1 \rightarrow LUMO	0.64203
				$\text{HOMO} \rightarrow \text{LUMO}$	-0.28976
S ₂	2.40	517	0.2473	$HOMO-1 \rightarrow LUMO$	0.29078
				$\text{HOMO} \rightarrow \text{LUMO}$	0.63661
S ₃	2.86	433	0.0779	$HOMO-2 \rightarrow LUMO$	0.69498
S ₄	3.42	362	0.0901	$HOMO-3 \rightarrow LUMO$	0.61136
				$\text{HOMO-2} \rightarrow \text{LUMO+2}$	0.15467
				$\text{HOMO} \rightarrow \text{LUMO+2}$	-0.29703
S ₅	3.61	343	0.2327	$HOMO-4 \rightarrow LUMO$	0.10891
				$HOMO-2 \rightarrow LUMO+1$	-0.13716
				$HOMO \rightarrow LUMO+1$	0.66707
S ₆	3.78	329	0.0016	$HOMO-8 \rightarrow LUMO$	0.66635
				$\text{HOMO-6} \rightarrow \text{LUMO}$	-0.11854
				$HOMO-5 \rightarrow LUMO$	0.15368

$^{1}\text{H-},~^{19}\text{F-},$ and $^{13}\text{C}\{1\text{H}\}\text{-}\text{NMR}$ Spectra 2,4-dichloro-3-(thiophen-3-yl)quinoline

4,4'-((3-chloropyridine-2,4-diyl)bis(ethyne-2,1-diyl))dibenzonitrile

3-chloro-2,4-bis(thiophen-3-ylethynyl)pyridine

2,4-bis(phenylethynyl)-3-(thiophen-3-yl)pyridine (1a)

3-(thiophen-3-yl)-2,4-bis(p-tolylethynyl)pyridine (1b)

3-(thiophen-3-yl)-2,4-bis(*m*-tolylethynyl)pyridine (1c)

3-(thiophen-3-yl)-2,4-bis(o-tolylethynyl)pyridine (1d)

2,4-bis((4-fluorophenyl)ethynyl)-3-(thiophen-3-yl)pyridine (1e)

1 Solvent CDCl3
2 Temperature 297.8
3 Pulse Sequence zgpg30
4 Number of Scans 1024
5 Receiver Gain 2050
6 Relaxation Delay 2.0000
7 Pulse Width 10.0000
8 Acquisition Time 2.1846
9 Spectrometer Frequency 62.90
10 Spectral Width 15000.0
11 Lowest Frequency -1200.3
12 Nudeus 13C
13 Acquired Size 32768
14 Spectral Size 65536

CDCI 3 2023

3-(thiophen-3-yl)-2,4-bis((4-(trifluoromethyl)phenyl)ethynyl)pyridine (1f)

	Parameter	Value
1	Solvent	CDCl3
2	Temperature	298.7
3	Pulse Sequence	zgfhigqn
4	Number of Scans	64
5	Receiver Gain	1620
6	Relaxation Delay	1.0000
7	Pulse Width	10.0000
8	Acquisition Time	0.9787
9	Spectrometer Frequency	282.40
10	Spectral Width	66964.3
11	Lowest Frequency	-61722.4
12	Nudeus	19F
13	Acquired Size	65536
14	Spectral Size	131072

C-62.96

Parameter Value CDCl3 1 Solvent 7.70 7.69 7.69 7.64 7.64 7.65 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.44 7.43 7.41 7.41 7.41 7.41 7.41 2 Temperature 3 Pulse Sequence 4 Number of Scans 298.2 zg30 16 -8.62 5 Receiver Gain 6 Relaxation Delay 512 2.0000 7 Pulse Width 10.0000

3-(thiophen-3-yl)-2,4-bis(thiophen-3-ylethynyl)pyridine (1h)

2,4-bis((4-methoxyphenyl)ethynyl)-3-(thiophen-3-yl)pyridine (1i)

2,4-bis((4-methoxyphenyl)ethynyl)-3-(thiophen-3-yl)pyridine (1j)

2,4-bis(phenylethynyl)-3-(thiophen-3-yl)quinoline (2a)

2,4-bis((4-fluorophenyl)ethynyl)-3-(thiophen-3-yl)quinoline (2b)

4,4'-((3-(thiophen-3-yl)quinoline-2,4-diyl)bis(ethyne-2,1-diyl))bis(N,N-dimethylaniline) (2c)

	Parameter	Value
1	Solvent	CDCl3
2	Temperature	298.2
3	Pulse Sequence	zgpg30
4	Number of Scans	1024
5	Receiver Gain	101
6	Relaxation Delay	2.0000
7	Pulse Width	10.0000
8	Acquisition Time	1.0879
9	Spectrometer Frequency	125.76
10	Spectral Width	30120.5
11	Lowest Frequency	-2473.0
12	Nudeus	13C
13	Acquired Size	32768
14	Spectral Size	32768

CDCI³

40.2

	Parameter	Value
1	Solvent	CDCl3
2	Temperature	297.8
3	Pulse Sequence	zgpg30
4	Number of Scans	1024
5	Receiver Gain	2050
6	Relaxation Delay	2.0000
7	Pulse Width	10.0000
8	Acquisition Time	2.1846
9	Spectrometer Frequency	62.90
10	Spectral Width	15000.0
11	Lowest Frequency	-1200.8
12	Nudeus	13C
13	Acquired Size	32768
14	Spectral Size	65536

4-(p-tolyl)-9-(p-tolylethynyl)thieno[3,2-f]quinoline (3b)

	Parameter	Value
1	Solvent	CDCI3
2	Temperature	298.0
3	Pulse Sequence	zgpg30
4	Number of Scans	1024
5	Receiver Gain	1150
6	Relaxation Delay	2.0000
7	Pulse Width	10.0000
8	Acquisition Time	2.1846
9	Spectrometer Frequency	62.90
10	Spectral Width	15000.0
11	Lowest Frequency	-1202.0
12	Nudeus	13C
13	Acquired Size	32768
14	Spectral Size	65536

. 150

f1 (ppm)

ò

	Parameter	Value
1	Solvent	CDCl3
2	Temperature	298.0
3	Pulse Sequence	zgpg30
4	Number of Scans	1024
5	Receiver Gain	912
6	Relaxation Delay	2.0000
7	Pulse Width	10.0000
8	Acquisition Time	2.1846
9	Spectrometer Frequency	62.90
10	Spectral Width	15000.0
11	Lowest Frequency	-1204.0
12	Nudeus	13C
13	Acquired Size	32768
14	Spectral Size	65536

4-(o-tolyl)-9-(o-tolylethynyl)thieno[3,2-f]quinoline (3d)

	Parameter	Value
1	Solvent	CDCl3
2	Temperature	298.2
3	Pulse Sequence	zgpg30
4	Number of Scans	1024
5	Receiver Gain	101
6	Relaxation Delay	2.0000
7	Pulse Width	10.0000
8	Acquisition Time	1.0879
9	Spectrometer Frequency	125.76
10	Spectral Width	30120.5
11	Lowest Frequency	-2468.5
12	Nudeus	13C
13	Acquired Size	32768
14	Spectral Size	32768

92.7

-77.4 -77.2 -77.2 DCD

4-(4-fluorophenyl)-9-((4-fluorophenyl)ethynyl)thieno[3,2-f]quinoline (3e)

.141.7 .140.8 .140.8 .139.4 .139.4 .135.2 .135.2 .135.2 .135.2 .132.3 .132.3 .132.3 .132.3 .132.3 .132.3 .132.3 .123.3 .123.3 .122.3 .122.3 .122.3 .122.3 .122.3

147.6

	Parameter	Value
1	Solvent	CDCI3
2	Temperature	298.3
3	Pulse Sequence	zgfhigqn
4	Number of Scans	64
5	Receiver Gain	2050
6	Relaxation Delay	1.0000
7	Pulse Width	10.0000
8	Acquisition Time	0.9787
9	Spectrometer Frequency	282.40
10	Spectral Width	66964.3
11	Lowest Frequency	-61722.4
12	Nudeus	19F
13	Acquired Size	65536
14	Spectral Size	131072

4-(thiophen-3-yl)-9-(thiophen-3-ylethynyl)thieno[3,2-f]quinoline (3h)

f1 (ppm) ò

6-phenyl-1-(phenylethynyl)thieno[2,3-*h*]isoquinoline (4a)

6-(*m*-tolyl)-1-(*m*-tolylethynyl)thieno[2,3-*h*]isoquinoline (4c)

4-phenyl-11-(phenylethynyl)thieno[3,2-a]acridine (7a)

4-(4-fluorophenyl)-11-((4-fluorophenyl)ethynyl)thieno[3,2-a]acridine (7b)

4-(11-((4-(dimethylamino)phenyl)ethynyl)thieno[3,2-a]acridin-4-yl)-N,N-dimethylaniline (7c)¹

¹ NMR spectrum of **7c** contains small amounts of impurities – as desired product **8c** is available directly from **2c** we did not execute repeated purification

3,9-diphenylthieno[2',3',4':4,5]naphtho[1,8-bc]pyridine (5a)

3,9-di-*p*-tolylthieno[2',3',4':4,5]naphtho[1,8-*bc*]pyridine (5b)

3,9-di-*m*-tolylthieno[2',3',4':4,5]naphtho[1,8-*bc*]pyridine (5c)

3,9-di-o-tolylthieno[2',3',4':4,5]naphtho[1,8-bc]pyridine (5d)

3,9-bis(4-fluorophenyl)thieno[2',3',4':4,5]naphtho[1,8-bc]pyridine (5e)

3,9-di(thiophen-3-yl)thieno[2',3',4':4,5]naphtho[1,8-bc]pyridine (5h)

ĺ		Darameter	\6lue
		Falallecel	value
	1	Solvent	CDCl3
	2	Temperature	298.2
	3	Pulse Sequence	zgpg30
	4	Number of Scans	2048
	5	Receiver Gain	2050
	6	Relaxation Delay	2.0000
	7	Pulse Width	10.0000
	8	Acquisition Time	2.1846
	9	Spectrometer Frequency	62.90
	10	Spectral Width	15000.0
	11	Lowest Frequency	-1202.8
	12	Nudeus	13C
	13	Acquired Size	32768
	14	Spectral Size	65536
l			

ò

3,9-diphenylthieno[4',3',2':4,5]naphtho[1,8-bc]pyridine (6a)

	Parameter	Value
1	Solvent	CDCl3
2	Temperature	298.2
3	Pulse Sequence	zgpg30
4	Number of Scans	1024
5	Receiver Gain	101
6	Relaxation Delay	2.0000
7	Pulse Width	10.0000
8	Acquisition Time	1.0879
9	Spectrometer Frequency	125.76
10	Spectral Width	30120.5
11	Lowest Frequency	-2469.5
12	Nudeus	13C
13	Acquired Size	32768
14	Spectral Size	32768

CDCI 269C

3,9-di-p-tolylthieno[4',3',2':4,5]naphtho[1,8-bc]pyridine (6b)

Parameter 1 Solvent 2 Temperature 3 Pulse Sequence 4 Number of Scans 5 Receiver Gain 6 Relaxation Delay 7 Pulse Width 8 Acquisition Time 9 Spectrometer Frequency 10 Spectral Width	Value CDCl3 298.2 zgpg30 1024 101 2.0000 10.0000 1.0879 125.76 30120.5							cpc]								
11 Lowest Frequency 12 Nudeus 13 Acquired Size 14 Spectral Size	-2467.2 13C 32768 32768															
		[141.3	135.3	129.6	1192											
vincesti in pure manual la tanti dada	addinger dibbang	Mahalapahatan Jacama			(engelangeleja	ika kadi manjadi na mjela kaje	(madaland)	MANN ^a vik	pringition (second	ingendinigeliktyje	ing distant	/ununuiniii//	h Hair Marchan	ayering <mark>alan ganga</mark>	ly bodile nelection opport	nyyy
200 190 180	170 16	0 150	140 1	30 120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0

3,11-diphenylthieno[2',3',4':4,5]naphtho[1,8-bc]quinoline (8a)

Ó

	Parameter	Value
1	Solvent	CDCl3
2	Temperature	298.1
3	Pulse Sequence	zgpg30
4	Number of Scans	2048
5	Receiver Gain	101
6	Relaxation Delay	2.0000
7	Pulse Width	10.0000
8	Acquisition Time	1.0879
9	Spectrometer Frequency	125.76
10	Spectral Width	30120.5
11	Lowest Frequency	-2470.1
12	Nudeus	13C
13	Acquired Size	32768
14	Spectral Size	32768

-77.4 -77.2 -76.9 **E**

4,4'-(thieno[2',3',4':4,5]naphtho[1,8-bc]quinoline-3,11-diyl)bis(N,N-dimethylaniline) (8c)