Tetraasteranes as Homologues of Cubanes: Effective Scaffolds for

Drug Discovery

Xiaokun Zhang^a, Chaochun Wei^a, Keli Zong^a, Qidi Zhong^b and Hong Yan^{a,*} ^aCollege of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China ^bSchool of Pharmacy, North China University of Science and Technology, Tangshan, P. R. China *Corresponding Author: hongyan@bjut.edu.cn

Content

Methods1
1 DFT calculations1
2 In silico studies1
Table S1. Structure parameters of compound 1 calculated at M06-2X/def2-TZVP level2
Table S2. Structure parameters of compound 2 calculated at M06-2X/def2-TZVP level3
Table S3. Structure parameters of compound 3 calculated at M06-2X/def2-TZVP level4
Table S4. Structure parameters of compound 4 calculated at M06-2X/def2-TZVP level5
Table S5. Structure parameters of compound 5 calculated at M06-2X/def2-TZVP level
Table S6. Structure parameters of compound 6 calculated at M06-2X/def2-TZVP level7
Table S7. Solvation free energy (kcal/mol) of compounds 1-6 calculated at M06-2X/def2-TZVP
level
Table S8. Dipole and quadrupole of compounds 1-6 calculated at M06-2X/def2-TZVP level8
Figure S1. Pictorial representation of the redocked pose, crystallised pose and RMSD values of a)
NMDA, b) HDLP and c) o1 receptor
Figure S2. Predicted binding mode of Series 1 and 210
Figure S3. 2D interaction diagrams of Series 1 and 311
Figure S4. Graphical representation of the protein-RMSF plot of chain A for protein of Series 1.
Figure S5. Graphical representation of the protein-RMSF plot of chain B for protein of Series 1.12
Figure S6. Graphical representation of the protein-RMSF plot of Series 2
Figure S7. Graphical representation of the protein-RMSF plot of Series 3
Figure S8. Graphical representation of the ligand-RMSD plot of Series 114
Figure S9. Graphical representation of the ligand-RMSD plot of Series 214
Figure S10. Graphical representation of the ligand-RMSD plot of Series 315
Table S9. Physicochemical and ADMET of Series 1-3
References

Methods

1 DFT calculations

Molecular geometry optimizations and vibrational analyses of the compounds in a vacuum were carried out using the M06-2X function¹ associated with the def2-TZVP² basis set. Confirming the absence of an imaginary frequency validated the achievement of local geometric minima.

The Multiwfn 3.8 program³ facilitated all wavefunction analyses, and Visual Molecular Dynamics (VMD) software⁴ generated isosurface maps for various orbitals and real space functions, utilizing files exported from Multiwfn. Gaussian 09 packages⁵ were employed to complete all calculations.

2 In silico studies

2.1 Molecular docking

All computational modeling utilized the Schrodinger Suite, Version 12.4, Release 2021–2 (Schrodinger, LLC, New York, NY). Crystal Structures of the NMDA receptor (PDB ID: 5WEJ), histone deacetylase (HDAC, PDB ID: 4QA0), and Human σ 1 receptor (PDB ID: 5HK1) were obtained from the Protein Data Bank. All proteins were prepared using the default settings in the Protein Preparation Wizard. Ionization states for side chain heteroatoms were applied using Epik at pH 7.4. Ligands were built in Maestro and prepared for docking using LigPrep with protonation states assigned using Epik. Conformational search and minimization utilized Macromodel the OPLS4 force field, and molecular docking was performed with the Glide program with standard precision.

2.2 Molecular dynamics simulations

Molecular dynamics simulations of 200 ns were conducted on the selected complexes to evaluate the stability of the complexes. GROMACS 2022.5 software⁶ with the Amber99sb-ILDN force field⁷ was selected for performing simulation studies. The Sobtop tool⁸ was used to generate ligands topology files under the Gaff force field and the RESP2 charges were calculated by the Multiwfn³ and Gaussian 09 software⁵. The docked complexes were solvated in a cube box using a transferable intermolecular potential 3P (TIP3P) water model⁹. The gap between the protein chain and the edges of the box was fixed to be 1 Å. The appropriate number of ions was added to neutralize the respective systems. The steepest descent algorithm performed energy minimization to remove the undesirable steric clashes. Long-range electrostatic interactions within the cut-off of 1.2 nm were calculated using Particle Mesh Ewald (PME) approximation¹⁰. Short-range columbic and Van der Waals interactions with the cut-offs of 1.2 nm were selected. The Linear Constraint Solver (LINCS)¹¹ technique was used to compute the covalent bond constraints. NVT and NPT ensembles performed the position restraint equilibration for 1 ns each. During simulation, the constant temperature (310K) was maintained using the Berendsen algorithm¹², and the constant pressure (1 bar) was maintained by employing Parrinello-Rahman Barostat¹³. Subsequently, the production run of 200 ns was conducted on the docked complexes at the NPT ensemble using the same parameters mentioned above. For the analysis, the coordinates of the simulated complexes were captured every 2 fs time-frame. The converged complexes were subjected to free energy calculations using the MM-PBSA method. The hydrogen bond frequency was calculated by MDAnalysis.¹⁴

2.3 Binding free energy calculations

The molecular mechanics-based Poisson-Boltzmann surface area (MM-PBSA) continuum solvation model was used to calculate the binding free energy for the simulated protein-ligand complex. The gmx_MMPBSA package¹⁵ was used to calculate the various components of binding free energy, like electrostatic energy, van der Waals interaction energy, and solvation-free energy (polar + non-polar). Based on the RMSD plots, the last 20000 frames were selected to cover the most stabilized conformational states generated during the simulation run of 200 ns.

1 4010	DI. Stituetta	re parameters er compouna	I culculated	<i>a at</i> 101(0 210 aciz	
Ate	oms	Distance (Å)		Atoms		Angle (°)
1	2	1.560	1	2	3	89.992
1	4	1.560	1	2	6	90.018
1	5	1.560	1	4	3	90.001
2	3	1.560	1	4	8	90.016
2	6	1.560	1	5	6	90.021
3	4	1.560	1	5	8	89.999
3	7	1.560	2	1	4	90.002
4	8	1.560	2	1	5	89.976
5	6	1.560	2	3	4	90.006
5	8	1.561	2	3	7	89.990
6	7	1.560	2	6	5	89.985
7	8	1.560	2	6	7	89.995
			3	2	6	90.007
			3	4	8	89.994
			3	7	6	90.008
			3	7	8	89 985

Table S1. Structure parameters of compound 1 calculated at M06-2X/def2-TZVP level.

1	4	8	90.016
1	5	6	90.021
1	5	8	89.999
2	1	4	90.002
2	1	5	89.976
2	3	4	90.006
2	3	7	89.990
2	6	5	89.985
2	6	7	89.995
3	2	6	90.007
3	4	8	89.994
3	7	6	90.008
3	7	8	89.985
4	1	5	89.998
4	3	7	90.013
4	8	5	89.987
4	8	7	90.008
5	6	7	90.032
6	5	8	89.974
6	7	8	89.982
5	8	7	90.012

	-	-				
Ato	oms	Distance (Å)		Atoms		Angle (°)
1	2	1.534	1	2	3	109.339
1	6	1.533	1	2	7	109.355
2	3	1.534	1	6	5	109.363
2	7	1.533	1	6	10	109.334
3	4	1.534	2	1	6	109.702
4	5	1.533	2	3	4	109.717
4	9	1.534	2	7	8	109.703
5	6	1.534	3	2	7	109.385
6	10	1.534	3	4	5	109.351
7	8	1.534	3	4	9	109.330
8	9	1.534	4	5	6	109.724
8	10	1.533	4	9	8	109.756
			5	4	9	109.315
	7-7	3	5	6	10	109.369
	I	I	7	8	9	109.324
			7	8	10	109.358
	18 0	5	9	8	10	109.353
			6	10	8	109.700

Table S2. Structure parameters of compound **2** calculated at M06-2X/def2-TZVP level.

А	toms	Distance (Å)		Atoms		Angle (°)
1	2	1.548	1	2	3	103.224
1	10	1.545	1	2	6	102.621
1	11	1.528	1	10	4	107.377
2	3	1.531	1	10	9	102.982
2	6	1.576	2	1	10	100.592
3	4	1.525	2	1	11	104.407
4	8	1.563	2	3	4	100.745
4	10	1.556	2	6	5	102.626
5	6	1.548	2	6	7	111.759
5	9	1.545	3	2	6	111.758
5	11	1.527	3	4	8	112.095
6	7	1.530	3	4	10	104.572
7	8	1.525	4	8	7	112.093
8	9	1.556	4	8	9	89.905
9	10	1.558	4	10	9	90.096
			5	6	7	103.217
			5	9	8	107.372
		11	5	9	10	102.986
			6	5	9	100.596
	5		6	5	11	104.401
	9 10		6	7	8	100.746
	TT	6	7	8	9	104.572
			8	4	10	89.905
		3	8	9	10	90.094
			9	5	11	103.541
			10	1	11	103.541

Table S3. Structure parameters of compound **3** calculated at M06-2X/def2-TZVP level.

1

11

5

94.984

	-	1				
Ato	oms	Distance (Å)		Atoms		Angle (°)
1	2	1.558	1	2	3	113.940
1	6	1.524	1	2	8	90.007
1	7	1.557	1	6	5	109.957
2	3	1.524	1	7	8	89.992
2	8	1.557	1	7	12	114.022
3	4	1.523	2	1	6	113.939
4	5	1.558	2	1	7	90.008
4	10	1.557	2	3	4	109.956
5	6	1.523	2	8	7	89.992
5	11	1.557	2	8	9	114.021
7	8	1.558	3	2	8	113.865
7	12	1.523	3	4	5	113.939
8	9	1.523	3	4	10	114.021
9	10	1.524	4	5	6	113.939
10	11	1.558	4	5	11	89.992
11	12	1.524	4	10	9	113.865
			4	10	11	90.008
			5	4	10	89.992
		12	5	11	10	90.008
	7		5	11	12	113.864
	1 - 6	11	6	1	7	113.864
	Y	5	6	5	11	114.022
	8		7	8	9	113.939
	2	9 - 10	8	7	12	113.940
		4	8	9	10	109.956
	3		9	10	11	113.940
			10	11	12	113.939
			7	12	11	109.957

Table S4. Structure parameters of compound **4** calculated at M06-2X/def2-TZVP level.

_

Ate	oms	Distance (Å)		Atoms		Angle (°)
1	2	1.553	1	2	3	113.359
1	6	1.562	1	2	7	89.881
1	11	1.456	1	6	7	89.879
2	3	1.522	1	6	10	113.261
2	7	1.562	1	11	5	111.902
3	4	1.522	2	1	6	90.074
4	5	1.553	2	1	11	112.068
4	8	1.562	2	3	4	108.778
5	9	1.562	2	7	6	90.073
5	11	1.456	2	7	12	116.450
6	7	1.553	3	2	7	113.262
6	10	1.522	3	4	5	113.359
7	12	1.456	3	4	8	113.262
8	9	1.553	4	5	9	90.074
8	12	1.456	4	5	11	112.068
9	10	1.522	4	8	9	90.073
			4	8	12	116.450
			5	4	8	89.881
		10	5	9	8	89.879
			5	9	10	113.261
			6	1	11	116.448
	17	5	6	7	12	112.068
	~	8	6	10	9	108.782
	2		7	6	10	113.357
			8	9	10	113.357
		3	9	5	11	116.448
		•	9	8	12	112.068
			7	12	8	111.903

Table S5. Structure parameters of compound **5** calculated at M06-2X/def2-TZVP level.

	1	1					
A	toms	Distance (Å)		Atoms		Angle (°)	
1	2	1.554	1	2	3	113.071	-
1	6	1.554	1	2	7	89.524	
1	11	1.414	1	6	7	89.522	
2	3	1.520	1	6	10	113.077	
2	7	1.554	1	11	5	113.101	
3	4	1.520	2	1	6	90.361	
4	5	1.554	2	1	11	114.489	
4	8	1.554	2	3	4	107.884	
5	9	1.554	2	7	6	90.363	
5	11	1.413	2	7	12	114.495	
6	7	1.554	3	2	7	113.079	
6	10	1.520	3	4	5	113.067	
7	12	1.413	3	4	8	113.080	
8	9	1.554	4	5	9	90.360	
8	12	1.413	4	5	11	114.492	
9	10	1.520	4	8	9	90.364	
			4	8	12	114.494	
			5	4	8	89.524	
			5	9	8	89.523	
		12	5	9	10	113.075	
	B	7	6	1	11	114.491	
	4 - 3	2	6	7	12	114.490	
		18- 6	6	10	9	107.886	
	5		7	6	10	113.071	
			8	9	10	113.071	
			9	5	11	114.493	
			9	8	12	114.490	
			7	12	8	113.098	

Table S6. Structure parameters of compound **6** calculated at M06-2X/def2-TZVP level.

_

	(/ / I		
Compounds	Water	Ethyl acetate	Cyclohexane
1	-0.73	-6.07	-6.57
2	1.32	-4.86	-5.04
3	0.50	-5.82	-6.04
4	0.83	-5.91	-6.16
5	-8.61	-8.43	-6.36
6	-6.14	-7.74	-6.31

Table S7. Solvation free energy (kcal/mol) of compounds 1-6 calculated at M06-2X/def2-TZVP level.

Table S8. Dipole and quadrupole of compounds 1-6 calculated at M06-2X/def2-TZVP level.

Compounds	Dipole (log D)	Quadrupole (a.u.)
1	-3.70	1.91
2	-3.43	2.04
3	-1.57	2.06
4	-5.11	2.10
5	-3.36	2.09
6	-4.06	2.09

Figure S1. Pictorial representation of the redocked pose, crystallised pose and RMSD values of a) NMDA, b) HDLP and c) σ 1 receptor.

Series 1

Figure S2. Predicted binding mode of **Series 1** and **2**.

Pi-tigan Albel Pi-albel

Interactions was der Faulz Conventional Rydrogen Bond Convention Rydrogen Bond Fickstan

Figure S3. 2D interaction diagrams of **Series 1** and **3**.

Figure S4. Graphical representation of the protein-RMSF plot of chain A for protein of Series 1.

Figure S5. Graphical representation of the protein-RMSF plot of chain B for protein of Series 1.

Figure S6. Graphical representation of the protein-RMSF plot of Series 2.

Figure S7. Graphical representation of the protein-RMSF plot of Series 3.

Figure S8. Graphical representation of the ligand-RMSD plot of Series 1.

Figure S9. Graphical representation of the ligand-RMSD plot of Series 2.

		Oxa-3	91.74	30.49	1.91	2.65	-3.40	High	Yes	Yes	No	No	No	No	No	Yes	Yes	No	0.635	No	No	2.598	1.873	No	0.572
		Aza-3	103.00	36.09	0.30	2.07	-3.03	High	No	Yes	No	No	No	No	No	Yes	Yes	No	0.775	No	No	2.552	1.944	Yes	0.919
		Tet-3	98.88	12.03	3.65	4.28	-3.09	High	Yes	Yes	No	Yes	No	No	No	Yes	Yes	No	0.420	No	Yes	2.921	2.344	Yes	-0.660
		Cub-3	80.91	16.61	1.06	2.16	-3.13	High	Yes	Yes	No	No	No	No	No	Yes	No	Yes	0.590	No	Yes	2.541	0.949	No	0.721
	spunodu	Ben-3	76.52	12.03	2.77	3.27	-3.65	High	Yes	Yes	No	No	No	Yes	No	Yes	Yes	No	-0.590	No	No	2.509	2.122	Yes	0.468
	igated co	Oxa-2	87.01	96.89	1.10	1.18	-2.37	High	No	Yes	No	No	No	No	Yes	Yes	No	Yes	-0.550	No	No	2.085	0.993	No	2.156
s 1-3.	Invest	Aza-2	98.27	102.50	-0.52	0.67	-2.85	High	No	Yes	No	No	No	No	No	Yes	Yes	No	-0.314	No	Yes	2.161	1.808	No	2.393
of Series		Tet-2	94.45	78.43	2.63	2.59	-3.57	High	Yes	Yes	No	No	No	No	Yes	Yes	Yes	No	-1.290	No	No	2.294	1.555	Yes	1.041
DMET		Cub-2	75.23	78.43	1.07	1.37	-2.57	High	No	Yes	No	No	No	No	Yes	Yes	Yes	No	-1.120	No	No	1.906	1.842	Yes	2.210
al and A		Ben-2	73.33	78.43	2.28	1.92	-2.70	High	No	No	No	No	No	No	No	Yes	Yes	No	0.001	No	No	1.720	1.981	No	1.016
chemic		Oxa-1	89.00	63.57	3.95	3.08	-2.80	High	Yes	Yes	No	No	No	Yes	No	Yes	Yes	No	-0.450	No	No	3.107	0.731	No	1.107
. Physicc		Aza-1	96.14	45.11	5.69	4.64	-3.13	High	Yes	No	No	Yes	Yes	No	No	Yes	Yes	No	-0.050	No	Yes	2.827	1.770	No	1.257
Table S9.		Tet-1	96.14	45.11	5.69	4.64	-4.33	High	Yes	No	No	Yes	Yes	No	No	Yes	No	No	-0.130	No	Yes	3.119	0.997	Yes	-1.650

Figure S10. Graphical representation of the ligand-RMSD plot of Series 3.

		Ben-1	Cub-1
	Molar Refractivity	73.78	76.92
	TPSA (Az)	45.11	45.11
Molecular properties	Log P o/w (WLOGP)	4.81	4.13
4	Consensus Log P o/w	3.70	3.47
	Water solubility (log mol/L)	-4.33	-4.23
	GI absorption	High	High
	BBB permeant	Yes	Yes
	P-gp substrate	No	Yes
Pharmacokine-	CYP1A2 inhibitor	Yes	No
tics parameters	CYP2C19 inhibitor	Yes	Yes
	CYP2C9 inhibitor	Yes	No
	CYP2D6 inhibitor	Yes	Yes
	CYP3A4 inhibitor	No	No
Drug/lead	Drug likeness (Lipiniski)	Yes	Yes
likeness	Lead likeness	Yes	No
	Ames toxicity	Yes	No
	Max. tolerated dose (log mg/kg/day)	0.545	-1.010
	hERG I inhibitor	No	No
Toxicity	hERG II inhibitor	Yes	No
parameters	Oral rat acute toxicity (LD50) (mol/kg)	2.614	3.081
	Oral rat chronic toxicity (LOAEL)(log mg/kg_bw/day)	1.326	0.992
	Hepatotoxicity	No	No
	Minnow toxicity (log mM)	-0.050	1.220

References

(1) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06class Functionals and 12 other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

(2) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

(3) Lu, T.; Chen, F. Multiwfn: a Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580-592.

(4) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33-38.

(5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 09*; 2010.

(6) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: Fast, Flexible, and Free. *J. Comput. Chem.* **2005**, *26*, 1701-1718.

(7) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. *Proteins Struct. Funct. Bioinf.* **2006**, *65*, 712-725.

(8) Sobtop; http://sobereva.com/soft/Sobtop, 2023. http://sobereva.com/soft/Sobtop (accessed 2023-09-09).

(9) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. *J. Chem. Phys.* **1983**, *79*, 926-935.

(10) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. **1993**, 98, 10089-10092.

(11) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. *J. Comput. Chem.* **1997**, *18*, 1463-1472.

(12) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* **1984**, *81*, 3684-3690.

(13) Parrinello, M.; Rahman, A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. *Phys. Rev. Lett.* **1980**, *45*, 1196-1199.

(14) Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. *J. Comput. Chem.* **2011**, *32*, 2319-2327.

(15) Valdes-Tresanco, M. S.; Valdes-Tresanco, M. E.; Valiente, P. A.; Moreno, E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. *J. Chem. Theory Comput.* **2021**, *17*, 6281-6291.