Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of 3,5-bis(fluoroalkyl)pyrazoles/pyrazolines from [3+2] cycloaddition of di/trifluoroacetohydrazonoyl bromides and trifluoromethyl-substituted alkenes

Ruikang Wang¹, Peng Jin¹, Gaowang Yang¹, Ying Fan¹, Zuyu Bai¹, Danfeng Huang¹, Ke-Hu Wang¹, Junjiao Wang¹, Yulai Hu*^{1,2}

¹College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou, 730070, China,

²State Key Laboratory of Applied Organic Chemistry, Lanzhou, 730000, China

1. Synthesis of Di/trifluoroacetohydrazonoyl Bromides 1	S2
2. Copies of NMR and HRMS Spectra for Compounds 3 and B	S3
3. X-Ray Crystallographic Data of Compounds 3n and 4j	S118

1. Synthesis Procedure of Di/trifluoroacetohydrazonoyl Bromides 1¹

Step 1: A mixture of hydrazine hydrochlorides (2.0 mmol, 1.0 equiv.), triethylamine (1.0 mmol, 1.0 equiv.), di/trifluoroacetaldehyde ethyl hemiacetal (1.5 mmol, 1.5 equiv.), and freshly activated molecular sieves 4Å in EtOH (8 mL) was stirred at 75 °C in a round-bottom in an oil bath, and the reaction was monitored by TLC. After the reaction was completed, the solvent was removed in vacuo to afford intermediate products, which was used directly for the next step.

Step 2: To a solution of crude mixture from step 1 in DMF (8 mL) was added NBS. The resulting solution was stirred at room temperature, and the reaction was monitored by TLC. After the reaction was completed, the reaction was quenched with sat. NaCl aq., and the mixture was extracted with ethyl acetate (3 x 15 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting products was purified by column chromatography on silica gel (EA)/petroleum ether (PE) (1:8–1:20) to afford di/trifluoroacetohydrazonoyl bromides.

References

- 1. (a) T. Han, K.-H. Wang, M. Yang, P. Zhao, F. Wang, J. Wang, D. Huang and Y. Hu, *J. Org. Chem.*, 2022, **87**, 498–511.
- (b) Y. Ren, R. Ma, Y. Feng, K.-H. Wang, J. Wang, D. Huang, X. Lv and Y. Hu, *Asian J. Org. Chem.*, 2022, e202200438.
- (c) Y. Ren, R. Ma, X. Li, K.-H. Wang, J. Wang, D. Huang, X. Lv and Y. Hu, *Tetrahedron*, 2023, **149**, 133711.
- (d) Y. Feng, Y. Ren, D. Tang, K.-H. Wang, J. Wang, D. Huang, X. Lv and Y. Hu, Org. Biomol. Chem., 2024, 22, 2797–2812.
- (e) X. Li, D. Huang, Y. Zhou, X. Liu, K. Wang, J. Wang and Y. Hu, Chin. J. Org. Chem., 2024, 44, 1226–1239.

2. Copies of ¹H NMR, ¹³C NMR of products 3, 3', 4 and 4'
Spectrogram copies of compound 3a
¹H NMR copy of compound 3a

 $^{13}\mathrm{C}$ NMR copy of compound **3a**

¹⁹F NMR copy of compound **3a**

Spectrogram copies of compound **3b** ¹H NMR copy of compound **3b**

S6

80 70 60 50 40 30 20 10 0

90

-10

230 220 210 200 190 180 170 160 150 140 130 120 110 100 fl (ppn)

 $^{19}\mathrm{F}$ NMR copy of compound $\mathbf{3b}$

HRMS copy of compound **3b**

		Mass S	pectrum	າ Sn	nar	tFoi	mι	ıla R	еро	rt				
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\us tune_low.n 1	Acquisi Operati Instrum	ition Da or nent / S	ate Ser#	2024-2-5 9:21:11 Huyue micrOTOF-Q 20453									
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Active 100 m/z 1000 m/	z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			itive 0 V 0 V 0 V 0.0 Vpp		Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va			0.4 Bar er 180 jāC 4.0 l/min lve Waste			
Intens. x10 ⁵ 2.5 2.0 1.5 1.0 0.5 0.0	2 	74.2749	437.1942 	500	41.12	00 615	5.1357 1.1.1	689.15	51 763	.1754	837.19 	+MS, 0 54 911 90	.0-0.1n .2185	nin #(2-5)
Meas. m/z	# Form		m/z	err [pp m]	Me an err [pp m]	rdb	N- Ru le	ej¥ Conf	mS igm a	Std I	Std Me an m/z	Std I Var Nor m	Std m/z Diff	Std Com b Dev
299.0572	1 6 121	n er en zina	299.0578	2.1	1.9	0.0	OK	even	0.4	0.0	0.0	0.4	0.7	042.7

Spectrogram copies of compound **3d** ¹H NMR copy of compound **3d**

 $^{13}\mathrm{C}$ NMR copy of compound $\mathbf{3d}$

¹⁹F NMR copy of compound **3d**

S10

Spectrogram copies of compound **3e** ¹H NMR copy of compound **3e**

¹³C NMR copy of compound **3e**

HRMS copy of compound 3e

Spectrogram copies of compound **3f** ¹H NMR copy of compound **3f**

$^{13}\mathrm{C}$ NMR copy of compound 3f

¹⁹F NMR copy of compound **3f**

HRMS copy of compound 3f

Spectrogram copies of compound **3g** ¹H NMR copy of compound **3g**

$^{13}\mathrm{C}$ NMR copy of compound $3\mathrm{g}$

 $^{19}\mathrm{F}$ NMR copy of compound $\mathbf{3g}$

HRMS copy of compound 3g

			Mass S	Spectru	Jm	Sn	nart	For	mu	ıla R	ерс	ort					
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\user\NWNU-wangruikang 202402056.d tune_low.m 6									Acquisi Operati Instrum	ition D or nent / S	ate 2 H Ser # m	024-2 luyue nicrOT	4-2-5 9:47:22 rue rOTOF-Q 20453			
Acquisition Par Source Type Focus Scan Begin Scan End	amet	er ESI Active 100 m/z 1000 m/z		Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			Positive 4500 V -500 V 300.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve				0.4 Bar 180 jãC 4.0 l/min Waste			
Intens. x10 ⁵ 2.5 2.0 1.5 1.0 0.5		274.	2749 315.0521 362	437.1 2.3239	1932		558.4	1368	643.2	905		817	7.3563	+MS, 0. 894.58	0-0.1m	in #(2-4)	
Meas. m/z	20 #	Formula	300	400 r	m/z	500 err [pp m]	Me an err [pp	' 600 rdb	N- Ru le	e _i ¥ Conf	mS ig ma	Std I	Std Me an m/	Std I Var No	Std m/ z Diff	m/z Std Com b Dev	
315.0521	1	C 12 H 9	F 5 N 2 Na	O 315.0	527	2.1	m] 2.0	6.5	ok	even	6.7	11.5	z 0.6	rm 7.1	0.3	842.7	

Spectrogram copies of compound **3h** ¹H NMR copy of compound **3h**

$^{13}\mathrm{C}$ NMR copy of compound **3h**

 $^{19}\mathrm{F}$ NMR copy of compound $\mathbf{3h}$

Spectrogram copies of compound **3i** ¹H NMR copy of compound **3i**

¹³C NMR copy of compound **3i**

 $^{19}\mathrm{F}$ NMR copy of compound 3i

S23

Spectrogram copies of compound **3**j ¹H NMR copy of compound **3**j

¹⁹F NMR copy of compound 3j

Spectrogram copies of compound **3**k ¹H NMR copy of compound **3**k

$^{13}\mathrm{C}$ NMR copy of compound 3k

 $^{19}\mathrm{F}$ NMR copy of compound 3k

HRMS copy of compound 3k

Spectrogram copies of compound **3** ¹H NMR copy of compound **3**

¹³C NMR copy of compound **3**l

$^{19}\mathrm{F}\ \mathrm{NMR}\ \mathrm{copy}\ \mathrm{of}\ \mathrm{compound}\ \mathbf{3l}$

HRMS copy of compound 31

Spectrogram copies of compound **3m** ¹H NMR copy of compound **3m**

¹³C NMR copy of compound **3m**

 $^{19}\mathrm{F}$ NMR copy of compound $3\mathrm{m}$

Spectrogram copies of compound **3n** ¹H NMR copy of compound **3n**

¹³C NMR copy of compound **3n**

$^{19}\mathrm{F}$ NMR copy of compound $\mathbf{3n}$

S38

Spectrogram copies of compound **30** ¹H NMR copy of compound **30**

¹³C NMR copy of compound **30**

¹⁹F NMR copy of compound **30**

HRMS copy of compound 30

Spectrogram copies of compound **3a'** ¹H NMR copy of compound **3a'**

¹³C NMR copy of compound **3a'**

 $^{19}\mathrm{F}$ NMR copy of compound 3a'

Spectrogram copies of compound **3b'** ¹H NMR copy of compound **3b'**

¹⁹F NMR copy of compound **3b'**

HRMS copy of compound 3b'

Spectrogram copies of compound 3**c'** ¹H NMR copy of compound 3**c'**

$^{13}\mathrm{C}$ NMR copy of compound 3c'

 $^{19}\mathrm{F}$ NMR copy of compound 3c'

HRMS copy of compound 3c'

Mass Spectrum SmartFormula Report														
Analysis Info Analysis Name Method Sample Name Comment	alysis Info alysis Name D:\Data\user\NWNU-wangruikang 20240205-34.d thod tune_low.m mple Name 34 mment							Acc Op Ins	Acquisition Date 2024-2-5 10:35:36 Operator Huyue Instrument / Ser# micrOTOF-Q 20453					
Acquisition Para Source Type Focus Scan Begin Scan End	amete I	Instem ESI Ion Polarity Active Set Capillary 100 m/z Set End Plate Offset 1000 m/z Set Collision Cell RF					Positive S 4500 ∨ S -500 ∨ S 400.0 ∨pp S			lebulizer Iry Heater Iry Gas Iivert Valv	0.4 Bar 180 jāC 4.0 l/min Waste			
Intens. x10 ⁴ - - - - 2- -		290.2685	2934 437. - Ju - Ju	1937				659.28	58	793.38	819	+MS, 0.	939.46	514
100 Meas. m/z	20 #	o 300 Formula	400 m/z	err [pp m]	500 Me an err	rdb	600 N- Ru le	e _i ¥ Conf	700 mSi gma	Std I	Std Me an	Std I Var Nor	Std m/z Diff	m/z Std Com b Dev
295.0656	1	C 12 H 9 F 6 N 2	295.0664	2.8	[pp m] 2.8	6.5	ok	even	79.4	137.2	m/z 0.8	m 68.9	0.8	842.7

Spectrogram copies of compound **3e'** ¹H NMR copy of compound **3e'**

¹³C NMR copy of compound **3e'**

¹⁹F NMR copy of compound **3e'**

HRMS copy of compound 3e'

Spectrogram copies of compound **3f'** ¹H NMR copy of compound **3f'**

¹⁹F NMR copy of compound **3f'**

S54

Spectrogram copies of compound **3g'** ¹H NMR copy of compound **3g'**

 $^{19}\mathrm{F}$ NMR copy of compound 3g'

Spectrogram copies of compound **3h'** ¹H NMR copy of compound **3h'**

$^{13}\mathrm{C}$ NMR copy of compound 3h'

 $^{19}\mathrm{F}$ NMR copy of compound 3h'

Spectrogram copies of compound **3**j' ¹H NMR copy of compound **3**j'

¹³C NMR copy of compound **3**j'

¹⁹F NMR copy of compound **3**j'

HRMS copy of compound 3j'

Spectrogram copies of compound **3k'** ¹H NMR copy of compound **3k'**

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) $^{19}\mathrm{F}$ NMR copy of compound 3k'

HRMS copy of compound 3k'

Spectrogram copies of compound **4a** ¹H NMR copy of compound **4a**

¹³C NMR copy of compound **4a**

¹⁹F NMR copy of compound **4a**

HRMS copy of compound 4a

Spectrogram copies of compound **4b** ¹H NMR copy of compound **4b**

¹⁹F NMR copy of compound **4b**

S69

Spectrogram copies of compound **4c** ¹H NMR copy of compound **4c**

$^{13}\mathrm{C}$ NMR copy of compound 4c

¹⁹F NMR copy of compound **4c**

HRMS copy of compound 4c

m/z

Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 2024-2-5 10:15:36 Analysis Name D:\Data\user\NWNU-wangruikang 20240205-22.d Method tune_low.m Operator Huyue Sample Name 22 Instrument / Ser# micrOTOF-Q 20453 Comment **Acquisition Parameter** 0.4 Bar 180 _jãC 4.0 l/min lon Polarity Set Capillary ESI Active Set Nebulizer Set Dry Heater Source Type Focus Positive 4500 V Set End Plate Offset Set Collision Cell RF Scan Begin Scan End 100 m/z 1000 m/z -500 V 300.0 Vpp Set Dry Gas Set Divert Valve Waste +MS, 0.0-0.0min #(1-2) Intens, x104 3-290.2685 2-443.1736 187.0280 1-334.2924 939.6459 659.2877 0-4-100 200 зóо 400 500 6Ò0 700 800 9Ó0 m/z # Formula ej¥ mSi m/z Std St Std St Std Meas. err Me rd N-R Con d

443.1736 1 C 20 H 25 F 5 N 2 Na O 2 443.1728 -1.7 -1.7 6.5 ok 39.2 60.1 even

[pp an

m] err

[pp

m]

b

ul

е

f

gm

а

Т

Me

an Nor

m/

0.8

Z

Т d Com

Z

Dif

b Dev

842.7

Var m/

m

29.5 0.1

Spectrogram copies of compound **4d** ¹H NMR copy of compound **4d**

¹⁹F NMR copy of compound **4d**

S74

Spectrogram copies of compound **4e** ¹H NMR copy of compound **4e**

¹⁹F NMR copy of compound **4e**

HRMS copy of compound 4e

Spectrogram copies of compound **4f** ¹H NMR copy of compound **4f**

$^{13}\mathrm{C}$ NMR copy of compound 4f

 $^{19}\mathrm{F}$ NMR copy of compound $\mathbf{4f}$

HRMS copy of compound 4f

Mass Spectrum SmartFormula Report															
Analysis Info Analysis Name Method Sample Name Comment	nfo ame D:\Data\user\NWNU-wangruikang 20240205-29.d tune_low.m me 29							A C Ir	cquisitio perator nstrume	on Date nt / Se	e 20 Hi r# mi)24-2-{ uyue icrOT(5 10:28 DF-Q	3:05 2045	3
Acquisition Par Source Type Focus Scan Begin Scan End	Parameter ESI Active 100 m/z 1000 m/z			lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			e V		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve			0.4 Bar 180 jāC 4.0 l/min Waste			
1.25 1.25 0.75 0.25	203.0030) 290.2681	Ly. 4. 1. 19 Legle	445.1155				659.2	2812 ⁷³	2.1664		+ 867	2417	943.22	66
100 Meas m/z	200 . # For	300 mula	400) m/z	500 err [pp m]	Me an err [pp m]	600 rdb	N- R ul e	700 ej¥ Conf	mS ig ma	Std	Std Me an m/ z	900 Std Va rN or m	Std m/ z Diff	m/z Std Com b Dev
440.1100		511157 5142		440.1107	0.0	0.0	7.0	OK	even	0.0	17.0	0.7	1.5	0.0	042.7

Spectrogram copies of compound **4h** ¹H NMR copy of compound **4h**

$^{13}\mathrm{C}$ NMR copy of compound 4h

 $^{19}\mathrm{F}\ \mathrm{NMR}\ \mathrm{copy}\ \mathrm{of}\ \mathrm{compound}\ \mathbf{4h}$

S82

Spectrogram copies of compound **4i** ¹H NMR copy of compound **4i**

¹³C NMR copy of compound **4i**

¹⁹F NMR copy of compound **4i**

S85

Spectrogram copies of compound **4j** ¹H NMR copy of compound **4j**

¹³C NMR copy of compound **4j**

 $^{19}\mathrm{F}$ NMR copy of compound 4j

HRMS copy of compound 4j

ZHAOSHUJUAN-41 #48-90 RT: 0.21-0.40 AV: 43 NL: 5.95E8 T: FTMS + p ESI Full lock ms [50.0000-750.0000]

Spectrogram copies of compound **4**k ¹H NMR copy of compound **4**k

$^{13}\mathrm{C}$ NMR copy of compound 4k

 $^{19}\mathrm{F}$ NMR copy of compound 4k

HRMS copy of compound 4k

Spectrogram copies of compound **4** ¹H NMR copy of compound **4**

$^{13}\mathrm{C}$ NMR copy of compound **4**l

 $^{19}\mathrm{F}\ \mathrm{NMR}\ \mathrm{copy}\ \mathrm{of}\ \mathrm{compound}\ \mathbf{4l}$

S94

Spectrogram copies of compound **4a'** ¹H NMR copy of compound **4a'**

$^{13}\mathrm{C}$ NMR copy of compound 4a'

¹⁹F NMR copy of compound **4a'**

HRMS copy of compound 4a'

Spectrogram copies of compound **4b'** ¹H NMR copy of compound **4b'**

$^{13}\mathrm{C}$ NMR copy of compound 4b'

¹⁹F NMR copy of compound **4b'**

HRMS copy of compound 4b'

S98

Spectrogram copies of compound **4c'** ¹H NMR copy of compound **4c'**

¹³C NMR copy of compound **4c'**

¹⁹F NMR copy of compound **4c'**

HRMS copy of compound 4c'

Spectrogram copies of compound 4d' ¹H NMR copy of compound 4d'

¹⁹F NMR copy of compound **4d'**

Spectrogram copies of compound 4e' ¹H NMR copy of compound **4e'**

¹³C NMR copy of compound **4e'**

¹⁹F NMR copy of compound **4e'**

HRMS copy of compound 4e'

S106

Spectrogram copies of compound 4g' ¹H NMR copy of compound 4g'

¹⁹F NMR copy of compound **4g'**

HRMS copy of compound 4g'

S109

Spectrogram copies of compound **4h'** ¹H NMR copy of compound **4h'**

$^{13}\mathrm{C}$ NMR copy of compound 4h'

 $^{19}\mathrm{F}$ NMR copy of compound 4h'

HRMS copy of compound 4h'

Spectrogram copies of compound **4i'** ¹H NMR copy of compound **4i'**

$^{13}\mathrm{C}$ NMR copy of compound 4i'

 $^{19}\mathrm{F}$ NMR copy of compound 4i'

S115

Spectrogram copies of compound **B** ¹H NMR copy of compound **B**

HRMS copy of compound **B**

3. X-Ray Crystallographic Data of Compounds 3n and 4j

Compound 3n

Thermal ellipsoids are set at a 50% probability level. Crystal data have been deposited to CCDC, number 2313274.

Crystallization Details

The obtained compound 3n (35 mg) was dissolved in THF (0.2 mL) in a NMR tube at room temperature. Then petroleum ether (2 mL) was added to the solution slowly along the tube wall, resulting in a two-phase mixture. The colorless crystal of 3n was formed after the two-phase mixture has diffused.

Experimental

A suitable crystal was selected and placed on a ROD, Synergy Custom system, HyPix diffractometer. The crystal was kept at 150.00(10) K during data collection. Using Olex², the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation.

Experimental

A suitable crystal was selected and compound **3n** on a ROD, Synergy Custom system, HyPix diffractometer. The crystal was kept at 300.27(10) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of compound 3n

Crystal Data for C₁₃H₁₀BrF₅N₂ (M = 369.14 g/mol): monoclinic, space group P2/n (no. 13), a = 17.6937(9) Å, b = 4.5126(2) Å, c = 18.7442(10) Å, $\beta = 105.041(5)$, V = 1445.35(13) Å³, Z = 4, T = 300.27(10) K, μ (Cu K α) = 4.376 mm⁻¹, *Dcalc* = 1.696 g/cm³, 8115 reflections measured ($6.122^{\circ} \le 2\Theta \le 154.342^{\circ}$), 2870 unique ($R_{int} = 0.0543$, $R_{sigma} = 0.0641$) which were used in all calculations. The final R_1 was 0.0619 (I > 2 σ (I)) and wR_2 was 0.1963 (all data).

Refinement model description

Number of restraints - 24, number of constraints - unknown.

Details:

Fixed Uiso
 At 1.2 times of:
 All C(H) groups, All C(H,H) groups
 At 1.5 times of:
 All C(H,H,H) groups
 2. Uiso/Uaniso restraints and constraints
 Uanis(F4) ≈ Ueq, Uanis(F4B) ≈ Ueq, Uanis(F5) ≈ Ueq, Uanis(F5B)
 ≈ Ueq: with sigma of 0.004 and sigma for terminal atoms of 0.002
 3. Others
 Fixed Sof: F4(0.7) F4B(0.3) F5(0.5) F5B(0.5) H5A(0.5) H5B(0.5)
 4.a Ternary CH refined with riding coordinates:
 C5(H5A), C5(H5B)
 4.b Aromatic/amide H refined with riding coordinates:
 C2(H2), C6(H6), C12(H12)

4.c Idealised Me refined as rotating group:

C3(H3A,H3B,H3C), C11(H11A,H11B,H11C)

Table S1 Crystal data and	structure refinement for compound
3n.	
Identification code	compound 3n
Empirical formula	$C_{13}H_{10}BrF_5N_2$
Formula weight	369.14
Temperature/K	300.27(10)
Crystal system	monoclinic
Space group	P2/n
a/Å	17.6937(9)
b/Å	4.5126(2)
c/Å	18.7442(10)
α/°	90
β/°	105.041(5)
γ/°	90
Volume/Å ³	1445.35(13)
Ζ	4
$\rho_{calc}g/cm^3$	1.696
μ/mm^{-1}	4.376
F(000)	728.0
Crystal size/mm ³	0.15 imes 0.06 imes 0.05
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	6.122 to 154.342
Index ranges	$-22 \le h \le 21, -5 \le k \le 2, -23 \le l \le 23$
Reflections collected	8115
Independent reflections	2870 [$R_{int} = 0.0543, R_{sigma} = 0.0641$]
Data/restraints/parameters	2870/24/210
Goodness-of-fit on F ²	1.107
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0619, wR_2 = 0.1805$
Final R indexes [all data]	$R_1 = 0.0764, wR_2 = 0.1962$
Largest diff. peak/hole / e Å ⁻³	0.62/-0.60

Table S1 Crystal data	and structure refinement for compoun
3n.	ľ
Identification code	compound 3n
Empirical formula	$C_{13}H_{10}BrF_5N_2$
Formula weight	369.14
 To more one trans /W	200.27(10)

Displacement Parameters ($Å^2 \times 10^3$) for compound 3n. U_{eq} is defined as 1/3 of trace of the orthogonalised U_{IJ} tensor.							
Br1	8698.7(3)	1227.0(15)	6755.0(3)	85.9(3)			
F1	4973.6(19)	3181(6)	4349.6(17)	78.0(8)			
F2	5571(2)	-886(6)	4303(2)	87.3(9)			
F3	4567.2(19)	284(8)	3435.9(18)	90.7(9)			
F4	5749(4)	4838(14)	1331(3)	108.4(16)			
F4B	5674(9)	6870(40)	1485(9)	110(4)			
F5	6133(5)	8730(14)	1812(4)	86.0(17)			
F5B	6638(6)	8787(15)	2029(5)	96(2)			
N1	6486(2)	3380(7)	3741.2(19)	55.6(8)			
N2	6787(2)	4588(9)	3213(2)	62.8(9)			
C1	5710(2)	2831(8)	3472(2)	52.2(8)			
C2	7685(3)	1273(9)	4508(3)	61.1(10)			
C3	8950(3)	-905(15)	5236(4)	91.1(17)			
C4	7312(3)	3422(9)	5777(2)	58.7(9)			
C5	6329(4)	5965(12)	1924(3)	75.8(13)			
C6	5496(3)	3731(9)	2754(2)	58.9(10)			
C7	8201(3)	760(10)	5186(3)	64.5(10)			
C8	6190(3)	4802(10)	2626(2)	61.6(10)			
С9	8001(3)	1877(10)	5807(2)	59.8(10)			
C10	7001(2)	2836(9)	4459(2)	54.9(9)			
C11	7098(4)	4572(15)	6450(3)	84.4(15)			
C12	6816(3)	3906(9)	5079(2)	58.8(10)			
C13	5211(3)	1378(8)	3895(3)	58.0(9)			

Table S2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic

Table	Table S3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 3n. The								
Aniso	otropic	displacement	factor	exponent	takes the	e form: -			
$2 \pi^{2} [h^{2}a^{*2}U_{11} + 2hka^{*}b^{*}U_{12} + \cdots].$									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
Br1	68.9(4)	109.8(5)	63.3(4)	4.7(3)	-10.9(3)	11.2(3)			
F1	89(2)	77.7(15)	80.6(19)	-10.6(13)	45.4(17)	-8.3(14)			
F2	93(2)	67.9(14)	99(2)	28.3(14)	21.5(18)	-0.8(14)			
F3	70.1(18)	126(2)	69.3(19)	-5.3(17)	6.8(14)	-33.3(17)			
F4	115(2)	114(2)	95(2)	8.4(17)	24.7(17)	-8.7(17)			
F4B	110(4)	113(4)	108(4)	4(2)	29(2)	3(2)			
F5	95(2)	81(2)	83(2)	8.1(17)	25.5(18)	-0.1(18)			
F5B	102(3)	95(2)	94(3)	6.8(18)	31.5(19)	-2.2(18)			
N1	53.1(18)	68.8(18)	43.2(17)	9.2(14)	9.6(14)	2.8(14)			
N2	61(2)	81(2)	48.3(19)	8.3(16)	17.8(16)	-0.1(17)			
C1	52(2)	55.9(18)	45.8(19)	-1.0(16)	8.1(16)	1.7(16)			
C2	54(2)	73(2)	56(2)	-0.6(19)	13.5(19)	3.1(18)			
C3	63(3)	118(4)	88(4)	0(3)	12(3)	29(3)			
C4	52(2)	72(2)	47(2)	-2.4(17)	4.6(17)	2.4(17)			
C5	85(3)	86(3)	55(3)	13(2)	17(2)	14(2)			
C6	59(2)	69(2)	46(2)	1.7(17)	7.7(18)	7.2(18)			
C7	53(2)	72(2)	66(3)	0(2)	12(2)	5.7(19)			
C8	66(3)	68(2)	50(2)	7.9(18)	15.2(19)	10.6(19)			
C9	51(2)	72(2)	49(2)	5.4(18)	-1.0(17)	-0.9(17)			
C10	50(2)	63(2)	49(2)	3.6(17)	6.4(17)	1.3(16)			
C11	74(3)	122(4)	53(3)	-7(3)	8(2)	17(3)			
C12	52(2)	72(2)	51(2)	1.3(18)	10.0(18)	8.4(18)			
C13	58(2)	55.8(19)	56(2)	4.1(17)	8.7(19)	-3.5(16)			

S123

Table S4 Bond Lengths for compound 3n.								
Atom	Atom	Length/Å	Atom	Atom	Length/Å			
Br1	С9	1.905(4)	C1	C6	1.363(6)			
F1	C13	1.323(5)	C1	C13	1.483(6)			
F2	C13	1.335(5)	C2	C7	1.378(7)			
F3	C13	1.332(5)	C2	C10	1.383(6)			
F4	C5	1.398(9)	C3	C7	1.506(7)			
F4B	C5	1.301(16)	C4	С9	1.393(6)			
F5	C5	1.297(8)	C4	C11	1.500(7)			
F5B	C5	1.380(9)	C4	C12	1.390(6)			
N1	N2	1.354(5)	C5	C8	1.495(7)			
N1	C1	1.357(5)	C6	C8	1.396(7)			
N1	C10	1.436(5)	C7	C9	1.395(7)			
N2	C8	1.317(6)	C10	C12	1.375(6)			

Table S5 Bond Angles for compound 3n.								
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	
N2	N1	C1	110.8(3)	C2	C7	С9	117.2(4)	
N2	N1	C10	118.6(3)	C9	C7	C3	122.5(5)	
C1	N1	C10	130.7(3)	N2	C8	C5	118.8(4)	
C8	N2	N1	104.9(4)	N2	C8	C6	112.4(4)	
N1	C1	C6	107.9(4)	C6	C8	C5	128.7(4)	
N1	C1	C13	124.6(4)	C4	С9	Br1	117.6(3)	
C6	C1	C13	127.5(4)	C4	С9	C7	123.7(4)	
C7	C2	C10	120.5(4)	C7	С9	Br1	118.6(3)	
C9	C4	C11	123.2(4)	C2	C10	N1	118.8(4)	
C12	C4	С9	116.6(4)	C12	C10	N1	119.9(4)	
C12	C4	C11	120.1(4)	C12	C10	C2	121.2(4)	
F4	C5	C8	108.5(5)	C10	C12	C4	120.7(4)	
F4B	C5	F5B	93.2(8)	F1	C13	F2	106.6(4)	
F4B	C5	C8	110.1(8)	F1	C13	F3	106.4(4)	
F5	C5	F4	96.4(6)	F1	C13	C1	113.9(3)	
F5	C5	C8	112.5(5)	F2	C13	C1	112.5(4)	
F5B	C5	C8	110.4(5)	F3	C13	F2	106.7(3)	
C1	C6	C8	104.0(4)	F3	C13	C1	110.3(4)	
C2	C7	C3	120.2(5)					

Tab	Table S6 Torsion Angles for compound 3n.								
A	B	С	D	Angle/°	A	B	С	D	Angle/°
F4	C5	C8	N2	154.4(5)	C1	C6	C8	C5	177.0(5)
F4	C5	C8	C6	-22.4(7)	C2	C7	C9	Br1	-179.8(3)
F4B	C5	C8	N2	-160.6(9)	C2	C7	C9	C4	1.0(7)
F4B	C5	C8	C6	22.7(10)	C2	C10	C12	C4	-0.5(7)
F5	C5	C8	N2	-100.2(7)	C3	C7	C9	Br1	-0.8(7)
F5	C5	C8	C6	83.0(8)	C3	C7	C9	C4	-180.0(5)
F5B	C5	C8	N2	-59.1(7)	C6	C1	C13	F1	-102.2(5)
F5B	C5	C8	C6	124.2(6)	C6	C1	C13	F2	136.3(4)
N1	N2	C8	C5	-177.7(4)	C6	C1	C13	F3	17.3(6)
N1	N2	C8	C6	-0.5(5)	C7	C2	C10	N1	178.7(4)
N1	C1	C6	C8	0.4(4)	C7	C2	C10	C12	-0.2(7)
N1	C1	C13	F1	80.7(5)	C9	C4	C12	C10	1.4(6)
N1	C1	C13	F2	-40.7(6)	C10	N1	N2	C8	179.6(4)
N1	C1	C13	F3	-159.7(4)	C10	N1	C1	C6	-179.4(4)
N1	C10	C12	C4	-179.4(4)	C10	N1	C1	C13	-1.8(7)
N2	N1	C1	C6	-0.7(5)	C10	C2	C7	C3	-179.1(5)
N2	N1	C1	C13	176.9(4)	C10	C2	C7	C9	0.0(7)
N2	N1	C10	C2	-51.5(5)	C11	C4	C9	Br1	-0.2(6)
N2	N1	C10	C12	127.5(4)	C11	C4	C9	C7	179.0(5)
C1	N1	N2	C8	0.7(5)	C11	C4	C12	C10	-179.3(5)
C1	N1	C10	C2	127.1(5)	C12	C4	C9	Br1	179.1(3)
C1	N1	C10	C12	-53.9(6)	C12	C4	C9	C7	-1.6(7)
C1	C6	C8	N2	0.1(5)	C13	C1	C6	C8	-177.1(4)

Para	Parameters ($Å^2 \times 10^3$) for compound 3n.							
Atom	n <i>x</i>	v	z	U(eq)				
H2	7797.6	563.3	4081.71	73				
H3A	8936.42	-1769.23	4765.03	137				
H3B	9007.58	-2442	5600.41	137				
H3C	9385.13	436.11	5375.22	137				
H5A	6858.97	5559.18	1880.52	91				
H5B	6623.46	4606.43	1689.4	91				
H6	5002.85	3650.54	2424.58	71				
H11 A	6614.97	5649.64	6302.42	127				
H11E	3 7504.56	5862.27	6718.36	127				
H11C	7038.78	2939.06	6758.91	127				
H12	6354.96	4965.76	5031.12	71				

Table S7 Hydrogen Atom Coordinates (Åimes10⁴) and Isotropic Displacement

Table S8 Atomic Occupancy for compound 3n.								
Atom	Occupancy	Atom	Occupancy	Atom	Occupancy			
F4	0.7	F4B	0.3	F5	0.5			
F5B	0.5	H5A	0.5	H5B	0.5			

Compound 4j

Thermal ellipsoids are set at a 50% probability level. Crystal data have been deposited to CCDC, number 2380999.

Crystallization Details

The obtained compound 4j (30 mg) was dissolved in THF (0.2 mL) in a NMR tube at room temperature. Then petroleum ether (2 mL) was added to the solution slowly along the tube wall, resulting in a two-phase mixture. The colorless crystal of compound 4j was formed after the two-phase mixture has diffused.

Experimental

Single crystals of $C_{17}H_{12}BrF_5N_2$ [compound 4j] were []. A suitable crystal was selected and [] on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 149.99(10) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [compound 4j]

Crystal Data for C₁₇H₁₂BrF₅N₂ (M = 419.20 g/mol): triclinic, space group P-1 (no. 2), a = 7.4520(4) Å, b = 10.0443(4) Å, c = 11.7716(5) Å, $\alpha = 86.890(3)$, $\beta = 73.961(4)$, γ = 70.172(4), V = 795.85(7) Å³, Z = 2, T = 149.99(10) K, μ (Cu K α) = 4.064 mm⁻¹, $Dcalc = 1.749 \text{ g/cm}^3$, 8425 reflections measured ($7.822^\circ \le 2\Theta \le 151.838^\circ$), 3125 unique ($R_{int} = 0.0251$, $R_{sigma} = 0.0198$) which were used in all calculations. The final R_1 was 0.0300 (I > 2 σ (I)) and wR_2 was 0.0750 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups

2.a Ternary CH refined with riding coordinates:

C3(H3)

2.b Secondary CH2 refined with riding coordinates:

C5(H5A,H5B)

2.c Aromatic/amide H refined with riding coordinates:

C2(H2), C6(H6), C7(H7), C8(H8), C11(H11), C14(H14), C15(H15), C16(H16),

C17(H17)

Table S9 Crystal data and structure refinement for compound 4j.					
Identification code	compound 4 j				
Empirical formula	$C_{17}H_{12}BrF_5N_2$				
Formula weight	419.20				
Temperature/K	149.99(10)				
Crystal system	triclinic				
Space group	P-1				
a/Å	7.4520(4)				
b/Å	10.0443(4)				
c/Å	11.7716(5)				
α/°	86.890(3)				
β/°	73.961(4)				
γ/°	70.172(4)				
Volume/Å ³	795.85(7)				
Ζ	2				
$\rho_{calc}g/cm^3$	1.749				
µ/mm ⁻¹	4.064				
F(000)	416.0				
Crystal size/mm ³	0.18 imes 0.15 imes 0.12				
Radiation	Cu Ka ($\lambda = 1.54184$)				
2Θ range for data collection/°	7.822 to 151.838				
Index ranges	$-8 \le h \le 9, -12 \le k \le 12, -14 \le l \le 14$				
Reflections collected	8425				
Independent reflections	$3125 [R_{int} = 0.0251, R_{sigma} = 0.0198]$				
Data/restraints/parameters	3125/0/226				
Goodness-of-fit on F ²	1.076				
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0300, wR_2 = 0.0748$				
Final R indexes [all data]	$R_1 = 0.0306, wR_2 = 0.0750$				
Largest diff. peak/hole / e Å ⁻³	0.39/-0.56				

trace	trace of the orthogonalised U _{IJ} tensor.							
Atom	x	v	z	U(eq)				
Br1	2735.6(3)	3553.2(2)	6780.0(2)	25.57(9)				
F1	3987.0(17)	9335.9(13)	7659.0(11)	26.0(3)				
F2	9209(2)	8349.8(15)	10819.8(12)	34.9(3)				
F3	11976.8(18)	7174.9(16)	9581.3(12)	32.7(3)				
F4	4684.7(18)	9022.5(14)	9327.4(10)	26.5(3)				
F5	5293.8(19)	10697.4(12)	8234.6(11)	27.0(3)				
N1	7535(2)	6868.5(17)	7962.2(14)	17.4(3)				
N2	8340(2)	6463.0(18)	8909.9(14)	18.5(3)				
C1	6413(3)	6106(2)	7700.1(16)	16.2(4)				
C2	9631(4)	8567(3)	3844.1(19)	29.1(5)				
C3	10084(3)	7200(2)	10054.1(18)	20.8(4)				
C4	8141(3)	8451(2)	6289.3(16)	16.8(4)				
C5	8879(3)	8580(2)	8271.6(18)	20.6(4)				
C6	7345(3)	9652(2)	5698.2(18)	21.5(4)				
C7	8089(3)	9698(2)	4483.4(19)	26.7(5)				
C8	5611(3)	6449(2)	6732.7(17)	18.2(4)				
C9	4223(3)	4584(2)	7166.0(17)	18.4(4)				
C10	9068(3)	7386(2)	9099.6(17)	18.4(4)				
C11	9705(3)	7311(2)	5639.1(18)	21.7(4)				
C12	7447(3)	8329(2)	7628.4(16)	16.2(4)				
C13	5327(3)	9352(2)	8208.8(17)	19.9(4)				
C14	6121(3)	4978(2)	8380.1(17)	18.0(4)				
C15	10439(3)	7371(3)	4429(2)	28.2(5)				
C16	4503(3)	5696(2)	6479.5(17)	19.4(4)				
C17	5034(3)	4216(2)	8114.0(18)	20.3(4)				

Table S10 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 4j. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Aniso 2π²[h ²	otropic dis ² a* ² U ₁₁ +2hk	splacement a*b*U ₁₂ +].	factor	exponent	takes the	form: -
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	30.21(14)	24.72(14)	28.68(14)	4.02(9)	-12.24(10)	-15.06(10)
F1	19.9(6)	30.7(7)	23.9(6)	-5.8(5)	-10.0(5)	0.0(5)
F2	35.3(7)	42.0(8)	21.7(6)	-10.0(6)	-11.3(5)	-1.3(6)
F3	18.1(6)	48.1(8)	30.4(7)	1.5(6)	-10.3(5)	-6.3(6)
F4	26.4(6)	33.5(7)	14.7(6)	-0.1(5)	-2.5(5)	-6.3(5)
F5	33.5(7)	17.1(6)	26.0(6)	-3.2(5)	-10.2(5)	-0.7(5)
N1	23.2(8)	17.8(8)	14.8(8)	6.0(6)	-11.3(6)	-7.2(6)
N2	19.8(8)	21.0(8)	13.7(8)	4.1(6)	-9.0(6)	-2.7(6)
C1	16.2(8)	16.4(9)	13.1(8)	-0.8(7)	-3.1(7)	-2.4(7)
C2	35.7(12)	46.4(14)	14.7(9)	4.5(9)	-6.1(9)	-26.8(11)
C3	20.6(9)	24.1(10)	18.0(9)	2.9(8)	-9.2(8)	-5.1(8)
C4	18.8(9)	19.6(9)	13.8(9)	3.0(7)	-6.7(7)	-7.5(7)
C5	24.6(10)	21.4(10)	19.5(9)	4.5(8)	-12.9(8)	-7.6(8)
C6	25.2(10)	20.6(10)	20.3(10)	5.3(8)	-10.9(8)	-6.7(8)
C7	34.6(11)	34.0(12)	21.1(10)	11.9(9)	-16.5(9)	-18.1(10)
C8	22.7(9)	18.3(9)	13.9(9)	3.2(7)	-6.8(7)	-6.2(7)
C9	18.2(9)	18.5(9)	19.2(9)	-1.7(7)	-4.4(7)	-7.2(7)
C10	18.2(9)	21.4(9)	14.8(9)	2.5(7)	-7.2(7)	-3.9(7)
C11	19.3(9)	22.9(10)	22.2(10)	2.2(8)	-6.1(8)	-6.0(8)
C12	19.6(9)	15.0(9)	14.2(9)	2.8(7)	-7.3(7)	-4.5(7)
C13	23.4(9)	20.1(9)	15.0(9)	-0.4(7)	-7.5(7)	-3.8(8)
C14	18.6(9)	18.7(9)	14.9(9)	2.8(7)	-5.5(7)	-3.4(7)
C15	24.1(10)	35.6(12)	23.5(11)	-6.1(9)	0.9(8)	-13.1(9)
C16	20.9(9)	20.9(9)	15.4(9)	1.2(7)	-6.5(7)	-4.7(8)
C17	21.1(9)	19.1(9)	19.1(9)	4.3(7)	-3.9(8)	-6.7(7)

Table S11 Anisotropic Displacement Parameters (Å²×10³) for compound 4j. The

Table S12 Bond Lengths for compound 4j.								
Atom	Atom	Length/Å	Atom	Atom	Length/Å			
Br1	С9	1.9007(19)	C3	C10	1.490(3)			
F1	C13	1.336(2)	C4	C6	1.394(3)			
F2	C3	1.360(2)	C4	C11	1.397(3)			
F3	C3	1.358(2)	C4	C12	1.529(3)			
F4	C13	1.336(2)	C5	C10	1.498(3)			
F5	C13	1.345(2)	C5	C12	1.557(3)			
N1	N2	1.388(2)	C6	C7	1.388(3)			
N1	C1	1.408(3)	C8	C16	1.388(3)			
N1	C12	1.483(2)	C9	C16	1.383(3)			
N2	C10	1.278(3)	C9	C17	1.387(3)			
C1	C8	1.402(3)	C11	C15	1.384(3)			
C1	C14	1.395(3)	C12	C13	1.548(3)			
C2	C7	1.381(4)	C14	C17	1.388(3)			
C2	C15	1.388(3)						

Table S13 Bond Angles for compound 4j.							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	N1	C1	118.18(15)	N2	C10	C3	120.32(18)
N2	N1	C12	111.54(15)	N2	C10	C5	114.85(17)
C1	N1	C12	127.07(15)	C3	C10	C5	124.79(18)
C10	N2	N1	108.63(16)	C15	C11	C4	120.5(2)
C8	C1	N1	120.47(17)	N1	C12	C4	112.39(15)
C14	C1	N1	120.61(17)	N1	C12	C5	101.33(14)
C14	C1	C8	118.91(18)	N1	C12	C13	108.40(15)
C7	C2	C15	119.3(2)	C4	C12	C5	112.08(16)
F2	C3	C10	109.87(16)	C4	C12	C13	113.71(15)
F3	C3	F2	104.96(17)	C13	C12	C5	108.13(15)
F3	C3	C10	109.54(16)	F1	C13	F5	107.00(16)
C6	C4	C11	118.80(18)	F1	C13	C12	113.87(16)
C6	C4	C12	123.47(18)	F4	C13	F1	106.99(16)
C11	C4	C12	117.69(17)	F4	C13	F5	107.12(16)
C10	C5	C12	101.00(15)	F4	C13	C12	110.45(16)
C7	C6	C4	120.2(2)	F5	C13	C12	111.08(17)
C2	C7	C6	120.8(2)	C17	C14	C1	120.64(18)
C16	C8	C1	120.25(18)	C11	C15	C2	120.4(2)
C16	C9	Br1	119.02(15)	C9	C16	C8	120.03(18)
C16	C9	C17	120.44(18)	C9	C17	C14	119.72(18)
C17	C9	Br1	120.54(15)				

Tab	Table S14 Torsion Angles for compound 4j.								
A	B	С	D	Angle/°	A	B	С	D	Angle/°
Br1	C9	C16	C8	-178.94(14)	C4	C12	C13	F5	-72.2(2)
Br1	C9	C17	C14	179.80(14)	C5	C12	C13	F1	173.85(16)
F2	C3	C10	N2	-123.6(2)	C5	C12	C13	F4	-65.7(2)
F2	C3	C10	C5	58.9(3)	C5	C12	C13	F5	53.0(2)
F3	C3	C10	N2	121.6(2)	C6	C4	C11	C15	-0.5(3)
F3	C3	C10	C5	-55.9(3)	C6	C4	C12	N1	146.01(18)
N1	N2	C10	C3	-178.43(17)	C6	C4	C12	C5	-100.6(2)
N1	N2	C10	C5	-0.7(2)	C6	C4	C12	C13	22.4(3)
N1	C1	C8	C16	-179.86(17)	C7	C2	C15	C11	0.2(3)
N1	C1	C14	C17	-179.27(17)	C8	C1	C14	C17	-0.8(3)
N1	C12	C13	F1	-77.1(2)	C10	C5	C12	N1	-14.57(18)
N1	C12	C13	F4	43.3(2)	C10	C5	C12	C4	-134.60(16)
N1	C12	C13	F5	162.05(15)	C10	C5	C12	C13	99.28(17)
N2	N1	C1	C8	-178.30(17)	C11	C4	C6	C7	0.6(3)
N2	N1	C1	C14	0.2(3)	C11	C4	C12	N1	-36.4(2)
N2	N1	C12	C4	135.75(16)	C11	C4	C12	C5	77.0(2)
N2	N1	C12	C5	15.94(19)	C11	C4	C12	C13	-159.98(17)
N2	N1	C12	C13	-97.71(17)	C12	N1	N2	C10	-10.3(2)
C1	N1	N2	C10	-171.56(17)	C12	N1	C1	C8	23.7(3)
C1	N1	C12	C4	-65.1(2)	C12	N1	C1	C14	-157.80(18)
C1	N1	C12	C5	175.11(17)	C12	C4	C6	C7	178.25(19)
C1	N1	C12	C13	61.5(2)	C12	C4	C11	C15	-178.22(19)
C1	C8	C16	C9	-1.4(3)	C12	C5	C10	N2	10.4(2)
C1	C14	C17	C9	-0.3(3)	C12	C5	C10	C3	-172.01(18)
C4	C6	C7	C2	-0.4(3)	C14	C1	C8	C16	1.6(3)
C4	C11	C15	C2	0.1(3)	C15	C2	C7	C6	0.0(3)
C4	C12	C13	F1	48.7(2)	C16	C9	C17	C14	0.5(3)
C4	C12	C13	F4	169.10(16)	C17	C9	C16	C8	0.4(3)

Parameters (Å ² ×10 ³) for compound 4j.							
Atom	x	V	z	U(eq)			
H2	10133.47	8605.98	3012.89	35			
H3	10061.5	6313.65	10479.18	25			
H5A	10174.86	8510.79	7711.31	25			
H5B	8295.64	9512.39	8706.14	25			
H6	6289.84	10440.16	6127.73	26			
H7	7531.42	10518.36	4087.01	32			
H8	5826.72	7198.54	6248.87	22			
H11	10269.75	6488.32	6030.96	26			
H14	6671.22	4728.6	9031.7	22			
H15	11502.01	6588.99	3995.62	34			
H16	3936.29	5945.75	5834.31	23			
H17	4847.28	3445.91	8579.08	24			

Table S15 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 4j.