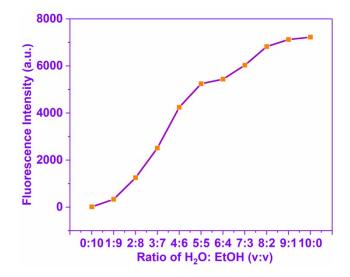
Zero background fluorescent probe for sensing and imaging

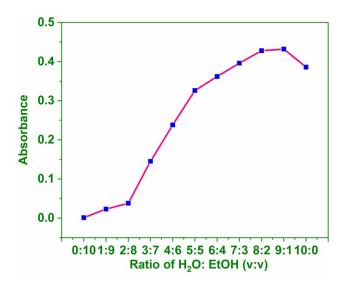
of glutathione via the "covalent-assembly" approach

Zheng Yang,* Zhiyao Wang, Ying Peng, Hao Yang, Qian Wang, Xiaodan Jia, and Xiangrong Liu

College of Chemistry and Chemical Engineering, Xi'an University of Science and


Technology, Xi'an 710054, P. R. China.

*Corresponding author: yangzheng@xust.edu.cn; orcid.org/0000-0002-1554-4794.


CONTENTS

1. The optical properties of probe	S2
2. Calculation of the LODs	S13
3. IR, NMR and MS spectra	S15
4. Theoretical calculation	S20
5. MTT assay results of the probe	S21

1. Optical properties of the probe.

Fig. S1 Fluorescence intensity of probe *R1* (20 μ mol·L⁻¹) in presence of 25 equiv. of GSH in different EtOH-H₂O solutions with PBS buffer (0.1 mol·L⁻¹, pH 7.4), $\lambda_{ex} = 430$ nm.

Fig. S2 Absorbance of probe *R1* (20 μ mol·L⁻¹) in presence of 25 equiv. of GSH in different EtOH-H₂O solutions with PBS buffer (0.1 mol·L⁻¹, pH 7.4).

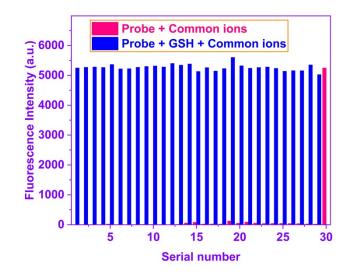


Fig. S3 Fluorescence intensity changes of probe *R1* (20 µmol·L⁻¹) in EtOH-H₂O (1:1, v/v, PBS, pH 7.4) over the analytes of interest (500 µmol·L⁻¹). Pink bars represent the fluorescence response of probe *R1* to: 1, blank, 2, Na⁺, 3, K⁺, 4, Ag⁺, 5, Ca²⁺, 6, Mg²⁺, 7, Cu²⁺, 8, Cd²⁺, 9, Mn²⁺, 10, Fe²⁺, 11, Co²⁺, 12, Ni²⁺, 13, Zn²⁺, 14, Pb²⁺, 15, Hg²⁺, 16, Fe³⁺, 17, Cr³⁺, 18, Al³⁺, 19, Sn⁴⁺, 20, O₂⁻⁻, 21, H₂O₂, 22, NO, 23, ONOO⁻, 24, NO₃⁻⁻, 25, PO₄³⁻, 26, CO₃²⁻, 27, OAc⁻, 28, C₂O₄²⁻, 29, ClO⁻, 30, GSH. Blue bars represent the fluorescence response with subsequent addition of 25 equiv. of GSH to the above solutions, $\lambda_{ex} = 430$ nm.

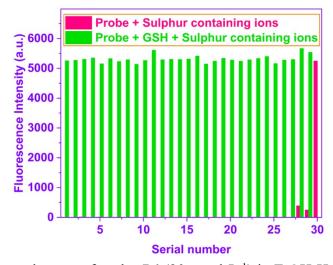


Fig. S4 Absorbance changes of probe *R1* (20 μ mol·L⁻¹) in EtOH-H₂O (5:5, v/v, PBS, pH 7.4) over the analytes of interest (500 μ mol·L⁻¹). Green bars represent the fluorescence response of probe *R1* to: 1, blank, 2, Na⁺, 3, K⁺, 4, Ag⁺, 5, Ca²⁺, 6, Mg²⁺, 7, Cu²⁺, 8, Cd²⁺, 9, Mn²⁺, 10, Fe²⁺, 11, Co²⁺, 12, Ni²⁺, 13, Zn²⁺, 14, Pb²⁺, 15, Hg²⁺, 16, Fe³⁺, 17, Cr³⁺, 18, Al³⁺, 19, Sn⁴⁺, 20, O₂⁻⁻, 21, H₂O₂, 22, NO, 23, ONOO⁻, 24, NO₃⁻⁻, 25, PO₄³⁻, 26, CO₃²⁻, 27, OAc⁻, 28, C₂O₄²⁻, 29, ClO⁻, 30, GSH. Pink bars represent the fluorescence response with subsequent addition of 25 equiv. of GSH to the above solutions.

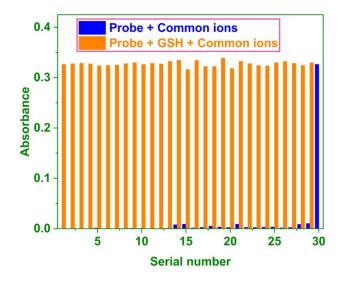
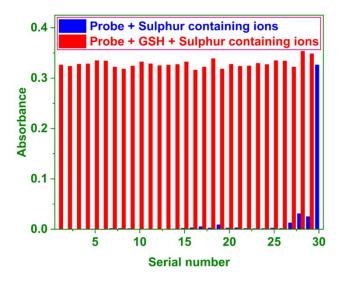
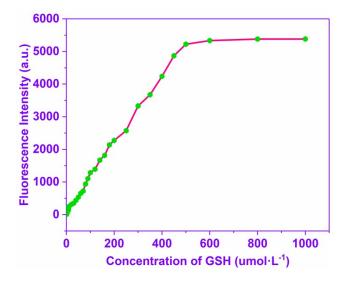
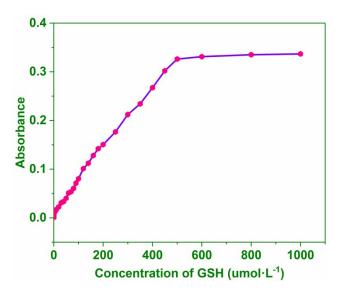
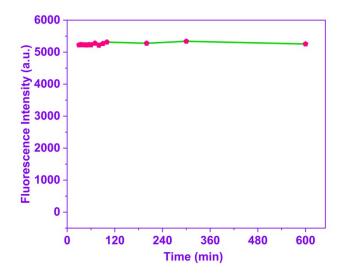
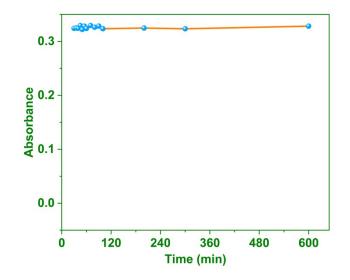
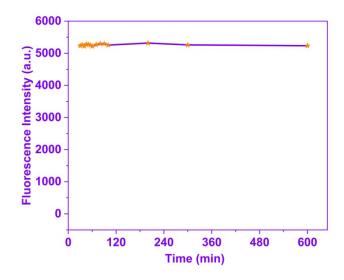


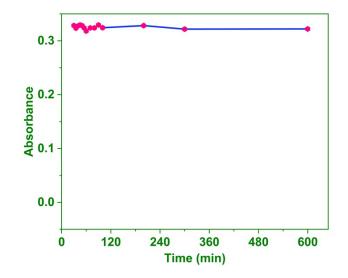
Fig. S5 Fluorescence intensity changes of probe *R1* (20 µmol·L⁻¹) in EtOH-H₂O (5:5, v/v, PBS, pH 7.4) over the analytes of interest (500 µmol·L⁻¹). Blue bars represent the fluorescence response of probe *R1* to: 1. Ala, 2. Arg, 3. Glu, 4. Ile, 5. Leu, 6. Lys, 7. Met, 8. Phe, 9. Pro, 10. Ser, 11. Thr, 12. Trp, 13. Tyr, 14. Val, 15. Sec, 16. AA, 17. H₂S, 18. HS⁻, 19. SO₃²⁻, 20. HSO₃⁻, 21. S₂O₃²⁻, 22. SO₄²⁻, 23. HSO₄⁻, 24. S₈, 25. Na₂S₂, 26. Na₂S₄, 27. PhSH, 28. Cys, 29. Hcy, 30. GSH. Orange bars represent the fluorescence response with subsequent addition of 25 equiv. of GSH to the above solutions, $\lambda_{ex} = 430$ nm.

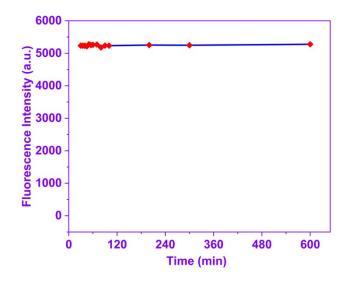




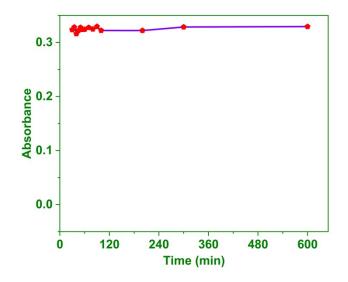

Fig. S6 Absorbance changes of probe *R1* (20 μ mol·L⁻¹) in EtOH-H₂O (5:5, v/v, PBS, pH 7.4) over the analytes of interest (500 μ mol·L⁻¹). Blue bars represent the fluorescence response of probe *R1* to: 1. Ala, 2. Arg, 3. Glu, 4. Ile, 5. Leu, 6. Lys, 7. Met, 8. Phe, 9. Pro, 10. Ser, 11. Thr, 12. Trp, 13. Tyr, 14. Val, 15. Sec, 16. AA, 17. H₂S, 18. HS⁻, 19. SO₃²⁻, 20. HSO₃⁻, 21. S₂O₃²⁻, 22. SO₄²⁻, 23. HSO₄⁻, 24. S₈, 25. Na₂S₂, 26. Na₂S₄, 27. PhSH, 28. Cys, 29. Hcy, 30. GSH. Red bars represent the fluorescence response with subsequent addition of 25 equiv. of GSH to the above solutions.

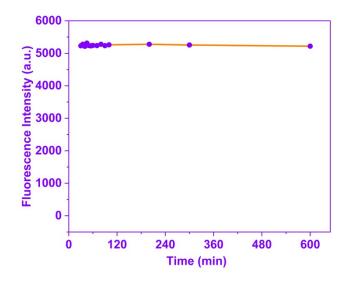

Fig. S7 Fluorescence intensity change of probe *R1* (20 μ mol·L⁻¹) in EtOH-H₂O (1:1, v/v, PBS, pH 7.4) solution as a function of thiols concentration at 540 nm, $\lambda_{ex} = 430$ nm.


Fig. S8 Absorption intensity change of probe *R1* (20 μ mol·L⁻¹) in EtOH-H₂O (1:1, v/v, PBS, pH 7.4) solution as a function of thiols concentration at 509 nm.


Fig. S9 Fluorescence intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) with different reaction time in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution., $\lambda_{ex} = 430$ nm.


Fig. S10 Absorption intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) with different reaction time in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution.


Fig. S11 Fluorescence intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) under the presence of contentious irradiation by 254 nm UV in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution, $\lambda_{ex} = 430$ nm.


Fig. S12 Absorption intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) under the presence of contentious irradiation by 254 nm UV in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution.

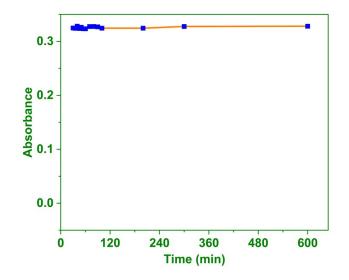

Fig. S13 Fluorescence intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) under the presence of contentious irradiation by 365 nm UV in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution, $\lambda_{ex} = 430$ nm.

Fig. S14 Absorption intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) under the presence of contentious irradiation by 365 nm UV in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution.

Fig. S15 Fluorescence intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) under the presence of contentious irradiation by Xe lamp in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution, $\lambda_{ex} = 430$ nm.

Fig. S16 Absorption intensity change of probe *R1* (20 μ mol·L⁻¹) upon addition of GSH (500 μ mol·L⁻¹) under the presence of contentious irradiation by Xe lamp in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution.

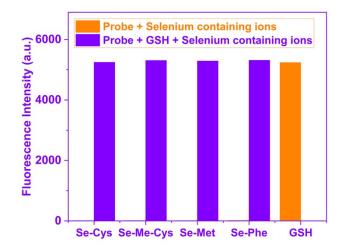


Fig. S17 Selective and Competitive investigation for the fluorescence response of R1 (20 μ mol·L⁻¹) over selenium containing compounds (500 μ mol·L⁻¹) in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution, $\lambda_{ex} = 430$ nm.

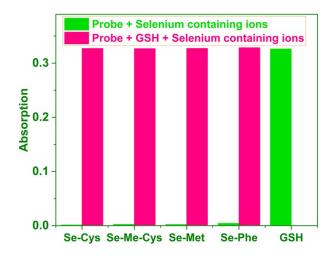


Fig. S18 Selective and Competitive investigation for the absorption response of R1 (20 μ mol·L⁻¹) over selenium containing compounds (500 μ mol·L⁻¹) in EtOH–H₂O (1:1, v:v, PBS, pH = 7.4) solution.

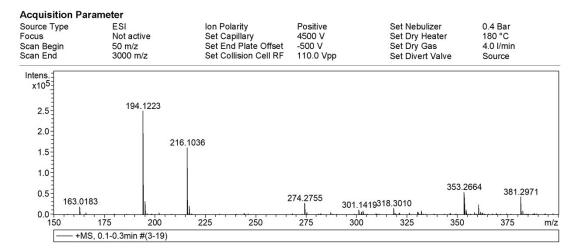
2. Calculation of the LOD.

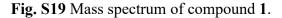
The detection limits were estimated based on the Kaiser's definition:

 $y_d = y_b + KS_b$ (off-on)

 y_d is the detection limit of the sample. y_b present the mean value fluorescence intensity of the blank samples. S_b is the population standard deviation of the blank. The K value is 3 (M. Belter, A. Sajnog, D. Baralkiewicz, *Talanta*, 2014, **129**, 606.).

	Fl. Intensity	Mean value	Standard deviation	$y_d = y_b + KS_b$
Blank #1	5.242			
Blank #2	5.873			
Blank #3	6.372			
Blank #4	5.837	(211 0 (20		8.101
Blank #5	5.362		0.620	
Blank #6	6.372	6.211	0.630	
Blank #7	7.213			
Blank #8	6.432			
Blank #9	6.882			
Blank #10	6.524			


Table S1. Fluorescence intensity and the Standard deviation of the blank samples


[a] y_d is the detection limit of the sample. y_b present the mean value fluorescence intensity of the blank samples. S_b is the population standard deviation of the blank. The K value is 3.

$[GSH] (\mu mol \cdot L^{-1})$	FL. Intensity (GSH)
0.1	6.605
0.2	6.173
0.3	7.615
0.4	8.105
0.5	10.21
0.6	15.11
0.7	21.28
0.8	27.66
0.9	33.07
1	36.21

Table S2. Fluorescence intensity and corresponding concentration of thiols

3. IR, NMR and MS spectra.

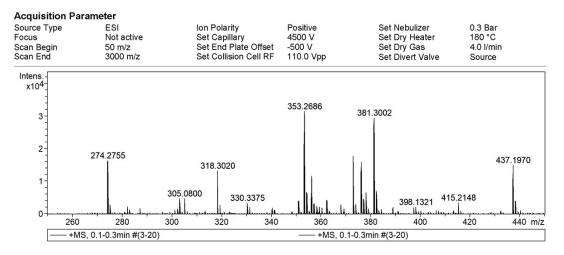


Fig. S20 Mass spectrum of compound 2.

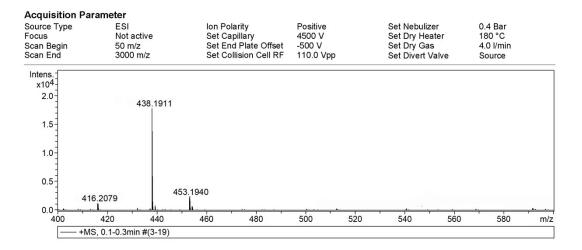


Fig. S21 Mass spectrum of probe *R1*.



Fig. S22 Mass spectrum of probe *R1* + GSH.

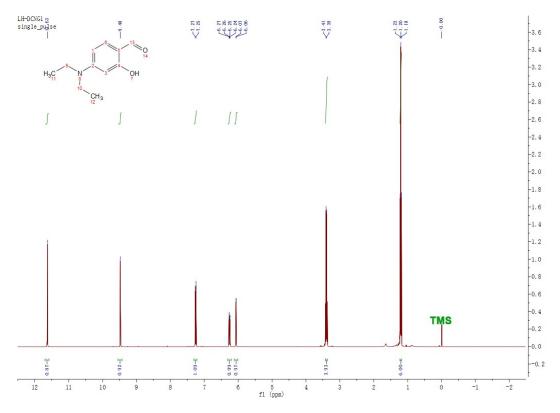


Fig. S23 ¹H NMR spectrum of compound 1 in CDCl₃.

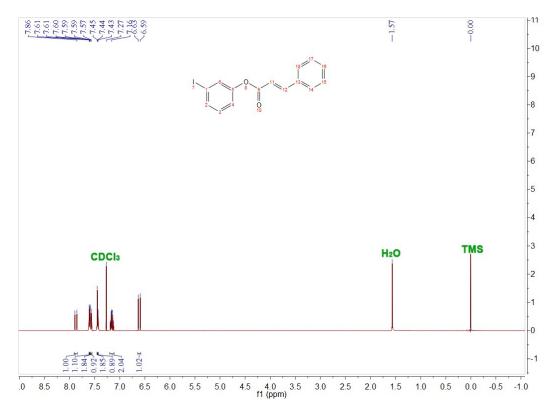


Fig. S24 ¹H NMR spectrum of compound 2 in CDCl₃.

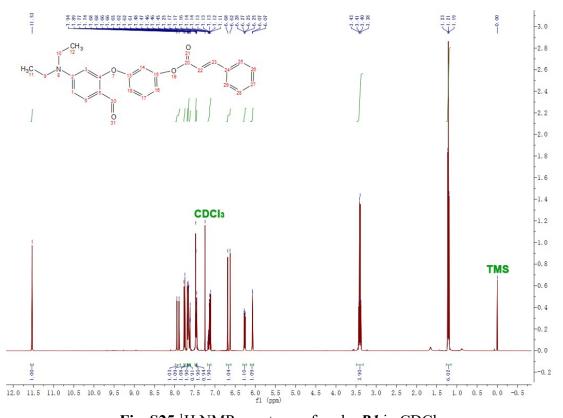


Fig. S25 ¹H NMR spectrum of probe *R1* in CDCl₃.

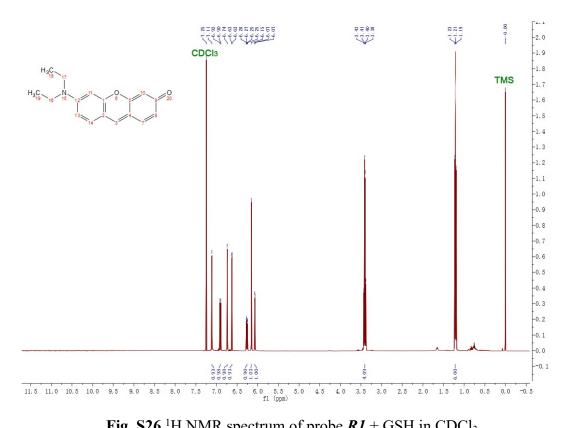


Fig. S26 ¹H NMR spectrum of probe R1 + GSH in CDCl₃.

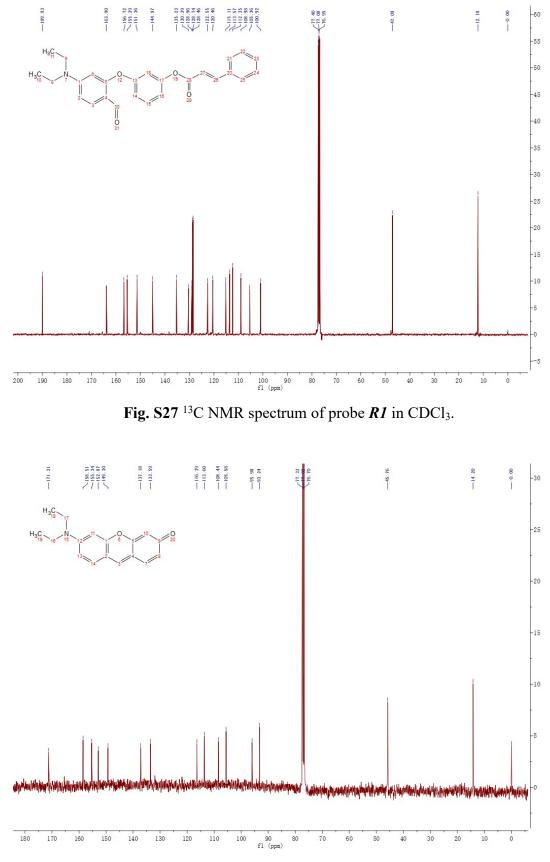


Fig. S28 ¹³C NMR spectrum of probe R1 + GSH in CDCl₃.

4. Theoretical calculation

All theoretical calculations including HOMO/LUMO energies and electrostatic potential (ESP) were performed by the Gaussian 09 program. The geometry optimization of ground states was computed with density functional theory (DFT). The probe was optimized with a combination of basis of double- ζ quality consisting of 6-31G** for C, H elements, 6-31+G* for N, O elements. All the optimized structures were confirmed to be local minimums due to the non-existence of imaginary frequency.

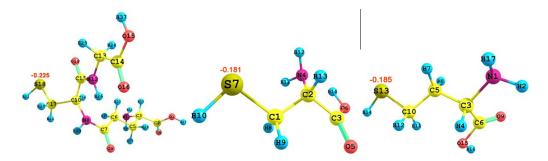
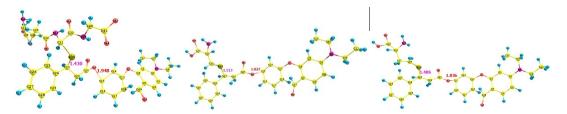



Fig. S29 The optimized structures and electrostatic potentials of GSH, Cys and Hcy.

Fig. S30 The optimized structures and bond lengths of probe R1 with addition of GSH, Cys and Hcy.

Table. S3 Electrostatic potential of sulfur atom in three thiols and BDE of C-O bond

 in three transition-state molecules.

Name	Electrostatic Potential ^a	Name	BDE (KJ∙mol⁻¹) ^b
GSH	-0.079	R1+GSH	35.2312
Нсу	-0.044	R1+Hcy	52.3287
Cys	-0.059	R1+Cys	55.3276

^a Electrostatic potential of sulfur atom in three thiols.

^b Bond dissociation energy.

5. MTT assay results of the probe.

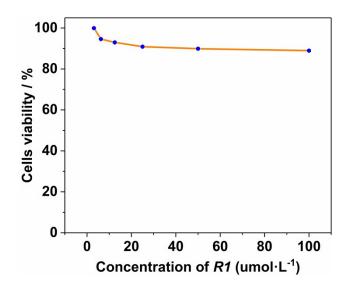


Fig. S31. The influence of cell viability with the change of *R1* concentration.

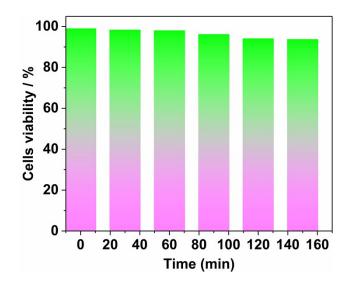


Fig. S32. The relationship between cell viability and incubation time.

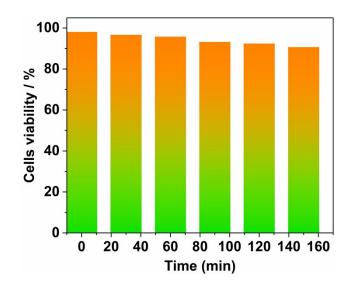


Fig. S33. The relationship between cell viability and incubation time in addition of 20 μ mol·L⁻¹ of *R1*.

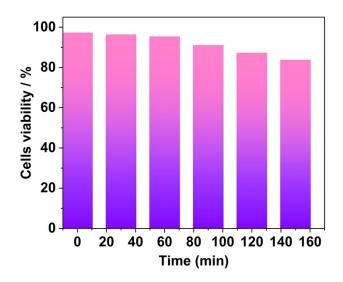


Fig. S34. The relationship between cell viability and incubation time in addition of 20 μ mol·L⁻¹ of *R1* and 25 equiv. of GSH.

[<i>R1</i>]/µM	1	2	3	Average	Inhibition ratio	$IC_{50}/\mu M$
3.125	0.458	0.471	0.465	0.4647	0.0005	
6.25	0.435	0.432	0.453	0.4400	0.0536	
12.5	0.432	0.421	0.444	0.4323	0.0701	>100
25	0.423	0.413	0.432	0.4227	0.0909	>100
50	0.411	0.422	0.421	0.4180	0.1009	
100	0.402	0.427	0.412 0.4137	0.1102		

Table S4. MTT assay results, calculated inhibition ratio and IC_{50} value of the probe *R1* for MG-63 cell.